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A LOW-RANK SCHWARZ METHOD FOR RADIATIVE TRANSFER
EQUATION WITH HETEROGENEOUS SCATTERING

COEFFICIENT\ast 

KE CHEN\dagger , QIN LI\ddagger , JIANFENG LU\S , AND STEPHEN J. WRIGHT\P 

Abstract. Random sampling has been used to find low-rank structure and to build fast direct
solvers for multiscale partial differential equations of various types. In this work, we design an
accelerated Schwarz method for radiative transfer equations that makes use of approximate local
solution maps constructed offline via a random sampling strategy. Numerical examples demonstrate
the accuracy, robustness, and efficiency of the proposed approach.
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1. Introduction. The radiative transfer equation (RTE) is a standard model
that describes propagation of light through such turbid media as biological tissues
or planetary atmospheres. The equation is used in situations in which energy is
transported by light, as in the study of the greenhouse effect [4], optical tomography
[28], and the radiation field for atmosphere-ocean systems [38]. Light is injected from
a source, and RTE models the absorption and scattering of the photons in the ambient
material.

The model equation for the steady state is

(1.1) v \cdot \nabla xu(x, v) = \sigma (x)\scrL u(x, v) , (x, v) \in D := \scrK \times \scrV ,

where u(x, v) describes the light intensity at location x oriented in velocity direction
v. The left-hand side describes free propagation of the photons along direction x with
velocity v, while the right-hand side characterizes interaction between photons and
media (via absorption and scattering). The media information is encoded in \sigma (x),
which is strictly positive for all x. The operator \scrL , typically an integral operator,
characterizes how photons are scattered and change directions. We denote the physical
domain by \scrK . Since photons always move with the same speed, the velocity term is
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determined purely by the direction, so that v \in \scrV = Sd - 1, the unit sphere in d
dimensions.

In the large space regime, with scaling x \rightarrow x
\varepsilon (where \varepsilon is a small parameter

discussed below), (1.1) becomes

(1.2) \varepsilon v \cdot \nabla xu(x, v) = \sigma \delta (x)\scrL u(x, v) ,

where \sigma \delta (x) is the rescaled media function, with \delta capturing the smallest scale of the
variation in the media. This function is rough when \delta \ll 1. In (1.2), \varepsilon is the Knudsen
number that represents the ratio of the mean free path to the typical domain length.

With appropriate boundary conditions, well-posedness of the equation is straight-
forward, and is independent of the scales (that is, the smallness of \varepsilon or \delta ) [2, 14]. In
this paper, we tackle the numerical challenge of designing an efficient numerical solver
for (1.2). We are especially interested in the regime of small \varepsilon and small \delta , where
classical numerical methods typically require high memory and computational cost,
as we explain below.

1.1. Asymptotic preserving. Small parameters in PDEs can induce compu-
tational challenges. In the case described above, we have \nabla xu \sim 1/min\{ \varepsilon , \delta \} , so
a classical numerical solver can be expected to attain good accuracy only when the
mesh size in the discretization \Delta x satisfies

\Delta x\ll min\{ \varepsilon , \delta \} .

A grid in d dimensions with this discretization parameter will have at least N \gg 
min(\varepsilon , \delta ) - d grid points, so the computation is prohibitive when \varepsilon and \delta are small.

A natural question is whether it is possible to design a numerical method for
which the computational cost of obtaining a stable, accurate solution is independent
of the parameters \varepsilon and \delta , and whether the numerical solution can capture the right
asymptotic limit of the solution as \varepsilon and \delta approach zero. If a numerical solver for
a multiscale problem has its discretization independent of the smallest scale in the
equation, but still preserves the asymptotic limits, then the solver is called asymp-
totic preserving (AP). This term was coined in [26] for a class of kinetic equations,
although some algorithms for simpler settings had been designed previously [30]. Ex-
tensive progress has been made during the past decade, with AP solvers being de-
signed for the Bhatnagar--Gross--Krook equation (a special simplified version of the
Boltzmann model that keeps the equilibrium), the Boltzmann equation, the Vlasov--
Poisson--Boltzmann (VPB) equation, and many others [13, 15, 16, 25, 31]. See also
the reviews [27].

A standard approach for designing AP solvers is based on analysis of the asymp-
totic limits. In some cases, asymptotic limits for the equations can be derived: the
Euler limit for the Boltzmann, the coupled diffusion-Poisson system for the VPB sys-
tem. One strategy for obtaining the AP property is to work with two sets of solvers,
one for the original equation and one for the asymptotic limit, the latter being encoded
in the former via a weight that can be tuned. In the limit as \varepsilon \rightarrow 0, this weight is ad-
justed so that the limiting equation solver dominates, driving the numerical solution
to that of the asymptotic limiting system.

The analysis-based approach is straightforward and mathematically sound, and
has made some previously impossible computations feasible. It depends, however, on
analytical understanding of the asymptotic limit, which is not always straightforward.
We are led to ask whether it is possible to design an AP solver that does not require
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detailed knowledge of the asymptotic limit. This paper addresses this question in
the specific case of RTE. This equation is complicated in that different patterns of
convergence of the pair (\varepsilon , \delta ) to (0, 0) lead to different limiting systems, not all of
which are well understood. Can we design AP numerical solvers in the absence of this
analytical understanding? We outline an answer to this question in the next section.

1.2. Random sampling and PDE compression. We design AP solvers with-
out analytical knowledge by using compression techniques. Even when asymptotic
limits of equations with small parameters are difficult to derive analytically, we can
sometimes show the existence of such limits. In the discrete setting, a basic second
order discretization scheme with \Delta x = o(

\surd 
\tau \epsilon ,
\surd 
\tau \delta ) should suffice to attain the accu-

racy level \tau , which leads to N\varepsilon = min\{ \varepsilon 
\surd 
\tau , \delta 
\surd 
\tau \}  - d grid points for an O(1) domain

size. When a limiting equation exists, this accuracy level may be attainable with as
few as N = \tau  - d grid points. Since the limiting equation is asymptotically close to the
original equation, these N degrees of freedom are asymptotically sufficient to repre-
sent the original PDE solution that naively would require N\varepsilon grid points to compute.
This observation implies that the N\varepsilon -dimensional solution space is compressible, and
can be well-approximated by an N -dimensional space when \varepsilon and \delta are small.

Knowing that the space is ``compressible,"" can one find the compressed space
quickly? We answer this question affirmatively, in the case of the RTE, by making
use of random sampling. Random sampling is not a new strategy. It has been used
in data science to sample sparse vectors (as in compressed sensing [9]) and low-rank
matrices [23], with the goal of reconstructing these objects from a relatively small
number of samples. Generally, the number of samples is tied more closely to the
intrinsic dimension of the object (for example, the number of nonzeros in a sparse
vector) than to the dimension of the ambient space, which is typically much larger.

Applications of random sampling techniques to PDEs have been limited previously
to the discrete algebraic systems obtained by discretizing the PDEs. A direct link to
the original PDEs needs to be explored further. Some important questions have not
been fully resolved, for example, whether the PDE solution space or the solution
operator is compressible. The two views correspond to regarding a matrix as defining
a column space or as a linear operator, respectively. Other questions involve the
sense in which these objects are compressible, and whether the spectral norm used
for matrices is the appropriate norm in the case of PDEs.

Previously, mostly in the context of elliptic PDEs, the low-rank property of the
solution space has been investigated and utilized in numerical solvers. For example,
homogenization theory has been utilized [24, 37] for designing local basis functions for
multiscale problems with structured media. For a more general setting of L\infty media,
the Kolmogorov N -width of the problem was studied in a pioneering paper [3], while
the structure fo the Green's functions were investigated in the framework of a hierar-
chical matrix [6, 22]. Inspired by the studies, many algorithms have been proposed to
utilize the rank (or decay) property, including [12, 29, 35]. Algorithms that specifically
use PDE compression and random sampling ideas are developed in [7, 8, 17, 36, 39].
In the transport equation setting, [11] incorporated the random sampling technique
within the discontinuous Galerkin framework for building local solution dictionaries.
Corresponding to the first question asked above, in most of these papers, the authors
regard the solution space to be compressible and the associated matrix is regarded as
a column space. A more systematic investigation of PDE compression appeared re-
cently in our previous work [10], where compressed PDE solution spaces are related to
the low-rank structure of the matrix formed by the Green's functions. Such concepts
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in multiscale PDE computation as AP (see above) and numerical homogenization are
unified under this framework.

1.3. Contribution. This paper follows the line of research started in [10]. For
RTE (1.2), we know only that the equation has asymptotic limits with small param-
eters, but the actual forms of the limiting equations are unknown. We aim to design
an accurate numerical scheme whose runtime is independent of the smallness of the
coefficients in the equation.

