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1 Introduction

The purpose of this paper is to build a bridge between two types of constructions of quan-
tum field theories, typically bosonic ones, from supersymmetric quantum field theories
in higher spacetime dimensions. These constructions have appeared in such diverse con-
texts as quantization of symplectic manifolds [1, 2], vertex algebras in three- [3, 4] and



four-dimensional [5-7] supersymmetric field theories, analytic continuation of knot invari-
ants [8, 9] and their categorification [10], the 3d-3d correspondence [11-18], and emergence
of integrable systems from supersymmetric gauge theories [19-30].

We will refer the two types of constructions as the A-type and the B-type. There are
some similarities between them, but also crucial differences.

In an A-type construction, one starts with a (d 4+ 1)-dimensional supersymmetric field
theory, formulated on a product I x M, where I is an interval [0, ¢] and M is a d-manifold.
The theory is topologically twisted, either fully or partially, so that it is topological on I.
Let s be the coordinate on 1I.

At one end of I, say at s = 0, one imposes Neumann-like boundary conditions on
the bosonic matter fields. At the other end, at s = ¢, boundary conditions constrain the
bosonic matter fields to be, roughly speaking, valued in a Lagrangian submanifold M of
their Kéahler! target space Y.

Since the theory is topological on I, one can shorten I until it collapses to a point.
One thus obtains a d-dimensional theory on M. It turns out that the action functional of
this theory on My is holomorphic in complex-valued bosonic fields, but the path integral
makes sense for appropriate choices of M as it is performed over a middle-dimensional
cycle determined by M.

In a prototypical example [1] of an A-type construction, d = 1 and the two-dimensional
theory on I x M is the A-model [31], which may be obtained from two-dimensional N =
(2,2) supersymmetric sigma model by the A-twist. The target space Y is a complex
symplectic manifold. Located at s = 0 is a canonical coisotropic brane [32], supported on
all of Y. At s = /£, one chooses a brane whose support M is Lagrangian with respect to
two of the real symplectic structures of Y, but symplectic with respect to another. The
one-dimensional theory on M is quantum mechanics whose phase space is M, regarded as
a symplectic manifold.

More elaborate examples arise for d > 2.

For d = 2, one may take the three-dimensional theory to be an N’ = 4 supersymmetric
field theory in the A-twist [33] (which is the “mirror” of the Rozansky-Witten twist). The
two-dimensional theory produced by reduction on I is a chiral conformal field theory (CFT)
on a Riemann surface My [3, 4]. If the theory one picks is a gauge theory constructed from
vector multiplets and hypermultiplets in a complex symplectic representation Y of the
gauge group, the CFT is the system of gauged symplectic bosons valued in Y.

An example with d = 3 is provided by the GL-twist [34-36] of N' = 4 super Yang-Mills
theory in four dimensions. In this case, the three-dimensional theory is Chern-Simons
theory on a three-manifold M3, whose gauge group is the complexification Hc of the gauge
group H of the Yang-Mills theory [1, 8, 9].

A B-type construction starts with a (d + 2)-dimensional supersymmetric field theory
on D x My, where D is a disk. The construction involves a special kind of deformation
of the theory, called the Q-deformation [37, 38]. The theory is topologically twisted so

'More generally, Y may be complex and almost symplectic but non-Kahler. We will consider such target
spaces in sections 2 and 3.



that it is topological on D, but the Q2-deformation reduces the topological invariance to the
invariance under deformations that leave the rotation symmetry of ID unbroken. On the
boundary 0D of the disk, one imposes a boundary condition such that the bosonic matter
fields take values in a Lagrangian submanifold M of the Kéahler target space Y.

As in A-type constructions, one can shrink D to a point to obtain a d-dimensional the-
ory on M. Again, the resulting theory turns out to have a holomorphic action functional,
and the path integral is performed over a middle-dimensional cycle specified by M.

In an example [2] with d = 1, the three-dimensional theory on D x M is Rozansky-
Witten theory [39], which arises from N = 4 supersymmetric sigma model by the B-twist
(or the Rozansky-Witten twist). The target space Y is a complex symplectic manifold, and
the boundary condition on 9D requires the bosonic field to lie in a submanifold M that is
either Lagrangian or symplectic, depending on which real symplectic structure one refers
to. The one-dimensional theory on M that arises after the 2-deformation and reduction
on D is quantum mechanics, quantizing the symplectic manifold M.

