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ABSTRACT: Molecular dynamics simulations of the villin headpiece subdomain HP36 have
been carried out to examine relations between rates of vibrational energy transfer across non-
covalently bonded contacts and equilibrium structural fluctuations, with focus on van der
Waals contacts. Rates of energy transfer across van der Waals contacts vary inversely with the
variance of the contact length, with the same constant of proportionality for all nonpolar
contacts of HP36. A similar relation is observed for hydrogen bonds, but the proportionality
depends on contact pairs, with hydrogen bonds stabilizing the α-helices all exhibiting the
same constant of proportionality, one that is distinct from those computed for other polar
contacts. Rates of energy transfer across van der Waals contacts are found to be up to 2 orders of magnitude smaller than rates of
energy transfer across polar contacts.

1. INTRODUCTION

Ultrafast time-resolved measurements and computational
studies are providing an ever more detailed picture of energy
transport in proteins and protein complexes, clarifying
connections to the structure and dynamics of proteins and
their surroundings.1−18 These include investigations of energy
transfer across individual contacts within or at the interface
between biomolecules.11 Some of those studies have examined
relations between equilibrium fluctuations of contacts between
protein residues19−22 as well as residues and water11,23 and
rates of energy transfer across them, suggesting that measure-
ments of energy transfer across inter-residue contacts can
provide information about contact dynamics and associated
entropy.11,21,23 In this article, we extend the analysis for the
first time to van der Waals contacts for a protein near room
temperature. Though rates of energy transfer across nonpolar
contacts are often relatively small, a variety of time-resolved
spectroscopic experiments probe energy transfer across
them,4,5,15,24−27 motivating analysis of connections to contact
dynamics. Here, we examine energy transfer across van der
Waals contacts of the 36-residue villin headpiece subdomain
(HP36) at 300 K. In addition to analysis of nonpolar contacts,
we also compare how rates of energy transfer across polar
contacts of HP36 vary with fluctuations in the length of the
contact, including hydrogen bonds that stabilize α-helices,
neglected in earlier studies of energy transfer and contact
dynamics. Energy transfer across hydrogen bonds of the α-
helices exhibit a variation with contact fluctuations distinct
from other hydrogen bonds within the protein.
The study of vibrational energy relaxation in pro-

teins,1,2,13,28−32 part of a long-standing goal of describing
relaxation dynamics in complex molecular environments,33−37

has led to a search for relatively simple models that capture its
main features. This has included studies addressing the role of
structure and bonding, dynamics,9,31,38−45 and quantum
mechanical effects.46−48 Coarse-grain modeling using a
classical master equation offers a promising approach to
model energy transport in proteins and protein com-
plexes,19,20,22 identifying regions along which transport is facile
and reproducing energy dynamics quite well when compared
with results of all-atom simulations. The master equation
simulations support a diffusion-like picture for transport. A
diffusion equation describes transport along the backbone;
rates of energy transfer in other regions can be estimated by
calculation of the local energy diffusivity between residue
pairs.19,20 The combination of transport along the backbone
and via nonbonded contacts yields a network for energy
transport through the protein,9,39,40,49−54 influenced by protein
structure and geometry as well as its dynamics, and does not
necessarily conform to predictions of a contact network.19,55

Connections between protein structure and rates of energy
transfer along the protein backbone and across some of the
polar contacts provide useful information in modeling energy
transport in proteins at a coarse-grained level,21,22 such as
master equation simulations, as rate constants that largely
mediate energy transport through the protein can often be
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estimated from the structure.22 Nevertheless, there is merit to
exploring the relation between the rate constants for energy
transfer across contacts and contact dynamics. For one thing,
any relation may offer an alternative route to estimating rate
constants for master equation simulations, as has been
suggested by the results of nonequilibrium and equilibrium
MD simulations of HP36 at low temperature.20 Moreover, for
a given contact pair, changes in the rate of energy transfer
across a nonbonded contact can be associated with changes in
dynamics, and corresponding changes in entropy.11,21,23

Contact dynamics may be altered by mutation or change in
functional state, yielding a new rate constant for energy
transfer across the contact, detectable by time-resolved
spectroscopic measurements.24 For example, in a recent
study exploring the relation between dynamics and energy
transfer across contacts of the homodimeric hemoglobin (HbI)
from Scapharca inaequivalvis,23 ligand binding was found to
yield not only more flexible dynamics of contacts between
residues and interface water molecules, consistent with the
expulsion of water molecules that occurs during the process of
ligand binding,56−59 but also greater flexibility of many other
contacts throughout the protein, consistent with findings of
earlier computational studies that indicated greater flexibility of
the HbI globules upon ligand binding.60 The dynamics of the
protein and partially confined water molecules are coupled and
together contribute to allostery of HbI,61 as has been found for
other allosteric proteins.62 In addition to enhancement of the
flexibility and entropy of the globules upon ligand binding,
diminished rates of energy transfer across polar contacts of HbI
were calculated for the liganded system compared to the
unliganded system.23,61 Measurements of rates of energy
transfer across these contacts when ligands are bound and
unbound can therefore provide information about changes in
the dynamics of the contact and the entropy associated with
the dynamics when this change of state occurs.
Until now, we have studied the relation between energy