We apply the Schwarz iteration under the domain decomposition framework. The
domain is divided into overlapping subdomains (patches). The PDEs in these patches
can be solved in parallel. Solution of the PDE on each patch with partial bound-
ary conditions yields an output in the form of boundary conditions that are passed
to neighboring patches. The PDE on each patch is solved again with the modi-
fied boundary conditions supplied by its neighbors, the whole process repeating until
the solutions are consistent in the overlapping regions. The boundary-to-boundary
map, in which the inputs are the partial boundary conditions on the patch PDEs
and the outputs are the missing boundary conditions obtained by solving the PDEs,
is a compressible map. We will develop an algorithm based on random sampling
that computes an adequate approximation to this map quickly. The overall scheme
is a composition of an offline component, in which low-rank approximations to the
boundary-to-boundary maps are obtained using random sampling; and an online step,
in which Schwarz iteration, accelerated by the low-rank boundary-to-boundary map,
is executed until a solution consistent across the whole domain is found.

Our work contrasts with the approach in [10], where the local solution space is
compressed in an offline step. In the online step, a solution for particular boundary
conditions or source term is found as a linear combination of basis vectors for the
compressed space, with the coefficients chosen to match the given conditions. The
problem of finding these coefficients is typically overdetermined, the number of coeffi-
cients being fewer than the constraints arising from the boundary conditions or source
term. Some accuracy is sacrificed, and the error is difficult to quantify. The current
work compresses the boundary-to-boundary map, rather than the local solution space,
in the offline stage, and uses the compressed map to update local boundary conditions
in the online stage, until a preset error tolerance is achieved.

In this work, to demonstrate our numerical scheme and validate our theory, we
consider a simpler setting of the 1+1 problem, that is, one spatial dimension and one
velocity dimension. Our theory can be extended to higher dimensions in a concep-
tually straightforward way, but the implementation of the numerical scheme would
become significantly more delicate in such cases. We do not pursue high-dimensional
versions in this paper.

The remainder of the paper is organized as follows. We introduce the concept of
``low rankness"" in the context of the RTE in section 2. In section 3, we review the
Schwarz iteration under the domain decomposition framework, and present the new
low-rank Schwarz iteration method based on random sampling. Numerical experi-
ments are described in section 4.

2. Low rankness of RTE in various regimes. As discussed above, current
AP schemes rely heavily on good understanding of the analytical form of the asymp-
totic limits, although in some situations, this limiting form is hard to specify, even
when we know that it exists. The RTE with small Knudsen number \varepsilon and small
media oscillation period \delta is a good example of the latter phenomenon. As \varepsilon and \delta 
converge to (0, 0) in different ways, the limiting equations are different, and only some
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of the limiting forms can be expressed explicitly. We show two different homogeniza-
tion effects in the following two subsections, and unify them using the concept of low
rankness in section 2.3.

Consider the RTE in infinite domain (1.2), which we restate here:

(2.1) \varepsilon v \cdot \nabla xu(x, v) = \sigma \delta (x)\scrL u(x, v),

where x \in Rd and v \in \scrV = Sd - 1. We define the scattering operator \scrL to have the
following form:

\scrL u(x, v) =
\int 
Sd - 1

u(x, v\prime ) d\mu (v\prime ) - u(x, v) ,

where \mu (v) is the normalized measure on the velocity domain. The scattering coeffi-
cient \sigma \delta (x) > 0 encodes the media information, with \delta denoting the smallest spatial
scale. The operator has a nontrivial null space Null\scrL which consists of functions that
are constant in the velocity domain. We use this fact later to formally derive the
diffusion limit of RTE. In this article, we choose the operator \scrL to have this specific
form, for simplicity. In practice, especially in applications to atmosphere science,
the RTE often takes this operator to be \scrL u(x, v) =

\int 
Sd - 1 k(x, v, v

\prime )u(x, v\prime ) d\mu (v\prime )  - 
\sigma (x, v)u(x, v) with the collision kernel

k(x, v, v\prime ) =
1 - g2

4\pi (1 + g2  - 2gv \cdot v\prime )3/2
,

where the constant g \in [ - 1, 1] determines the relative strength of the forward and
backward scattering. This is the so-called Henyey--Greenstein model. The equation
would have the same type of asymptotic limit (an elliptic equation) as long as \sigma (x, v) =\int 
k(x, v, v\prime )d\mu (v\prime ) [2, 14].
We now consider different limits for different regimes of the parameters (\varepsilon , \delta ).

2.1. Diffusion regime. In the diffusion regime, we have \varepsilon \rightarrow 0 while \delta is fixed at
a positive value. From (2.1), we see that \scrL u(x, v) \sim 0 in the leading order, meaning
that u(x, v) belongs to the null space of \scrL , and loses its velocity dependence. By
matching orders in the classical asymptotic expansion

u(x, v) = u0(x, v) + \varepsilon u1(x, v) + \cdot \cdot \cdot ,

we obtain

\scrO (1) : u0(x, v) \in Null\scrL , u0(x, v) = u0(x) ,

\scrO (\varepsilon ) : v \cdot \nabla xu0(x, v) = \sigma \delta \scrL u1 , u1(x, v) =  - 
1

\sigma \delta 
v \cdot \nabla xu0(x) ,

\scrO (\varepsilon 2) : v \cdot \nabla xu1(x, v) = \sigma \delta \scrL u2 , \int v \cdot \nabla xu1(x, v)d\mu (v) = 0 .

By substituting the \scrO (\varepsilon ) equation into the \scrO (\varepsilon 2) equation, one obtains a diffusion
equation, as follows.

Theorem 2.1 (see [5]). In the zero limit of \varepsilon , the solution to (2.1) converges to
the solution of the diffusion equation,

(2.2) \nabla x \cdot 
\biggl( 

1

\sigma \delta (x)
\nabla xu0(x)

\biggr) 
= 0 ,

in the sense that
\| u(x, v) - u0(x)\| L2(dx d\mu (v)) = \scrO (\varepsilon ) .
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Remark 2.2. Note that we did not account for boundary conditions in deriving
the limiting equation. In physical space, the derivation is valid when the boundary
conditions are periodic. Otherwise, one has to be careful with the boundary influences
and curvature effects. The diffusion limit still holds outside the boundary layers, but
the convergence deteriorates when curvature corrections need to be taken into account.
These results can be found in [21, 33] for the case when the domain is convex.

2.2. Homogenization regime. When \varepsilon is fixed at a positive value while \delta \rightarrow 0,
homogenization limits are achieved; see [18]. We assume a two-scale media, having
dependence on a fast variable y = x

\delta and a slow variable x:

\sigma \delta (x) = \sigma 
\Bigl( 
x,
x

\delta 

\Bigr) 
,

where \sigma (x, \cdot ) is assumed to be periodic (with respect to the fast variable) for each x.
Accordingly, we write the solution as

u\delta (x, v) = u(x, y, v) = u
\Bigl( 
x,
x

\delta 
, v
\Bigr) 
.

In this notation, the operator \nabla x is replaced by \nabla x + 1
\delta \nabla y from the chain rule. By

substituting into the equation, we have

v \cdot \nabla xu
\delta (x, y, v) +

1

\delta 
v \cdot \nabla yu

\delta (x, y, v) =
\sigma (x, y)

\varepsilon 
\scrL u\delta .

By substituting the asymptotic expansion

u\delta (x, y, v) = u0(x, y, v) + \delta u1(x, y, v) +\scrO (\delta 2)

into the equation above, and matching terms, we obtain

\scrO (1/\delta ) : v \cdot \nabla yu0(x, y, v) = 0 ,(2.3a)

\scrO (1) : v \cdot \nabla xu0  - 
\sigma (x, y)

\varepsilon 
\scrL u0 = v \cdot \nabla yu1(x, y, v) .(2.3b)

By applying the Fourier transform for the first equation (2.3a) with respect to the
periodic variable y, we obtain

i2\pi v \cdot \xi \^u0(x, \xi , v) = 0 for all \xi \in Zd.

We note that for almost all fixed v \in Rd, the multiplier i2\pi v \cdot \xi is nonvanishing for all
\xi \in Zd\setminus \{ 0\} , because otherwise there exists some \xi \in Zd\setminus \{ 0\} such that i2\pi v \cdot \xi = 0 for
a positive measure set of v, which is impossible. Therefore, by dividing the multiplier,
we have for any \xi \in Zd\setminus \{ 0\} that

\^u0(x, \xi , v) = 0 for almost all (x, v) .

