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STRUCTURED RANDOM SKETCHING FOR PDE INVERSE
PROBLEMS\ast 
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Abstract. For an overdetermined system \sansA \sansx \approx \sansb with \sansA and \sansb given, the least-squares (LS)
formulation minx \| \sansA \sansx  - \sansb \| 2 is often used to find an acceptable solution \sansx . The cost of solving this
problem depends on the dimensions of \sansA , which are large in many practical instances. This cost can
be reduced by the use of random sketching, in which we choose a matrix \sansS with many fewer rows than
\sansA and \sansb and solve the sketched LS problem minx \| \sansS (\sansA \sansx  - \sansb )\| 2 to obtain an approximate solution
to the original LS problem. Significant theoretical and practical progress has been made in the last
decade in designing the appropriate structure and distribution for the sketching matrix \sansS . When \sansA 
and \sansb arise from discretizations of a PDE-based inverse problem, tensor structure is often present
in \sansA and \sansb . For reasons of practical efficiency, \sansS should be designed to have a structure consistent
with that of \sansA . Can we claim similar approximation properties for the solution of the sketched LS
problem with structured \sansS as for fully random \sansS ? We give estimates that relate the quality of the
solution of the sketched LS problem to the size of the structured sketching matrices for two different
structures. Our results are among the first known for random sketching matrices whose structure is
suitable for use in PDE inverse problems.
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1. Introduction. In overdetermined linear systems (in which the number of
linear conditions exceeds the number of unknowns), the least-squares (LS) solution
is often used as an approximation to the true solution when the data contains noise.
Given the system \sansA \sansx = \sansb , where \sansA \in Rn\times p with n\gg p, the LS solution \sansx \ast is obtained
by minimizing the l2-norm discrepancy between the \sansA \sansx and \sansb , that is,

(1) min
\sansx 

\| \sansA \sansx  - \sansb \| 2 , =\Rightarrow \sansx \ast = \sansA \dagger \sansb , where \sansA \dagger def
= (\sansA \top \sansA ) - 1\sansA \top .

The matrix \sansA \dagger is often called the pseudoinverse (more specifically the Moore--Penrose
pseudoinverse) of \sansA .

The LS method is ubiquitous in statistics and engineering, but large problems
can be expensive to solve. Aside from the cost of preparing \sansA , the cost of solving for
\sansx \ast is \scrO (np2) flops for general (dense) \sansA is prohibitive in large dimensions.

We can replace the LS problem with a smaller approximate LS problem by using
sketching. Each row of the sketched system is a linear combination of the rows of \sansA ,
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STRUCTURED RANDOM SKETCHING 1743

together with the same linear combination of the elements of \sansb . This scheme amounts
to defining a sketching matrix \sansS \in Rr\times n with r \ll n and replacing the original LS
problem by

(2) min
\sansx 

\| \sansS \sansA \sansx  - \sansS \sansb \| 2 , =\Rightarrow \sansx \ast s = (\sansS \sansA )\dagger \sansS \sansb .

For appropriate choices of \sansS , the solutions of (1) and (2) are related in the sense that

(3) \| \sansb  - \sansA \sansx \ast \| is not too much smaller than \| \sansb  - \sansA \sansx \ast s\| .

Usually one does not design \sansS directly, but rather draws its entries from a certain
distribution. In such a setup, we can ask whether (3) holds with high probability.

The literature on random sketching is rich. During the past decade, many the-
oretical and numerical studies have appeared [2, 9, 11, 13, 14, 16, 18, 19, 24, 25,
26, 31, 33, 35, 40], with applications in such subjects as stochastic optimization [18],
lp regression [10, 11, 24, 29, 31, 34, 39], and tensor decomposition [3, 4, 8, 21, 30].
The technical support for these results comes mostly from the Johnson--Lindenstrauss
lemma [17], random matrix theory [36, 37], and compressed sensing [15]. Two impor-
tant perspectives have been utilized. One approach starts with the LS problem and
proposes two conditions for the random matrix such that an accurate solution can
be attained with high confidence. It is then shown that certain choices of random
matrices indeed satisfy these two conditions. Instances of this approach can be found
in [14, 31, 33] and the reviews [20, 23]. The second perspective focuses on the struc-
ture of the space spanned by \sansA . It is argued that this space can be approximated
by a finite number of vectors (the so-called \gamma -net), which can further be ``embedded""
using random matrices, with high accuracy; see [10, 34, 39] and a review [40]. We use
this second perspective in this paper.

There are many variations of the original sketching problem. With some statis-
tical assumptions on the perturbation in the right-hand side, results could be further
enhanced [29], and the sketching problem is also investigated when other constraints
(such as l1 constraints) are present; see, for example, [27]. In [9, 14, 28], the authors
also directly quantify \| \sansx \ast s  - \sansx \ast \| instead of the residual, as in (3).

In most previous studies, the design of \sansS varies according to the priorities of the
application. For good accuracy with small r, random projections with sub-Gaussian
variables are typically used. When the priority is to reduce the cost of computing the
product \sansS \sansA , either sparse or Hadamard-type matrices have been proposed, leading to
``random-sampling"" or FFT-type reduction in cost of the matrix-matrix multiplica-
tion. To cure ``bias"" in the selection process, leverage scores have been introduced;
these trace their origin back to classical methods in experimental design.

In this paper, with practical inverse problems in mind, we consider the case in
which \sansA and \sansb have certain tensor-type structures. For the sketched system to be
formed and solved efficiently, the random sketching matrix \sansS must have a correspond-
ing tensor structure. For these tensor-structured sketching matrices \sansS , we ask the
following: What are the requirements on r to achieve a certain accuracy in the solu-
tion \sansx \ast s of the sketched system?

We consider \sansA with the following structure:

(4) \sansA = \sansF \ast \sansG ,

where \ast denotes the (columnwise) Khatri--Rao product of the matrices \sansF and \sansG . As-
suming i1 \in \scrI 1 and i2 \in \scrI 2, with cardinalities n1 = | \scrI 1| and n2 = | \scrI 2| , respectively,
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1744 KE CHEN, QIN LI, KIT NEWTON, AND STEPHEN J. WRIGHT

the dimensions of these matrices are

(5) \sansF \in Rn1\times p , \sansG \in Rn2\times p , \sansA \in Rn\times p ,

where n = | \scrI 1 \otimes \scrI 2| = n1n2.
By defining \sansf j = \sansF :,j \in Rn1 and \sansg j = \sansG :,j \in Rn2 , we can define \sansA alternatively as

(6) \sansa j
def
= \sansA :,j = \sansf j \otimes \sansg j ,

where \sansa j \in Rn denotes the jth column of \sansA for j = 1, 2, . . . , p. For vector \sansb , we
assume that it admits the same tensor structure, that is,

(7) \sansb = \sansf \sansb \otimes \sansg \sansb for some fixed \sansf \sansb \in Rn1 and \sansg \sansb \in Rn2 .

This type of structure comes from the fact that to formulate inverse problems,
one typically needs to prepare both the forward and the adjoint solutions. Denoting
by \sigma (x) the unknown function to be reconstructed in the inverse PDE problem, a very
typical formulation is written as a Fredholm integral of the first type:

(8)

\int 
fi1(x)gi2(x)\sigma (x)dx = datai1,i2 ,

where fi1 and gi2 solve the forward and adjoint equations. respectively, equipped with
boundary/initial conditions indexed by i1 and i2. Each term on the right-hand side
of (8) is typically data measured at i2 with input source index i1. To reconstruct \sigma ,
one loops over the entire list of conditions for fi1 (i1 \in \scrI 1) and gi2 (i2 \in \scrI 2). The LS
formulation min \| \sansA \sansx  - \sansb \| 2 is the discrete version of the Fredholm integral (8).

This structure imposes requirements on the sketching matrix \sansS . Since \scrI 1 and
\scrI 2 contain conditions for different sets of equations, sketching needs to be performed
within \scrI 1 and \scrI 2 separately. This condition is reflected by choosing the sketching
matrix \sansS to be the rowwise Khatri--Rao product of \sansP and \sansQ , that is,

\sansS i,: = \sansp \top i \otimes \sansq \top i ,

where \sansp i \in Rn1 and \sansq i \in Rn2 , i = 1, . . . , p. The product \sansS \sansA then has the special form

(9) (\sansS \sansA )i,: = (\sansp \top i \sansF ) \circ (\sansq \top i \sansG ) , or equivalently (\sansS \sansA )i,j = (\sansp \top i \sansf j)(\sansq 
\top 
i \sansg j).

Thus, to formulate the i row in the reduced (sketched) system, we perform a linear
combination of parameters in \scrI 1 according to \sansp i to feed in the forward solver, and a
linear combination of parameters in \scrI 2 according to \sansq i to feed in the adjoint solver,
and then assemble the results in the Fredholm integral (8).

With the structural requirements for \sansS in mind, we consider the following two
approaches for choosing \sansS .

Case 1: Generate two random matrices \sansP and \sansQ , of sizes r1 \times n1 and r2 \times n2,
respectively, and define \sansS to be their tensor product:

(10) \sansS = \sansP \otimes \sansQ \in Rr1r2\times n1n2 .

Case 2: Generate two sets of r random vectors \{ \sansp i, i = 1, 2, . . . , , r\} and \{ \sansq i, i =
1, 2, . . . , r\} , with \sansp i \in Rn1 and \sansq i \in Rn2 for each i, and define row i of \sansS 
to be the tensor product of the vectors \sansp i and \sansq i:

(11) \sansS =
1\surd 
r

\left[   \sansp 
\top 
1 \otimes \sansq \top 1

...
\sansp \top r \otimes \sansq \top r

\right]   \in Rr\times n1n2 .
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STRUCTURED RANDOM SKETCHING 1745

Case 2 gives greater randomness, in a sense, because the rows of \sansP and \sansQ are not
``reused"" as in the first option.

We are not interested in designing sketching matrices of Hadamard type. In
practice, \sansA is often semi-infinite: \sansF and \sansG contain all possible forward and adjoint
solutions, a set of infinite cardinality that cannot be prepared in advance. In practice,
one can only obtain the ``realizations"" \sansp \top \sansF or \sansq \top \sansG obtained by solving the forward
and adjoint equations with the parameters contained in \sansp and \sansq . Because we use this
technique to find \sansS \sansA , rather than computing the matrix-matrix product explicitly,
there is no advantage to defining \sansS in terms of Hadamard-type random matrices.

There have been discussions in the sketching literature on problems that share
our setups, including sketching of matrices \sansA with Khatri--Rao product structure.
The paper [4] presents a tensor interpolative decomposition problem which discusses
Khatri--Rao product form, but there is not a focus on sketching. The paper [35]
proposes a so-called tensor random projection (TRP), similar to our Case 2 presented
below. However, they mainly obtain sketching of one arbitrarily given vector in the
space, while we need to sketch the entire space. Directly employing their argument in
our setting would lead to r = \scrO (p8/\varepsilon 2), whereas our argument suggests that having
r = \scrO (p6/\varepsilon ) is sufficient. This point will be discussed further in Theorem 4.

In [16, 22], the authors considered the fast Johnson--Lindenstrauss transform
(JLT) random matrices and showed that the Kronecker product of fast JLT is also a
JLT. This structure allows embedding of an arbitrarily given vector. For embedding
vectors that have tensor structure, the authors of [12, 13] developed TensorSketch or
CountSketch and discussed the efficiency of these algorithms in terms of the number
of nonzero entries in \sansA . All these results are highly related to ours, but they all have
dependences on the ambient space dimension n, making them poorly suited to our
setting, where we consider the possibility of n\rightarrow \infty .

The rest of the paper is organized as follows. In section 2, we give two examples
from a PDE-based inverse problem that give rise to a linear system with tensor struc-
ture. Section 3 presents classical results on sketching for general linear regression and
states our main results on sketching of an inverse problem associated with a tensor
structure. Sections 4 and 5 study the two different sketching strategies outlined above.
Computational testing described in section 6 validates our results.

We denote the range space (column space) of a matrix \sansX by Range(\sansX ).

2. Overdetermined systems with tensor structure arising from PDE
inverse problems. Most PDE-based inverse problems, upon linearization, reduce
to a tensor structured Fredholm integral (8), which can be discretized to formulate a
sketching problem.