transfer across polar and charged contacts and fluctuations in
the length of those contacts at 300 K in myoglobin21 and
HbI.11,23,61 In those studies, we examined many of the
hydrogen bonded contacts between residues, as well as
residue−interface water contacts of HbI. In these cases, we
have found the rate of energy transfer across the hydrogen
bond varies inversely with the variance in the length of the
contact. These results are consistent with an earlier study of
HP36,20 where the rate of energy transfer across both
hydrogen bonds and van der Waals contacts was found to
scale with the inverse of the variance in the length of the
contact at low temperatures (about 10 K). Until now, studies
of energy transfer across polar contacts and the relation to
fluctuations in the length of the contacts have neglected
hydrogen bonds that stabilize α-helices, since energy transport
along α-helices was found to be dominated by the diffusion
equation that governs energy transport along the main
chain.17,63 In this study, we address the relation between
rates of energy transfer and dynamics of hydrogen bonds along
α-helices.
Besides the short-range van der Waals interactions and

hydrogen bonds, we also consider the long-range charged
contacts of HP36. In a previous study of charged interactions
in myoglobin, the rate of energy transfer across such contacts,
when they happen to be very near one another, did not appear
proportional to the inverse of the variance in the contact
length, likely due to simultaneous and comparable interactions

of several charged groups.21 Energy transfer between charged
groups of myoglobin is generally well described by a diffusion
equation, consistent with results we find in this study of HP36.
In the following section, we provide information about the

computational methods used in this study and theoretical
background for analyzing the results. In section 3, we present
and discuss the results of the computational studies of energy
transfer across nonpolar and polar contacts and their
corresponding dynamics, and we conclude in section 4.

2. COMPUTATIONAL METHODS

The initial structure of the villin headpiece, HP36, corresponds
to Protein Data Bank (PDB) 1VII. The structure was solvated
in an octahedral box with the TIP3P water model, with a
solvent radius of 10 Å, using the AMBER ff14SB force field.64

All of the simulations were carried out using the AMBER16
MD software package.65 The entire system contains 9871
atoms, of which 596 atoms belong to HP36, 10 Cl− and 10
Na+ ions, with the remainder being water molecules. The MD
simulations were set up as follows: We performed energy
minimization in three successive steps. First, the system was
energy minimized over 5000 steps by constraining heavy atoms
with a force constant of 90 (kcal mol−1)/Å2, relaxing all
hydrogen contacts to avoid steric clashes. The second
minimization was performed for 5000 steps, in which
backbone atoms were constrained with the same force constant
as the first. Finally, the system was energy minimized for 5000
steps with position constraints of 2.0 (kcal mol−1)/Å2 on all
backbone atoms. All minimizations were conducted employing
the steepest descent method with a nonbonded cutoff of 9 Å
for the particle−particle long-range nonbonded interactions.
Periodic boundary conditions were applied for all of the
simulations.
To generate the initial velocities of the atoms corresponding

to the Maxwell−Boltzmann distribution, a starting temperature
of 0.1 K was selected and heated to 300 K over 1 ns. An
additional 1 ns simulation was performed holding a constant
temperature at 300 K. Heating was conducted under a
canonical ensemble using the Berendsen thermostat66 and
applying position constraints on the heavy atoms with a force
constant of 2 (kcal mol−1)/Å2. The system was integrated
every 2.0 fs, and the SHAKE algorithm was applied to
constrain all hydrogen-containing bonds to suppress rapid
vibration.67 A temperature time constant of 1.0 ps was applied,
allowing for smooth heating. The particle mesh Ewald method
was used for electrostatic interactions.
A 2 ns equilibration simulation was performed with a time

step of 2 fs under an isobaric−isothermal ensemble (NPT).
Heavy atoms were position-constrained with a force constant
of 3 (kcal mol−1)/Å2. The coupling constants for the barostat
and thermostat were 1 and 2 ps, respectively. We further
equilibrated the system for 2 ns excluding position restraints,
implementing pressure and temperature coupling constants of
1 and 0.5 ps, respectively. An additional 10 ns simulation
equilibrated the system under an NPT ensemble with pressure
and temperature coupling constants of 0.1 ps.
A sampling simulation of 100 ns was carried out under an