That is, all Fourier modes are vanishing except for the one with \xi = 0. This implies
that u0 is independent of the periodic variable y, so we redefine the notation to omit
this dependence:

u0(x, y, v) = u0(x, v) for almost all (x, v) .
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Fig. 2.1. The diffusion limit theory is established by Bardos, Santos, and Sentis [5] through the
horizontal arrow \varepsilon \rightarrow 0, \delta = 1. Dumas and Golse [18] considered the vertical arrow \varepsilon = 1, \delta \rightarrow 0.
Goudon and Mellet [19, 20] considered the diagonal path \varepsilon = \delta \rightarrow 0, while Abdallah, Puel, and
Vogelius [1] studied the curved path \delta \gg \varepsilon \rightarrow 0. Different limiting equations might arise for different
regimes; the diagram does not commute.

For the next order equation (2.3b), when we take the integral over y, the right-hand
side vanishes due to periodicity, and we obtain the homogenized equation

v \cdot \nabla xu0(x, v) =
\sigma \ast (x)

\varepsilon 
\scrL u0(x, v) with \sigma \ast = \int \sigma (x, y)dy .

The derivation of homogenization limit presented above is validated in the fol-
lowing theorem. See [18, Theorem 3.1] for a rigorous proof for the time-dependent
case.

Theorem 2.3. Letting \sigma \delta (x) be a bounded family of L\infty functions such that

\sigma \delta \delta \rightarrow 0 -  -  - \rightarrow \sigma \ast in L\infty weak- \ast topology,

then the solution u\delta (x, v) to the RTE (2.1) (with \varepsilon fixed) converges in L\infty weak-\ast 
topology to u(x, v), the solution to the following homogenized RTE:

(2.4) \varepsilon v \cdot \nabla xu(x, v) = \sigma \ast (x)\scrL u(x, v) .

Because of the oscillations of scale \delta in the media \sigma \delta (x), the solution u\delta is rough.
However, such oscillations are homogenized in the \delta \rightarrow 0 limit, and the solution u\delta 

becomes close to the solution to (2.4), which has no oscillation.
In general, the limiting regime \varepsilon \rightarrow 0, \delta \rightarrow 0 can be taken through different routes.

One may fix \delta = 1 and send \varepsilon to zero to reach the diffusion limit (2.2) and then send
\delta \rightarrow 0, shown as a solid arrow in Figure 2.1. Alternatively, one could fix \varepsilon = 1 and
send \delta to zero to reach the homogenization limit (2.4), then send \varepsilon \rightarrow 0. This path
is shown as the dashed arrow in Figure 2.1. Additionally, one could send both \varepsilon and
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Fig. 2.2. Low rankness of systems with small parameters.

\delta simultaneously to zero at different rates, shown as dotted arrows in Figure 2.1. All
these routes, though considering the same regime \varepsilon , \delta \rightarrow 0, do not necessarily end up
at the same limit. In fact, Goudon and Mellet [19, 20] showed that by following the
route \varepsilon = \delta \rightarrow 0, RTE (1.2) ends up as an effective drift diffusion equation, while
Abdallah, Puel, and Vogelius [1] followed the route \delta \gg \varepsilon \rightarrow 0 to obtain an effective
diffusion equation.

2.3. Low rank of the PDE solution map. An AP scheme was proposed
in [32] to deal with the regime \delta \gg \varepsilon \rightarrow 0, while numerical schemes for other regimes
remain open. In practice, given a particular pair (\varepsilon , \delta ) that is close to zero, it is
impossible to determine which limiting equation is the most appropriate one to use as
an approximation to the solution of (1.2). The analysis-based approach of designing
AP schemes is therefore not feasible. We seek to develop instead a universal numerical
approach that is valid in different limiting regimes.

We start by considering the diagram in Figure 2.2. Assume we are given an
equation \scrR \alpha u\alpha = 0, where \alpha := min\{ \varepsilon , \delta \} denotes the smallest parameters in the
equation operator \scrR \alpha , together with a boundary operator \scrB such that \scrB u\alpha = f for
some given boundary data f . The solution can be represented as a convolution of
f with all Green's functions \scrG \alpha , so it lies in the space spanned by \scrG \alpha . To find an
accurate numerical approximation to this solution, the operator \scrR \alpha is translated to
\sansR \alpha , a matrix with N\alpha \geq 1

\alpha columns. Thus, the numerical solution \sansU \alpha is a vector of
length N\alpha .

On the other hand, assume the equation is ``homogenizable"" and there exists an
asymptotic limit, an operator \scrR \ast so that the solution u\ast to equation \scrR \ast u\ast = 0 with
boundary condition \scrB u\ast = f is asymptotically close to u\alpha . The computation of u\ast is
expected to be significantly cheaper, since the limiting equation no longer has small
parameters and is expected to be smooth. Thus, the numerical solution \sansU \ast requires
merely N = \scrO (1) degrees of freedom to represent u\ast accurately.

Since u\ast is close to u\alpha for regular f , the numerical solution spaces captured by
the range of matrices \sansG \ast and \sansG \alpha are expected to be almost the same. On the other
hand, although \sansG \alpha contains many more degrees of freedom (columns) than \sansG \ast , the
former is compressible and the latter is a good low-rank approximation to it. This
argument can be made rigorous with the definition of ``numerical rank of an operator,""
a concept that is equivalent to the ``Kolmogorov n-width."" More details can be found
in [10].
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2.4. Random sampling for low-rank structure. Knowing that an operator
is approximately of low rank does not mean that it is easy to find a low-rank ap-
proximation quickly. In the linear algebra setting, finding the low-rank structure is
equivalent to finding the singular vectors of a matrix that correspond to the largest
singular values. For an n \times m matrix, the SVD costs \scrO (nmmin\{ n,m\} ) operations,
making the computation expensive for large matrices. When the approximate rank is
known to be r \ll n, a randomized SVD (RSVD) solver based on a sketching procedure
is available, whose cost depends on r. Properties of this approach are described in
the following result.

Theorem 2.4 (see [23, Corollary 10.9]). Suppose that the matrix \sansA \in Rn\times m has
singular values ordered as follows: \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot . Assume that the target rank r and
oversampling parameter p \geq 4 are positive integers such that k := r+ p \leq min\{ m,n\} .
Then with probability at least 1 - 6e - p, we have

\| \sansA  - \sansQ \sansQ \top \sansA \| 2 \leq 
\Bigl( 
1 + 17

\sqrt{} 
1 + r/p

\Bigr) 
\sigma r+1 +

8
\surd 
k

p+ 1

\Bigl( \sum 
j>r

\sigma 2
j

\Bigr) 1/2

,

where \sansQ \in Rm\times k is a matrix with orthonormal columns whose column space matches
that of \sansA \Omega , where \Omega is a random matrix of dimension m\times k with entries drawn from
an independent and identically distributed (i.i.d.) normal distribution.

This theorem suggests that if an operator has approximate low rank, random
sampling can find its range accurately, with overwhelming probability. A simplified
estimate shows that for oversampling parameter p as small as 5, with at least 99.8\%
confidence, the error \| \sansA  - \sansQ \sansQ \top \sansA \| 2 is controlled by (1 + 11

\sqrt{} 
min\{ m,n\} (r + 5))\sigma r+1.

Algorithm 2.1, proposed in [23], finds the rank-r approximation to \sansA , which we denote
by \sansA r.

Algorithm 2.1 Randomized Singular Value Decomposition (RSVD).

1: Given matrix \sansA \in Rn\times m, target rank r and oversampling parameter p;
2: Set k := r + p;
3: Stage I:

4: Generate matrix \Omega \in Rm\times k with i.i.d. normal variables and compute \sansY =
\sansA \Omega \in Rn\times k;

5: Perform QR-decomposition and obtain [\sansQ ,\sansR ] = qr(\sansY , 0), where \sansQ \in Rn\times k has
orthonormal columns;

6: Stage II:

7: Form \sansB = \sansQ \ast \sansA \in Rk\times m;
8: Compute SVD \~\sansU \sansSigma \sansV \ast of \sansB , where \~U \in Rk\times k and V \in Rm\times k are matrices

with orthonormal columns, and \Sigma \in Rk\times k is a diagonal matrix with nonnegative
diagonals;

9: Compute \sansU = \sansQ \~\sansU \in Rn\times k, noting that \sansU has orthonormal columns;

10: Return: \sansA r =
\sum r

i=1 \sansU \cdot i\sansSigma ii\sansV 
T
\cdot i , where \sansU \cdot i and \sansV \cdot i denotes column i of \sansU and \sansV ,

respectively.

There are two crucial features of the algorithm. First, the amount of computation
depends crucially on the rank r, and is generally much less expensive than a full SVD.
Second, it can be implemented without explicit knowledge of the matrix \sansA . Rather, we
need only to be able to compute the products of \sansA with the random matrix \Omega . These
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784 K. CHEN, Q. LI, J. LU, AND S. J. WRIGHT

properties make the algorithm well suited for use in the numerical homogenization of
PDEs.