One particularly famous example is electrical impedance tomography (EIT), in
which we apply voltage strength and measure current density at the boundary of some
biotissues to infer for conductivity inside the body. The underlying PDE is a standard
second order elliptic equation

(12)
\nabla x \cdot (\sigma (x)\nabla x\rho (x)) = 0 , x \in \Omega ,

\rho (x) = \phi (x) , x \in \partial \Omega ,

where \phi (x) is the voltage strength applied on the surface of some biotissue, while \rho (x),
the solution to the PDE, is the voltage generated throughout the body. The unknown
conductivity \sigma (x) will be inferred. The measurements are taken on the boundary too.
In particular, one measures the current density on the surface of \Omega tested on a testing
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1746 KE CHEN, QIN LI, KIT NEWTON, AND STEPHEN J. WRIGHT

function \psi as follows:

(13) data\phi ,\psi =

\int 
\partial \Omega 

\sigma (x)
\partial \rho (x)

\partial n
\psi (x)dx .

Here \partial 
\partial n is the normal derivative, with n being the normal direction pointing out of

domain \Omega . The data has two subscripts: \phi (x) is the voltage applied to the surface, and
\psi (x) is a testing function that encodes the way measurements are taken. When the
detector is extremely precise, one can set \psi (x) = \delta (x - x0) for some x0 \in \partial \Omega , making
data\phi ,\psi the current at point x0 when voltage \phi is applied. With infinite pairs of \phi and
\psi in the experimental setup, EIT seeks to reconstruct \sigma (x). EIT further reduces to the
famous Calder\'on problem when the span of \phi and \psi covers the entire Sobolev space
H1/2(\partial \Omega ) := \{ u \in L2(\partial \Omega ) | \exists \~u, such that trace(\~u) = u\} . In practice, however, one
typically has a rough estimate of the media \sigma (x), termed the background media \sigma \ast (x).
(For example, most human lungs have the same structure.) In such situations, one

can linearize and reconstruct the perturbation \sigma (x)
def
= \sigma (x) - \sigma \ast (x) \ll 1. Specifically,

suppose that \rho 1 solves the following background forward equation:

(14)
\nabla x \cdot (\sigma \ast (x)\nabla x\rho 1(x)) = 0 , x \in \Omega ,

\rho 1(x) = \phi (x) , x \in \partial \Omega ,

with the same boundary condition \phi and the given known background media \sigma \ast .
Since both these quantities are known, \rho 1(x) can be solved ahead of time for any \phi .
We can also define the adjoint equation:

(15)

\Biggl\{ 
\nabla x \cdot (\sigma \ast (x)\nabla x\rho 2(x)) = 0 , x \in \Omega ,

\rho 2(x) = \psi (x) , x \in \partial \Omega .

To obtain the Fredholm integral, we take the difference of (14) and (12) and drop
higher order terms to obtain

(16)
\nabla x \cdot (\sigma \ast (x)\nabla x\rho (x)) =  - \nabla x \cdot (\sigma (x)\nabla x\rho 1(x)) , x \in \Omega ,

\rho (x) = 0 , x \in \partial \Omega ,

where \rho (x)
def
= \rho (x) - \rho 1(x).

We now first multiply (16) with \rho 2 and multiply (15) with \rho , respectively, and
then add the two equations together. Performing integration over \Omega , and with Green's
second identity, we see that the left-hand sides cancel, and the right-hand side of (16)
will be used to balance the boundary terms:

(17)

\int 
\nabla x\rho 1(x) \cdot \nabla x\rho 2(x)\sigma (x)dx =

\int 
\partial \Omega 

\sigma \ast \partial \rho 

\partial n
\psi dx+

\int 
\partial \Omega 

\sigma 
\partial \rho 1
\partial n

\psi dx .

While the left-hand side of this equation is Fredholm integral testing on \sigma (the con-
ductivity to be reconstructed) with test function \nabla x\rho 1(x) \cdot \nabla x\rho 2(x), the right-hand
side is the data that we obtain from measurement data\phi ,\psi . Indeed, since \rho = \rho + \rho 1
and \sigma = \sigma + \sigma \ast , with \rho \ll 1 and \sigma \ll 1, the right-hand side can be approximated by
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dropping the higher order term
\int 
\partial \Omega 
\sigma \partial \rho \partial n\psi dx as follows:\int 

\partial \Omega 

\sigma \ast \partial \rho 

\partial n
\psi dx+

\int 
\partial \Omega 

\sigma 
\partial \rho 1
\partial n

\psi dx

=

\int 
\partial \Omega 

\sigma (x)
\partial \rho 

\partial n
\psi dx - 

\int 
\partial \Omega 

\sigma \ast (x)
\partial \rho 1
\partial n

\psi dx - 
\int 
\partial \Omega 

\sigma 
\partial \rho 

\partial n
dx

\approx 
\int 
\partial \Omega 

\sigma (x)
\partial \rho 

\partial n
\psi dx - 

\int 
\partial \Omega 

\sigma \ast (x)
\partial \rho 1
\partial n

\psi dx .

This expression differs from data\phi ,\psi defined in (13) by
\int 
\partial \Omega 
\sigma \ast \partial \rho 1

\partial n \psi dx, a precomputed
term, and thus the entire term is known. We finally have

(18)

\int 
\nabla x\rho 1(x) \cdot \nabla x\rho 2(x)\sigma (x)dx = data\phi ,\psi .

We emphasize that the \phi dependence comes in through \rho 1, while the \psi dependence
comes in through \rho 2. These functions represent applied voltage source and measuring
setup, respectively. If one can provide point source and point measurement, \phi and \psi 
can be as sharp as Dirac-delta functions.

By varying \phi and \psi , one finds infinitely many pairs \{ \rho 1(\cdot ;\phi ) , \rho 2(\cdot ;\psi )\} , each pair
providing one data point corresponding to one experiment setup. These experimental
setups all together give rise to an overdetermined Fredholm integral. More details can
be found in [5, 7].

A similar problem arises in optical tomography [1]. Here we inject light into
biotissue and take measurements of light intensity on the surface to reconstruct the
optical properties of the biotissue. The formulation is

(19)

\int 
\rho 1(x, v)\rho 2(x, v)\sigma (x, v)dxdv = data\phi ,\psi ,

where (x, v) \in \Omega \otimes S (where \Omega is the spatial domain and S is the velocity domain),
and \rho i are solutions to the forward background radiative transfer equation and the
adjoint equation:\Biggl\{ 

v \cdot \nabla x\rho 1(x, v) = \sigma \ast (x, v)\scrL \rho 1(x, v) , (x, v) \in \Omega \otimes S,
\rho 1(x, v) = 0 , (x, v) \in \Gamma  - ,

and \Biggl\{ 
 - v \cdot \nabla x\rho 2(x, v) = \sigma \ast (x, v)\scrL \rho 2(x, v) , (x, v) \in \Omega \otimes S,
\rho 2(x, v) = \psi (x, v) , (x, v) \in \Gamma +.

In these equations, \scrL is a known integral linear operator on v, and \Gamma  - and \Gamma + are the
set collecting incoming and outgoing boundary coordinates, namely \Gamma \pm = \{ (x, v) :
x \in \partial \Omega , \pm v \cdot n(x) > 0\} , with n(x) being an outernormal direction at x \in \partial \Omega . By
varying the boundary conditions \phi and \psi , one can find infinitely many solution pairs
of \{ \rho 1(\cdot , \phi ), \rho 2(\cdot , \psi )\} and collect the corresponding data in (19). The inverse Fredholm
integral (19) can then be solved for \sigma . We refer the reader to [1, 6] for details of the
linearization procedure.

When \sigma is discretized on p grid points, the reconstruction problem has the semi-
infinite form \sansA \sansx \approx \sansb , where \sansx \in Rp is the discrete version of \sigma and \sansA and \sansb have
infinitely many rows corresponding to the infinitely many instances of \rho 1 and \rho 2. A
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fully discrete version can be obtained by considering n1 values of \rho 1 and n2 values of
\rho 2 and setting n = n1n2 to obtain a problem of the form (1). In the remainder of
the paper, we study the sketched form of this system (2) for various choices of the
sketching matrix \sansS .

3. Sketching with tensor structures. We preface our results with a definition
of (\varepsilon , \delta )-l2 embedding.

Definition 1 ((\varepsilon , \delta )-l2 embedding). Given matrix \=\sansA and \varepsilon > 0, let \sansS be a
random matrix drawn from a matrix distribution (\Omega ,\scrF ,\Pi ). If with probability at least
1 - \delta we have

(20)
\bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2

\bigm| \bigm| \leq \varepsilon \| \sansy \| 2 for all \sansy \in Range(\=\sansA ) ,

then we say that \sansS is an (\varepsilon , \delta )-l2 embedding of \=\sansA .

Note that (20) depends only on the space Range(\=\sansA ) rather than the matrix itself,
so we sometimes say instead that the random matrix \sansS is an (\varepsilon , \delta )-l2 embedding of the
linear vector space Range(\=\sansA ). (We use the two terms interchangeably in discussions
below.)

The (\varepsilon , \delta )-l2 embedding property is essentially the only property needed to bound
the error resulting from sketching. It can be shown that if \sansS is an (\varepsilon , \delta )-l2 embedding

for the augmented matrix \=\sansA 
def
= [\sansA , \sansb ], then the two LS problems (1) and (2) are similar

in the sense of (3), as the following result suggests.

Theorem 1. For \varepsilon , \delta \in (0, 1/2), suppose that \sansS is an (\varepsilon , \delta )-l2 embedding of the

augmented matrix \=\sansA 
def
= [\sansA , \sansb ] \in Rn\times (p+1). Then with probability at least 1 - \delta , we have

\| \sansA \sansx \ast s  - \sansb \| 2 \leq (1 + 4\varepsilon )\| \sansA \sansx \ast  - \sansb \| 2 ,

where \sansx \ast and \sansx \ast s are defined in (1) and (2), respectively.

The proof of the theorem is rather standard. We simply use the definition of the
(\varepsilon , \delta )-l2 embedding and the fact that

(1 - \varepsilon )\| \sansA \sansx \ast s  - \sansb \| 2 \leq \| \sansS (\sansA \sansx \ast s  - \sansb )\| 2 \leq \| \sansS (\sansA \sansx \ast  - \sansb )\| 2 \leq (1 + \varepsilon )\| \sansA \sansx \ast  - \sansb \| 2 .

For 0 \leq \varepsilon \leq 1/2, this leads to

\| \sansA \sansx \ast s  - \sansb \| 2 \leq 1 + \varepsilon 

1 - \varepsilon 
\| \sansA \sansx \ast  - \sansb \| 2 \leq (1 + 4\varepsilon )\| \sansA \sansx \ast  - \sansb \| 2 .

Given this result, we focus henceforth on whether the various sampling strategies
form an (\varepsilon , \delta )-l2 embedding of the augmented matrix \=\sansA = [\sansA , \sansb ].

Another theorem that is crucial to our analysis, proved in [40], states that Gauss-
ian matrices are (\varepsilon , \delta )-l2 embeddings if the number of rows is sufficiently large. This
result does not consider tensor structure of \sansA .

Theorem 2 (Theorem 2.3 from [40]). Let \sansR \in Rr\times n be a Gaussian matrix,
meaning that each entry \sansR ij is drawn i.i.d. from a normal distribution \scrN (0, 1), and
define \sansS \in Rr\times n to be the scaled Gaussian matrix defined by

\sansS =
1\surd 
r
\sansR .
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For any fixed matrix \sansA \in Rn\times p and \varepsilon , \delta \in (0, 1/2), this choice of \sansS is an (\varepsilon , \delta )-l2

embedding of \sansA provided that

r \geq C

\varepsilon 2
(| log \delta | + p) ,

where C > 0 is a constant independent of \varepsilon , \delta , n, and p.

The lower bound of r is almost optimal for the sketched regression problem: the
bound is independent of the number of equations n and grows only linearly in the
number of unknowns p. That is, the numbers of equations and unknowns in the
sketched problem (2) are of the same order. The theorem is proved by constructing
a \gamma -net for the unit sphere in Range(\sansA ) and applying the Johnson--Lindenstrauss
lemma.