NPT ensemble. Each nanosecond, the coordinates and
velocities were saved for later microcanonical (NVE)
simulations. In this study, the snapshots acquired from 51 to
100 ns, the region showing the greatest stability as determined
by the root-mean-square-deviation (RMSD), which remained
within 1 Å during this interval, were utilized as starting
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coordinates and velocities in the NVE simulations. In total, we
performed 50 NVE simulations for the analysis of energy
conductivity, defined below, and dynamics. Each NVE
simulation was allowed to evolve for 500 ps with a time step
of 0.5 fs. The corresponding overall average temperature was
301 K with a standard deviation of 2.5 K. The velocity files
were saved every 1 fs, and coordinate files were saved every 5
fs. An Ewald sum tolerance of 10−7 was applied to reduce
energy drift.
Using the trajectories computed for HP36, the residue−

residue currents are calculated using CURrent calculation for
Proteins (CURP).3,39,40,45 Starting with the atom−atom
energy flow39

= · − ·←J v F v F
1

2
( )

i j
k

i ij j ji (1)

where Ji←j
k is the inter-residue atom−atom energy flow between

atoms i and j for trajectory k, v is the velocity, and F is the force
of one atom on the other, the inter-residue energy flow is39

∑ ∑=←
∈ ∈

←J t J t( ) ( ),
A B
k

i A

N

j B

N

i j
k

A B

(2)

where NA (NB) is the number of atoms in residue A (B). To
determine energy currents, LAB, for each pair of residues, an
autocorrelation function window of 50 ps was used to
evaluate39

∫= ⟨ + ⟩
τ

τ

→∞ ← ←L
RT

J t J t t t
1

lim ( ) ( ) dAB
k

A B
k

A B
k

0
0 0 (3)

where R is the gas constant and T is the temperature. The
chosen time window was sufficient for convergence. We
multiply LAB by RT and report values in (kcal mol−1)2 ps−1,
yielding GAB, where GAB = (RT)LAB, which we refer to as the
energy conductivity. We drop subscripts AB in the following.
For a residue with excess energy, G quantifies the net energy
transferred (multiplied by RT) across a nonbonded contact per
unit time. It is proportional to the rate constant for energy
transfer across the contact, computed in other studies of
energy transport in proteins.19,20,55 This connection will be
discussed further below.
We estimate from G values of rate constants, w, for energy

transfer between residues, which are introduced below. As seen
in eq 2, G incorporates the number of degrees of freedom of
each residue forming the contact, which is squared in eq 3. The
energy per degree of freedom can be estimated as the thermal
energy, kBT/2, which is also squared in eq 3. On average, there
are 57.6 degrees of freedom per residue, or 115.2 degrees of
freedom for two residues. Squaring that value and multiplying
by (kBT/2)

2 introduces the factor 3318(kBT)
2, which at 300 K

is 1180 (kcal mol−1)2. We can thereby estimate the rate
constant, w, from w ≈ G/[1180 (kcal mol−1)2]. This
conversion incorporates the average number of degrees of
freedom of an amino acid. For a particular pair of residues, we
can adjust this value to account for the degrees of freedom of
the specific residue pair, as we do for specific residue pairs
below.
Residue pair contacts were taken to be polar, charged, or

nonpolar (van der Waals) based upon pair composition. We
define polar contacts as X−H···Y, where X and Y are either N
or O, having an average distance, H···O, less than 2.8 Å. The
subset of polar contacts, hydrogen bonds, have angle, ∠XHO,
greater than 150°. The average distance between the O and H

involved in the polar contact, ⟨r⟩, and variance in the distance,
⟨δr2⟩ = ⟨(r − ⟨r⟩)2⟩, are calculated and paired with the
respective energy conductivity, G, computed for the trajectory.
Almost all data computed for polar contacts correspond to
hydrogen bonds, and we refer to them interchangeably. Side-
chain groups of opposite charge, such as −NH3

+ and COO−,
are classified as charged contacts. For polar and charged
contacts, we introduce a threshold of 1 (kcal mol−1)2/ps to
reduce noise in data.
Nonpolar contacts were evaluated if the average minimum

distance, ⟨r⟩, calculated between the two side chains was less
than 5.0 Å, in which case the variance in the distance, ⟨δr2⟩ =
⟨(r − ⟨r⟩)2⟩, was computed. If, e.g., two phenylalanines met
the average minimum distance between the side chains during
99% of the trajectory, we compared the inverse variance of
their minimum distances over time and G. In addition, for
nonpolar contacts, a low energy current threshold of 0.05 (kcal
mol−1)2/ps was applied to reduce noise in the data. The
residues that fall in this regime are Phe, Val, and Leu for HP36,
resulting in a total of 7 van der Waals contacts. Values of G and
dynamics for all contacts meeting the criteria were evaluated
for each NVE simulation and collated. It is possible that some
of these residue pairs could be positioned to form hydrogen
bonds via backbone interactions. This occurred for one such
pair, Phe7−Phe11, which is classified as a backbone−backbone
hydrogen bond.
The expectation that G and ⟨δr2⟩−1 are proportional, using

harmonic oscillator models, has been detailed previously.11,21

A master equation for energy transfer between residue pairs in
the protein, = ∑ −′≠ ′ ′ ′E t w E w Ed /d