RSVD is not the only algorithm that achieves the decomposition at the cost of
O(r) matrix-vector multiplications. Another approach is to explore a Krylov subspace
of rank (slightly) greater than r by initializing with a random vector and multiplying
repeatedly by \sansA . The first r singular values of the resulting matrix can be taken as
approximating the leading r singular values of \sansA . A variation of RSVD incorporates
power iteration, which is similar to constructing a Krylov subspace; see [23, sec-
tions 4.5 and 10.4]. We restrict here to the original RSVD algorithm for its simplicity
and effectiveness in our numerical tests.

Translation of the randomization idea to the PDE setting is not straightforward.
First, a PDE solution map is a continuous operator, not a matrix. Discretization of
the space and the choice of norm is not always obvious. Redesigning the scheme to
deal with an operator may also be difficult. While the adjoint of a matrix is easy to
define, the adjoint of an operator may not be so easy to define. Second, a numerical
homogenization scheme needs to find a solution quickly for an arbitrary boundary
term or source, and in pursuit of that goal, the PDE solution map may not be the
right operator to ``compress."" In our approach, discussed in section 3, we compress a
different operator: the boundary-to-boundary map, Schwarz iteration scheme.

For the present, given an operator \scrA : \scrX \rightarrow \scrY , we assume that the adjoint \scrA \ast is
known. We also assume \scrX and \scrY are finite dimensional and there is an inner product
structure on \scrX which allows us to efficiently draw random samples. We can then
translate Algorithm 2.1 to the operator setting to find the corresponding Kolmogorov
r-width operator \scrA r in Algorithm 2.2. (Note that upon fine discretization to meet
the preset precision threshold, \scrX can always be made finite dimensional.)

Algorithm 2.2 Randomized Operator Rank Capture.

1: Given an operator \scrA : \scrX \rightarrow \scrY , where \scrX and \scrY are finite-dimensional function
spaces. Define target rank r and oversampling parameter p, and set k := r + p;

2: Stage I:

3: Generate k samples \omega 1, . . . ,\omega k \in \scrX and calculate \{ \scrA \omega 1 , . . . ,\scrA \omega k\} ;
4: Perform Gram--Schmit orthogonalization to obtain \{ q1 , . . . , qk\} ;
5: Stage II:

6: Act \scrA \ast on \{ qi\} to obtain \{ \scrA \ast q1 , . . . ,\scrA \ast qk\} ;
7: Seek \~ui \in Rk, \sigma i \in R, and vi \in \scrX , i = 1, 2, . . . , k such that

\sum k
i=1 \~ui\sigma ivi =

(\scrA \ast q1 , . . . ,\scrA \ast qk)
T ;

8: Denoting \~U = [\~u1, . . . , \~uk] \in Rk\times k, define uj =
\sum k

i=1 qi
\~Uij , j = 1, 2, . . . , k;

9: Return: \scrA r =
\sum r

i=1 ui\sigma ivi.

Remark 2.5. Both Algorithm 2.1 and its operator counterpart Algorithm 2.2 re-
quire an input target rank r. Such a parameter could be obtained from an a priori
estimate for elliptic-type equations [3]. However, such guidance is unfortunately ab-
sent in the transport equation case. To address this issue, one may consider an
adaptive randomized range finder (Algorithm 4.2 of [23]), in which a tolerance level
is preset and the target rank is determined on the fly.
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3. Low-rank Schwarz domain decomposition method. We consider the
boundary value problem for RTE (2.1) in the following form:

\varepsilon v \cdot \nabla xu(x, v) = \sigma \delta (x)\scrL u(x, v) , (x, v) \in D = \scrK \times \scrV ,(3.1a)

u(x, v) = \phi (x, v) , (x, v) \in \Gamma  - ,(3.1b)

where the partial boundary \Gamma  - is defined by

(3.2) \Gamma  - := \{ (x, v) \in \partial \scrK \times \scrV :  - nx \cdot v > 0\} .

Here, nx is the outer normal vector at location x \in \partial \scrK , and v \cdot nx is expected to be
negative for all incoming velocities. Similarly, the outflow coordinates are collected in
the complementary partial boundary \Gamma + := \{ (x, v) \in \partial \scrK \times \scrV : nx \cdot v > 0\} . Problem
(3.1) is well-posed, as we show in the appendix.

We start in section 3.1 by introducing domain decomposition and the classical
Schwarz method (Algorithm 3.1). Section 3.2 identifies the operator that needs to be
compressed for efficient implementation of this method, while section 3.3 derives the
adjoint operator. These elements together make it possible to design the low-rank
Schwarz method (Algorithm 3.3), which is presented in section 3.4.

3.1. Schwarz domain decomposition method. To solve (3.1), we first con-
sider an overlapping domain decomposition of the physical space \scrK ,

\scrK =
M\bigcup 

m=1

\scrK m ,

where \{ \scrK m\} m=1,2,...,M forms an open cover of \scrK . We assume in the remainder of the
discussion that the subdomains are ordered so that \scrK m can overlap only with \scrK m - 1

and \scrK m+1. We decompose the domain D = \scrK \times \scrV accordingly as

(3.3) D =

M\bigcup 
m=1

Dm =

M\bigcup 
m=1

(\scrK m \times \scrV ) .

We denote by \Gamma m,\pm the outflow and inflow boundaries for Dm. We define those parts
of the subdomains \scrK m and Dm that do not overlap with their neighbors as follows:

(3.4) \scrK s
m := \scrK m \setminus (\scrK m - 1 \cup \scrK m+1) , Ds

m := Dm \setminus (Dm - 1 \cup Dm+1) = \scrK s
m \times \scrV .

Since the inflow boundary \Gamma m\pm 1, - of the neighboring domain is partially inside Dm,
we further define

(3.5) \scrE m,m - 1 := Dm \cap \Gamma m - 1, - , \scrE m,m+1 := Dm \cap \Gamma m+1, - ,

so that the outflow boundary \Gamma s
m,+ of Ds

m is the union of the domains above, that is,

\Gamma s
m,+ = \scrE m,m - 1 \cup \scrE m,m+1 .

One can see that the restriction on \Gamma s
m,+ of the local solution in the domain Dm,

would partially provide the inflow boundary condition for its neighboring domain
Dm\pm 1. This fact will be used later to update local solutions in each iteration of the
Schwarz method. Figure 3.1 illustrates our setup.

The Schwarz method is an iterative algorithm that updates solutions confined to
different subdomains by exchanging information between iterations. In this setting, we
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786 K. CHEN, Q. LI, J. LU, AND S. J. WRIGHT

Fig. 3.1. An overlapping domain decomposition of D. The horizontal direction and vertical
direction represent \scrK and \scrV , respectively. For simplicity, we consider only the case in which both
\scrK and \scrV are subsets of the real line. Each subdomain Dm overlaps the neighboring two subdomains
Dm - 1 and Dm+1 (except that D1 and DM have one neighboring subdomain). The inflow boundary
for Dm, \Gamma m, - , and the inflow boundary for Dm\pm 1 confined in Dm, which is denoted by \scrE m,m\pm 1, is
also illustrated.

update the values on \scrE m,m\pm 1 using the newly computed solutions in each subdomain,
repeating the process until the solution converges. To be more specific, we denote by
\phi km the restriction of the solution at the kth step of the Schwarz process on patch m,
confined to the partial boundary \Gamma m, - , that is,

\phi km := uk| \Gamma m, - \phi k := \{ \phi k1 , . . . ,\phi kM\} .

The kth iteration of the Schwarz method can be expressed as a mapping from the \phi k

to \phi k+1, obtained by exchanging the boundary conditions between adjacent patches
and solving the RTE. We denote this mapping by \scrP , as follows:

\phi k+1 = \scrP (\phi k).

We terminate at an iteration k for which the difference between \phi k and \phi k+1 falls
below a given tolerance.

The evaluation of map \scrP amounts to evaluation and assembly of the individual
maps \scrP m(\phi m), m = 1, 2, . . . ,M , and is defined by the following procedure.

Step 1: Define the following solution map,

(3.6)
\scrS m : L2(\Gamma m, - ; | n \cdot v| ) \rightarrow HA(Dm) ,

\phi \mapsto \rightarrow u

by solving RTE on domain Dm:

(3.7)

\Biggl\{ 
v \cdot \nabla xu(x, v) =

1
\varepsilon \sigma 

\delta (x)\scrL u(x, v) in Dm ,

u(x, v) = \phi (x, v) on \Gamma m, - .

Obtain the solution um = \scrS m(\phi m) in each subdomain Dm with boundary
conditions \phi m. Here HA(Dm) is a functional space where the trace of u over
the boundary \Gamma m,\pm is well-defined (see the appendix for details).
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Step 2: Confine the solution um on the boundaries:

(3.8) \phi +m - 1 = um on \scrE m,m - 1 and \phi +m+1 = um on \scrE m,m+1 ,

where \phi +m - 1 and \phi +m+1 are the boundary values transmitted to the next iter-
ation of the Schwarz procedure.