Building on the concept of (\varepsilon , \delta )-l2 embedding and the relationship between (\varepsilon , \delta )-
l2 embedding and sketching (Theorem 1), we will study the lower bound for r (the
number of rows needed in the sketching) when the tensor structure of Case 1 or Case
2 is imposed. Our basic strategy is to decompose the tensor structure into smaller
components to which Theorem 2 can be applied.

We state the results below and present proofs in sections 4 and 5 for the two
different cases.

Recall the notation that we defined in section 1. The matrices \sansF , \sansG are defined
in (5), and \sansA is defined in (6). Both \sansF and \sansG are assumed to have full column
rank p. We need to design the sketching matrix \sansS to (\varepsilon , \delta )-l2 embed Range(\=\sansA ), the

space spanned by \{ \sansf \sansb \otimes \sansg \sansb \} \cup \{ \sansa j
def
= \sansf j \otimes \sansg j , j = 1, . . . , p\} . In Theorems 3 and 4,

we construct the (\varepsilon , \delta )-l2 embedding matrix of the Kronecker product \sansF \otimes \sansG , which
automatically becomes an (\varepsilon , \delta )-l2 embedding of its column submatrix \sansA . Moreover,
we show in Corollaries 1 and 2 that these results can be extended to construct (\varepsilon , \delta )-l2

embeddings of the augmented matrix \=\sansA by constructing (\varepsilon , \delta )-l2 embeddings of the
Kronecker product of the augmented matrices \=\sansF \otimes \=\sansG , where

(21) \=\sansF = [\sansF , \sansf \sansb ] , \=\sansG = [\sansG , \sansg \sansb ] .

For Case 1, we have the following result.

Theorem 3. Consider \sansS = \sansP \otimes \sansQ \in Rr1r2\times n1n2 , where \sansP \in Rr1\times n1 ,\sansQ \in Rr2\times n2

are independent scaled Gaussian matrices defined by

\sansP 
def
=

1
\surd 
r1

\sansR and \sansQ 
def
=

1
\surd 
r2

\sansR \prime , where \sansR ij ,\sansR 
\prime 
ij are i.i.d. normal for all i, j .

For any given full rank matrices \sansF \in Rn1\times p, \sansG \in Rn2\times p, and \sansA \in Rn\times p as in (5) and
(6), and \varepsilon , \delta \in (0, 1/2), the random matrix \sansS is an (\varepsilon , \delta )-l2 embedding of \sansF \otimes \sansG and \sansA 
provided that

(22) ri \geq 
C

\varepsilon 2
(| log \delta | + p) , i = 1, 2 ,

where the constant C > 0 is independent of \varepsilon , \delta , n1, n2, and p.

Corollary 1. Consider the matrices \sansS , \sansF , \sansG , and \sansA from Theorem 3, and as-
sume that the vector \sansb has the form (7). Then for given \varepsilon , \delta \in (0, 1/2), the random

matrix \sansS is an (\varepsilon , \delta )-l2 embedding of the augmented matrix \=\sansA 
def
= [\sansA , \sansb ] provided that

(23) ri \geq 
C

\varepsilon 2
(| log \delta | + p+ 1) , i = 1, 2 ,

where the constant C > 0 is independent of \varepsilon , \delta , n1, n2, and p.
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Proof. Define the augmented matrices \=\sansF and \=\sansG as in (21). We have that

Range(\=\sansF \otimes \=\sansG ) = Span\{ \sansF \otimes \sansG , \sansf 1 \otimes \sansg \sansb , . . . , \sansf p \otimes \sansg \sansb , \sansf \sansb \otimes \sansg 1, . . . , \sansf \sansb \otimes \sansg p, \sansb \} .

Supposing that \=\sansF and \=\sansG have full rank, the linear subspace Range(\=\sansA ) is a subspace of
Range(\=\sansF \otimes \=\sansG ). By applying Theorem 3 to the augmented matrices \=\sansF and \=\sansG and using
(23), we have that \sansS is an (\varepsilon , \delta )-l2 embedding of Range(\=\sansF \otimes \=\sansG ) as well as its subspace
Range(\=\sansA ). Supposing that \=\sansF is not of full rank but \=\sansG is of full rank, the subspace
Range(\=\sansF \otimes \=\sansG ) is a subspace of Range(\sansF \otimes \=\sansG ), so similar results can be obtained by
applying Theorem 3 to \sansF and \=\sansG . Other cases regarding the rank of \=\sansF and \=\sansG can be
dealt with in the same way.

The result for Case 2 is as follows.

Theorem 4. Let \sansp i \in Rn1 , \sansq i \in Rn2 , i = 1, 2, . . . , r, be independent random
Gaussian vectors, and define the sketching matrix \sansS to have the form

(24) \sansS =
1\surd 
r

\left[   \sansp 
\top 
1 \otimes \sansq \top 1

...
\sansp \top r \otimes \sansq \top r

\right]   \in Rr\times n1n2 .

Suppose that p \geq 6, and that \sansF \in Rn1\times p,\sansG \in Rn2\times p, and \sansA \in Rn\times p are full-rank
matrices defined as in (5) and (6). Let \varepsilon , \delta \in (0, 1/2). Then the random matrix \sansS is
an (\varepsilon , \delta )-l2 embedding of \sansF \otimes \sansG and \sansA provided that

(25) r \geq Cmax

\biggl\{ 
1

\varepsilon 

\bigl( 
| log \delta | + p2

\bigr) 3
,

1

\varepsilon 5/2

\biggr\} 
,

where C > 0 is a constant independent of \varepsilon , \delta , n1, n2, and p.

Corollary 2. Consider the same matrices \sansS , \sansF , \sansG , and \sansA as in Theorem 4, with
p \geq 6, and assume that vector \sansb is of the form (7). Then for given \varepsilon , \delta \in (0, 1/2),

the random matrix \sansS is an (\varepsilon , \delta )-l2 embedding of the augmented matrix \=\sansA 
def
= [\sansA , \sansb ]

provided that

(26) r \geq Cmax

\biggl\{ 
1

\varepsilon 

\bigl( 
| log \delta | + (p+ 1)2

\bigr) 3
,

1

\varepsilon 5/2

\biggr\} 
,

where the constant C > 0 is independent of \varepsilon , \delta , n1, n2, and p.

We omit the proof since it is similar to that of Corollary 1.
Theorems 1 and 2 yield the fundamental results that, with high probability, for

any fixed overdetermined linear problem, the sketched problem in which \sansS is a Gauss-
ian matrix can achieve optimal residual up to a small multiplicative error. In partic-
ular, as will be clear in the proof later, the Case-1 tensor-structured sketching matrix
\sansS = \sansP \otimes \sansQ not only (\varepsilon , \delta )-l2 embeds \sansA = \sansF \otimes \sansG , but the number of rows in \sansP and
\sansQ each depends only linearly on p (see (22)), so that the number of rows in \sansS scales
like p2. If the Case-2 sketching matrix is used, the dependence of r on p and \varepsilon is
more complex. Whether this bound is greater than or less than the bound for Case 1
depends on the relative sizes of \varepsilon  - 1 and p.

We stress that both bounds show that the number of rows in \sansS is independent of

the dimension n
def
= n1n2 of the ambient space. This allows n to be potentially infinity.

We also stress that the dependence on \epsilon and p may not be optimal, and the bound
may not be tight. As will be seen in later sections, we have limited understanding
of quartic powers of Gaussian random variables, and this confines us to obtaining a
tighter bound.
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4. Case 1: Proof of Theorem 3. In this section, we present the proof of
Theorem 3. We start with technical results.

Lemma 1. Consider natural numbers r2, n1, and n2, and assume that a random
matrix \sansQ \in Rr2\times n2 is an (\varepsilon , \delta )-l2 embedding of Rn2 , meaning that with probability at
least 1 - \delta , \sansQ preserves l2 norm with \varepsilon accuracy, that is,\bigm| \bigm| \| \sansQ \sansx \| 2  - \| \sansx \| 2

\bigm| \bigm| \leq \varepsilon \| \sansx \| 2 for all \sansx \in Rn2 .

Then the Kronecker product \sansI \sansd n1
\otimes \sansQ is an (\varepsilon , \delta )-l2 embedding of Rn1n2 . Similarly, if

\sansQ \in Rr1\times n1 is an (\varepsilon , \delta )-l2 embedding of Rn1 , then \sansQ \otimes \sansI \sansd n2
is an (\varepsilon , \delta )-l2 embedding

of Rn1n2 .

Proof. The proofs for the two statements are rather similar, so we prove only the
first claim.

Any \sansx \in Rn1n2 can be written in the following form:

\sansx =

\left[   \sansx 1
...

\sansx n1

\right]   , where \sansx i \in Rn2 , i = 1, 2, . . . , n1.

Then

(\sansI \sansd n1
\otimes \sansQ )\sansx =

\left[   \sansQ . . .

\sansQ 

\right]   
\left[   \sansx 1

...
\sansx n1

\right]   =

\left[   \sansQ \sansx 1
...

\sansQ \sansx n1

\right]   .
Thus, we have

(27) \| (\sansI \sansd n1
\otimes \sansQ )\sansx \| 2 =

n\sum 
i=1

\| \sansQ \sansx i\| 2 , \| \sansx \| 2 =
n\sum 
i=1

\| \sansx i\| 2 .

Since \sansQ is an (\varepsilon , \delta )-l2 embedding of Rn2 , then with probability at least 1  - \delta , for all
\sansx i \in Rn2 , we have

(28)
\bigm| \bigm| \| \sansQ \sansx i\| 2  - \| \sansx i\| 2

\bigm| \bigm| \leq \varepsilon \| \sansx i\| 2 for all i = 1, 2, . . . , n1.

By using this bound in (27), with probability at least 1 - \delta , we have for all \sansx \in Rn1n2

that

\bigm| \bigm| \| (\sansI \sansd n1 \otimes \sansQ )\sansx \| 2  - \| \sansx \| 2
\bigm| \bigm| \leq n\sum 

i=1

\bigm| \bigm| \| \sansQ \sansx i\| 2  - \| \sansx i\| 2
\bigm| \bigm| \leq \varepsilon 

n\sum 
i=1

\| \sansx i\| 2 = \varepsilon \| \sansx \| 2 ,

so that (\sansI \sansd n1
\otimes \sansQ ) is an (\varepsilon , \delta )-l2 embedding of Rn1n2 , as claimed.

The following corollary extends the previous result and discusses the embedding
property of \sansP \otimes \sansQ .

Corollary 3. Assume two random matrices \sansP \in Rr1\times n1 and \sansQ \in Rr2\times n2 are
(\varepsilon , \delta )-l2 embeddings of Rn1 and Rn2 , respectively. Then the Kronecker product \sansP \otimes \sansQ \in 
Rr1r2\times n1n2 is an (\varepsilon (2 + \varepsilon ), 2\delta )-l2 embedding of Rn1n2 .

Proof. Noting that (see (68) in Appendix A),

\sansP \otimes \sansQ = (\sansP \otimes \sansI \sansd r2)(\sansI \sansd n1
\otimes \sansQ ) ,
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we have
\| (\sansP \otimes \sansQ )\sansx \| 2 = \| (\sansP \otimes \sansI \sansd r2)(\sansI \sansd n1

\otimes \sansQ )\sansx \| 2 = \| (\sansP \otimes \sansI \sansd r2)\sansy \| 2 ,

where \sansy 
def
= (\sansI \sansd n1 \otimes \sansQ )\sansx .

Denote by (\Omega 1,\scrF 1,\Pi 1) and (\Omega 2,\scrF 2,\Pi 2) the probability triplets for \sansP and \sansQ ,
respectively. Since \sansP is an (\varepsilon , \delta )-l2 embedding of Rn1 , we have with probability at
least 1 - \delta in \Pi 1 that \bigm| \bigm| \| (\sansP \otimes \sansI \sansd r2)\sansy \| 2  - \| \sansy \| 2

\bigm| \bigm| \leq \varepsilon \| \sansy \| 2 .

Similarly, with probability at least 1  - \delta for the choice of \sansQ in \Pi 2, we have\bigm| \bigm| \| (\sansI \sansd n1
\otimes \sansQ )\sansx \| 2  - \| \sansx \| 2

\bigm| \bigm| \leq \varepsilon \| \sansx \| 2 for all \sansx \in Rn1n2 .