A A AA A A AA A , where EA is the

energy of residue A and ′wAA a rate constant between A and A′,
proportional to G, has a form that is similar to the equation of

motion for lattice vibrations, = ∑ ′≠ ′ ′m u t f u(d /d )A A A A AA A
2 2 ,

where mA and uA are the mass and displacement, respectively,
at site A and ′f

AA
is the force constant. The equations differ by

the presence of first and second order time derivatives in the
master equation and the equation of motion for lattice
vibrations, respectively, and some solutions to the master
equation can be obtained from solutions to the vibrational
dynamics by substituting t for ω−2.68−71 The interchangeability
of ω2 and t−1 has been found in previous computational studies
of vibrational dynamics and energy flow in proteins.13,72−74 For
an oscillator ω2

∝ ⟨δr2⟩−1, so that for a rate, G ∝ ⟨δr2⟩−1 after
making the ω

2 to t−1 substitution. Larger force constants are
associated with higher frequencies and faster rates, and we
expect energy transfer across polar contacts to be faster than
that across nonpolar contacts. Nevertheless, oscillations of
different polar contacts may lie in different spectral regions, so
that, while G ∝ ⟨δr2⟩−1 for a contact, different polar contacts
may exhibit different linear relations, as has been ob-
served,11,21,23 and will be further discussed here.
A different approach demonstrating that the rate of energy

transfer across a contact is proportional to ⟨δr2⟩−1 by Stock
and co-workers22 considers a spring connecting each atom
forming the contact, which in turn interacts with the rest of the
protein by a pair of springs, one on each side of each atom
forming the contact. Taking the latter spring constants to have
the same value, they find that not only is the rate of energy
transfer across the contact proportional to ⟨δr2⟩−1 but also the
constant of proportionality becomes smaller with increasing
strength of the spring constant between the atoms forming the
contact and the rest of the protein. This derivation shows
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clearly how different contacts may exhibit different linear
relations. Both perspectives are based on harmonic oscillator
pictures. It may thus be not all that surprising that a
proportionality between the rate constant for energy transfer
and ⟨δr2⟩−1 was observed based on the results of MD
simulations carried out at very low temperature,20 at which the
protein structure was restricted and the amplitude of
oscillation was relatively small. We do not expect protein
dynamics to be harmonic at room temperature, and values of G
and ⟨δr2⟩−1 computed from the MD simulations incorporate
the full anharmonicity. They serve as a check as to whether or
not we can conclude that G and ⟨δr2⟩−1 are indeed
proportional at room temperature.

3. RESULTS AND DISCUSSION

We examine the relationship between the energy conductivity,
G, and dynamics of nonpolar, van der Waals (vdW) contacts
and polar contacts, with particular emphasis on vdW
interactions, since no study has yet explored this relation for
vdW contacts in proteins near room temperature. For
consistency and to compare with earlier work, we also examine
the relation between G and contact dynamics of polar contacts
of HP36. In previous work, we have neglected hydrogen bonds
along α-helices, since rates of energy transport along α-helices
exhibit trends seen for energy transport along the main chain,20

and is affected little by the hydrogen bonds along the helix.
Nevertheless, determining a relation between G and contact
dynamics for all polar bonds is worthwhile, and the results for
α-helices can be compared to energy transfer across other
hydrogen bonds to determine any distinct characteristics,
which we address here.
Consider first vdW contacts. Five of the seven nonpolar

contacts are side chain−side chain and the remaining two are
backbone−side chain interactions, as detailed in the Support-
ing Information. The results are plotted in Figure 1, along with
a linear fit to the data. The data plotted in Figure 1a are binned
for clarity (bin length of 330 nm−2, approximately 30 points
per window); the raw data are plotted in Figure S1 of the
Supporting Information. The linear fit to the data plotted in
Figure 1a is G = 0.001967⟨δr2⟩−1 + 0.6023, where G is in units
of (kcal mol−1)2 ps−1 and ⟨δr2⟩−1 in nm−2; the R2 value for the
linear fit is 0.95. Figure 1b depicts the location of these
nonpolar contacts, which are listed in Table S1 of the
Supporting Information. Though the data are formed from
seven contact pairs, they appear to exhibit a single linear
variation between G and ⟨δr2⟩−1.
Of the vdW contacts investigated, Phe11−Leu29 has the

largest values of G and smallest ⟨δr2⟩. Figure S1 depicts the raw
data for this pair as green triangles. For this contact, there is a
relatively strong interaction between the phenyl ring of Phe11
and the isopropyl group of Leu29. A subset of the time, the
alpha hydrogen of Leu also interacts with the phenyl ring;
however, the effect of this latter interaction is very small when
we compare values of G when it is present and when it is
absent. Overall, the relatively large values of G compared to
other nonpolar contacts are due to the multiple atomic
interactions between these side chains, which also contribute
to the relatively large values of ⟨δr2⟩−1. When those values are
particularly large, generally, multiple atomic interactions exist
during the simulation; in contrast, lower values of ⟨δr2⟩−1 as
well as G are associated with single atomic interactions. Other
noteworthy vdW contacts include interactions between phenyl
side chains. There are two such interactions, shown in blue in