\scrP m is the boundary-to-boundary map that maps the boundary condition on \Gamma m, - 
to the boundary values on the adjacent subdomains (\Gamma s

m,+ = \scrE m,m+1 \cup \scrE m,m - 1):

(3.9)
\scrP m : L2(\Gamma m, - ; | n \cdot v| ) \rightarrow L2(\Gamma s

m,+; | n \cdot v| ) ,
\phi \mapsto \rightarrow u| \Gamma s

m,+
.

This map \scrP m is a well-defined operator, as we show in (A.3). It can be regarded as
a composition of \scrS m and a trace operator, as follows:

(3.10) \scrP m : \phi m
\scrS m -  - \rightarrow um \rightarrow um| \Gamma s

m,+
.

Note that um| \Gamma s
m,+

provides the boundary condition for the adjacent subdomains

\phi m\pm 1 in the next Schwarz iteration, seen as in (3.8). The full map \scrP is obtained by
collecting the action of \scrP m for all subdomains m = 1, 2, . . . ,M .

As initial conditions for the Schwarz process, we set

(3.11) \phi 0m, - = 0 , m = 1, 2, . . . ,M ,

except at the physical boundary, where we impose given boundary conditions:

(3.12) \phi 01, - = \phi bdry on \Gamma  - \cap \Gamma 1, - and \phi 0M , - = \phi bdry on \Gamma  - \cap \Gamma M , - .

When convergence to a given tolerance is achieved, the latest solutions may not per-
fectly match at the overlapping areas. To assemble the global solution, we define a
suitable set of partition-of-unity functions \{ \eta m(x)\} for the subdomains \scrK m, whose
properties are as follows:

0 < \eta m(x) \leq 1, \eta m(x) = 0 for x /\in \scrK m, and all m = 1, 2, . . . ,M ;

M\sum 
m=1

\eta m(x) \equiv 1 for all x \in \scrK .

We construct the global solution by setting

(3.13) ufinal(x, v) =
M\sum 

m=1

um(x, v)\eta m(x) .

The method is summarized in Algorithm 3.1.
The Schwarz approach has several advantages. First, it is easy to implement in

parallel, since the main computations (3.7) and (3.8) can be solved simultaneously
for the subdomains m = 1, 2, . . . ,M . In fact, one could even use different solvers
in different subdomains, when appropriate (for example, when there is prior infor-
mation about inhomogeneity of the medium). Second, computing solutions in each
subdomain is significantly cheaper than for the full domain. It saves storage cost and
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Algorithm 3.1 Schwarz Method for RTE.

1: Input: global boundary conditions \phi bdry and error tolerance \tau ;
2: Set t\leftarrow 0; Initialize \phi 0m from boundary conditions (3.11) and (3.12);
3: Repeat

4: t\leftarrow t+ 1;
5: For m = 1, . . . ,M

6: utm \leftarrow \scrS m(\phi t - 1
m ) via (3.7);

7: \phi tm\pm 1 \leftarrow utm| \scrE m,m\pm 1
via trace restrictions (3.8);

8: EndFor
9: error\leftarrow 

\sum 
m \| \phi tm  - \phi t - 1

m \| ;
10: Until error \leq \tau ;
11: Assemble the final solution using (3.13);
12: Return: final solution ufinal.
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Fig. 3.2. Left: Singular values of \scrS 4 and \scrP 4. Right: A solution with inhomogeneous boundary
condition, exhibiting the boundary layer effect. (\varepsilon , \delta ) = (1/81, 1/81) in both cases. The domain is
chosen to be (x, v) \in [3/20, 7/20] \times [ - 1, 1] with discretization parameters \Delta x = 0.002 and \Delta v =
0.05. In the x direction we apply upwind and in the v direction we apply the classical Sn (discrete
ordinates) method. The resulting algebra problem is computed using GMRES [34].

computation time, especially when stoge and computation scale superlinearly with
the size of the domain.

The disadvantage of the Schwarz approach is that it requires multiple iterations for
convergence. Since \scrP m needs to be reevaluated at each iteration for each subdomain
Dm, and it calls for the computation of \scrS m, finding the local solutions with the given
boundary condition quickly is the key to the success of the entire algorithm. In the
following sections, we identify the operator that can be efficiently compressed, aiming
at improving the efficiency of evaluating \scrP m, or \scrS m.

3.2. Identifying the operator to be compressed. As discussed in section 2.3,
one should be able to reveal and exploit the low rankness in homogenizable equations.
In our setting, the local equation (3.7) has a homogenization limit when \varepsilon and \delta are
small, so we expect the map from boundary conditions to local interior solutions (upon
eliminating a boundary layer) to be of low rank. Indeed, we see this phenomenon in
Figure 3.2, where we plot all normalized singular values of the discrete representation
of \scrS 4 and \scrP 4. A solution with an inhomogeneous boundary condition can have strong
boundary layer effect. These boundary layer effects are included in \scrS m, an operator
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that maps the boundary condition to the solution in the entire region (including the
boundary layer), destroying the desired low-rank structure. However, the operator
\scrP m looks only at the solution confined to a small interior set \Gamma s

m, and has a much
faster decay in its singular values. This observation resonates with the argument in
Remark 2.2: the homogenization limit mainly concerns the behavior of the solution in
the interior of the (sub)domain, while the behavior of the solution in boundary layers
is usually still far from ``equilibrium.""

Thus \scrP m is a more suitable object for compression, so we seek a fast solver to
approximate \scrP m(\phi m) for any input \phi m, by making use of RSVD (Algorithm 2.2).
This method requires us to apply the operator \scrP m to random inputs, which amounts
to finding the local solution in Dm with randomly constructed boundary conditions,
and then confining it to \Gamma s

m,+. Following (3.10), the evaluation f = \scrP m(r) is defined
as

f = u| \Gamma s
m,+

, where u solves

\Biggl\{ 
v \cdot \nabla xu(x, v) =

1
\varepsilon \sigma 

\delta (x)\scrL u(x, v) in Dm ,

u(x, v) = r(x, v) on \Gamma m, - .

Finding \scrP \ast 
m, the adjoint of \scrP m, is much more complicated, as we show in the following

theorem, whose proof appears in the appendix.

Theorem 3.1. The adjoint operator \scrP \ast 
m is defined by

(3.14)
\scrP \ast 
m : L2(\Gamma s

m,+; | n \cdot v| ) \rightarrow L2(\Gamma m, - ; | n \cdot v| ) ,

\psi \mapsto \rightarrow h| \Gamma m, - ,

where h, supported on Dm\setminus Ds
m, satisfies

(3.15)

\left\{       
( - v \cdot \nabla x  - \sigma \delta 

\varepsilon \scrL )h = 0 in Dm\setminus Ds
m ,

h = g on \Gamma s
m, - ,

h = 0 on \Gamma m,+

in which g is the solution to

(3.16)

\Biggl\{ 
( - v \cdot \nabla x  - \sigma 

\varepsilon \scrL )g = 0 in Ds
m ,

g = \psi + h| \Gamma s
m,+

on \Gamma s
m,+ .

The operators \scrP \ast 
m and \scrP m are adjoint in the sense that

(3.17) \langle \scrP m\phi ,\psi \rangle \Gamma s
m, - 

= \langle \phi ,\scrP \ast 
m\psi \rangle \Gamma s

m,+
,

where \langle \cdot , \cdot \rangle \Gamma s
m,+

and \langle \cdot , \cdot \rangle \Gamma m, - are weighted L2 inner products on L2(\Gamma s
m,+; | n \cdot v| ) and

L2(\Gamma m, - ; | n \cdot v| ), respectively, defined by

\langle f , g\rangle \Gamma s
m,+

=

\int 
\Gamma s
m,+

fg| n \cdot v| dx dv and \langle f , g\rangle \Gamma m, - =

\int 
\Gamma m, - 

fg| n \cdot v| dx dv .D
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Fig. 3.3. Singular values of \scrS s
4 and \scrP 4 when (\varepsilon , \delta ) = (1/81, 1/81).

The computation involved in finding the adjoint operator is complicated. It re-
quires the computation of two adjoint RTEs over Ds

m and Dm\setminus Ds
m, respectively, that

are coupled in a nontrivial fashion through the boundary conditions, as seen in (3.15)
and (3.16). We further note that the measure is not the standard Lebesgue measure,
but rather is weighted by | n \cdot v| .

