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STRUCTURED RANDOM SKETCHING FOR PDE INVERSE
PROBLEMS*

KE CHENT, QIN LIf, KIT NEWTON?!, AND STEPHEN J. WRIGHTS

Abstract. For an overdetermined system Ax ~ b with A and b given, the least-squares (LS)
formulation min, ||Ax — bl|2 is often used to find an acceptable solution x. The cost of solving this
problem depends on the dimensions of A, which are large in many practical instances. This cost can
be reduced by the use of random sketching, in which we choose a matrix S with many fewer rows than
A and b and solve the sketched LS problem min; ||[S(Ax — b)||2 to obtain an approximate solution
to the original LS problem. Significant theoretical and practical progress has been made in the last
decade in designing the appropriate structure and distribution for the sketching matrix S. When A
and b arise from discretizations of a PDE-based inverse problem, tensor structure is often present
in A and b. For reasons of practical efficiency, S should be designed to have a structure consistent
with that of A. Can we claim similar approximation properties for the solution of the sketched LS
problem with structured S as for fully random S? We give estimates that relate the quality of the
solution of the sketched LS problem to the size of the structured sketching matrices for two different
structures. Our results are among the first known for random sketching matrices whose structure is
suitable for use in PDE inverse problems.
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1. Introduction. In overdetermined linear systems (in which the number of
linear conditions exceeds the number of unknowns), the least-squares (LS) solution
is often used as an approximation to the true solution when the data contains noise.
Given the system Ax = b, where A € R™*P with n > p, the LS solution x* is obtained
by minimizing the (>-norm discrepancy between the Ax and b, that is,

(1) min [|Ax = bljz, = x* = Ab, where AT < (ATA)7!AT.

The matrix Al is often called the pseudoinverse (more specifically the Moore—Penrose
pseudoinverse) of A.

The LS method is ubiquitous in statistics and engineering, but large problems
can be expensive to solve. Aside from the cost of preparing A, the cost of solving for
x* is O(np?) flops for general (dense) A is prohibitive in large dimensions.

We can replace the LS problem with a smaller approximate LS problem by using
sketching. Each row of the sketched system is a linear combination of the rows of A,
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together with the same linear combination of the elements of b. This scheme amounts
to defining a sketching matrix S € R™*" with r < n and replacing the original LS
problem by

(2) min ||SAx — Sbllz, = x% = (SA)TSb.

X
For appropriate choices of S, the solutions of (1) and (2) are related in the sense that
(3) |lb — Ax*|| is not too much smaller than ||b — AxZ]|.

Usually one does not design S directly, but rather draws its entries from a certain
distribution. In such a setup, we can ask whether (3) holds with high probability.

The literature on random sketching is rich. During the past decade, many the-
oretical and numerical studies have appeared [2, 9, 11, 13, 14, 16, 18, 19, 24, 25,
26, 31, 33, 35, 40], with applications in such subjects as stochastic optimization [18],
[P regression [10, 11, 24, 29, 31, 34, 39|, and tensor decomposition [3, 4, 8, 21, 30].
The technical support for these results comes mostly from the Johnson—Lindenstrauss
lemma [17], random matrix theory [36, 37|, and compressed sensing [15]. Two impor-
tant perspectives have been utilized. One approach starts with the LS problem and
proposes two conditions for the random matrix such that an accurate solution can
be attained with high confidence. It is then shown that certain choices of random
matrices indeed satisfy these two conditions. Instances of this approach can be found
in [14, 31, 33] and the reviews [20, 23]. The second perspective focuses on the struc-
ture of the space spanned by A. It is argued that this space can be approximated
by a finite number of vectors (the so-called y-net), which can further be “embedded”
using random matrices, with high accuracy; see [10, 34, 39] and a review [40]. We use
this second perspective in this paper.

There are many variations of the original sketching problem. With some statis-
tical assumptions on the perturbation in the right-hand side, results could be further
enhanced [29], and the sketching problem is also investigated when other constraints
(such as Iy constraints) are present; see, for example, [27]. In [9, 14, 28], the authors
also directly quantify ||x* — x*|| instead of the residual, as in (3).

In most previous studies, the design of S varies according to the priorities of the
application. For good accuracy with small r, random projections with sub-Gaussian
variables are typically used. When the priority is to reduce the cost of computing the
product SA, either sparse or Hadamard-type matrices have been proposed, leading to
“random-sampling” or FFT-type reduction in cost of the matrix-matrix multiplica-
tion. To cure “bias” in the selection process, leverage scores have been introduced;
these trace their origin back to classical methods in experimental design.

In this paper, with practical inverse problems in mind, we consider the case in
which A and b have certain tensor-type structures. For the sketched system to be
formed and solved efficiently, the random sketching matrix S must have a correspond-
ing tensor structure. For these tensor-structured sketching matrices S, we ask the
following: What are the requirements on r to achieve a certain accuracy in the solu-
tion x% of the sketched system?

We consider A with the following structure:

(4) A=FxG,

where * denotes the (columnwise) Khatri-Rao product of the matrices F and G. As-
suming i1 € Z; and is € Iy, with cardinalities ny = |Z;| and ny = |Z»|, respectively,
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the dimensions of these matrices are
(5) FeR™>*P  GeR™*P AcR"™P,

where n = |71 ® To| = nins.
By defining f; = F. ; € R™ and g; = G. ; € R"2, we can define A alternatively as

(6) a, ZA,; =f0g,

where a; € R™ denotes the jth column of A for j = 1,2,...,p. For vector b, we
assume that it admits the same tensor structure, that is,

(7) b=f,®g, forsome fixed f, € R™ and g, € R"2.

This type of structure comes from the fact that to formulate inverse problems,
one typically needs to prepare both the forward and the adjoint solutions. Denoting
by o(x) the unknown function to be reconstructed in the inverse PDE problem, a very
typical formulation is written as a Fredholm integral of the first type:

(8) / fir (@)gis (@) (2)dr = data, ,,

where f;, and g;, solve the forward and adjoint equations. respectively, equipped with
boundary /initial conditions indexed by i and i5. Each term on the right-hand side
of (8) is typically data measured at io with input source index i;. To reconstruct o,
one loops over the entire list of conditions for f;, (i1 € Zy) and g;, (i2 € Z3). The LS
formulation min ||Ax — bl|2 is the discrete version of the Fredholm integral (8).

This structure imposes requirements on the sketching matrix S. Since Z; and
7> contain conditions for different sets of equations, sketching needs to be performed
within 7y and Z, separately. This condition is reflected by choosing the sketching
matrix S to be the rowwise Khatri-Rao product of P and Q, that is,

Si.=pi ®aq;,
where p; € R™ and q; € R"2,4=1,...,p. The product SA then has the special form
(9 (SA)i=(p/F)o(a;G), orequivalently (SA)i; = (p{ f;)(a/ g)-

Thus, to formulate the i row in the reduced (sketched) system, we perform a linear
combination of parameters in Z; according to p; to feed in the forward solver, and a
linear combination of parameters in Z, according to q; to feed in the adjoint solver,
and then assemble the results in the Fredholm integral (8).
With the structural requirements for S in mind, we consider the following two
approaches for choosing S.
Case 1: Generate two random matrices P and Q, of sizes r1 X ni and 79 X ng,
respectively, and define S to be their tensor product:

(10) S=P@QeRmMn,

Case 2: Generate two sets of r random vectors {p;, i = 1,2,...,,r} and {q;, i =
1,2,...,r}, with p; € R™ and q; € R"2 for each ¢, and define row i of S
to be the tensor product of the vectors p; and q;:

X Pl ®ai

(11) S=

6 RT‘X’anLQ i
Pl ®a,
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Case 2 gives greater randomness, in a sense, because the rows of P and Q are not
“reused” as in the first option.