Figure S1. These interactions generally have somewhat smaller
G than the other vdW interactions.
We turn now to polar contacts, which, as we will see, exhibit

values of G that are 1−2 orders of magnitude larger than those
for vdW contacts. Polar contact G values rise above noise levels
produced in the computational analysis much more frequently
than those of vdW contacts, which is why they have been
studied in previous work on larger proteins. Here, as noted
above, we include for the first time hydrogen bonds of α-
helices, which we refer to as helical contacts. They form the
majority of hydrogen bonds of HP36. In Figure 2, we plot G
versus ⟨δr2⟩−1 for helical contacts, where the raw data (Figure
S2) was binned applying a window size of 372 nm−1,
approximately 53 points per window. The linear fit to the
data is G = 0.019⟨δr2⟩−1 + 9.49, where G is in units of (kcal
mol−1)2 ps−1 and ⟨δr2⟩−1 in nm−2 (R2 value of 0.96). Residue
pairs of helical contacts are depicted in Figure 3 in magenta,

Figure 1. (a) Plot of energy conductivity, G, as a function of the
inverse of the variance in contact length, ⟨δr2⟩−1, for van der Waals
(vdW) contacts. The vdW contacts include Leu2−Phe7, Leu2−Val10,
Phe7−Phe18, Phe11−Phe18, Phe11−Leu29, Phe11−Leu35, and
Leu29−Leu35. A linear fit to the data (R2 value 0.95), specified in
the main text, is also plotted. (b) The HP36 residues involved in vdW
interactions, where each contact shares the same color. Residues
involved in multiple contacts are rendered with different colors for the
bonds and atoms; e.g., there exists a contact pair if either bonds or
atoms share the same color.
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and a full list of the contacts including the hydrogen bond
distance and angle criteria that each contact meets over the
simulation time appears in Table S2.
It is interesting to compare the relative time helical contacts

stay intact compared to other hydrogen bonds, which are listed
in Table S3 and discussed further below. We see, as expected,
that contacts located along the helices are more stable than
those in the loop region. In the former case, the hydrogen
bonds remain intact, including distance and angle criteria, for
about 60% of the full (100 ns NPT) simulation time, while
those of other regions remain intact for about 20% of the full
simulation. We note that we only calculate G during times
when the contact remains intact. Furthermore, the helical
contacts sample a greater range of ⟨δr2⟩−1 than the other
contacts plotted in Figure 2, consistent with greater structural
rigidity of the helices. One pair, Phe7−Phe11, two residues
that form part of the core of the protein, interacts via both
vdW contacts through the side chains as well as a hydrogen
bond through the backbone, specifically via a backbone
hydrogen bond for 75% of the full simulation time and for
some of that time the phenyl rings are in contact providing a
second pathway for energy transfer. This may explain why
values of G for Phe7−Phe11 are higher on average than all
other backbone contacts with hydrogen bonds.
Results for polar contacts with lower average G for a given

⟨δr2⟩−1 are plotted in blue in Figure 2, and residues forming
those contacts are indicated in blue in Figure 3. These contacts
include Lys30−Leu35, Phe7−Met13, and Ala19−Gln26. For
clarity, the data has been binned using a window size of 256
nm−1 with approximately 13 points per window. (The full data
appear in Figure S2.) The linear fit to the data is G =
0.0048⟨δr2⟩−1 + 7.27, with the same units as those for the other
fits. Though the data appear to fit well to the linear fit, the
value of R2, 0.77, is smaller than that for the helical contacts,
perhaps because of the much smaller values of G, which
fluctuate close to the noise threshold. These contacts, which
have comparatively lower values of G, also exhibit the lowest
contact proportion over the 100 ns NPT simulation (Table
S3), far smaller than that for the helical contacts, noted above.