3.3. Design of the adjoint map for \bfscrS s
\bfitm . Although the operator \scrP m is of

approximate low rank, its adjoint \scrP \ast 
m, which is needed to compute the low-rank ap-

proximation, is complicated. The operator \scrS m, on the other hand, is not compressible,
but its adjoint is relatively easy to find. In this section, we show that we can approx-
imate \scrP m by an approximately low-rank operator based on \scrS m whose adjoint is easy
to find.

Since \scrS m has slow singular decay mainly because it contains too much information
from the boundary layer, we consider a restriction of this operator from Dm to Ds

m,
which we call \scrS sm. The restriction to Ds

m eliminates most of the effects of the boundary
layer. This operator is defined as follows:

(3.18)
\scrS sm : L2(\Gamma m, - ; | n \cdot v| ) \rightarrow L2(Ds

m) ,

\phi \mapsto \rightarrow us ,

where usm = um| Ds
m

and um = \scrS m\phi . The advantages of using this operator are
threefold.

1. \scrP m can be defined easily in terms of \scrS sm. Nothing is lost by comparison with
(3.10); we have

(3.19) \scrP m : \phi m
\scrS s
m -  - \rightarrow usm \rightarrow usm| \Gamma s

m,+
,

and usm| \Gamma s
m,+

once again serves as the new boundary condition \phi m\pm 1, as in

(3.8). Note that the trace in (3.19) is well-defined, as \scrS m maps boundary
conditions to HA(Dm), so the image of its restriction to Ds

m has a trace on
the boundary \Gamma s

m,+ of Ds
m.

2. Because effects from boundary layers are excluded in \scrS sm, it can be expected
to have approximate low rank. Figure 3.3 shows that the decay rate of \scrS sm
(upon discretization) is almost the same as for \scrP m.

3. The adjoint is easy to compute, as we show next, in Theorem 3.2.
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Theorem 3.2. The adjoint of \scrS sm is defined as follows:

(3.20)
(\scrS sm)

\ast 
: L2(Ds

m) \rightarrow L2(\Gamma m, - ; | n \cdot v| ) ,
g \mapsto \rightarrow h| \Gamma m, - ,

where h solves the adjoint RTE over Dm, which is

(3.21)

\Biggl\{ 
( - v \cdot \nabla x  - 1

\varepsilon \sigma 
\delta (x)\scrL )h = \~g in Dm ,

h = 0 on \Gamma m,+ ,

and the source \~g is the trivial extension of g over Dm, that is,

\~g = g for (x, v) \in Ds
m and \~g = 0 for (x, v) \in Dm\setminus Ds

m .

Proof. We need to show that

\langle g,\scrS sm\phi \rangle Ds
m
= \langle (\scrS sm)

\ast 
g ,\phi \rangle \Gamma m, - 

for all g and \phi . Denoting by u the solution to (3.7) with boundary condition \phi , then
the definition of \scrS sm implies that the left-hand side of this expression is

\langle g,\scrS sm\phi \rangle Ds
m
=

\int 
Ds

m

gu dx dv =

\int 
Dm

\~gu dx dv .

Denoting by h the solution to (3.21) with source term g, we have\int 
Dm

\~gu dx dv =

\int 
Dm

u
\Bigl( 
 - v \cdot \nabla x  - 

1

\varepsilon 
\sigma \delta \scrL 

\Bigr) 
h dx dv

=  - 
\int 
\Gamma m, - 

uhv \cdot n dx dv  - 
\int 
\Gamma m,+

uhv \cdot n dx dv

+

\int 
Dm

h
\Bigl( 
v \cdot \nabla x  - 

1

\varepsilon 
\sigma \delta \scrL 

\Bigr) 
u dx dv

=

\int 
\Gamma m, - 

uh| v \cdot n| dx dv

= \langle (\scrS sm)
\ast 
g,\phi \rangle \Gamma m, - ,

yielding the desired result.

By comparing Theorem 3.1 with Theorem 3.2, we see immediately that computing
the adjoint operator (\scrS sm)

\ast 
is significantly easier than computing \scrP \ast 

m.

3.4. Low-rank Schwarz iteration method. We can use (\scrS sm)
\ast 
to implement

the RSVD method to find the low-rank approximation to the operator \scrS sm. Given
target rank r, and denoting the reduced operator by \scrS sm,r, we look for functions \mu i

and \nu i, and nonnegative scalars \sigma i, such that

(3.22) \scrS sm,r =
\sum 
i

\sigma i\mu i(x1, v1)\nu i(x2, v2) for all (x1, v1) \in Ds
m and (x2, v2) \in \Gamma m, - ,

where \mu i(x1, v1) and \nu i(x2, v2) are obtained in Algorithm 3.2.
We note that in this algorithm, k and r could be hard to choose ahead of time.

Numerically we can choose it ``on-the-fly."" This means we simply set an accuracy
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Algorithm 3.2 Approximation of \scrS sm via RSVD.

1: Given desired rank r and oversampling parameter p, set k := r + p;
2: Stage I

3: Generate k independent Gaussian test vectors \omega 1, . . . ,\omega k;
4: Prepare incoming boundary conditions \widetilde wi = \sansE wi , i = 1, . . . , k, where \sansE =

[e1, e2, . . . ] collects discrete orthonormal basis functions in L2(\Gamma m, - ; | n \cdot v| );
5: Evaluate um,i| Ds

m
= \scrS sm \widetilde wi , i = 1, . . . , k, by solving (3.7) with boundary con-

ditions \widetilde wi, then taking restrictions over Ds
m;

6: Construct matrix \sansQ = [q1, . . . , qk] whose columns form an orthogonal basis for
span\{ um,1| Ds

m
, . . . ,um,k| Ds

m
\} ;

7: Stage II

8: Prepare sources gi = [qi 0], i = 1, 2, . . . , k, so that gi = qi over Ds
m and

gi = 0 over Dm\setminus Ds
m;

9: Evaluate bi = Y gi by solving (3.21) with gi as source, for i = 1, 2, . . . , k, then
taking restrictions over \Gamma m, - ;

10: Form matrix \sansB = [b1, . . . , bk];

11: Compute SVD of \sansB = \widetilde \sansM k\Sigma k\sansN 
\ast 
k, where\widetilde \sansM k =

\bigl[ \widetilde \mu 1, . . . , \widetilde \mu k

\bigr] 
, \Sigma k = diag\{ \sigma 1, . . . ,\sigma k\} , and \sansN k =

\bigl[ 
\nu 1, . . . , \nu k

\bigr] 
;

12: Compute \sansM k := \sansQ \widetilde \sansM k and denote \sansM k =
\bigl[ 
\mu 1, . . . ,\mu k

\bigr] 
;

13: Return: \scrS sm,r =
\sum r

i=1 \sigma i\mu i(x1, v1)\nu i(x2, v2) for (x1, v1) \in Ds
m and (x2, v2) \in 

\Gamma m, - .

threshold and stop the process once the newly computed um,i| Ds
m

falls almost in the
previously generated space within the preset error tolerance. In terms of the low-rank
operator \scrS sm,r, the procedure (3.19) is reduced further to

(3.23) \scrP m,r : \phi m
\scrS s
m,r -  -  - \rightarrow usm \rightarrow usm| \Gamma s

m,+
,

and we once again use usm| \Gamma s
m,+

to obtain the solutions \phi m\pm 1 to be used at the next

time step, as in (3.8).
The procedure we have just outlined provides a much cheaper way to evaluate \scrP 

in (3.10) for the following reasons.
1. \scrS sm maps the boundary condition to the interior of the subdomain, and it is

cheaper to evaluate than \scrS m, whose range has a bigger support.
2. The format in (3.22) guides the evaluation of \scrS sm,r(\phi m); we have

(3.24)

\scrS sm,r(\phi m) =
k\sum 

i=1

\sigma iui(x1, v1)

\int 
\Gamma m, - 

\phi m(x2, v2)v(x2, v2)| nx2
\cdot v2| dx2 dv2 .

This evaluation requrires \scrO (k| \Gamma m, - | ) operations, where | \Gamma m, - | is the cardi-
nality (the number of grid points) in \Gamma m, - .

Algorithm 3.3 summarizes the complete approach using the reduced solution map.
The method is divided into offline and online stages. The reduced operators \scrS sm,r

are found in the offline stage, then called repeatedly in the online stage, during the
Schwarz iteration procedure.
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Algorithm 3.3 Low-Rank Schwarz Method.

1: Offline Stage:

2: Call Algorithm 3.2 for all local reduced solution maps \scrS sm,r, with m =
1 , . . . ,M ;

3: Online Stage:

4: Input: global boundary conditions \phi in (3.1) and error tolerance \tau ;
5: Set t\leftarrow 0 and initiate all inflow boundary conditions from (3.11) and (3.12);
6: While error > \tau 
7: t = t+ 1;
8: For m = 1, . . . ,M

9: usm \leftarrow \scrS sm,r(\phi 
t - 1
m ) according to (3.24);

10: \phi tm\pm 1 = usm| \scrE m,m\pm 1
;

11: EndFor
12: error =

\sum 
m \| \phi tm  - \phi t - 1

m \| ;
13: EndFor
14: For m = 1, . . . ,M

15: um \leftarrow \scrS m(\phi tm);

16: EndFor
17: Assemble the final solution using (3.13);
18: Return: final solution ufinal.