We are not interested in designing sketching matrices of Hadamard type. In
practice, A is often semi-infinite: F and G contain all possible forward and adjoint
solutions, a set of infinite cardinality that cannot be prepared in advance. In practice,
one can only obtain the “realizations” p'F or q' G obtained by solving the forward
and adjoint equations with the parameters contained in p and q. Because we use this
technique to find SA, rather than computing the matrix-matrix product explicitly,
there is no advantage to defining S in terms of Hadamard-type random matrices.

There have been discussions in the sketching literature on problems that share
our setups, including sketching of matrices A with Khatri-Rao product structure.
The paper [4] presents a tensor interpolative decomposition problem which discusses
Khatri-Rao product form, but there is not a focus on sketching. The paper [35]
proposes a so-called tensor random projection (TRP), similar to our Case 2 presented
below. However, they mainly obtain sketching of one arbitrarily given vector in the
space, while we need to sketch the entire space. Directly employing their argument in
our setting would lead to r = O(p8/e?), whereas our argument suggests that having
r = O(p®/e) is sufficient. This point will be discussed further in Theorem 4.

In [16, 22], the authors considered the fast Johnson—Lindenstrauss transform
(JLT) random matrices and showed that the Kronecker product of fast JLT is also a
JLT. This structure allows embedding of an arbitrarily given vector. For embedding
vectors that have tensor structure, the authors of [12, 13] developed TensorSketch or
CountSketch and discussed the efficiency of these algorithms in terms of the number
of nonzero entries in A. All these results are highly related to ours, but they all have
dependences on the ambient space dimension n, making them poorly suited to our
setting, where we consider the possibility of n — oc.

The rest of the paper is organized as follows. In section 2, we give two examples
from a PDE-based inverse problem that give rise to a linear system with tensor struc-
ture. Section 3 presents classical results on sketching for general linear regression and
states our main results on sketching of an inverse problem associated with a tensor
structure. Sections 4 and 5 study the two different sketching strategies outlined above.
Computational testing described in section 6 validates our results.

We denote the range space (column space) of a matrix X by Range(X).

2. Overdetermined systems with tensor structure arising from PDE
inverse problems. Most PDE-based inverse problems, upon linearization, reduce
to a tensor structured Fredholm integral (8), which can be discretized to formulate a
sketching problem.

One particularly famous example is electrical impedance tomography (EIT), in
which we apply voltage strength and measure current density at the boundary of some
biotissues to infer for conductivity inside the body. The underlying PDE is a standard
second order elliptic equation

V. - (@(@)V.5())
(2)

0 z e,

(12) qSéz) , x € 0N,

I

where ¢(x) is the voltage strength applied on the surface of some biotissue, while p(x),
the solution to the PDE;, is the voltage generated throughout the body. The unknown
conductivity &(z) will be inferred. The measurements are taken on the boundary too.
In particular, one measures the current density on the surface of €2 tested on a testing
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function ¥ as follows:

_ o5
(13) datag.y — / () 29 () de
a0 on
Here % is the normal derivative, with n being the normal direction pointing out of

domain Q. The data has two subscripts: ¢(z) is the voltage applied to the surface, and
¥(x) is a testing function that encodes the way measurements are taken. When the
detector is extremely precise, one can set (x) = 0(z — xo) for some xy € 0, making
datag y the current at point z¢ when voltage ¢ is applied. With infinite pairs of ¢ and
1 in the experimental setup, EIT seeks to reconstruct &(z). EIT further reduces to the
famous Calderén problem when the span of ¢ and 1 covers the entire Sobolev space
HY2(09) := {u € L?(09) | 3 @, such that trace(#) = u}. In practice, however, one
typically has a rough estimate of the media 7(z), termed the background media o*(x).
(For example, most human lungs have the same structure.) In such situations, one
can linearize and reconstruct the perturbation o(z) = (z) — 0*(x) < 1. Specifically,
suppose that p; solves the following background forward equation:

(14) Vo (0" (2)Vapi(z)) =0, zeQ,
p(z) = ¢(x), x € 09,

with the same boundary condition ¢ and the given known background media o*.
Since both these quantities are known, p;(z) can be solved ahead of time for any ¢.
We can also define the adjoint equation:

pal) = ¥(a), v €00,
To obtain the Fredholm integral, we take the difference of (14) and (12) and drop
higher order terms to obtain

Vo (0" (@)Vep(a) =~V - (0(@)Vopr(a), e,

(16) plx) =0, x € 01,

where p(z) 2 5(x) — p1(2).

We now first multiply (16) with ps and multiply (15) with p, respectively, and
then add the two equations together. Performing integration over §2, and with Green’s
second identity, we see that the left-hand sides cancel, and the right-hand side of (16)
will be used to balance the boundary terms:

0 0
(17) /Vmpl(m) - Vap2(z)o(z)da = /aQ J*a—zwdx + /Z)ch%?/zdx.

While the left-hand side of this equation is Fredholm integral testing on o (the con-
ductivity to be reconstructed) with test function V,p1(z) - Vypa(z), the right-hand
side is the data that we obtain from measurement datag . Indeed, since p = p+ p1
and ¢ = 0 + 0o, with p < 1 and o < 1, the right-hand side can be approximated by

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/02/21 to 128.104.46.206. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

STRUCTURED RANDOM SKETCHING 1747

dropping the higher order term |, 20 a%wdm as follows:

/a*@wdx—i—/ 0%¢d$
oo On oo On

= T)=—dr — ) —1pdx — —dz
AQ 0( )3nw 890— ( ) 8n w 890—8”
_, 0P / Ip1
= o(x)=——1vdx — o (z)—=—vdz.
| s@Fuis— [ o @Fte
* 0p1

This expression differs from datay  defined in (13) by |, 00 " aipdz, a precomputed
term, and thus the entire term is known. We finally have

(18) /prl (x) - Vypa(z)o(x)de = datag,y -

We emphasize that the ¢ dependence comes in through p;, while the ¢ dependence
comes in through ps. These functions represent applied voltage source and measuring
setup, respectively. If one can provide point source and point measurement, ¢ and
can be as sharp as Dirac-delta functions.

By varying ¢ and v, one finds infinitely many pairs {p1(; ¢), p2(-; 1)}, each pair
providing one data point corresponding to one experiment setup. These experimental
setups all together give rise to an overdetermined Fredholm integral. More details can
be found in [5, 7].

A similar problem arises in optical tomography [1]. Here we inject light into
biotissue and take measurements of light intensity on the surface to reconstruct the
optical properties of the biotissue. The formulation is

(19) /p1 (z,v)p2(z,v)o(z,v)dedv = datag 4 ,

where (z,v) € 2 ® S (where € is the spatial domain and S is the velocity domain),
and p; are solutions to the forward background radiative transfer equation and the
adjoint equation:

v - V:Epl(xav) = a*(x,v)ﬁpl(a:,v), (J),’U) €N®S,
pl(x,v)ZO, (I7U)€F—7

and
—v-Vepa(z,v) = o*(x,v)Lp2(x,v), (x,0) €ENQX®S,
pz(l',v) = w(xvv)’ (l',’U) ely.