We observe special cases where the trend of G vs ⟨δr2⟩−1

exhibits a relatively large slope. Results for the contacts
Phe18−Gln26, Leu21−Gln26, and Lys30−Phe36 are plotted
in orange in Figures 2 and 3. It is interesting to note that in
prior studies the contact pair Phe18−Gln26 exhibited a
relatively large rate of energy transfer, based both on
computing the local energy diffusivity51−54 for this pair as
well as fitting the results of all-atom nonequilibrium MD
simulations to a master equation form.19,20 For these polar
contacts, with relatively large G for a given ⟨δr2⟩−1, depicted in
orange, the linear fit to the computed results is G = 0.09⟨δr2⟩−1

+ 10.4, with the same units as those for the other fits and with
an R2 value of 0.79. The data were binned for clarity using a
window size of 156 nm−1 where there are approximately 18.75
points per window.
We consider now charged contacts, which we take to include

residue contacts involving two charged side chains containing,
e.g., −NH3

+ and −COO−. In a previous study of interactions

Figure 2. Values of G for polar contacts as a function of the inverse of
the variance, ⟨δr2⟩−1, in the distances of the contact. The data plotted
in blue correspond to Lys30−Leu35, Phe7−Met13, and Ala19−
Gln26. The data plotted in magenta correspond to helical contacts.
The points plotted in orange consist of data from contacts of Phe18−
Gln26, Leu21−Gln26, and Lys30−Phe36. Charged contacts appear as
red triangles and correspond to interactions between Leu2−Arg15,
Asp4−Arg15, and Val10−Lys33.

Figure 3. (a) The residues shown in orange and blue correspond to
the orange and blue curves of the polar contacts in Figure 2, while the
residues colored in red are the charged contacts, corresponding to
data plotted in Figure 2. If a residue falls into two regimes, bond and
atom spheres are colored distinctly corresponding to its pairs. (b) The
contacts involved in the formation of backbone−backbone hydrogen
bonds are shown in magenta. Hydrogen bonds lasting more than 80%
of the total simulation (100 ns NPT) time are colored darker, while
those intact for between 60 and 80% are more faded magenta. All
contact times are listed in Table S2.
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between charged contacts of myoglobin, we found a plot of G
vs ⟨δr2⟩−1 did not exhibit a linear relation when the length of
the contact was small.21 Unlike hydrogen bonds, which are
defined only at short range, charged groups interact over
longer distances. The breakdown of a linear relation that was
seen for the charged contacts of myoglobin is probably due to
simultaneous and comparable interactions of charged groups
on more than two nearby residues in this protein.21

For HP36, we analyze the charged contacts Leu2−Arg15,
Asp4−Arg15, and Val10−Lys33, shown in red in Figure 3a.
We consider first G against the inverse of variance in the
contact distance, ⟨δr2⟩−1, when the charged groups are in close
contact. The data, binned for clarity using a window size of 916
nm−1 with approximately 12.5 points per window, are plotted
in Figure 2 as red points. A linear fit to the data yields G =
0.0398 + 177.39, where units are the same as those in previous
linear fits. The R2 value of the linear fit is 0.89. The variation of
G and ⟨δr2⟩−1 that we find for the charged contacts of HP36
appears rather linear, particularly at large ⟨δr2⟩−1 much more
so than we found in a previous analysis of charged contacts of
myoglobin. That may be due to the smaller number of charged
contacts in HP36, which diminishes the chance of mutual
interactions between more than two residues. For myoglo-
bin,21 we found a diffusion equation fit the data for charged
contacts, and we consider that here, too.
In keeping with a diffusion picture for energy transport, we

examine a relation between G and the mean square distance,
≡ ⟨ ⟩d r2 2 , between the charged atoms of a residue pair,

∝ −G d( ) b2
(4)

For normal diffusion, b = 1, but in general, other power law
variations are possible.21 The plot of log(G) against −log(d2)
for charged contacts, where the data has been binned for clarity
using an equidistant window of 0.13 in units of −log(d2),
approximately 12.5 points per window, is shown in Figure 4.
(The raw data appear in Figures S4 and S5.) The linear fit to

the data is log(G) = −1.93 log(d2) + 0.30, with an R2 value of
0.99. We thus find b ≈ 1.9; as for myoglobin,21 b can be greater
than 1 when there are multiple charges interacting between
residue pairs, as there are for Leu2−Arg15 and Asp4−Arg15,
which comprise most of the data and span the full region in
log(G) and −log(d2) (see Figure S4). Contributions of
individual contacts to the variation of G with 1/d2 and log(G)
with −log(d2) are plotted in Figures S4 and S5, respectively.
The individual data deviate far less from the overall trends than
is the case for G vs ⟨δr2⟩−1 (Figure S3). While the linear
relation between G vs ⟨δr2⟩−1 is supported by the data,
particularly at larger ⟨δr2⟩−1, there appears to be a clearer
relationship between G and 1/d2 for contacts that exhibit larger
G.
It is of interest to compare trends in the results of G

computed for residue pairs of HP36 in this study with the local
energy diffusivity computed in previous work.19 Both of these
quantities are proportional to the rate of energy transfer
between residue pairs. We compare their relative values,
though computed with two different methods and different
force fields, to examine the consistency of the methods used. In
Figure 5, we provide a map of values of G, which can be
compared with an analogous map plotted as Figure 3 in ref 19.
The latter was computed using a single structure, whereas for
Figure 5 we have averaged values of G obtained from all of the
50 NVE simulations, where each NVE simulation was allowed
to evolve for a total of 500 ps. Only an average G of at least 0.2
(kcal mol−1)2 ps−1 for a residue pair is indicated in Figure 5.
The results for all nonbonded contacts with relatively large