4. Numerical examples. In this section, we present numerical examples to
validate the accuracy and efficiency of our methods. We consider boundary value
problem (3.1) with domain D = \scrK \times \scrV = (0, 1) \times ( - 1, 1) and highly oscillatory
scattering coefficient \sigma \delta (x) defined by

(4.1) \sigma \delta (x) =
1.1 + cos(4\pi x)

1.1 + sin(2\pi x/\delta )
\in [0.047, 21],

where \delta represents the period of oscillation in the spatial space. See Figure 4.1 for a
graph of \sigma \delta (x) with \delta = 1/81.

The space domain \scrK is divided into M = 10 different local subdomains \scrK m,m =
1, . . . ,M , as follows:

\scrK 1 =
\bigl( 
0, 3

2M

\bigr) 
, \scrK m =

\bigl( 
2m - 3
2M , 2m+1

2M

\bigr) 
,m = 2, . . . ,M  - 1 , \scrK M =

\bigl( 
1 - 3

2M , 1
\bigr) 
,

so that each subdomain \scrK m overlaps with its neighboring subdomains \scrK m - 1 and
\scrK m+1 (except for the subdomains \scrK 1 and \scrK M at the two ends of the domain, which
overlap with just one neighbor each). The subdomains \scrK s

m defined in (3.4) are

\scrK s
1 =

\bigl( 
1

2M , 3
2M

\bigr) 
, \scrK s

m =
\bigl( 
m - 1
M , m

M

\bigr) 
,m = 2, . . . ,M  - 1 , \scrK s

M =
\bigl( 
1 - 3

2M , 1 - 1
2M

\bigr) 
.

We thus have \scrE m,m\pm 1 = \{ mM \} \times \scrV , m = 1, . . . ,M  - 1, while Ds
m := \scrK s

m\times \scrV satisfies

\scrE m,m\pm 1 \subset Ds
m \subset Dm ,m = 1, . . . ,M  - 1 .

The spatial domain \scrK is discretized with an extremely fine mesh of size \Delta x = 1/360,
while the velocity domain \scrV is discretized with a mesh of size \Delta v = 2/40 = 0.05. The
fine-mesh discretization is determined by \delta and \varepsilon .

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

794 K. CHEN, Q. LI, J. LU, AND S. J. WRIGHT

0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Fig. 4.1. Graph of oscillatory media with \delta = 1/81.
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Fig. 4.2. Singular value of \scrS s
4, relative to the largest singular value, plotted for various values of

the parameter pair (\varepsilon , \delta ). The singular values decay slowly for (\varepsilon , \delta ) = (1, 1) and relatively faster for
(\varepsilon , \delta ) = (1/9, 1/81). A much faster decay is observed in other limiting regimes of (\varepsilon , \delta ) approaching
(0, 0).

4.1. Local tests. We first show that the singular values of the local solution map
\scrS sm indeed decay rapidly for small Knudsen number \varepsilon and small \delta . Figure 4.2 plots the
singular values of \scrS s4 (relative to the largest singular value) for various values of (\varepsilon , \delta ).
In the case of large values \varepsilon = \delta = 1, the singular values decay slowly and low-rank
structure is not present. By contrast, in the small-value regimes (\varepsilon , \delta ) = (1/81, 1/81)
and (\varepsilon , \delta ) = (1/81, 1/9), low-rank structure is evident. As a consequence, only half or
even a quarter of basis functions are needed to achieve high accuracy in approximating
the local solution map \scrS sm.

4.2. Global tests. We consider solving RTE (3.1) with scattering parameter
(4.1) and the following inflow boundary conditions over \Gamma  - :

(4.2) \phi (x, v) =

\Biggl\{ 
10 + sin(2\pi v) at x = 0 , v > 0 ,

1 + sin(2\pi v) at x = 1 , v < 0 .

D
ow

nl
oa

de
d 

06
/0

2/
21

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCHWARZ METHOD FOR RTE 795

15

1 1

10

f

0.5

x

5

0 0

v

0

-1

15

1 1

10

f

0.5

x

5

0 0

v

0

-1

15

1 1

10

f

0.5

x

5

0 0

v

0

-1

Fig. 4.3. For \varepsilon = \delta = 1/81. Left: reference solution; Middle: approximating solution with
r = 2; Right: approximating solution with r = 6.
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Fig. 4.4. For \varepsilon = 1/81, \delta = 1/9. Left: reference solution; Middle: approximating solution with
r = 2; Right: approximating solution with r = 6.
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Fig. 4.5. For \varepsilon = \delta = 1. Left: reference solution; Middle: approximating solution with r = 2;
Right: approximating solution with r = 6.

We approximate \scrS sm by low-rank operators \scrS sm,r, according to Algorithm 3.2, with
r = 2, 3, 4, 5, 6. We then use these low-rank approximations in the reduced Schwarz
method, Algorithm 3.3. The various approximating solutions are then compared to
the reference solution, also obtained by the Schwarz method, in terms of accuracy and
speed, for different values of the parameter pair (\varepsilon , \delta ). We also document the global
error as a function of the number of iterations.

Accuracy of approximating solution. Figures 4.3, 4.4, and 4.5 show the
reference solution over domain D and compare with approximate solutions for r = 2
and r = 6, for parameter pair settings (\varepsilon , \delta ) = (1/81, 1/81), (1/81, 1/9), and (1, 1),
respectively. In Figure 4.3, for (\varepsilon , \delta ) = (1/81, 1/81), the approximate solutions are
very close to the reference solution. Figure 4.4, with (\varepsilon , \delta ) = (1/81, 1/9), shows poor
approximation for r = 2 but good approximation for r = 6. For the large-value case
(\varepsilon , \delta ) = (1, 1), shown in Figure 4.5, both approximations are poor, due to the lack of
low-rank structure in \scrS sm.

Figure 4.6 shows the relative difference between approximate and reference solu-
tions, plotted as a function of r, for the three settings of (\varepsilon , \delta ) considered here. The
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Fig. 4.6. Relative difference between reference solution and approximate solutions for var-
ious values of (\varepsilon , \delta ). The relative error for (\varepsilon , \delta ) = (1/81, 1/9) with r = 2, 3, 4, 5, 6 is
0.1637, 0.0470, 0.0141, 0.0142, 0.0039, respectively, and for (\varepsilon , \delta ) = (1/81, 1/81) the relative error is
0.3608, 0.0325, 0.0176, 0.0075, 0.0125, respectively. If the local map \scrS s

m admits a low-rank structure,
then the relative error is small even for a low-rank approximation.

difference is defined by the formula

relative error =
\| uapprox  - uref\| 2

\| uref\| 2
,

where uapprox is the approximate solution in question and uref is the numerical refer-
ence solution computed with fine mesh. We evaluate the difference using the l2 norm
of the two vectors. We see that the quality of the approximate solution aligns with
the local singular value decay shown in Figure 4.2. For large value case (\varepsilon , \delta ) = (1, 1),
there is no decay in relative errors as r increases. For (\varepsilon , \delta ) = (1/81, 1/81), the relative
error is below 10\% for r = 3 and decreases as r increases. For (\varepsilon , \delta ) = (1/81, 1/9),
the relative error decreases rapidly with r.

Efficiency of approximating solution. To demonstrate the efficiency of our
method, we compare our reduced Schwarz method and the ``vanilla"" Schwarz method
(which does not use low-rank approximations) in terms of accuracy and running time.
In particular, we run the reduced Schwarz method for T = 50 iterations, and compare
the number of iterations needed for the vanilla Schwarz method to achieve the same
accuracy. Figure 4.7 plots relative error as a function of iteration number t of reduced
Schwarz method and the vanilla Schwarz, for parameter pairs (\varepsilon , \delta ) = (1/81, 1/81)
and (\varepsilon , \delta ) = (1/81, 1/9) and rank r = 6. The convergence speed of the vanilla and
reduced versions of the Schwarz methods are quite similar. However, the reduced
Schwarz iteration is significantly cheaper due to the use of the low-rank structure.
We document the runtime on a standard PC in Table 4.1. We note that the vanilla
Schwarz iteration does not have the offline step, and the online stage amounts to
computing the equation for the given boundary condition on each subdomain, and is
very expensive. If we need to solve the RTE for multiple boundary conditions, the
computational savings would be quite significant. We also report on results obtained
with the Schwarz procedure in which the full basis is prepared offline (denoted in the
table as ``Schwarz with full basis"").
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Fig. 4.7. Left: time array of relative error for (\varepsilon , \delta ) = (1/81, 1/81); Right: time array of
relative error for (\varepsilon , \delta ) = (1/81, 1/9).