In these equations, £ is a known integral linear operator on v, and I'_ and I'; are the
set collecting incoming and outgoing boundary coordinates, namely I'y = {(z,v) :
x € 00, v - n(z) > 0}, with n(x) being an outernormal direction at x € 9Q. By
varying the boundary conditions ¢ and 1, one can find infinitely many solution pairs
of {p1(-, #), p2(-, 1)} and collect the corresponding data in (19). The inverse Fredholm
integral (19) can then be solved for o. We refer the reader to [1, 6] for details of the
linearization procedure.

When o is discretized on p grid points, the reconstruction problem has the semi-
infinite form Ax = b, where x € RP is the discrete version of ¢ and A and b have
infinitely many rows corresponding to the infinitely many instances of p; and ps. A
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fully discrete version can be obtained by considering ny values of p; and no values of
p2 and setting n = ning to obtain a problem of the form (1). In the remainder of
the paper, we study the sketched form of this system (2) for various choices of the
sketching matrix S.

3. Sketching with tensor structures. We preface our results with a definition
of (g,6)-1?> embedding.
DEFINITION 1 ((¢,6)-[?> embedding).  Given matriz A and ¢ > 0, let S be a

random matriz drawn from a matriz distribution (0, F,II). If with probability at least
1—9 we have

(20) lISylI* = llylI?| < ellyl®  for all'y € Range(A),

then we say that S is an (g,0)-1> embedding of A.

Note that (20) depends only on the space Range(A) rather than the matrix itself,
so we sometimes say instead that the random matrix S is an (g, §)-1? embedding of the

linear vector space Range(A). (We use the two terms interchangeably in discussions
below.)

The (g, §)-12 embedding property is essentially the only property needed to bound
the error resulting from sketching. It can be shown that if S is an (g, §)-I2 embedding

for the augmented matrix A = [A, b], then the two LS problems (1) and (2) are similar
in the sense of (3), as the following result suggests.

THEOREM 1. For e,6 € (0,1/2), suppose that S is an (g,0)-1> embedding of the
augmented matriz A £ [A,b] € R™*®+D) - Then with probability at least 1 — 6, we have

1AXS = blI* < (1 + 4e)l|Ax" =%,

where x* and x% are defined in (1) and (2), respectively.

The proof of the theorem is rather standard. We simply use the definition of the
(,6)-1? embedding and the fact that

(1 =) Ax = bl < [[S(AX = b)[|* < [|S(Ax" —b)[[* < (1 + €) A" — b||*.

For 0 < ¢ < 1/2, this leads to
1
A% = bl[* < T [AX" — bJ* < (1+42)AX" — bl

Given this result, we focus henceforth on whether the various sampling strategies
form an (g,§)-1?> embedding of the augmented matrix A = [A, b].

Another theorem that is crucial to our analysis, proved in [40], states that Gauss-
ian matrices are (g, §)-12 embeddings if the number of rows is sufficiently large. This
result does not consider tensor structure of A.

THEOREM 2 (Theorem 2.3 from [40]). Let R € R™™ be a Gaussian matriz,
meaning that each entry R;; is drawn i.i.d. from a normal distribution N(0,1), and
define S € R™"™ to be the scaled Gaussian matriz defined by

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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For any fivzed matriz A € R™ P and €,§ € (0,1/2), this choice of S is an (g,8)-I?
embedding of A provided that

r>

C

where C > 0 is a constant independent of €, 5, n, and p.

The lower bound of r is almost optimal for the sketched regression problem: the
bound is independent of the number of equations n and grows only linearly in the
number of unknowns p. That is, the numbers of equations and unknowns in the
sketched problem (2) are of the same order. The theorem is proved by constructing
a y-net for the unit sphere in Range(A) and applying the Johnson—Lindenstrauss
lemma.

Building on the concept of (g, §)-I2 embedding and the relationship between (g, d)-
I? embedding and sketching (Theorem 1), we will study the lower bound for r (the
number of rows needed in the sketching) when the tensor structure of Case 1 or Case
2 is imposed. Our basic strategy is to decompose the tensor structure into smaller
components to which Theorem 2 can be applied.

We state the results below and present proofs in sections 4 and 5 for the two
different cases.

Recall the notation that we defined in section 1. The matrices F, G are defined
in (5), and A is defined in (6). Both F and G are assumed to have full column
rank p. We need to design the sketching matrix S to (g,8)-12 embed Range(A), the
space spanned by {f, ® go} U{a; = f; ®g;, 5 = 1,...,p}. In Theorems 3 and 4,
we construct the (g,6)-1? embedding matrix of the Kronecker product F ® G, which
automatically becomes an (g, d)-1?> embedding of its column submatrix A. Moreover,
we show in Corollaries 1 and 2 that these results can be extended to construct (g, §)-1°
embeddings of the augmented matrix A by constructing (e, d)-I?> embeddings of the
Kronecker product of the augmented matrices F ® G, where

(21) 'E = [F7fb] ) G= [Gvgb] .
For Case 1, we have the following result.

THEOREM 3. Consider S = P ® Q € R™"2X™M"2  ghere P € R™*™ Q € R"2*"2
are independent scaled Gaussian matrices defined by

dor 1

e 1 . .
P= R and Q% —R', where Rij, R'Iij are i.i.d. normal for all 4,7 .
T2

Vi VT2

For any given full rank matrices F € R™*P, G € R™*P and A € R"*P as in (5) and
(6), and €,6 € (0,1/2), the random matriz S is an (g,8)-1> embedding of F® G and A
provided that

C .
(22) ri > 5 (|logdl +p), i=1,2,

where the constant C' > 0 is independent of €, §, ny, na, and p.

COROLLARY 1. Consider the matrices S, F, G, and A from Theorem 3, and as-
sume that the vector b has the form (7). Then for given €, € (0,1/2), the random

matriz S is an (g,8)-1> embedding of the augmented matriz A= [A,b] provided that
C
(23) ri> S(logdl+p+1), i=1,2,

where the constant C' > 0 is independent of €, §, ny, na, and p.
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Proof. Define the augmented matrices F and G as in (21). We have that
Range(F ® G) = Span{F ® G,f; ® gp,...,f, @ g, fbo @ g1,...,fr @ gp, b}.

Supposing that F and G have full rank, the linear subspace Range(A) is a subspace of
Range(F ® G). By applying Theorem 3 to the augmented matrices F and G and using
(23), we have that S is an (g, §)-1? embedding of Range(F ® G) as well as its subspace
Range(A). Supposing that F is not of full rank but G is of full rank, the subspace
Range(F ® G) is a subspace of Range(F ® G), so similar results can be obtained by
applying Theorem 3 to F and G. Other cases regarding the rank of F and G can be
dealt with in the same way. ]

The result for Case 2 is as follows.

THEOREM 4. Let p; € R™, q; € R", ¢ = 1,2,...,7, be independent random
Gaussian vectors, and define the sketching matriz S to have the form

p{ ®af
24 S— : € RXmns
(24) A

p'r ®q7‘

Suppose that p > 6, and that F € R™*P G € R™*P and A € R"*P are full-rank
matrices defined as in (5) and (6). Lete,6 € (0,1/2). Then the random matriz S is
an (g,6)-1? embedding of F @ G and A provided that

]. 2 3 1
(25) rZCmax{€(|log5|+p) ,55/2},

where C > 0 is a constant independent of €, §, n1, na, and p.