G are consistent with residue pairs with relatively large local
energy diffusivity reported in ref 19. There are some
differences seen upon a detailed comparison, two of which
are noteworthy. In both studies, the rate of energy transfer
between Val10 and Lys33 and Phe11 and Lys33 are large, but
in the previous study, it was greater for Phe11−Lys33 than for
Val10−Lys33, whereas this is reversed in our study. In

Figure 4. Log−log plot of G vs the inverse of the mean square distance, d2, between charged contacts. The inset plots G vs the inverse of the mean
square distance of that contact. The line includes the contacts Leu2−Arg15, Asp4−Arg15, and Val10−Lys33, which are highlighted in red in Figure
3a.
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addition, the contact Leu2−Arg15 exhibits a large G in this
study, which can be identified easily as dark blue in Figure 5,
whereas the relative rate was significantly smaller in ref 19. The
relative rates of energy transfer between other contacts are in
good agreement with those found in ref 19. The contacts
Asp4−Arg15 and Phe18−Gln26, the role of which in energy
transport was emphasized in the earlier study,19 also exhibit
relatively large values of G in this study.
Recently, Stock and co-workers have further examined the

relation between equilibrium fluctuations and rate constants of
a master equation.22 They simulated energy transport in a
number of proteins at 300 K including HP36. They fit results
of all-atom nonequilibrium MD simulations to a master
equation and found the rate constants for energy transfer
across the contacts Asp4−Arg15 and Phe18−Gln26 to be
largest. For those two, they analyzed the scaling of the rate
constant with variance in the distance of the contact and found
each fits reasonably well along one of two linear relations that
are comprised of rate constants obtained for all of the proteins
of their study.
We can relate the values of G that we have computed to rate

constants as described in section 2, beginning with the
conversion w ≈ G/[1180 (kcal mol−1)2] presented there. With
this conversion, we estimate for the rate constant for energy
transfer across the Asp4−Arg15 contact a value of about 0.3
ps−1, which is about a factor of 2−3 larger than the rate
constant obtained from the fit to the master equation in ref 22.
The conversion incorporates the average number of degrees of
freedom of an amino acid. Asp4−Arg15 has 126 degrees of
freedom, so for this pair, the conversion becomes w ≈ G/
[1412 (kcal mol−1)2] and the rate constant 0.25 ps−1, about a
factor of 2 larger than the rate constant obtained in ref 22. For
Phe18−Gln26, we estimate using the generic conversion
provided in section 2, w ≈ G/[1180 (kcal mol−1)2], a rate
constant of 0.03 ps−1, about a factor of 1.5 smaller than the rate
constant obtained from the fit to the master equation in ref 22.
Phe18−Gln26 has 129 degrees of freedom, so that the
conversion for this pair becomes w ≈ G/[1480 (kcal mol−1)2],
and the rate constant 0.025 ps−1, about a factor of 2 smaller
than the rate constant obtained in ref 22. We present these

values just as a reference, since the approaches and force field
models used are different, and the counterions included in our
MD simulations will affect values of G, but overall, the results
agree reasonably well.
One conclusion of ref 22, in agreement with our own

analysis, is that there is generally a better fit for a relation
between the rate constant and 1/d2 for contacts with relatively
large G or rate constant. As discussed above, 1/d2 provides a
good predictor of G for contacts with relatively large G.
However, for individual contacts, the established linear relation
G vs ⟨δr2⟩−1 is useful, as it allows from measurements of rates
of energy transfer the determination of changes in dynamics,
and entropy associated with the dynamics, with change in
functional state or mutation. Evidence for the proportionality
between G and ⟨δr2⟩−1 for vdW contacts provided here is
particularly useful, since ultrafast time-resolved measurements
have been carried out to detect energy transfer across vdW
contacts.4 A relation between energy transfer and contact
dynamics can also be applied to study relaxation processes and
changes in the flexibility of contacts in intrinsically disordered
protein (IDP) systems.75

As pointed out previously, for a change in functional state,
the change in entropy, ΔS, associated with changes in contact
dynamics can be estimated by measuring a change in G.11,21

Suppose, e.g., that a protein changes state from unliganded (U)
to liganded (L). For ΔS = SL − SU, where SL (SU) refers to the
entropy associated with the dynamics of a particular contact
pair in the liganded (unliganded) state, the proportionality
b e t w e e n G a n d ⟨ δ r 2 ⟩ − 1 m e a n s t h a t 1 1 , 2 1

Δ = = δ

δ

⟨ ⟩

⟨ ⟩( )( )S ln ln
k G

G

k r

r2 2

B U

L

B
2

L
2

U

. Therefore, measurement of

the rate of energy transfer in each state can provide
information about the change in dynamics of the contact
across which energy transfer occurs and the entropy associated
with the dynamics. This change can also be determined when a
mutation is introduced. In one study of myoglobin mutants,24

e.g., no change in the rate of energy transfer across a vdW
contact was measured, consistent with a contact that remains
unchanged for the mutations studied, as was seen in results of
molecular simulations of the mutants.