Combining the two inequalities, we have with probability at least 1  - 2\delta in the joint
probability space of \Pi 1 and \Pi 2 that the following is true for all \sansx \in Rn1n2 :\bigm| \bigm| \| (\sansP \otimes \sansQ )\sansx \| 2  - \| \sansx \| 2

\bigm| \bigm| \leq \bigm| \bigm| \| (\sansP \otimes \sansI \sansd r2)\sansy \| 2  - \| \sansy \| 2
\bigm| \bigm| + \bigm| \bigm| \| (\sansI \sansd n1

\otimes \sansQ )\sansx \| 2  - \| \sansx \| 2
\bigm| \bigm| 

\leq \varepsilon \| \sansy \| 2 + \varepsilon \| \sansx \| 2

= \varepsilon \| (\sansI \sansd n1 \otimes \sansQ )\sansx \| 2 + \varepsilon \| \sansx \| 2

\leq \varepsilon (2 + \varepsilon )\| \sansx \| 2 .

This concludes the proof.

Now we are ready to show the proof of Theorem 3, obtained by applying Theo-
rem 2 to Corollary 3.

Proof of Theorem 3. For any vector \sansy in the span of \sansF \otimes \sansG , we can write

\sansy = (\sansU \sansF \otimes \sansU \sansG )\sansx for some \sansx \in Rp
2

,

where \sansU \sansF \in Rn1\times p and \sansU \sansG \in Rn2\times p collect the left singular vectors of matrices \sansF and
\sansG , respectively. By applying (68) from Appendix A, we have

(\sansU \sansF \otimes \sansU \sansG ) = (\sansU \sansF \otimes \sansI \sansd n2)(\sansI \sansd p \otimes \sansU \sansG ).

It is easy to see that the matrix \sansI \sansd p \otimes \sansU \sansG has orthonormal columns, so it is an
isometry. The matrices \sansU \sansF \otimes \sansI \sansd n2

and \sansU \sansF \otimes \sansU \sansG are isometries for the same reason. As
a consequence, we have \| \sansy \| 2 = \| \sansx \| 2. From (68) in Appendix A, we have by defining\widetilde \sansP def
= \sansP \sansU \sansF \in Rr1\times p and \widetilde \sansQ def

= \sansQ \sansU \sansG \in Rr2\times p that

(29) \sansS \sansy = (\sansP \otimes \sansQ )(\sansU \sansF \otimes \sansU \sansG )\sansx = (\sansP \sansU \sansF )\otimes (\sansQ \sansU \sansG )\sansx = (\widetilde \sansP \otimes \widetilde \sansQ )\sansx .
Due to the orthogonality of \sansU \sansF and \sansU \sansG , the random matrices \widetilde \sansP and \widetilde \sansQ are also inde-
pendent Gaussian matrices with i.i.d. entries. According to Theorem 2, for any pair
\~\varepsilon , \~\delta \in (0, 1/2), by choosing ri to satisfy

(30) ri \geq 
C

\~\varepsilon 2
(| log \~\delta | + p) , i = 1, 2 ,

we have that \widetilde \sansP and \widetilde \sansQ are both (\~\varepsilon , \~\delta )-l2 embeddings of Rp. Thus, from Corollary 3,

the tensor product (\widetilde \sansP \otimes \widetilde \sansQ ) is an
\bigl( 
\~\varepsilon (2 + \~\varepsilon ), 2\~\delta 

\bigr) 
-l2 embedding of Rp2 , meaning that

with probability at least 1  - 2\~\delta , we have\bigm| \bigm| \bigm| \| (\widetilde \sansP \otimes \widetilde \sansQ )\sansx \| 2  - \| \sansx \| 2
\bigm| \bigm| \bigm| \leq \~\varepsilon (2 + \~\varepsilon )\| \sansx \| 2 for all \sansx \in Rp

2

.
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Recalling \| \sansx \| 2 = \| \sansy \| 2 and (29), we have that\bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2
\bigm| \bigm| \leq \~\varepsilon (2 + \~\varepsilon )\| \sansy \| 2 for all \sansy \in Span\{ \sansF \otimes \sansG \} .

By defining \varepsilon = \~\varepsilon (2 + \~\varepsilon ) and \delta = 2\~\delta , we have

\~\varepsilon =
\varepsilon \surd 

1 + \varepsilon + 1
and \~\delta =

\delta 

2
.

Note that if \varepsilon and \delta are in (0, 1/2), then \~\varepsilon and \~\delta are also in this interval, so (30)
applies. By substituting into (30), we obtain

ri \geq 
C

\varepsilon 2
(| log \delta | + p) , i = 1, 2 .

The constant C here is different from the value in (30) but can still be chosen inde-
pendently of \varepsilon , \delta , n1, n2, and p. We conclude that \sansS = \sansP \otimes \sansQ is an (\varepsilon , \delta )-l2 embedding
of \sansF \otimes \sansG and thus also an (\varepsilon , \delta )-l2 embedding of \sansA .

5. Case 2: Proof of Theorem 4. In this section, we investigate Case-2 sketch-
ing matrices, which have the form (24).

We prove Theorem 4 in two major steps. First, in section 5.1, we investigate the
accuracy and probability of embedding any given vector \sansy \in Span\{ \sansF \otimes \sansG \} . Second,
in section 5.2, we extend this study to deal with the whole space Span\{ \sansF \otimes \sansG \} . To
do so, we first build a \gamma -net over the unit sphere in Span\{ \sansF \otimes \sansG \} so that we can
``approximate"" the space using a finite set of vectors. By adjusting \varepsilon and \delta , one not
only preserves the norm but also the angles between the vectors on the net. We then
map the net back to the space to show that \sansS preserves the norm of the vectors in
the whole space. This standard technique is used in [40] to prove their Theorem 2.

5.1. Embedding a given vector. We establish the following result, whose
proof appears at the end of the subsection.

Proposition 1. Given two full rank matrices \sansF and \sansG as in (5) and \varepsilon \in (0, 1/2),
let \sansS \in Rr\times n1n2 have the form of (24), with \sansp i and \sansq i, i = 1, 2, . . . , r, being i.i.d.
Gaussian vectors. Then for any fixed \sansy \in Span\{ \sansF \otimes \sansG \} , we have that

Pr
\bigl( \bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2

\bigm| \bigm| > \varepsilon \| \sansy \| 2
\bigr) 
\leq 5r exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3\varepsilon 1/3

\biggr) 
provided that

r \geq 8 \cdot 33/2 \cdot max\{ \varepsilon  - 5/2, p3/2\varepsilon  - 1\} .
Essentially, this says that \sansS is an (\varepsilon , 5r exp

\bigl( 
(3/4)p1/2

\bigr) 
exp

\bigl( 
 - (1/2)r1/3\varepsilon 1/3

\bigr) 
)-

l2 embedding of any fixed \sansy \in Span\{ \sansF \otimes \sansG \} . The contribution from the factor
exp

\bigl( 
 - (1/2)r1/3\varepsilon 1/3

\bigr) 
is small when r is large.

We start with several technical lemmas. Lemma 2 identifies
\bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2

\bigm| \bigm| /\| \sansy \| 
with a particular type of random variable; we discuss the tail bound for this random
variable in Lemma 4. Lemma 3 contains some crucial estimates to be used in Lemma 4.

Lemma 2. Given two full rank matrices \sansF and \sansG as in (5), consider \sansS defined as
in (24). Then there exists a diagonal positive semidefinite matrix \Sigma with Tr(\Sigma 2) = 1
so that for any \sansy \in Span\{ \sansF \otimes \sansG \} with \| \sansy \| = 1, we have

\| \sansS \sansy \| 2 d\sim 1

r

r\sum 
i=1

\zeta 2i , where \zeta i
def
= \xi \top i \Sigma \eta i ,
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where
d\sim denotes equal in distribution and \xi i, \eta i \in Rp are independent Gaussian vectors

drawn from \scrN (0, \sansI \sansd p).

Proof. From (24) we have

\sansS \sansy =
1\surd 
r

\left[   (\sansp 
\top 
1 \otimes \sansq \top 1 )\sansy 

...
(\sansp \top r \otimes \sansq \top r )\sansy 

\right]   =\Rightarrow \| \sansS \sansy \| 2 =
1

r

r\sum 
i=1

\zeta 2i ,

where \zeta i
def
= (\sansp \top i \otimes \sansq \top i )\sansy . Since \sansp i and \sansq i are independent Gaussian vectors, all random

variables \zeta i, i = 1, 2, . . . , r, are drawn i.i.d. from the same distribution.

We consider now the behavior of \zeta 
def
= (\sansp \top \otimes \sansq \top )\sansy for Gaussian vectors \sansp and \sansq .

Notice that for any \sansy \in Rn1n2 \in Span\{ \sansF \otimes \sansG \} , there exists \sansx \in Rp2 such that

\sansy = (\sansU \sansF \otimes \sansU \sansG )\sansx , with \| \sansx \| = 1 ,

where \sansU \sansF and \sansU \sansG collect the left singular vectors of \sansF and \sansG , respectively. We thus
obtain from (68) that

\zeta = (\sansp \top \otimes \sansq \top )\sansy = (\sansp \top \otimes \sansq \top )(\sansU \sansF \otimes \sansU \sansG )\sansx =
\bigl( 
(\sansp \top \sansU \sansF )\otimes (\sansq \top \sansU \sansG )

\bigr) 
\sansx = (\~\sansp \top \otimes \~\sansq \top )\sansx ,

where \~\sansp 
def
= \sansU \top 

\sansF \sansp \in Rp and \~\sansq 
def
= \sansU \top 

\sansG \sansq \in Rp are i.i.d. Gaussian vectors as well. By
applying (69) and (70), we obtain

(31) \zeta = (\~\sansp \top \otimes \~\sansq \top )\sansx = \~\sansq \top Mat(\sansx )\~\sansp ,

where Mat(\sansx ) \in Rp\times p is the matricization of \sansx , discussed in Appendix A. By using
the singular value decomposition Mat(\sansx ) = \sansU \Sigma \sansV \top , we obtain

Tr(\Sigma 2) = \| Mat(\sansx )\| 2F = \| \sansx \| 2 = 1 ,

where \| \cdot \| F denotes the Frobenius norm of a matrix. By substituting into (31), we
obtain

\zeta = (\sansU \top \~\sansq )\top \Sigma \sansV \top \~\sansp = \xi \top \Sigma \eta ,

where
\xi 

def
= \sansU \top \~\sansq \in Rp and \eta 

def
= \sansV \top \~\sansp \in Rp

are again i.i.d. Gaussian vectors in Rp. This completes the proof.

Lemma 3. For any fixed diagonal semipositive definite matrix \Sigma 
def
= diag\{ \sigma 1, . . . ,

\sigma p\} such that Tr(\Sigma 2) = 1, define the random variable \zeta to be \zeta 
def
= \xi \top \Sigma \eta , with \xi 

and \eta being i.i.d. random Gaussian vectors with p components. Then \zeta satisfies the
following properties:

1.

(32) Pr (| \zeta | > t) \leq 

\left\{   2 exp
\Bigl( 
 - (t - \surd 

p)2

4
\surd 
p

\Bigr) 
if
\surd 
p \leq t \leq 2

\surd 
p,

2 exp
\Bigl( 
 - (2t - 3

\surd 
p)

4

\Bigr) 
if t \geq 2

\surd 
p.

2.

(33) E
\bigl[ 
\zeta 2
\bigr] 
= 1 and E

\bigl[ 
\zeta 4
\bigr] 
\leq 9 .
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3.

(34) E
\Bigl[ \bigl( 
| \zeta | 2  - E

\bigl[ 
\zeta 2
\bigr] \bigr) 2\Bigr] \leq 8 .

Proof. For any s > 0 and t \geq 0, we apply Markov's inequality to derive

(35) Pr (\zeta > t) = Pr
\bigl( 
es\zeta > est

\bigr) 
\leq e - stE

\bigl[ 
exp

\bigl( 
s\xi \top \Sigma \eta 

\bigr) \bigr] 
.

Noting that 2\xi \top \Sigma \eta \leq \| \Sigma 1/2\xi \| 2 + \| \Sigma 1/2\eta \| 2, we use the independence of \xi and \eta to
deduce that

E
\bigl[ 
exp

\bigl( 
s\xi \top \Sigma \eta 

\bigr) \bigr] 
\leq E

\Bigl[ 
exp

\Bigl( 
(s/2)(\| \Sigma 1/2\xi \| 2 + \| \Sigma 1/2\eta \| 2)

\Bigr) \Bigr] 
(36)

= E
\Bigl[ 
e(s/2)\| \Sigma 

1/2\xi \| 2
\Bigr] 
E
\Bigl[ 
e(s/2)\| \Sigma 

1/2\eta \| 2
\Bigr] 
.