COROLLARY 2. Consider the same matrices S, F, G, and A as in Theorem 4, with
p > 6, and assume that vector b is of the form (7). Then for given €,6 € (0,1/2),
the random matriz S is an (g,0)-1> embedding of the augmented matriz A = [A, b]
provided that

1 3 1
(26) rZCmaX{5(|IOg6|+<p+l>2) ’65/2}7

where the constant C' > 0 is independent of €, §, ny, na, and p.

We omit the proof since it is similar to that of Corollary 1.

Theorems 1 and 2 yield the fundamental results that, with high probability, for
any fixed overdetermined linear problem, the sketched problem in which S is a Gauss-
ian matrix can achieve optimal residual up to a small multiplicative error. In partic-
ular, as will be clear in the proof later, the Case-1 tensor-structured sketching matrix
S = P® Q not only (g,§)-12 embeds A = F ® G, but the number of rows in P and
Q each depends only linearly on p (see (22)), so that the number of rows in S scales
like p?. If the Case-2 sketching matrix is used, the dependence of  on p and ¢ is
more complex. Whether this bound is greater than or less than the bound for Case 1
depends on the relative sizes of e~ and p.

We stress that both bounds show that the number of rows in S is independent of
the dimension n & nyns of the ambient space. This allows n to be potentially infinity.
We also stress that the dependence on € and p may not be optimal, and the bound
may not be tight. As will be seen in later sections, we have limited understanding
of quartic powers of Gaussian random variables, and this confines us to obtaining a
tighter bound.
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4. Case 1: Proof of Theorem 3. In this section, we present the proof of
Theorem 3. We start with technical results.

LEMMA 1. Consider natural numbers ro, ny, and ng, and assume that a random
matriz Q € R™*"2 js an (g,0)-1> embedding of R"2, meaning that with probability at
least 1 — 6, Q preserves 12 norm with € accuracy, that is,

“|QXH2 - HXHQ‘ < 5||x||2 for all x € R™2,

Then the Kronecker product Id,,, ® Q is an (g,0)-1> embedding of R™™2. Similarly, if
Q € R™*™ s an (g,5)-12 embedding of R™, then Q ® Id,,, is an (&,6)-1?> embedding
of R™nz,

Proof. The proofs for the two statements are rather similar, so we prove only the

first claim.
Any x € R™"2 can be written in the following form:

X1
x= | |, wherex; € R"2,i=1,2,...,n.
Xny
Then
Q X1 Qxy
(Idn, ® Q)x = =
Q| [Xn, Qxny

Thus, we have
(27) [(1dn, @ QXII> =Y [Qxill*,  IIxI> =" x>
1=1 1=1

Since Q is an (g,d)-12 embedding of R™2, then with probability at least 1 — §, for all
x; € R™ we have

(28) ‘||Qxi||2 — ||xz||2’ <eg|x||* foralli=1,2,...,n;.

By using this bound in (27), with probability at least 1 — J, we have for all x € R™1"2
that

n

[11(1dn, @ QxI* = [IxIP] < D [IQxill® = Ixill?| < &Y aill* = ellxlf?.
i=1 i=1
so that (Id,,, ® Q) is an (g, §)-I> embedding of R™"2, as claimed. d

The following corollary extends the previous result and discusses the embedding
property of P ® Q.

COROLLARY 3. Assume two random matrices P € R™*™ gnd Q € R™*"2 qgre
(,6)-1? embeddings of R™ and R™2, respectively. Then the Kronecker product P@Q €
R™Mm2Xminz g qn (g(2 + €),26)-12 embedding of R™"2.

Proof. Noting that (see (68) in Appendix A),

PRQ=(P®ld,)(Ild,, ®Q),
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we have
(P ®Qx[I* = (P @1d,,)(Idn, ® Q)x[|* = [|(P & Idy,)yl|*,

where y = (Id,,, ® Q)x.

Denote by (Q1,F1,I1;) and (€9, F2,1I5) the probability triplets for P and Q,
respectively. Since P is an (g,6)-I2 embedding of R™, we have with probability at
least 1 — ¢ in II; that

[I(P@1dy,)yll* — llyll*] < ellyl*.

Similarly, with probability at least 1 — § for the choice of Q in Il5, we have
‘H(Idn1 ® Q)x||2 — ||x||2’ < E||XH2 for all x € R™172,

Combining the two inequalities, we have with probability at least 1 — 24 in the joint
probability space of II; and Ils that the following is true for all x € R™1™2:

(P @ Qx> = IXII”] < [II(P@1dry)yll* = [IylI*| + |I(1dn, @ Q)x[|* — [Ix]?|
< ellyll* +ellx]?
= [|(Idy, ® Q)x||* + ][x||?
<e(2+9)|x?.
This concludes the proof. 0

Now we are ready to show the proof of Theorem 3, obtained by applying Theo-
rem 2 to Corollary 3.

Proof of Theorem 3. For any vector y in the span of F ® G, we can write
y = (Up® Ug)x for some x € RP”

where Ug € R"**P and Ug € R™2*P collect the left singular vectors of matrices F and
G, respectively. By applying (68) from Appendix A, we have

(UF ® UG) = (UF ® |dn2)(|dp ® UG).

It is easy to see that the matrix Id, ® Ug has orthonormal columns, so it is an
isometry. The matrices Ur ® Id,,, and Ur ® Ug are isometries for the same reason. As

a consequence, we have |y||? = [|x/|>. From (68) in Appendix A, we have by defining
P= PUr € R"*? and Q= QUg € R"2*? that
(29) Sy = (P ® Q)(Ur ® Ug)x = (PUr) ® (QUg)x = (P ® Q)x.

Due to the orthogonality of Ug and Ug, the random matrices P and Q are also inde-
pendent Gaussian matrices with i.i.d. entries. According to Theorem 2, for any pair
g€,0 € (0,1/2), by choosing r; to satisfy

C -
(30) ri > 5 (Jlogd|+p), i=12,
we have that P and Q are both (€, 5)—[2 embeddings of RP. Thus, from Corollary 3,

the tensor product (P ® Q) is an (2 +8), 25)—l2 embedding of RP’, meaning that
with probability at least 1 — 25, we have

(P Qx||? - ||x||2‘ <E2+8)|x|? for all x € RP.
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Recalling ||x|? = ||ly||? and (29), we have that
lISyll* = llyll*] < &2+ &)llyll*  for all y € Span{F ® G} .

By defining e = &(2 + &) and § = 26, we have

# and 5—
Vite+1l 27

Note that if ¢ and § are in (0,1/2), then & and § are also in this interval, so (30)
applies. By substituting into (30), we obtain

é:

=

ri >

WA

(|logd| +p), i=1,2.

The constant C here is different from the value in (30) but can still be chosen inde-
pendently of ¢, §, n1, n2, and p. We conclude that S = P®Q is an (¢, §)-1? embedding
of F® G and thus also an (e, )-I2 embedding of A. 0

5. Case 2: Proof of Theorem 4. In this section, we investigate Case-2 sketch-
ing matrices, which have the form (24).

We prove Theorem 4 in two major steps. First, in section 5.1, we investigate the
accuracy and probability of embedding any given vector y € Span{F ® G}. Second,
in section 5.2, we extend this study to deal with the whole space Span{F ® G}. To
do so, we first build a ~-net over the unit sphere in Span{F ® G} so that we can
“approximate” the space using a finite set of vectors. By adjusting ¢ and §, one not
only preserves the norm but also the angles between the vectors on the net. We then
map the net back to the space to show that S preserves the norm of the vectors in
the whole space. This standard technique is used in [40] to prove their Theorem 2.