For an example with d = 2, one may consider Kapustin’s holomorphic-topological
twist [40] of an N = 2 supersymmetric field theory in four dimensions. The 2-deformation
and reduction on D result in a chiral CFT, which, for a gauge theory with hypermultiplets
in a complex symplectic representation Y, is the system of gauged symplectic bosons valued
inY [6, 7]

Finally, for d = 3, the Q-deformation and reduction of a topological twist of five-
dimensional N = 2 super Yang-Mills theory with gauge group H yields Chern-Simons
theory with gauge group Hc [18].

Above we have described examples of A-type and B-type constructions for d =1, 2, 3.
The parallel between the two types is conspicuous: for every d, there is a pair of A-type
and B-type constructions for one and the same d-dimensional bosonic theory.

This observation suggests that for each d, the theory used in the A-type construction
should be somehow related to the one used in the corresponding B-type construction.
The expectation is further strengthened if one notices the fact that the two theories may
be obtained by topological twist from two physical theories with the same amount of
supersymmetry.

In fact, there is a natural way to produce a (d + 1)-dimensional theory on I x My
from a (d + 2)-dimensional theory on I x My: one deforms the disk D into the shape of
a cigar and performs circle reduction of the latter theory, considering the cigar as a circle
fibration over the interval I. Such a deformation of D is allowed in the theory for the B-type
construction since it preserves rotation symmetry. A similar reduction has been studied
before in a different but related setting [41].

Presumably, the B-type theory turns into its A-type counterpart through the 2-
deformation and the cigar reduction of D to I. In this paper we demonstrate that this
is indeed true.

Our strategy is to first establish the correspondence between A-type and B-type con-
structions in the most basic case, namely the case in which d = 0. Then, we apply the
results to higher-dimensional examples.



For d = 0, the two-dimensional theory relevant for B-type construction is the gauged
B-model [42] on D, which may originate from A = (2,2) supersymmetric gauged sigma
model via the B-twist [43, 44]. The target space of the model is a K&hler manifold X
with a holomorphic G¢-action, where G is the gauge group. To this theory we apply the
Q-deformation [2, 18]. On 9D, we place a brane whose support L is Gc-invariant and
defines a Lagrangian submanifold £ inside the Kahler quotient X //G.

We will show that upon cigar reduction, the 2-deformed gauged B-model on D becomes
topologically twisted supersymmetric gauged quantum mechanics whose target space is X.
The theory thus obtained on I is the A-type theory for d = 0. The brane on 0D descends
to a similar boundary condition at s = ¢, while the center of D, or the “tip” of the cigar,
becomes the boundary at s = 0 where the Neumann-like boundary conditions for the
bosonic matter fields emerge.

We will also show that in the limit where I shrinks to a point, this supersymmetric
gauged quantum mechanics reduces to a gauged sigma model on a point My with target L,
provided that L is chosen appropriately. This is the bosonic theory for d = 0. Remarkably,
the gauge group complexifies to G¢ in the process of this reduction.

To establish the link between the A-type and B-type constructions for d > 1, we merely
apply the results we have obtained for d = 0 to various infinite-dimensional target spaces.
The point is that the B-type theory on D x My may be regarded as the gauged B-model
on D, whereas the A-type theory on I x My may be regarded as supersymmetric gauged
quantum mechanics on I, and the two have the same target space X. The bosonic theory
on My may be viewed as a zero-dimensional gauged sigma model with target L.

For example, for d = 1, we take X = Map(Mj,Y'), the space of maps from M to a com-
plex symplectic manifold Y. For the brane on dD, we choose an appropriate submanifold
M CY and set L = Map(My, M). The A-model on I x M; with target Y is topologically
twisted supersymmetric quantum mechanics on I with target X, while Rozansky-Witten
theory on D x M with target Y is the B-model on D with target X. Hence, these two
theories are related by cigar reduction, and realize the same zero-dimensional sigma model
with target L.> The last theory describes maps from M; to M, so it is quantum mechanics
with phase space M.