For the first term on the right-hand side of (36), using the independence of the \xi i and
the concave Jensen's inequality, we have that

E
\Bigl[ 
e(s/2)\| \Sigma 

1/2\xi \| 2
\Bigr] 
= E

\Biggl[ 
exp

\Biggl( 
s

2

p\sum 
i=1

\sigma i\xi 
2
i

\Biggr) \Biggr] 
=

p\prod 
i=1

E
\Bigl[ 
es\xi 

2
i \sigma i/2

\Bigr] 
\leq 

p\prod 
i=1

\Bigl( 
E
\Bigl[ 
es\xi 

2
i /2
\Bigr] \Bigr) \sigma i

,

where we used 0 \leq \sigma i \leq 1, i = 1, 2, . . . , r, to apply the concave Jensen's inequality,
and \xi i \sim \scrN (0, 1). According to Proposition 2 (see Appendix A.2), \xi 2i  - 1 is a subex-
ponential random variable with parameters (2, 4). Thus, from (71), with \lambda = 2, b = 4,
and s replaced by s/2, we have

E
\Bigl[ 
e(s/2)\| \Sigma 

1/2\xi \| 2
\Bigr] 
\leq 

p\prod 
i=1

\Bigl( 
E\xi 
\Bigl[ 
es\xi 

2/2
\Bigr] \Bigr) \sigma i

=
\Bigl( 
E\xi 
\Bigl[ 
es\xi 

2/2
\Bigr] \Bigr) Tr(\Sigma )

=
\Bigl( 
es/2E\xi 

\Bigl[ 
es(\xi 

2 - 1)/2
\Bigr] \Bigr) Tr(\Sigma )

\leq e(s
2+s)Tr(\Sigma )/2 for 0 < s < 1/2.

Since, by H\"older's inequality, we have

Tr(\Sigma ) =

p\sum 
i=1

\sigma i \leq 

\Biggl( 
p\sum 
i=1

\sigma 2
i

\Biggr) 1/2
\surd 
p =

\surd 
p ,

it follows that

E
\Bigl[ 
e(s/2)\| \Sigma 

1/2\xi \| 2
\Bigr] 
\leq e(s

2+s)
\surd 
p/2 for s \in (0, 1/2).

The same bound holds for the second term on the right-hand side of (36). When we
substitute these bounds into (35) and (36), we obtain

Pr (\zeta > t) \leq exp
\bigl( \surd 
ps2  - (t - \surd 

p)s
\bigr) 
.

By minimizing the right-hand side over s \in [0, 1/2], we obtain

Pr (\zeta > t) \leq 

\left\{   e
 - (t - \surd 

p)2

4
\surd 

p if
\surd 
p \leq t \leq 2

\surd 
p,

e - 
(2t - 3

\surd 
p)

4 if t \geq 2
\surd 
p.

Due to symmetry, we have the same bound for Pr (\zeta <  - t), so (32) follows.
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To show the second statement, we notice that

(37) E
\Bigl[ \bigl( 
\zeta 2  - E

\bigl[ 
\zeta 2
\bigr] \bigr) 2\Bigr] 

= E
\bigl[ 
\zeta 4
\bigr] 
 - 
\bigl( 
E
\bigl[ 
\zeta 2
\bigr] \bigr) 2

.

By considering \zeta =
\sum p
i=1 \sigma i\xi i\eta i, the second moment can be calculated directly:

(38) E
\bigl[ 
\zeta 2
\bigr] 
= E

\left[  p\sum 
i,j=1

\sigma i\sigma j\xi i\xi j\eta i\eta j

\right]  = E

\Biggl[ 
p\sum 
i=1

\sigma 2
i \xi 

2
i \eta 

2
i

\Biggr] 
=

p\sum 
i=1

\sigma 2
i = 1 ,

where we used the independence of \xi i and \eta i, the fact that E\xi i = E\eta i = 0, and
E\xi 2i = E\eta 2i = 1.

To control the fourth moment, we notice that

E
\bigl[ 
\zeta 4
\bigr] 
= E

\left[  \sum 
i,j,k,l

\sigma i\sigma j\sigma k\sigma l\xi i\xi j\xi k\xi l\eta i\eta j\eta k\eta l

\right]  .
Due to the independence and the fact that all odd moments vanish for Gaussian
random variables, the only terms in the summation that survive either have all indices
equal (i = j = l = k) or have two indices equal to one value while the other two indices
equal a different value; for example, i = j and k = l but i \not = k. Altogether, we obtain

E
\bigl[ 
\zeta 4
\bigr] 
= 3E

\left[  \sum 
i\not =k

\sigma 2
i \sigma 

2
k\xi 

2
i \xi 

2
k\eta 

2
i \eta 

2
k

\right]  + E

\Biggl[ \sum 
i

\sigma 4
i \xi 

4
i \eta 

4
i

\Biggr] 
,

where the coefficient in front of the first term comes from
\bigl( 
4
2

\bigr) 
/
\bigl( 
2
1

\bigr) 
= 3. Considering

E\xi 2 = 1 and E\xi 4 = 3, we have

(39)

E
\bigl[ 
\zeta 4
\bigr] 
= 3

\sum 
i\not =k

\sigma 2
i \sigma 

2
k + 9

\sum 
i

\sigma 4
i = 3

p\sum 
i,k=1

\sigma 2
i \sigma 

2
k + 6

\sum 
i

\sigma 4
i

\leq 3

p\sum 
i,k=1

\sigma 2
i \sigma 

2
k + 6

\sum 
i

\sigma 2
i = 3

\Biggl( 
p\sum 
i=1

\sigma 2
i

\Biggr) \Biggl( 
p\sum 
k=1

\sigma 2
k

\Biggr) 
+ 6

p\sum 
i=1

\sigma 2
i = 9 ,

where we used \sigma 4
i \leq \sigma 2

i . By substituting (38) and (39) into (37), we have

E
\Bigl[ \bigl( 
| \zeta | 2  - E

\bigl[ 
\zeta 2
\bigr] \bigr) 2\Bigr] 

= E
\bigl[ 
\zeta 4
\bigr] 
 - 
\bigl( 
E
\bigl[ 
\zeta 2
\bigr] \bigr) 2 \leq 9 - 12 = 8 ,

which concludes the proof.

Remark 1. We note that this lemma is not new; its proof can be made more
compact if one uses the Hanson--Wright inequality and [37, Lemma 6.2.2]. The latter
result shows that there exist absolute positive constants c and C such that

E
\bigl[ 
exp(s\xi \top \Sigma \eta )

\bigr] 
\leq exp

\bigl( 
Cs2

\bigr) 
for | s| \leq c

\sigma 1
. By substituting into (35), we have

Pr(\zeta > t) \leq exp(Cs2  - st) for all | s| \leq c
\sigma 1
,
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assuming that the singular values \sigma i on the diagonal of \Sigma are ordered in a descending
manner. Minimizing the right-hand side in terms of s, we have

(40) Pr(\zeta > t) \leq 

\left\{     
exp

\Bigl( 
 - t2

4C

\Bigr) 
if 0 \leq t \leq 2cC

\sigma 1
,

exp
\Bigl( 
 - ct
\sigma 1

+ c2C
\sigma 2
1

\Bigr) 
if t \geq 2cC

\sigma 1
,

which, because of symmetry, leads to

(41) Pr(| \zeta | > t) \leq 

\left\{     
2 exp

\Bigl( 
 - t2

4C

\Bigr) 
if 0 \leq t \leq 2cC

\sigma 1
,

2 exp
\Bigl( 
 - ct
\sigma 1

+ c2C
\sigma 2
1

\Bigr) 
if t \geq 2cC

\sigma 1
.

This result is rather similar to ours, except that the Hanson--Wright inequality comes
with two generic constants c and C. These constants are extremely involved, as shown
in the original proof [32]. We need to make all constants precise and thus maintain
our full proof with elementary calculations.

Lemma 4. Let \zeta i, i = 1, 2, . . . , r, be i.i.d. copies of the random variable \zeta defined
in Lemma 3. Then if

(42) r \geq 8 \cdot 33/2 \cdot max\{ t - 5/2 , p3/2t - 1\} ,

we have
(43)

Pr

\Biggl( \bigm| \bigm| \bigm| \bigm| \bigm| 1r
r\sum 
i=1

\bigl( 
\zeta 2i  - E

\bigl[ 
\zeta 2i
\bigr] \bigr) \bigm| \bigm| \bigm| \bigm| \bigm| > t

\Biggr) 
\leq 5r exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3t1/3

\biggr) 
for t \in [0, 1].

Remark 2. This lemma essentially deals with the tail bound of a random variable
that is of quartic form of a Gaussian. According to the definition, \zeta is a quadratic form
of Gaussians, and thus is a subexponential, but this lemma considers \zeta 2. Quadratic
forms of subexponential vectors are studied in [38]. If we directly employ their results
(especially their Corollary 1.6) by setting their \sansA = 1

r \sansI \sansd r \in Rr\times r, we obtain, for
sufficiently large r (made precise in the corollary), that

Pr

\Biggl( \bigm| \bigm| \bigm| \bigm| \bigm| 1r
r\sum 
i=1

\bigl( 
\zeta 2i  - E

\bigl[ 
\zeta 2i
\bigr] \bigr) \bigm| \bigm| \bigm| \bigm| \bigm| > t

\Biggr) 
\leq C exp

\Biggl( 
 - C \prime min

\Biggl\{ \biggl( 
r1/2t\surd 
log r

\biggr) 2/3

, (rt)
1/3

\Biggr\} \Biggr) 
,

where C and C \prime depend on p. We obtain the same power for r and t as a result, and
we make the dependence of the constants on p explicit.

Proof. Let Et be the event defined as follows:

Et
def
=

\Biggl\{ 
1

r

r\sum 
i=1

(\zeta 2i  - E
\bigl[ 
\zeta 2i
\bigr] 
) > t

\Biggr\} 
.

Due to the symmetry of
\sum r
i=1 \zeta 

2
i  - E

\bigl[ 
\zeta 2i
\bigr] 
, the probability in (43) is 2Pr(Et). We

now estimate Pr(Et). For any fixed large number M , we define the following event
for i = 1, 2, . . . , r:

EMi
def
= \{ \zeta 2i \leq M\} = \{ \zeta 2i  - 1 \leq M  - 1\} .
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Clearly, we have

(44) Pr
\bigl( 
Et
\bigr) 
= Pr

\bigl( 
Et \cap 

\bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
+ Pr

\Bigl( 
Et \cap 

\bigl( 
\cap ri=1E

M
i

\bigr) c\Bigr) 
.

We now estimate the two terms:
1. For the first term in (44), we note that

Pr
\bigl( 
Et \cap 

\bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
= Pr

\bigl( 
Et | 

\bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
\cdot Pr

\bigl( \bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
(45)

\leq Pr
\bigl( 
Et | 

\bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
.

Denoting Xi
def
= \zeta 2i  - E

\bigl[ 
\zeta 2i
\bigr] 
, and realizing that E

\bigl[ 
\zeta 2i
\bigr] 
= 1 according to (33)

of Lemma 3, then EMi = \{ Xi \leq M  - 1\} . Estimating (45) now amounts to
controlling the probability of

\sum r
i=1Xi > rt, assuming that Xi \leq M  - 1 for

all i = 1, 2, . . . , r. By applying Bernstein's inequality (72), we have

Pr
\bigl( 
Et | 

\bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
= Pr

\Biggl( 
r\sum 
i=1

Xi > rt | Xi \leq M  - 1, i = 1, 2, . . . , r

\Biggr) 

\leq exp

\biggl( 
 - r2t2/2\sum r

i=1 E [X2
i ] + (M  - 1)rt/3

\biggr) 
.