5.1. Embedding a given vector. We establish the following result, whose
proof appears at the end of the subsection.

PROPOSITION 1. Given two full rank matrices F and G as in (5) and € € (0,1/2),
let S € R™*™"2 hague the form of (24), with p; and q;, ¢ = 1,2,...,r, being i.i.d.
Gaussian vectors. Then for any fized y € Span{F ® G}, we have that

3 1
Pr(IsyIP = ] > elyl?) < 5rexp (39172 ) exp (- 5r7517)

provided that
r>8-3%2 . max{e %2 p3/2 1},

Essentially, this says that S is an (e,5rexp ((3/4)p'/?) exp (—(1/2)r/3¢1/3))-
I2 embedding of any fixed y € Span{F ® G}. The contribution from the factor
exp (—(1/2)r/3¢'/3) is small when r is large.

We start with several technical lemmas. Lemma 2 identifies ||Sy[|> — [ly||?| /[y
with a particular type of random variable; we discuss the tail bound for this random
variable in Lemma 4. Lemma 3 contains some crucial estimates to be used in Lemma 4.

LEMMA 2. Given two full rank matrices F and G as in (5), consider S defined as
in (24). Then there exists a diagonal positive semidefinite matriz ¥ with Tr(3?) = 1
so that for anyy € Span{F ® G} with |ly|| =1, we have

T
d 1l .
ISyII* ~ =D ¢ where G = €S,

i=1
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where & denotes equal in distribution and &;,n; € RP are independent Gaussian vectors
drawn from N(0,1d,).

Proof. From (24) we have

. (P! ®ai)y

1 T
Sy =— : = |ISyI?=-> ¢,
VT T T "3

(pr @4, )y

where (; ey (p;r ® q;-'—)y. Since p; and q; are independent Gaussian vectors, all random
variables (;, 1 =1,2,...,r, are drawn i.i.d. from the same distribution.
We consider now the behavior of ¢ = (pT ®q")y for Gaussian vectors p and q.

Notice that for any y € R™"2 ¢ Span{F ® G}, there exists x € R”" such that
y=(Up®Ug)x, with ||x||=1,

where Ug and Ug collect the left singular vectors of F and G, respectively. We thus
obtain from (68) that

(=P ' ®q )y=0p' ®q )(Ur@Uc)x=((p'Ur) ®(q"Ug))x=(p' ®§" )x,

where p o U;—p € RP and q L qu € RP are i.i.d. Gaussian vectors as well. By
applying (69) and (70), we obtain

(31) ¢(=("®q")x=q Mat(x)p,

where Mat(x) € RP*P is the matricization of x, discussed in Appendix A. By using
the singular value decomposition Mat(x) = ULV, we obtain

Tr(3?) = [Mat ()| = [x]|* =1,

where || - || denotes the Frobenius norm of a matrix. By substituting into (31), we
obtain
¢=(UTa 2VTp=¢"%n,

where
§EUTGeR? and n=V'peR?
are again i.i.d. Gaussian vectors in RP. This completes the proof. 0

LEMMA 3. For any fixed diagonal semipositive definite matriz £ diag{oy, ...,
op} such that Tr(X?) = 1, define the random variable ¢ to be ¢ = €' Xn, with &
and n being i.i.d. random Gaussian vectors with p components. Then ( satisfies the
following properties:

1.
2 exp (— P if VB <t<2Up,
(32 Pr(¢>1)< ( (;“fﬂ) |
2 exp (7%) if t > 2./p.
2.
(33) E[¢*] =1 and E[¢*] <9.
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(34) E[(c?-E[*])°] <s.
Proof. For any s > 0 and t > 0, we apply Markov’s inequality to derive
(35) Pr(¢ >1t) =Pr (e > e) < e *E [exp (s¢T2n)] .

Noting that 26T %y < [|ZY2¢)12 + ||2'/2n||?, we use the independence of ¢ and 7 to
deduce that
(36) E [exp (s¢7£n)] < E [exp ((s/2)(IS%)12 + /20]1%))]

—E [e<s/2)|\zl/25u2} E [e<s/2)|\21/2nu2} _

For the first term on the right-hand side of (36), using the independence of the &; and
the concave Jensen’s inequality, we have that

afp ] o (33 = [T o] < 1 e
i=1 =1

i=1

where we used 0 < 0; < 1,¢=1,2,...,r, to apply the concave Jensen’s inequality,
and & ~ N(0,1). According to Proposition 2 (see Appendix A.2), (&2 — 1 is a subex-
ponential random variable with parameters (2,4). Thus, from (71), with A =2, b =4,
and s replaced by s/2, we have

E [e<s/2>nz”2su2} <11 (Es [es&/zb‘” _ (Eg [es@/zD

1

T
_ (eS/ZEg [es({"—l)mD () < e(s2+s)TI'(Z)/2 for 0 < s < 1/2.

Tr(z)

~

Since, by Holder’s inequality, we have

p p 1/2
LEE W b VA
1=1 =1
it follows that
E [e<s/2>uz”2£n2} < EFIVP2 for 5 € (0,1/2).

The same bound holds for the second term on the right-hand side of (36). When we
substitute these bounds into (35) and (36), we obtain

Pr(¢ >t) <exp(y/ps® — (t—/p)s) .

By minimizing the right-hand side over s € [0,1/2], we obtain

—eop if p<t<?2

e g i ,

Pr (C > t) < _ (2t—3yp) . \/i) - \/i)
e 1 if £t > 2,/p.

Due to symmetry, we have the same bound for Pr({ < —t), so (32) follows.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/02/21 to 128.104.46.206. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

1756 KE CHEN, QIN LI, KIT NEWTON, AND STEPHEN J. WRIGHT

To show the second statement, we notice that
@) E[(¢-E[C)] =E[] - ®[])°

By considering ¢ = >_Y_, 0:&;, the second moment can be calculated directly:

P p D
(38) E kz] =E Z oio;&nimi | = E [Z afffnf] = Zg? =1,
i=1

ij=1 i=1

where we used the independence of &; and 7;, the fact that E& = En; = 0, and
EE = Enf = 1.
To control the fourth moment, we notice that

E[C* =E | ) oiojonan&é&némmmen
ikl

Due to the independence and the fact that all odd moments vanish for Gaussian
random variables, the only terms in the summation that survive either have all indices
equal (i = j = | = k) or have two indices equal to one value while the other two indices
equal a different value; for example, i = j and k = [ but ¢ # k. Altogether, we obtain

E[¢*] =3E | oloi&i&inin; | +E
ik

zafgfnf] |
7

where the coefficient in front of the first term comes from (;l) / (f) = 3. Considering
E¢? =1 and E¢* = 3, we have

p

E[¢*] =3) 0?0} +9) 0l =3 olof+6) of
i#£k i ik=1 i
(39) ) , ;
<o ataieo Yot (Yat) (o) ro)at oo,
k=1 i i=1 k=1 i=1

where we used o} < o2. By substituting (38) and (39) into (37), we have
E[(¢P-E[¢?])’] =E[¢*] - (B[¢*))* < 9-12 =3,

which concludes the proof. 0

Remark 1. We note that this lemma is not new; its proof can be made more
compact if one uses the Hanson—Wright inequality and [37, Lemma 6.2.2]. The latter
result shows that there exist absolute positive constants ¢ and C such that

E [exp(s¢ ' En)] < exp (Cs?)
for |s| < -£. By substituting into (35), we have

<
o1

Pr(¢ > t) < exp(Cs? — st) for all |s| < =
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assuming that the singular values o; on the diagonal of ¥ are ordered in a descending
manner. Minimizing the right-hand side in terms of s, we have
exp( t2) if0<t<2C

(40) Pr(¢ > 1) < e

exp (—;—i—l—i?) iftz%,
which, because of symmetry, leads to

2 exp (—%) if0<t< 20
(41) Pr(|¢| > t) <

t ’c ; 2¢C
2exp (—5—1—4—00%) 1ft2§—1.
This result is rather similar to ours, except that the Hanson—Wright inequality comes
with two generic constants ¢ and C. These constants are extremely involved, as shown
in the original proof [32]. We need to make all constants precise and thus maintain
our full proof with elementary calculations.