Table 4.1
Runtime comparison between reduced Schwarz method with r = 2, 3, 4, 5, 6, an offline/online

breakdown of Schwarz method, and the vanilla Schwarz method.

Running time (s)
(\varepsilon , \delta ) = (1/81, 1/81) (\varepsilon , \delta ) = (1/81, 1/9)
Offline Online Offline Online

Low-Rank Schwarz r = 2 81.01 0.0022 107.22 0.0024
Low-Rank Schwarz r = 3 111.43 0.0023 148.09 0.0022
Low-Rank Schwarz r = 4 139.97 0.0057 188.41 0.0024
Low-Rank Schwarz r = 5 168.64 0.0032 227.99 0.0029
Low-Rank Schwarz r = 6 197.49 0.0065 268.46 0.0162
Schwarz with full basis 535.26 0.0061 706.99 0.0148
Vanilla Schwarz --- 803.01 --- 1027.40

5. Conclusion. Random sampling is a popular technique in data science to find
low-rank structure of a matrix. In particular, the RSVD method has proved to be an
efficient and accurate technique for finding the dominant singular values and singular
vectors of a matrix at reasonable cost.

Partial differential equations with multiscale structures can usuallly be described
by an effective equation without fine scale details. In some sense, this phenome-
non means the operator and the solution space are of low rank. We exploit this
property to design efficient numerical schemes, using the RTE as an example. Specifi-
cally, we utilize the Schwarz iteration in the domain decomposition framework, with a
boundary-to-boundary map that communicates between subdomains. We use RSVD
to approximate this boundary-to-boundary map, exploiting the low-rank structure of
the map. This computation is performed offline; the Schwarz iteration that makes
use of these approximate maps is performed online. Numerical examples confirm the
effectiveness and computational efficiency of our approach.

Several aspects and extensions of our approach remain to be investigated. The
biggest obstacle in making our approach fully rigorous is the lack of theoretical guar-
antees on the decay of singular values of the PDE operator, in either the \epsilon \rightarrow 0 or
the \delta \rightarrow 0 regimes. The lack of such guarantees makes numerical analysis hard to
perform. Such results might point the way to better designs of the domain partition
(especially the size of the buffer zones) and better choices of the accuracy threshold
that defines the target rank r.
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Extensions to spatial domains of dimension greater than 1, especially in the choice
of domain partitioning and computation of the boundary-to-boundary maps, remain
a significant computational challenge that could be addressed in future work.

Appendix A. Well-posedness theory of RTE. We show the well-posedness
theory of RTE with fixed parameters \varepsilon , \delta > 0 in this appendix. Most results are
cited from [2]. For simplicity, we consider the following RTE with inflow boundary
condition:

(A.1)

\Biggl\{ 
v \cdot \nabla xu = \scrL u in D,

u = \phi on \Gamma  - .

First, we introduce a functional space H1
2 (D) with norm defined as follows:

(A.2) \| u\| H1
2
=

\biggl[ \int 
D

| v \cdot \nabla xu| 2 + | u| 2 dx dv
\biggr] 1/2

.

To find a suitable functional space for solutions of RTE, we modify H1
2 (D) and define

a Hilbert space HA(D) with the following scalar product and norm:

(A.3) \langle u,w\rangle A := (u,w)H1
2 (D) +

\int 
\partial D

| n \cdot v| uw dx dv , \| u\| A = \langle u,u\rangle 1/2A .

HA(D) is obviously a subspace ofH1
2 (D). The following theorem shows well-posedness

of RTE over HA(D).

Theorem A.1 (see [2, Theorem 3.7]). Given an inflow boundary condition \phi \in 
L2(\Gamma  - ; | n \cdot v| ), then there exists a unique solution u \in HA to RTE such that

(A.4) c\| \phi \| L2(\Gamma  - ;| n\cdot v| ) \leq \| u\| HA(D) \leq \widetilde c\| \phi \| L2(\Gamma  - ;| n\cdot v| ) .

Further, the trace operator \gamma \pm : u \in H1
2 (D) \mapsto \rightarrow u| \Gamma \pm \in L2(\Gamma \pm ; | n \cdot v| ) is also

well-defined by the following theorem.

Theorem A.2 (see [2, Theorem 2.8]). If u \in H1
2 (D), then u has a trace over \Gamma \pm 

belonging to L2(\Gamma \pm ; | n \cdot v| ). In addition, we have

(A.5) \| u| \Gamma \pm \| L2(\Gamma \pm ;| n\cdot v| ) \leq c\| u\| H1
2 (D) .

Moreover, for RTE with a source term,

(A.6)

\Biggl\{ 
v \cdot \nabla xu = \scrL u+ f in D ,

u = \phi on \Gamma  - ,

the following theorem holds.

Theorem A.3 (see [2, Theorem 3.13]). If f belongs to H - 1
A (D), the dual space

HA under L2 pairing over D, \phi \in L2(\Gamma  - ; | n \cdot v| ), then the above equation admits a
unique solution u \in L2(D) such that

\| u\| L2(D) \leq c
\Bigl[ 
\| f\| H - 1

A (D) + \| \phi \| L2(\Gamma  - ;| n\cdot v| )

\Bigr] 
.

Further, if f \in L2(D), then the solution u \in HA(D).

Remark A.4. The theorems above also hold for adjoint RTE with or without a
source term. Details can be found in [2].
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Proof of Theorem 3.1.

Proof. Considering any \phi \in L2(\Gamma m, - ; | n \cdot v| ) and \psi \in L2(\Gamma s
m,+; | n \cdot v| ), we have

\langle \scrP m\phi ,\psi \rangle \Gamma s
m,+

=

\int 
\Gamma s
m,+

f\psi (n \cdot v) =
\int 
\Gamma s
m,+

fg(n \cdot v) - 
\int 
\Gamma s
m,+

fh(n \cdot v),

where the first equality comes from the definition of \scrP m and the second from the
definition of g. By multiplying (3.15) by f and integrating over Ds

m, we obtain

0 =

\int 
Ds

m

f
\Bigl( 
 - v \cdot \nabla x  - 

\sigma 

\varepsilon 
\scrL 
\Bigr) 
g =

\int 
\Gamma s
m,+

fg(n \cdot v) +
\int 
\Gamma s
m, - 

fg( - n \cdot v),

where the first equality comes from (3.15) and the second from integration by parts.
Comparing the above equations, we have

\langle \scrP m\phi ,\psi \rangle \Gamma s
m,+

=

\int 
\Gamma s
m, - 

fg(n \cdot v) - 
\int 
\Gamma s
m,+

fh(n \cdot v).

It is easy to see that from the definition of h we also have

\langle \scrP m\phi ,\psi \rangle \Gamma s
m,+

=

\int 
\Gamma s
m, - 

fh(n \cdot v) - 
\int 
\Gamma s
m,+

fh(n \cdot v).

By multiplying (3.16) by f and integrating over Dm\setminus Ds
m, we obtain

0 =

\int 
D/Ds

m

f( - v \cdot \nabla x  - 
\sigma 

\varepsilon 
\scrL )h

=

\int 
\Gamma s
m,+

fh(\~n \cdot v) +
\int 
\Gamma s
m, - 

fh( - \~n \cdot v) +
\int 
\Gamma m, - 

fh( - \~n \cdot v) +
\int 
\Gamma m,+

fh(\~n \cdot v),

where the first equality comes from (3.16) and the second from integration by parts.
We use the notation \~n as the outer normal direction over \Gamma s

m,+ and \Gamma s
m, - with respect

to the domain Dm\setminus Ds
m, to distinguish it from the outer normal with respect to the

domain Ds
m. In fact, the two instances of ``outer normal"" have opposite directions

when we interpret \Gamma s
m,\pm as the boundary of Ds

m and the boundary of Dm\setminus Ds
m. By

comparing the equations above, we have

\langle \scrP m\phi ,\psi \rangle \Gamma s
m,+

=

\int 
\Gamma m, - 

fh( - \~n \cdot v) +
\int 
\Gamma m,+

fh(\~n \cdot v).

Noticing that h = 0 over \Gamma m,+ and \~n is also the outer normal direction over \Gamma m, - 
when interpreted as the boundary of Dm, we have

\langle \scrP m\phi ,\psi \rangle \Gamma s
m,+

=

\int 
\Gamma m, - 

fh( - \~n \cdot v) =
\int 
\Gamma m, - 

fh( - n \cdot v) = \langle \phi ,\scrY m\psi \rangle \Gamma s
m,+

,

where the last equality comes from the definition of f and \psi .
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