From (34) in Lemma 3, we have E
\bigl[ 
X2
i

\bigr] 
\leq 8, so that

(46) Pr
\bigl( 
Et | 

\bigl( 
\cap ri=1E

M
i

\bigr) \bigr) 
\leq exp

\biggl( 
 - 3rt2

48 + 2(M  - 1)t

\biggr) 
,

which gives the upper bound of the first term in (44).
2. For the second term in (44), we note that

Pr
\Bigl( 
Et \cap 

\bigl( 
\cap ri=1E

M
i

\bigr) c\Bigr) \leq Pr
\Bigl( \bigl( 

\cap ri=1E
M
i

\bigr) c\Bigr) 
= Pr

\bigl( 
\cup ri=1(E

M
i )c

\bigr) 
\leq rPr

\bigl( 
(EMi )c

\bigr) 
.

By applying (32) from Lemma 3, with t =
\surd 
M , we have

Pr((EMi )c) = Pr
\bigl( 
\zeta 2i > M

\bigr) 
= Pr

\Bigl( 
| \zeta i| >

\surd 
M
\Bigr) 

\leq 

\left\{   2e
 - (

\surd 
M - \surd 

p)2

4
\surd 

p if p \leq M \leq 4p,

2e - 
(2

\surd 
M - 3

\surd 
p)

4 if M \geq 4p,

and thus

(47) Pr
\bigl( 
Et \cap 

\bigl( 
\cap ri=1E

M
i

\bigr) c \bigr) \leq 
\left\{   2re

 - (
\surd 

M - \surd 
p)2

4
\surd 

p if p \leq M \leq 4p,

2re - 
(2

\surd 
M - 3

\surd 
p)

4 if M \geq 4p.

By combining (46) and (47) in (44), we have

(48) Pr(Et) \leq exp

\biggl( 
 - 3rt2

48 + 2(M  - 1)t

\biggr) 
+

\left\{   2re
 - (

\surd 
M - \surd 

p)2

4
\surd 

p if p \leq M \leq 4p,

2re - 
(2

\surd 
M - 3

\surd 
p)

4 if M \geq 4p.

To find a sharp bound of Pr(Et), we choose a suitable value of M . We set

(49) M = r2/3t2/3,
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where r satisfies the lower bound (42). Since r \geq 8 \cdot 33/2 \cdot p3/2t - 1, we have r2/3 \geq 
12pt - 2/3, so that

(50) M = r2/3t2/3 \geq 12p > 4p,

so the second case applies in (48). Since r \geq 33/2 \cdot 23 \cdot t - 5/2, we have r2/3 \geq 12t - 5/3,
so that

Mt = r2/3t5/3 \geq 12,

so that, for the denominator of the first term in (48), we have

(51) 48 + 2(M  - 1)t = 6Mt+ 48 - 2t - 4Mt \leq 6Mt.

By using these observations in (48), we have for the value (49) that

(52) Pr(Et) \leq exp

\biggl( 
 - 1

2

rt

M

\biggr) 
+ 2r exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
M1/2

\biggr) 
.

With M defined as in (49), we see that the two exponential terms involving M in this
expression are both equal to exp( - r1/3t1/3/2). Additionally, since p \geq 1 and r \geq 1,
we have 2r exp(3p1/2/4) > 4. Thus, from (52), we obtain

(53) Pr(Et) \leq (5/2)r exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3t1/3

\biggr) 
.

We obtain the result by multiplying the right-hand side by 2, as discussed at the start
of the proof.

Proposition 1 is a direct consequence of Lemmas 2 and 4.

Proof of Proposition 1. For any \sansy \in Span\{ \sansF \otimes \sansG \} , denote \^\sansy = \sansy 
\| \sansy \| , so that \| \^\sansy \| = 1.

From Lemma 2, we have

\| \sansS \^\sansy \| 2 d\sim 1

r

r\sum 
i=1

\zeta 2i , where \zeta i
def
= \xi \top i \Sigma \eta i ,

where \xi i, \eta i \in Rp are independent Gaussian vectors drawn from \scrN (0, \sansI \sansd p). We have

\| \sansS \sansy \| 2  - \| \sansy \| 2

\| \sansy \| 2
=

\| \sansS \^\sansy \| 2  - \| \^\sansy \| 2

\| \^\sansy \| 2
=

1

r

r\sum 
i=1

\zeta 2i  - 1 .

By setting t = \varepsilon in (43) from Lemma 4, we have

Pr

\biggl( \bigm| \bigm| \bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2

\| \sansy \| 2

\bigm| \bigm| \bigm| \bigm| > \varepsilon 

\biggr) 
= Pr

\Biggl( \bigm| \bigm| \bigm| \bigm| \bigm| 1r
r\sum 
i=1

(\zeta 2i  - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| > \varepsilon 

\Biggr) 

\leq 5r exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3\varepsilon 1/3

\biggr) 
,

conditioned on r \geq 8 \cdot 33/2 \cdot max\{ \varepsilon  - 5/2, p3/2\varepsilon  - 1\} , as required.
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5.2. Proof of Theorem 4. Proposition 1 shows the probability of the sketching
matrix \sansS of the form (24) preserving the norm of a fixed given vector in the range space
Range(\sansF \otimes \sansG ). To show that the preservation of norm holds true over the entire column
space, we follow the construction of [40]. We construct a \gamma -net over the unit sphere in
Range(\sansF \otimes \sansG ) and show that for r sufficiently large, with high probability, the angles
between any vectors in the net will be preserved with high accuracy. Preservation of
angles on the \gamma -net can be translated to the norm preservation over the entire space.

We show in Lemma 5 that angles can be preserved with the sampling matrix \sansS of
the form (24). In Lemma 7, we calculate the cardinality of the \gamma -net. The fact that
the preservation of angles leads to the preservation of norms on the space is justified
in Lemma 6. The three results can be combined into a proof for Theorem 4, which
we complete at the end of the section.

Lemma 5. Let V be a collection of vectors in Rn with cardinality | V | = f , and
let

\~V
def
= \{ \sansu \pm \sansv : \sansu , \sansv \in V \} .

Suppose that a random matrix \sansS preserved norm on V , in the sense that for each
\~\sansv \in \~V , with probability at least 1 - \delta , we have\bigm| \bigm| \| \sansS \~\sansv \| 2  - \| \~\sansv \| 2

\bigm| \bigm| < \varepsilon \| \~\sansv \| 2 .

Then \sansS preserves the angle between all elements in V with probability at least 1 - 4f2\delta ,
that is,

Pr (| \langle \sansS \sansu , \sansS \sansv \rangle  - \langle \sansu , \sansv \rangle | \leq \varepsilon \| \sansu \| \| \sansv \| ) > 1 - 4f2\delta for all \sansu , \sansv \in V .

Proof. Without loss of generality, we assume all vectors in V are unit vectors.
Because of the assumptions on \sansS , we have

(54) Pr
\Bigl( \bigm| \bigm| \| \sansS \~\sansv \| 2  - \| \~\sansv \| 2

\bigm| \bigm| < \varepsilon \| \~\sansv \| 2 for all \~v \in \~V
\Bigr) 
\leq 1 - f2\delta .

Considering \sansu , \sansv \in V , we denote \sanss 
def
= \sansu + \sansv \in \~V and \sanst 

def
= \sansu  - \sansv \in \~V and use the

parallelogram equality:

\langle \sansu , \sansv \rangle = 1

4

\bigl( 
\| \sanss \| 2  - \| \sanst \| 2

\bigr) 
, \langle \sansS \sansu , \sansS \sansv \rangle = 1

4

\bigl( 
\| \sansS \sanss \| 2  - \| \sansS \sanst \| 2

\bigr) 
,

so that

\langle \sansS \sansu , \sansS \sansv \rangle  - \langle \sansu , \sansv \rangle = 1

4

\bigl( 
\| \sansS \sanss \| 2  - \| \sanss \| 2  - (\| \sansS \sanst \| 2  - \| \sanst \| 2)

\bigr) 
.

From (54), we have, with probability at least 1  - f2\delta , that for all \sansu , \sansv \in V ,

| \langle \sansS \sansu , \sansS \sansv \rangle  - \langle \sansu , \sansv \rangle | \leq 1

4

\bigl( \bigm| \bigm| \| \sansS \sanss \| 2  - \| \sanss \| 2
\bigm| \bigm| + \bigm| \bigm| \| \sansS \sanst \| 2  - \| \sanst \| 2

\bigm| \bigm| \bigr) 
\leq \varepsilon 

4
(\| \sanss \| 2 + \| \sanst \| 2) = \varepsilon 

4
(\| \sansu + \sansv \| 2 + \| \sansu  - \sansv \| 2) = \varepsilon 

4
(2\| \sansu \| 2 + 2\| \sansv \| 2) = \varepsilon ,

which completes the proof.

We now define the \gamma -net and show that preservation of angles on this net leads
to preservation of norms.

Definition 2. Denote the unit sphere in space Range(\sansF \otimes \sansG ) by \scrS , that is,

(55) \scrS def
=
\Bigl\{ 
\sansy \in Rn1n2 : \sansy = (\sansF \otimes \sansG )\sansx for some \sansx \in Rp

2

and \| \sansy \| = 1
\Bigr\} 
.

For fixed \gamma \in (0, 1), we call \scrG a \gamma -net of \scrS if \scrG is a finite subset of \scrS such that for
any \sansy \in \scrS , there exists \sansw \in \scrG such that \| \sansw  - \sansy \| \leq \gamma .
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The following lemma was presented in [40, section 2.1].

Lemma 6. Let \scrS and \scrG be as in Definition 2 for some \gamma \in (0, 1). Then the
preservation of angle on \scrG leads to the preservation of norm in \scrS . That is, if

(56) | \langle \sansS \sansw , \sansS \sansw \prime \rangle  - \langle \sansw ,\sansw \prime \rangle | \leq \varepsilon for all \sansw , \sansw \in \scrG ,

then \bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2
\bigm| \bigm| \leq \varepsilon 

(1 - \gamma )2
for all \sansy \in \scrS .

The size of the \gamma -net can also be controlled, as we now show.

Lemma 7. Let \scrS the the unit sphere of \sansF \otimes \sansG , defined in (55). Then for any
\gamma \in (0, 1), there exists a \gamma -net \scrG of \scrS such that

| \scrG | \leq 
\biggl( 
1 +

2

\gamma 

\biggr) p2
.

Proof. Noticing that \scrS is isometric to the unit Euclidean sphere \scrS p2 - 1, the result
follows directly by applying Corollary 4.2.13 of [37].

Finally, we state the proof of Theorem 4, which is obtained from the lemmas in
this section together with Proposition 1.

Proof of Theorem 4. Without loss of generality, it suffices to show that \sansS pre-
serves norm with high accuracy and high probability over the unit sphere in Range(\sansF \otimes 
\sansG ), defined by

\scrS def
= \{ \sansy \in Rn1n2 : \sansy = (\sansF \otimes \sansG )\sansx for some \sansx \in Rp

2

and \| \sansy \| = 1\} .

Note from Lemma 7 that for given \gamma \in (0, 1), one can construct a \gamma -net \scrG of \scrS of size

f = (1 + 2
\gamma )
p2 . Given \varepsilon 1 \in (0, 1/2), then on this \scrG , according to Proposition 1 and

Lemma 5, if we assume

(57) r \geq 8 \cdot 33/2 \cdot max\{ \varepsilon  - 5/2
1 , p3/2\varepsilon  - 1

1 \} ,

then with probability at least 1  - \delta 2, with

\delta 2 \leq 20rf2 exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3\varepsilon 

1/3
1

\biggr) 
(58)

= 20r

\biggl( 
1 +

2

\gamma 

\biggr) 2p2

exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3\varepsilon 

1/3
1

\biggr) 
,

we have that \sansS preserves angles, that is,

| \langle \sansS \sansw , \sansS \sansw \prime \rangle  - \langle \sansw ,\sansw \prime \rangle | \leq \varepsilon 1 for all \sansw ,\sansw \prime \in \scrG ,

According to Lemma 6, \sansS embeds \scrS , that is,\bigm| \bigm| \| \sansS \sansy \| 2  - \| \sansy \| 2
\bigm| \bigm| \leq \varepsilon for all \sansy \in \scrS , where \varepsilon 

def
=

\varepsilon 1
(1 - \gamma )2

.