LEMMA 4. Let (;, 1 =1,2,...,7, be i.i.d. copies of the random variable ¢ defined
in Lemma 3. Then if

(42) r>8-3%%. max{t*5/2 ,p3/2t71},
we have
(43)
1 — 3 1
Pr ( ; Z (<7/2 —-E I:CZQ]) > t) S 5r exp <4p1/2) exp <_2r1/3t1/3> fOT te [07 1]
i=1

Remark 2. This lemma essentially deals with the tail bound of a random variable
that is of quartic form of a Gaussian. According to the definition, ( is a quadratic form
of Gaussians, and thus is a subexponential, but this lemma considers ¢2. Quadratic
forms of subexponential vectors are studied in [38]. If we directly employ their results
(especially their Corollary 1.6) by setting their A = 1ld, € R™ ", we obtain, for
sufficiently large r (made precise in the corollary), that

1724\ 23
Pr >t | <Cexp|—C'min (\/@> L)Y

where C and C’ depend on p. We obtain the same power for r and ¢ as a result, and
we make the dependence of the constants on p explicit.

Proof. Let E! be the event defined as follows:

r

Y (G -E])

i=1

1

r

T

E“éf{iZ(cf—E[cﬂbt}.

=1

Due to the symmetry of >.;_, (? — E [Cﬂ, the probability in (43) is 2 Pr(E?). We
now estimate Pr(E?). For any fixed large number M, we define the following event
fori=1,2,...,r:

EM E{G <My ={¢-1<M-1}.
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Clearly, we have
(44) Pr (') = Pr(B' 0 (M, EM)) + Pr (B 0 (M, BM)°)

We now estimate the two terms:
1. For the first term in (44), we note that

(45) Pr(E'n(N_,EM)) =Pr(E'
< Pr (Et

(
(

Denoting X; & ¢2-E [(ﬂ, and realizing that E [CE] = 1 according to (33)
of Lemma 3, then EM = {X; < M — 1}. Estimating (45) now amounts to
controlling the probability of Y /_, X; > rt, assuming that X; < M — 1 for

all i =1,2,...,r. By applying Bernstein’s inequality (72), we have

i BM)) - Pr (M=, EM))

N
N_ EM)) .

Pr(E" | (Ni_,E}M)) =Pr (ZX >rt| X; <M -1, i:l,?,...,r)

: r2t2 /2
= <z:_1 E[X7]+ (M- 1>rt/3> '

From (34) in Lemma 3, we have E [X?] <8, so that

e () sew (i)

which gives the upper bound of the first term in (44).
2. For the second term in (44), we note that

Pr (B0 (N, EM)) < Pr (02 BM)) = Pr(Uy (BM)9) < rPr((BM)9) .
By applying (32) from Lemma 3, with ¢ = v M, we have

Pr(EM)*) =Pr (( > M) =Pr (\g| > \/M)

_(WM-yp)?
2e v if p< M <4p,
<
= evM-3yF)
2e~ 1 if M > 4p,
and thus
2 7% if p< M <4
, c re g if p< M < 4p,
(47) Pr(E'n (N, EM)") < (i3
2re= a4 it M > 4p.
By combining (46) and (47) in (44), we have
3rt? ore” AT ip< <4
T re P Ip=s > 4p,
(48)  Pr(E") < exp (—) + g
48 +2(M — 1)t ore~ TP i M > 4p.

To find a sharp bound of Pr(E?), we choose a suitable value of M. We set
(49) M = r2/3¢2/3,
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where 7 satisfies the lower bound (42). Since 7 > 8 - 33/2 . p3/2t~1, we have r%/3 >
12pt—2/3, so that

(50) M = r?/3¢2/3 > 12p > 4p,

so the second case applies in (48). Since r > 33/2.23 .475/2 we have r2/3 > 12t75/3,
so that

Mt = r?/3/3 > 12,
so that, for the denominator of the first term in (48), we have
(51) 48 +2(M — 1)t = 6Mt + 48 — 2t — 4Mt < 6Mt.

By using these observations in (48), we have for the value (49) that

1rt 3 1
ty < it 2 1/2 _Ia2y
(52) Pr(E") <exp ( 5 > + 21 exp <4p ) exp < 2M )

With M defined as in (49), we see that the two exponential terms involving M in this
expression are both equal to exp(—r1/3t1/3/2). Additionally, since p > 1 and r > 1,
we have 2r exp(3p'/2/4) > 4. Thus, from (52), we obtain

(53) Pr(E') < (5/2)r exp (ip1/2> exp <—;r1/3t1/3) .

We obtain the result by multiplying the right-hand side by 2, as discussed at the start
of the proof. ]

Proposition 1 is a direct consequence of Lemmas 2 and 4

Proof of Proposition 1. For any y € Span{F®G}, denote y = ”z—u, so that ||y]| = 1.
From Lemma 2, we have

e d 1o .
IS9(1* ~ — > _¢Z. where ¢ = ¢T3,
1=1

where &, n; € R? are independent Gaussian vectors drawn from AN(0, Id,). We have

ISyll2 = lIvl* _ ISyl® — 9l _ ZCQ
lyll? 191>

By setting ¢t = ¢ in (43) from Lemma 4, we have

(\ Sy||”2y“2 . ) — P <|1 S - 1) >

6)
i=1

1
< 51 exp (ip1/2> exp <—27‘1/3€1/3> )

conditioned on r > 8- 3%/2 . max{e /2, p?/2c~1}, as required. d
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5.2. Proof of Theorem 4. Proposition 1 shows the probability of the sketching
matrix S of the form (24) preserving the norm of a fixed given vector in the range space
Range(F®G). To show that the preservation of norm holds true over the entire column
space, we follow the construction of [40]. We construct a y-net over the unit sphere in
Range(F ® G) and show that for r sufficiently large, with high probability, the angles
between any vectors in the net will be preserved with high accuracy. Preservation of
angles on the v-net can be translated to the norm preservation over the entire space.

We show in Lemma 5 that angles can be preserved with the sampling matrix S of
the form (24). In Lemma 7, we calculate the cardinality of the y-net. The fact that
the preservation of angles leads to the preservation of norms on the space is justified
in Lemma 6. The three results can be combined into a proof for Theorem 4, which
we complete at the end of the section.

LEMMA 5. Let V' be a collection of vectors in R™ with cardinality |V| = f, and
let
VE{utv:uveV}.

Suppose that a random matriz S preserved norm on V., in the sense that for each
v € V', with probability at least 1 — §, we have

[ISel2 ~ 912] < ]9].