4. CONCLUSIONS

Recent studies of energy transfer across hydrogen bonds
between protein residues and between amino acids and water
have identified relations between the rate of energy transfer
and fluctuations in the length of the hydrogen bond.11,21−23

Specifically, the rate of energy transfer is proportional to the
inverse of the variance in the length of the bond, computed at
equilibrium. Earlier work on energy transport in HP36 at low
temperature indicated that such a proportionality holds not
only for hydrogen bonds but also for nonpolar contacts.20 In
this study, we find the scaling of rates of energy transfer with
the inverse of the variance in the contact length holds up well
for van der Waals contacts around room temperature. We have
also examined hydrogen bonds that stabilize α-helices, which
in prior work had been neglected. The proportionality between
the rate of energy transfer across hydrogen bonds of α-helices
and the inverse of the variance in their length also holds up
well at 300 K, with a constant of proportionality that is
different than that for other hydrogen bonds that we have
studied thus far.
We find the rates of energy transfer across van der Waals

contacts of HP36 to be 1 or 2 orders of magnitude slower than

Figure 5. A map of G values between residue pairs for HP36. The
contacts for which G ≥ 0.2 (kcal/mol)2/ps, out of 50 NVE
simulations, are selected in the plot. Values of G are converted to a
log scale, and the range is shown in the color bar. The three helices of
HP36 are labeled above as H1, H2, and H3.
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the rates of energy transfer across polar contacts.20 In this
respect, energy transport through this protein is determined
more by the backbone and polar contacts than by nonpolar
interactions. It may even be possible in some cases to model
energy transport through proteins by neglecting the con-
tribution of van der Waals contacts altogether.22 However,
rates of energy transfer across van der Waals contacts have
been measured in a number of time-resolved experi-
ments,4,5,24−27 motivating our study of the relation between
energy transfer rates and equilibrium dynamics of van der
Waals contacts at temperatures around 300 K. For example,
time-resolved Raman experiments of energy transfer in
mutants of myoglobin, where energy flow into and out of
tryptophans is monitored, have provided a picture of
anisotropic energy transport in this protein, a role played by
van der Waals contacts in this process and effects of
mutation.4,15

Because the rate of energy transfer is related to the dynamics
of the contact, measurements of energy transfer across van der
Waals contacts not only provide information about the rate
and direction of energy transport following photoexcitation of
a protein or following a chemical reaction but also can be
interpreted in terms of the underlying dynamics of contacts. If
there is a change in that rate due to a change in the functional
state of the protein, or due to mutation, corresponding changes
in the dynamics of the contact, and in the entropy associated
with the dynamics, can be determined by time-resolved
spectroscopic measurements of the rates. Mutations that
leave the contacts in place, with little effect on the dynamics
of the contact, will likely not affect energy transfer across the
contact, as has been observed experimentally.24

Though individual contact pairs may exhibit a linear
variation between rates of energy transfer and the inverse of
the variance in the length of the contact at equilibrium,
different sets of contacts may exhibit a different constant of
proportionality, as we have seen for hydrogen bonds. While for
HP36 all van der Waals contacts exhibited the same trend in
the rate of energy transfer with contact dynamics, that may not
generally hold for other proteins, which will require further
study. While rates of energy transfer across van der Waals
contacts in HP36 are relatively small, compared to energy
transfer across polar contacts and within the main chain, rates
of energy transfer across van der Waals contacts on the scale of
ps−1 have been measured for other systems.24

Beyond biomolecules, a more detailed understanding of the
relation between energy transfer across van der Waals contacts
and contact dynamics would also provide useful information
about the influence of contacts in thermal transport across
molecular junctions and interfaces.11,76−86 Thermal transport
across molecular junctions at room temperature appears only
modestly impeded when covalent contacts between the
molecules and leads are replaced by van der Waals contacts,
despite the large change in interaction between the molecule
and the substrate.86 The relatively small effect on the thermal
conductance of the junction may be due to a combination of
restricted contact dynamics and to the wavelength of phonons
that transport heat in the junction. Energy transfer across van
der Waals contacts in proteins may likewise depend on the
protein vibrations that transport energy, a relationship that
requires further study.
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