First, we need to convert the condition (57) into one involving \varepsilon . We obtain

(59) r \geq 8 \cdot 33/2 \cdot max\{ \varepsilon  - 5/2(1 - \gamma ) - 5, p3/2\varepsilon  - 1(1 - \gamma ) - 2\} .
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Second, we must alter the lower bound on r to ensure that the right-hand side of (58)
is smaller than the given value of \delta , that is,

(60) \delta \geq 20r

\biggl( 
1 +

2

\gamma 

\biggr) 2p2

exp

\biggl( 
3

4
p1/2

\biggr) 
exp

\biggl( 
 - 1

2
r1/3\varepsilon 1/3(1 - \gamma )2/3

\biggr) 
,

or equivalently,

(61) log \delta \geq log 20 + log r + 2p2 log(1 + 2/\gamma ) +
3

4
p1/2  - 1

2
r1/3\varepsilon 1/3(1 - \gamma )2/3.

Note that for p \geq 6 and \gamma \in (0, 1), we have log 20 < 3 < .1p2 log(1 + 2/\gamma ) and
.75p1/2 < .1p2 log(1 + 2/\gamma ). Thus, a sufficient condition for (61) is

(62) log \delta \geq log r + 2.2p2 log(1 + 2/\gamma ) - 1

2
r1/3\varepsilon 1/3(1 - \gamma )2/3.

Denoting

\alpha 
def
= \varepsilon 1/3(1 - \gamma )2/3 and \beta 

def
=

1

3

\bigl( 
2.2p2 log(1 + 2/\gamma ) + | log \delta | 

\bigr) 
,

we have \alpha \in (0, 1) for any \varepsilon , \gamma \in (0, 1). By using these definitions, we see that (62) is
equivalent to

(63)
\alpha 

6
r1/3  - log r1/3 \geq \beta ,

for which the combination of the following two conditions is sufficient:

\alpha 

12
r1/3  - log r1/3 \geq 0 ,(64a)

\alpha 

12
r1/3 \geq \beta .(64b)

Condition (64b) can be rewritten as

r \geq 123\beta 3

\alpha 3
=

43

\varepsilon (1 - \gamma )2
\bigl( 
2.2p2 log(1 + 2/\gamma ) + | log \delta | 

\bigr) 3
,

for which a sufficient condition is

(65) r \geq 8.83

\varepsilon (1 - \gamma )2
log3(1 + 2/\gamma )

\bigl( 
p2 + | log \delta | 

\bigr) 3
.

The condition (64a) requires h(r1/3) \geq 0, where h(x)
def
= \alpha 

12x - log x. Since

h\prime (x) =
\alpha 

12
 - 1

x
\geq 0 ,

we see that h is an increasing function for x > 12/\alpha . By noting that

h

\biggl( 
12

\alpha 5/2

\biggr) 
= \alpha  - 3/2  - log(12) +

5

2
log\alpha \geq 0 for \alpha \in (0, 0.33)

and
12

\alpha 5/2
>

12

\alpha 
, \alpha \in (0, 1) ,
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we have for \alpha \in (0, 0.33) that

h(r1/3) \geq 0 if r1/3 \geq 12

\alpha 5/2
,

which leads to

(66) r \geq 123

\varepsilon 5/2(1 - \gamma )5
.

We are free to choose \gamma \in (0, 1) in a way that ensures that \alpha \in (0, .33). In fact, by
setting \gamma = 3/4, we have

\alpha = \varepsilon 1/3(1/4)2/3 < 0.33 for all \varepsilon \in (0, 0.5).

By combining the conditions (66) and (65) and setting \gamma = 3/4, we have

r \geq max

\biggl\{ \=C1

\varepsilon 5/2
,
\=C2

\varepsilon 

\bigl( 
p2 + | log \delta | 

\bigr) 3\biggr\} 
,

with \=C2 = 8.83 \cdot 42 log3(11/3) \approx 2.4e4, and \=C1 = 123 \cdot 45.
We could change the weight in the separation of (63) into (64a) and (64b), so

that one could arrive at different (possibly better) constants \=C1 and \=C2 in the final
expression. However, our priority is to show dependence of r on \varepsilon , \delta , and p (and not
n), and optimization of the constants is less important.

6. Numerical tests. This section presents some numerical evidence of the effec-
tiveness of our sketching strategies. We test them on general matrices with the tensor
structure and a problem directly from EIT (18). We are mostly concerned about
the dependence of accuracy on n, r, and p. The computational complexity is rather
straightforward and is omitted from discussion. In both tests, the numerical solutions
outperform the theoretical predictions, indicating that there is room for improvement
in our bounds for r.

6.1. General matrices with tensor structure. To set up the experiment, we
generate two matrices \sansF = [\sansf 1, . . . , \sansf p] \in Rn1\times p and \sansG = [\sansg 1, . . . , \sansg p] \in Rn2\times p using

\sansF = \sansU \sansF \Sigma \sansF \sansV 
\top 
\sansF and \sansG = \sansU \sansG \Sigma \sansG \sansV \sansG ,

where \sansU \sansF \in Rn1\times p, \sansU \sansG \in Rn2\times p, \sansV \sansF \in Rp\times p, and \sansV \sansG \in Rp\times p are generated by taking
the QR-decomposition of random matrices with i.i.d Gaussian entries. The diagonal
entries of \Sigma \sansF and \Sigma \sansG are independently drawn from \scrN (1, 0.04). Matrix \sansA \in Rn\times p is
then defined by setting \sansa j = \sansf j\otimes \sansg j , with n = n1n2. We further generate the reference
solution \sansx ref \in Rp whose entries are drawn from \scrN (1, 0.25). The right-hand-side
vector \sansb \in Rn encodes a small amount of noise; we set

\sansb = \sansA \sansx ref + 10 - 6\xi ,

where each entry of \xi is drawn from \scrN (0, 1). We compute \sansx \ast using (1).
Three sketching strategies will be considered: the first two cases from (10) and

(11), and a third standard strategy that does not take account of the tensor structure
in \sansA .
Case 1: Set \sansS = \sansP \otimes \sansQ (normalized), as defined in (10) with entries in \sansP \in Rr1\times n1

and \sansQ \in Rr2\times n2 drawn i.i.d. from \scrN (0, 1). Notice here that r = r1r2.
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Case 2: Set \sansS i,: = \sansp \top i \otimes \sansq \top i (normalized), as defined in (11), with entries in vectors
\{ \sansp i\} and \{ \sansq i\} drawn i.i.d. from \scrN (0, 1) for all i = 1, . . . , r.

Random Gaussian: \sansS = \sansR \in Rr\times n (normalized), with entries in \sansR drawn i.i.d.
from \scrN (0, 1).

The random Gaussian choice is not practical in this context, but we include it
here as a reference.

For these three choices of \sansS , we compute the solution \sansx \ast s of the sketched LS
problem (2) and compare the sketching solution with the standard LS solution. In
particular, we evaluate the following relative error:

(67) Error =
f(\sansx \ast s) - f(\sansx \ast )

f(\sansx \ast )
, with f(\sansx ) = \| \sansA \sansx  - \sansb \| 22 .

For each strategy, we draw 10 independent samples of \sansS and compute the median
relative error. We discuss how this quantity depends on r and n.

Dependence on \bfitr . We set \varepsilon = 0.5, \delta = 10 - 3, p = 10, and n1 = n2 = 102 and
choose the following values for r: 256, 1024, 4096, 16384, and 65536. As shown in
Figure 1, the relative error for all three strategies decreases as r increases; all are of
the order of r - 1. The result suggests that Case-2 sketching and the Gaussian reference
sketching share almost the same accuracy, while Case 1 is slightly worse.

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

E
rr

o
r

Fig. 1. Dependence of relative error on r for the three sketching strategies.

Dependence on \bfitn . Theorems 3 and 4 suggest essentially no dependence on n.
To test this claim empirically, we fix \varepsilon = 0.5, \delta = 10 - 3, and r = 2209 and set n1 = n2
to be 50, 100, 150, 200, 250. The error, plotted in Figure 2, shows no dependence on
n.

Dependence on \bfitp . In this experiment, we study the dependence of relative
error on p. We fix \varepsilon = 0.5, \delta = 10 - 3, and r = 4096 and let p take the values 3,
6, 9, 12, 15. The results are plotted in Figure 3. The plot seems to indicate linear
dependence on p, better than the higher powers of p predicted by our bounds. We
leave the discussion to future research.

6.2. Electrical impedance tomography. In this section, we study the EIT
inverse problem on a unit square [0, 1]2. As presented in section 2, the goal is to
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Fig. 2. Dependence of relative error on ambient dimension n for the three sketching strategies.
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Fig. 3. Dependence of relative error on number of unknowns p for the three sketching strategies.

reconstruct the conductivity function \sigma (x) in (18). We assume the ground truth \sigma (x)
is a function which has value 1 on the two yellow squares at the top left and bottom
right corners and has value 10 - 8 elsewhere; see Figure 4. The background media
\sigma \ast (x) (cf. (14)) is set to be a constant function with value 10. We use the finite
element method to calculate \rho 1(x) and \rho 2(x) on a uniform mesh with \Delta x = 1/20.
The associated boundary conditions \phi and \psi are constructed as Dirac-delta functions
at all boundary grid points. Under this setup, the matrix \sansA has dimensions 104\times 400.
The right-hand side \sansb is generated by multiplying \sansA with the ground truth \sigma (x) and
adding white noise. The EIT inverse problem is highly ill posed, and thus we set
the standard deviation of the mean zero Gaussian noise to be small: 10 - 8. All three
strategies are tested with different numbers of rows. We record the relative error (67)
by taking 10 independent trials.

In Figure 4, we plot the ground truth media \sigma (x), which is the deviation of total
media \sigma from the background \sigma \ast , and the reconstructed media using all three different
strategies, with r = 742 = 5476. All of them can roughly reconstruct the unknown
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Fig. 4. The ground truth media and the reconstructed media via all three sketching strategies.

function with some oscillatory errors in the center of the domain. In Figure 5, we plot
the relative error in terms of the number of rows r in the sketching matrix \sansS (r is set
to be 262, 382, 502, 622, and 742). We see that the Case-2 strategy performs as well
as the unstructured Gaussian reference, and they both outperform Case 1.

7. Concluding remarks. Most PDE-based inverse problems, upon lineariza-
tion, become Fredholm integral equations, with the testing functions being the prod-
uct of two functions that are solutions to the forward and the adjoint PDEs. A
Khatri--Rao matrix structure arises in the discretization. We study the sketching
problem for matrices of this type, where a corresponding structure is enforced in the
sketching matrix for efficiency of computation. We construct the problem under the
(\epsilon , \delta )-l2 embedding framework and investigate the number of rows of the sketching
matrix that are needed to reconstruct the LS solution with \epsilon accuracy and \delta con-
fidence. The lower bounds differ for the two different sketching strategies that we
propose, but both are independent of the size of the ambient space.

Appendix A. Key identities and inequalities. Some identities and inequal-
ities used repeatedly in the text are collected here.

A.1. Identities of the Kronecker product. Let \sansA = (aij) \in Rr1\times n1 , \sansB =
(bij) \in Rr1\times n2 . Then the Kronecker product of \sansA and \sansB forms a matrix of sizeD
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Fig. 5. For all three strategies, the relative error decreases as the number of rows in \sansS increases.
In particular, the Case-2 sketching strategy performs as well as the unstructured Gaussian strategy.

r1r2 \times n1n2 defined by

\sansA \otimes \sansB =

\left[     
a11\sansB a12\sansB \cdot \cdot \cdot a1n1

\sansB 
a21\sansB \cdot \cdot \cdot \cdot \cdot \cdot a2n1\sansB 

. . .
. . .

. . . . . .
ar11\sansB ar12\sansB \cdot \cdot \cdot ar1n1\sansB 

\right]     .
The following properties hold:

(1) Let \sansA \in Rr1\times n1 , \sansB \in Rr2\times n2 , \sansC \in Rn1\times p1 , and \sansD \in Rn2\times p2 ; then we have the
mixed-product property

(68) (\sansA \otimes \sansB )(\sansC \otimes \sansD ) = (\sansA \sansC )\otimes (\sansB \sansD ) .

(2) Let \sansA \in Rr1\times n1 , \sansB \in Rr2\times n2 , and \sansX \in Rn1\times n2 . Further denote by vec(\sansX ) the
vectorization of \sansX formed by stacking the columns of \sansX into a single column
vector; then

(69) (\sansB \otimes \sansA )vec(\sansX ) = vec(\sansA \sansX \sansB \top ) .