Then S preserves the angle between all elements in V with probability at least 1 —4f25,
that is,

Pr (|(Su,Sv) — (u,v)| < ellull[|v]]) > 1 —4f%6  for allu,v € V.

Proof. Without loss of generality, we assume all vectors in V' are unit vectors.
Because of the assumptions on S, we have

(54) Pr (|Hso||2 — [[9)?| < ][9] for all € f/) <1- f2.

Considering u,v € V, we denote s CutveVandtZu—v eV and use the
parallelogram equality:
<ua V> -

(s = 11tl?) , (Su,Sv) = 7 (IISsl* — lIst]*) ,

=
] =

so that 1
{Su,Sv) = {u,v) = § (ISsl® = lIsl1* = lIstl* = 1tl1?)) -

From (54), we have, with probability at least 1 — f24, that for all u,v € V,

1
[{Su, Sv) — (u,v)| < 7 ([Issl* = lisll*| + [IStlI* = l1el”*])
€ € €
< S (sl + 1% = S Ul + v + flu = Vi) = S @[ull® + 2(v]*) =,
which completes the proof. 0

We now define the v-net and show that preservation of angles on this net leads
to preservation of norms.

DEFINITION 2. Denote the unit sphere in space Range(F ® G) by S, that is,
(55) S= {y eR™™ : y=(F® G)x for some x € R”" and llyll = 1} .

For fized v € (0,1), we call G a y-net of S if G is a finite subset of S such that for
anyy € S, there exists w € G such that ||w —y|| <.
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The following lemma was presented in [40, section 2.1].

LEMMA 6. Let S and G be as in Definition 2 for some v € (0,1). Then the
preservation of angle on G leads to the preservation of norm in S. That is, if

(56) [(Sw, Sw') — (w,w')| <& forallw, w e G,

then

e
|HSy||2_||yH2‘ < (1_7 fOT‘ CLllyGS.

7)?
The size of the v-net can also be controlled, as we now show.

LEMMA 7. Let S the the unit sphere of F ® G, defined in (55). Then for any
v € (0,1), there exists a y-net G of S such that

p2
G| < (1 + 2)
v

Proof. Noticing that S is isometric to the unit Euclidean sphere 8172_17 the result
follows directly by applying Corollary 4.2.13 of [37]. O

Finally, we state the proof of Theorem 4, which is obtained from the lemmas in
this section together with Proposition 1.

Proof of Theorem 4. Without loss of generality, it suffices to show that S pre-
serves norm with high accuracy and high probability over the unit sphere in Range(F®
G), defined by

SE{yeR™m™ : y=(F® G)x for some x € R and llyll=1}.

Note from Lemma 7 that for given v € (0, 1), one can construct a y-net G of S of size
f=0+ %)pz. Given &1 € (0,1/2), then on this G, according to Proposition 1 and
Lemma 5, if we assume

(57) r>8.3%2 -max{5f5/2 0P %eT ),

then with probability at least 1 — §o, with

1
(58) 8y < 207 f? exp (2p1/2> exp (_2T1/3€}/3>

2\ 2" 3 1) 1s
=20r (14— exp fpl/2 exp —77"1/351/ ,
¥ 4 2
we have that S preserves angles, that is,

|(Sw, Sw') — (w,w')| <e; forallw,w €3G,

According to Lemma 6, S embeds S, that is,

[ISy[I> = [lyl’| <& forally €S, where ed:“(lfil’y)?

First, we need to convert the condition (57) into one involving €. We obtain

(59) r>8-3%2 max{e 21 —~) 75, p* 27 (1 — 4) 2}
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Second, we must alter the lower bound on r to ensure that the right-hand side of (58)
is smaller than the given value of 4, that is,

2\ % 3 1
(60) 6 > 20r (1 + 7) exp <4p1/2) exp (_2T1/3€1/3(1 _ 7)2/3> ’
or equivalently,
3 1
(61) log d > log 20 + log r 4 2p* log(1 + 2/7) + Zpl/2 — 57«1/361/3(1 — )73,

Note that for p > 6 and v € (0,1), we have log20 < 3 < .1p*log(l + 2/v) and
75p /2 < 1p*log(1 + 2/7). Thus, a sufficient condition for (61) is

1
(62) log & > logr + 2.2p? log(1 + 2/7) — §r1/351/3(1 —y)2/3,
Denoting
e er 1
a=etB3(1-~)%3 and pE 3 (2.2p° log(1 +2/7) + [logd|) ,

we have a € (0,1) for any £, € (0,1). By using these definitions, we see that (62) is
equivalent to

(63) %T1/3 —logrt/3 > p,

for which the combination of the following two conditions is sufficient:

(64a) %7‘1/3 —logrt/3 >0,
a

64b —r'/3>3.

(641) s g

Condition (64b) can be rewritten as

12363 B 43 (
ad (1)

r> 2.2p? log(1 + 2/7) + |log§|)3 ,

for which a sufficient condition is

8.83 3 9 3
> ° :
(65) r> 0= log” (14 2/7) (p° + |log d])

The condition (64a) requires h(r'/3) > 0, where h(z) = 152 —log . Since

o 1
Wiz)=2 2>
@) =15-720

we see that h is an increasing function for > 12/a. By noting that

12 _3/2 5
h (a5/2> =« — log(12) + 5 loga >0 for a € (0,0.33)

and
12 12

m>;, aE(O,l),
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we have for a € (0,0.33) that

12
as/2’

h(r'/3) >0 if /%>

which leads to

123

(%6) = A=

We are free to choose v € (0,1) in a way that ensures that « € (0,.33). In fact, by
setting v = 3/4, we have

a=e3(1/4)%% <0.33 forall € € (0,0.5).
By combining the conditions (66) and (65) and setting v = 3/4, we have

Cl 62 2 3
rzmax{w,s(p +\log6|) },

with Cy = 8.83 - 4210g(11/3) ~ 2.4e4, and Cy = 123 - 45, O

We could change the weight in the separation of (63) into (64a) and (64b), so
that one could arrive at different (possibly better) constants C'; and Cy in the final
expression. However, our priority is to show dependence of r on ¢, ¢, and p (and not
n), and optimization of the constants is less important.

6. Numerical tests. This section presents some numerical evidence of the effec-
tiveness of our sketching strategies. We test them on general matrices with the tensor
structure and a problem directly from EIT (18). We are mostly concerned about
the dependence of accuracy on n, r, and p. The computational complexity is rather
straightforward and is omitted from discussion. In both tests, the numerical solutions
outperform the theoretical predictions, indicating that there is room for improvement
in our bounds for r.

6.1. General matrices with tensor structure. To set up the experiment, we
generate two matrices F = [f1,...,f,] € R"*? and G = [g1,...,8,] € R"**P using

F=UZeVy and G =UgXcVe,

where Up € R™*P_ Ug € R™"2*P Vg € RP*P and Vg € RP*P are generated by taking
the QR-decomposition of random matrices with i.i.d Gaussian entries. The diagonal
entries of X¢ and 3¢ are independently drawn from A(1,0.04). Matrix A € R™*? is
then defined by setting a; = f; ® g;, with n = nyno. We further generate the reference
solution x,of € RP whose entries are drawn from N(1,0.25). The right-hand-side
vector b € R™ encodes a small amount of noise; we set

b = Axer + 1076¢,

where each entry of ¢ is drawn from N(0,1). We compute x* using (1).

Three sketching strategies will be considered: the first two cases from (10) and
(11), and a third standard strategy that does not take account of the tensor structure
in A.

Case 1: Set S = P® Q (normalized), as defined in (10) with entries in P € R™>*™
and Q € R™*"2 drawn i.i.d. from N(0,1). Notice here that r = rirs.
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Case 2: Set S;. = p; ®q, (normalized), as defined in (11), with entries in vectors
{p:} and {q;} drawn i.i.d. from M (0,1) for all i =1,...,7.
Random Gaussian: S = R € R™*" (normalized), with entries in R drawn i.i.d.
from N(0,1).
The random Gaussian choice is not practical in this context, but we include it
here as a reference.
For these three choices of S, we compute the solution x% of the sketched LS
problem (2) and compare the sketching solution with the standard LS solution. In
particular, we evaluate the following relative error:

fO5) = f(x)
fles)

For each strategy, we draw 10 independent samples of S and compute the median
relative error. We discuss how this quantity depends on r and n.

(67) Error = with  f(x) = ||Ax —b]|3.

Dependence on r. We set ¢ = 0.5, § = 1073, p = 10, and n; = ny = 10% and
choose the following values for r: 256, 1024, 4096, 16384, and 65536. As shown in
Figure 1, the relative error for all three strategies decreases as r increases; all are of
the order of r~!. The result suggests that Case-2 sketching and the Gaussian reference
sketching share almost the same accuracy, while Case 1 is slightly worse.

Error

——Case 1 )
——Case 2

Random Gaussian
107 ‘ ‘

102 103 10
T

10°
Fic. 1. Dependence of relative error on r for the three sketching strategies.

Dependence on n. Theorems 3 and 4 suggest essentially no dependence on n.
To test this claim empirically, we fix € = 0.5, § = 1072, and r = 2209 and set n; = nq
to be 50, 100, 150, 200, 250. The error, plotted in Figure 2, shows no dependence on
n.

Dependence on p. In this experiment, we study the dependence of relative
error on p. We fix ¢ = 0.5, § = 1072, and r = 4096 and let p take the values 3,
6, 9, 12, 15. The results are plotted in Figure 3. The plot seems to indicate linear
dependence on p, better than the higher powers of p predicted by our bounds. We
leave the discussion to future research.

6.2. Electrical impedance tomography. In this section, we study the EIT
inverse problem on a unit square [0,1]2. As presented in section 2, the goal is to
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0.02 : ;
——Case 1
——Case 2
Random Gaussian
0.015 b

Error

0.01 7 \/\\ﬂ |

0.005 | '\~\,\ ]
\/

F1G. 2. Dependence of relative error on ambient dimension n for the three sketching strategies.

0.014

——Case 1
0.012 H|——Case 2
Random Gaussian

0.01

5 10 15 20 25

Fic. 3. Dependence of relative error on number of unknowns p for the three sketching strategies.

reconstruct the conductivity function o(z) in (18). We assume the ground truth o(z)
is a function which has value 1 on the two yellow squares at the top left and bottom
right corners and has value 1078 elsewhere; see Figure 4. The background media
o*(z) (cf. (14)) is set to be a constant function with value 10. We use the finite
element method to calculate p;(z) and p2(x) on a uniform mesh with Az = 1/20.
The associated boundary conditions ¢ and v are constructed as Dirac-delta functions
at all boundary grid points. Under this setup, the matrix A has dimensions 10* x 400.
The right-hand side b is generated by multiplying A with the ground truth o(x) and
adding white noise. The EIT inverse problem is highly ill posed, and thus we set
the standard deviation of the mean zero Gaussian noise to be small: 1078, All three
strategies are tested with different numbers of rows. We record the relative error (67)
by taking 10 independent trials.

In Figure 4, we plot the ground truth media o(x), which is the deviation of total
media @ from the background ¢*, and the reconstructed media using all three different
strategies, with r = 742 = 5476. All of them can roughly reconstruct the unknown
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05 : 05
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0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

(a) Ground Truth (b) Case 1

). 1 . 1

. 05 . 05
o 0

). -0.5 . -05

. Bl y 4

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
(c) Case 2 (d) Gaussian

Fic. 4. The ground truth media and the reconstructed media via all three sketching strategies.

function with some oscillatory errors in the center of the domain. In Figure 5, we plot
the relative error in terms of the number of rows r in the sketching matrix S (r is set
to be 262, 382, 502, 622, and 74%). We see that the Case-2 strategy performs as well
as the unstructured Gaussian reference, and they both outperform Case 1.

7. Concluding remarks. Most PDE-based inverse problems, upon lineariza-
tion, become Fredholm integral equations, with the testing functions being the prod-
uct of two functions that are solutions to the forward and the adjoint PDEs. A
Khatri-Rao matrix structure arises in the discretization. We study the sketching
problem for matrices of this type, where a corresponding structure is enforced in the
sketching matrix for efficiency of computation. We construct the problem under the
(€¢,0)-1?> embedding framework and investigate the number of rows of the sketching
matrix that are needed to reconstruct the LS solution with € accuracy and § con-
fidence. The lower bounds differ for the two different sketching strategies that we
propose, but both are independent of the size of the ambient space.

Appendix A. Key identities and inequalities. Some identities and inequal-
ities used repeatedly in the text are collected here.

A.1. Identities of the Kronecker product. Let A = (a;;) € R"*™ B =
(bi;) € R™>*™2. Then the Kronecker product of A and B forms a matrix of size
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10° ‘
——Case 1
——Case 2
Random Gaussian
S
L
107} ]

1000 3000 5000
T

F1c. 5. For all three strategies, the relative error decreases as the number of rows in S increases.
In particular, the Case-2 sketching strateqy performs as well as the unstructured Gaussian strategy.

17Ty X ning defined by

annB  ap2B - a1, B

CLQIB ... ... a2nlB
A®B =

arllB aT12B a'rlnlB

The following properties hold:
(1) Let Ae R*™m B e R™2*"2 C e R™*P1 and D € R"2*P2; then we have the
mixed-product property

(68) (A®B)(C®D) = (AC) ® (BD).

(2) Let Ae R™*™ B e R™*"2 and X € R"*">, Further denote by vec(X) the
vectorization of X formed by stacking the columns of X into a single column
vector; then

(69) (B ® A)vec(X) = vec(AXBT).

Equivalently, given the same A, B and x € R™"2, denote by Mat(x) € R™*"2
the matricization of the vector x by aligning subvectors of x that are of length
np into a matrix with ny columns; then

(70) (B® A)x = vec (AMat(x)B") .
A.2. Subexponential random variables and Bernstein inequality. Prop-

erties of subexponential random variables used in the proofs are defined here.

DEFINITION 3 (subexponential random variable). A random variable X € R
is said to be subexponential with parameters (\,b) (denoted as X ~ subE(\b)) if
EX = 0 and its moment generating function satisfies

212
(71) Ee*X < exp <S A

1
) for all |s| < .
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We have the following.

PROPOSITION 2. Let Z ~ N(0,1); then X 72 1 s subexponential with pa-
rameters (2,4).

We conclude with the well-known Bernstein inequality.

PROPOSITION 3 (Bernstein inequality). Let Xi,...,X,, be i.i.d. mean zero ran-
dom variables. Suppose that | X;| < M for alli=1,...,n; then for any t > 0,

n t2/2
(72) Pr ZXizt SGXP(Z?_l]E[XiQ]-f-Mt/?))'

=1
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