Equivalently, given the same \sansA ,\sansB and \sansx \in Rn1n2 , denote by Mat(\sansx ) \in Rn1\times n2

the matricization of the vector \sansx by aligning subvectors of \sansx that are of length
n1 into a matrix with n2 columns; then

(70) (\sansB \otimes \sansA )\sansx = vec
\bigl( 
\sansA Mat(\sansx )\sansB \top \bigr) .

A.2. Subexponential random variables and Bernstein inequality. Prop-
erties of subexponential random variables used in the proofs are defined here.

Definition 3 (subexponential random variable). A random variable X \in R
is said to be subexponential with parameters (\lambda , b) (denoted as X \sim subE(\lambda , b)) if
EX = 0 and its moment generating function satisfies

(71) EesX \leq exp

\biggl( 
s2\lambda 2

2

\biggr) 
for all | s| \leq 1

b
.
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We have the following.

Proposition 2. Let Z \sim \scrN (0, 1); then X
def
= Z2  - 1 is subexponential with pa-

rameters (2, 4).

We conclude with the well-known Bernstein inequality.

Proposition 3 (Bernstein inequality). Let X1, . . . , Xn be i.i.d. mean zero ran-
dom variables. Suppose that | Xi| \leq M for all i = 1, . . . , n; then for any t > 0,

(72) Pr

\Biggl( 
n\sum 
i=1

Xi \geq t

\Biggr) 
\leq exp

\biggl( 
 - t2/2\sum n

i=1 E [X2
i ] +Mt/3

\biggr) 
.

REFERENCES

[1] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), pp. R41--
R93, https://doi.org/10.1088/0266-5611/15/2/022.

[2] H. Avron, H. Nguyen, and D. Woodruff, Subspace embeddings for the polynomial kernel,
in Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, 2014,
pp. 2258--2266.

[3] C. Battaglino, G. Ballard, and T. G. Kolda, A practical randomized CP tensor decom-
position, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 876--901, https://doi.org/10.1137/
17M1112303.

[4] D. J. Biagioni, D. Beylkin, and G. Beylkin, Randomized interpolative decomposition of
separated representations, J. Comput. Phys., 281 (2015), pp. 116--134, https://doi.org/10.
1016/j.jcp.2014.10.009.

[5] L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), pp. R99--R136,
https://doi.org/10.1088/0266-5611/18/6/201.

[6] K. Chen, Q. Li, and L. Wang, Stability of stationary inverse transport equation in diffusion
scaling, Inverse Problems, 34 (2018), 025004, https://doi.org/10.1088/1361-6420/aa990c.

[7] M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev.,
41 (1999), pp. 85--101, https://doi.org/10.1137/S0036144598333613.

[8] D. Cheng, R. Peng, Y. Liu, and I. Perros, SPALS: Fast alternating least squares
via implicit leverage scores sampling, in Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS 2016), D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds., Curran As-
sociates, Inc., Red Hook, NY, 2016, pp. 721--729, http://papers.nips.cc/paper/
6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf.

[9] J. T. Chi and I. C. F. Ipsen, Randomized Least Squares Regression: Combining Model- and
Algorithm-Induced Uncertainties, preprint, https://arxiv.org/abs/1808.05924v1, 2018.

[10] K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W. Mahoney, X. Meng, and D. P.
Woodruff, The fast Cauchy transform and faster robust linear regression, SIAM J. Com-
put., 45 (2016), pp. 763--810, https://doi.org/10.1137/140963698.

[11] K. L. Clarkson and D. P. Woodruff, Low-rank approximation and regression in input
sparsity time, J. ACM, 63 (2017), 54.

[12] H. Diao, R. Jayaram, Z. Song, W. Sun, and D. Woodruff, Optimal sketching for
Kronecker product regression and low rank approximation, in Proceedings of the 33rd
International Conference on Neural Information Processing Systems (NIPS 2019), H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alch\'e-Buc, E. Fox, and R. Garnett, eds., Curran
Associates, Inc., Red Hook, NY, 2019, pp. 4737--4748, http://papers.nips.cc/paper/
8721-optimal-sketching-for-kronecker-product-regression-and-low-rank-approximation.
pdf.

[13] H. Diao, Z. Song, W. Sun, and D. Woodruff, Sketching for Kronecker product regression
and p-splines, in Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics, Proc. Mach. Learn. Res. 84, A. Storkey and F. Perez-Cruz,
eds., Playa Blanca, Lanzarote, Canary Islands, 2018, pp. 1299--1308, http://proceedings.
mlr.press/v84/diao18a.html.

[14] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarl\'os, Faster least squares
approximation, Numer. Math., 117 (2011), pp. 219--249.

[15] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge
University Press, Cambridge, UK, 2012.

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1088/0266-5611/15/2/022
https://doi.org/10.1137/17M1112303
https://doi.org/10.1137/17M1112303
https://doi.org/10.1016/j.jcp.2014.10.009
https://doi.org/10.1016/j.jcp.2014.10.009
https://doi.org/10.1088/0266-5611/18/6/201
https://doi.org/10.1088/1361-6420/aa990c
https://doi.org/10.1137/S0036144598333613
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
http://papers.nips.cc/paper/6436-spals-fast-alternating-least-squares-via-implicit-leverage-scores-sampling.pdf
https://arxiv.org/abs/1808.05924v1
https://doi.org/10.1137/140963698
http://papers.nips.cc/paper/8721-optimal-sketching-for-kronecker-product-regression-and-low-rank-approximation.pdf
http://papers.nips.cc/paper/8721-optimal-sketching-for-kronecker-product-regression-and-low-rank-approximation.pdf
http://papers.nips.cc/paper/8721-optimal-sketching-for-kronecker-product-regression-and-low-rank-approximation.pdf
http://proceedings.mlr.press/v84/diao18a.html
http://proceedings.mlr.press/v84/diao18a.html


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURED RANDOM SKETCHING 1769

[16] R. Jin, T. G. Kolda, and R. Ward, Faster Johnson-Lindenstrauss Transforms via Kronecker
Products, preprint, https://arxiv.org/abs/1909.04801, 2019.

[17] W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,
in Conference in Modern Analysis and Probability, Contemp. Math. 26, AMS, Providence,
RI, 1984, pp. 189--206.

[18] M. Liu, R. Kumar, E. Haber, and A. Aravkin, Simultaneous shot inversion for nonuniform
geometries using fast data interpolation, Inverse Problems, 35 (2018), 025003.

[19] P. Ma, M. W. Mahoney, and B. Yu, A statistical perspective on algorithmic leveraging, J.
Mach. Learn. Res., 16 (2015), pp. 861--911.

[20] M. W. Mahoney, Randomized algorithms for matrices and data, Found. Trends Theor. Com-
put. Sci., 3 (2011), pp. 123--224, https://doi.org/10.1561/2200000035.

[21] O. A. Malik and S. Becker, Low-rank Tucker decomposition of large tensors using tensor-
sketch, in Advances in Neural Information Processing Systems, MIT Press, Cambridge,
MA, 2018, pp. 10096--10106.

[22] O. A. Malik and S. Becker, Guarantees for the Kronecker fast Johnson-Lindenstrauss trans-
form using a coherence and sampling argument, Linear Algebra Appl., 602 (2020), pp. 120--
137, https://doi.org/10.1016/j.laa.2020.05.004.

[23] P.-G. Martinsson and J. Tropp, Randomized Numerical Linear Algebra: Foundations \&
Algorithms, preprint, https://arxiv.org/abs/2002.01387, 2020.

[24] X. Meng and M. W. Mahoney, Low-distortion subspace embeddings in input-sparsity time
and applications to robust linear regression, in Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing, 2013, pp. 91--100.

[25] J. Nelson and H. L. Nguy\^en, OSNAP: Faster numerical linear algebra algorithms via sparser
subspace embeddings, in Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science, 2013, pp. 117--126.

[26] R. Pagh, Compressed matrix multiplication, ACM Trans. Comput. Theory, 5 (2013), 9, https:
//doi.org/10.1145/2493252.2493254.

[27] M. Pilanci and M. J. Wainwright, Randomized sketches of convex programs with sharp
guarantees, IEEE Trans. Inform. Theory, 61 (2015), pp. 5096--5115.

[28] M. Pilanci and M. J. Wainwright, Iterative Hessian sketch: Fast and accurate solution
approximation for constrained least-squares, J. Mach. Learn. Res., 17 (2016), pp. 1842--
1879.

[29] G. Raskutti and M. W. Mahoney, A statistical perspective on randomized sketching for
ordinary least-squares, J. Mach. Learn. Res., 17 (2016), pp. 1--31, http://jmlr.org/papers/
v17/15-440.html.

[30] M. J. Reynolds, A. Doostan, and G. Beylkin, Randomized alternating least squares for
canonical tensor decompositions: Application to a PDE with random data, SIAM J. Sci.
Comput., 38 (2016), pp. A2634--A2664, https://doi.org/10.1137/15M1042802.

[31] V. Rokhlin and M. Tygert, A fast randomized algorithm for overdetermined linear least-
squares regression, Proc. Natl. Acad. Sci. USA, 105 (2008), pp. 13212--13217.

[32] M. Rudelson and R. Vershynin, Hanson-Wright inequality and sub-Gaussian concentration,
Electron. Commun. Probab., 18 (2013), 82, https://doi.org/10.1214/ECP.v18-2865.

[33] T. Sarlos, Improved approximation algorithms for large matrices via random projections, in
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
2006, pp. 143--152.

[34] C. Sohler and D. P. Woodruff, Subspace embeddings for the l1-norm with applications, in
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing (STOC
2011), pp. 755--764, https://doi.org/10.1145/1993636.1993736.

[35] Y. Sun, Y. Guo, J. A. Tropp, and M. Udell, Tensor Random Projection for Low Memory
Dimension Reduction, manuscript, 2018.

[36] R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, in Com-
pressed Sensing: Theory and Applications, Y. C. Eldar and G. Kutyniok, eds., Cam-
bridge University Press, Cambridge, UK, 2012, pp. 210--268, https://doi.org/10.1017/
CBO9780511794308.006.

[37] R. Vershynin, High-Dimensional Probability: An Introduction with Applications in Data Sci-
ence, Camb. Ser. Stat. Probab. Math. 47, Cambridge University Press, Cambridge, UK,
2018.

[38] V. Vu and K. Wang, Random weighted projections, random quadratic forms and random
eigenvectors, Random Structures Algorithms, 47 (2015), pp. 792--821.

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://arxiv.org/abs/1909.04801
https://doi.org/10.1561/2200000035
https://doi.org/10.1016/j.laa.2020.05.004
https://arxiv.org/abs/2002.01387
https://doi.org/10.1145/2493252.2493254
https://doi.org/10.1145/2493252.2493254
http://jmlr.org/papers/v17/15-440.html
http://jmlr.org/papers/v17/15-440.html
https://doi.org/10.1137/15M1042802
https://doi.org/10.1214/ECP.v18-2865
https://doi.org/10.1145/1993636.1993736
https://doi.org/10.1017/CBO9780511794308.006
https://doi.org/10.1017/CBO9780511794308.006


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1770 KE CHEN, QIN LI, KIT NEWTON, AND STEPHEN J. WRIGHT

[39] D. Woodruff and Q. Zhang, Subspace embeddings and \ell p-regression using exponential ran-
dom variables, in Proceedings of the 26th Annual Conference on Learning Theory, Proc.
Mach. Learn. Res. 30, S. Shalev-Shwartz and I. Steinwart, eds., PMLR, Princeton, NJ,
2013, pp. 546--567, http://proceedings.mlr.press/v30/Woodruff13.html.

[40] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.
Comput. Sci., 10 (2014), pp. 1--157.

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

http://proceedings.mlr.press/v30/Woodruff13.html

	Introduction
	Overdetermined systems with tensor structure arising from PDE inverse problems
	Sketching with tensor structures
	Case 1: Proof of Theorem 3
	Case 2: Proof of Theorem 4
	Embedding a given vector
	Proof of Theorem 4

	Numerical tests
	General matrices with tensor structure
	Electrical impedance tomography

	Concluding remarks
	Appendix A. Key identities and inequalities
	Identities of the Kronecker product
	Subexponential random variables and Bernstein inequality

	References