Similarly, for d = 2, we take X = Map(Ms,Y), the space of maps from My to the
vector space Y for a complex symplectic representation of a gauge group. For d = 3, we
take X to be the space of Hc gauge fields on Ml3. The relation between the A-type and
B-type constructions for d = 1, 2, 3 are thus established.

If one knows either an A-type or B-type construction of a certain bosonic theory, one
may exploit the relation just explained to arrive at the corresponding construction of the
other type. In this way we will deduce an A-type construction of a four-dimensional variant
of Chern-Simons theory [26-28] based on five-dimensional N' = 2 super Yang-Mills theory,
starting from the B-type construction using six-dimensional N' = (1,1) super Yang-Mills
theory [30]. This A-type construction was essentially proposed in [45, 46].

2We have learned from Dylan Butson that this statement and related results may also be understood
from the point of view of equivariant factorization algebras.



d Bosonic theory A-type theory B-type theory

0 Sigma model Topological SQM B-model

1 Quantum mechanics A-model Rozansky-Witten

2 CFT A-twisted N =4 Kapustin

3 Chern-Simons GL-twisted N =4 SYM  Topological N' =2 SYM
4 4d Chern-Simons Twisted N =2 SYM  Twisted N = (1,1) SYM
5  5d Chern-Simons  Twisted N' = (1,1) SYM Twisted SYM

6 6d Chern-Simons Twisted SYM Twisted SYM

Table 1. Examples of A-type and B-type constructions. SQM and SYM are abbreviations for
“supersymmetric quantum mechanics” and “super Yang-Mills theory,” respectively.

In the examples with d = 3, 4 described above, d-dimensional Chern-Simons theory is
realized by (d+1)- and (d+2)-dimensional maximally supersymmetric Yang-Mills theories.
This pattern continues to hold for d = 5, 6, and we will explain the A-type and B-type
constructions in these cases. Six-dimensional Chern-Simons theory is more commonly
known as holomorphic Chern-Simons theory [47]. Five-dimensional Chern-Simons theory
was introduced in [48].

Table 1 summarizes the A-type and B-type constructions treated in this paper.

In concluding this introduction, a few of remarks are in order.

First, for the constructions of higher-dimensional Chern-Simons theories to be com-
pletely satisfactory, super Yang-Mills theories in dimension greater than four should prob-
ably be provided with ultraviolet completion. One way to do so is to embed them into
string theory using branes. This approach proves to be fruitful, as it allows one to exploit
the rich structure of dualities in string theory [10, 30].

Second, it seems that a large class of bosonic gauge theories with holomorphic action
functionals and complex gauge groups admit A-type and B-type constructions, at least
formally, since they can always be reformulated as zero-dimensional gauged sigma models.
What distinguishes the examples we consider is that the corresponding A-type and B-type
theories are physically natural and interesting. In contrast, the A-type and B-type theories
will not be so nice if one takes a generic bosonic gauge theory. Their actions will lack
Lorentz invariance and contain higher-derivative terms.

Last, although our treatment of infinite-dimensional target spaces may seem naive, it
is justified. These spaces are essentially the field spaces of the bosonic theories on M. In
general, the definition of a quantum field theory comes with a regularization of ultraviolet
divergences. Whatever the choice of a regularization we make for a bosonic theory, we use
the same regularization for the corresponding A-type and B-type theories. For instance,
one may latticize My; the twisted supercharges are compatible with a lattice regularization
since they do not generate translations on M. Then, the field space becomes the product
of copies of a finite-dimensional space.

This paper is organized as follows. We begin in section 2 by studying the A-type and
B-type constructions for d = 0 without gauge symmetry. Then, in section 3, we apply
these constructions to demonstrate the equivalences between the (2-deformed Rozansky-



Witten theory, the A-model and quantum mechanics. We incorporate gauge symmetry into
the picture in section 4. Finally, in section 5, we discuss constructions of gauged quantum
mechanics, gauged symplectic bosons, and Chern-Simons theory and its higher-dimensional
variants by supersymmetric gauge theories. Appendix A explains the formulation of eight-
dimensional super Yang-Mills theory as an N/ = (2,2) supersymmetric gauge theory in
two dimensions.

2 B-model, supersymmetric quantum mechanics and zero-dimensional
sigma model

In this section we discuss the fundamental A-type and B-type constructions, which realize
sigma model on a point My within supersymmetric quantum mechanics on an interval I
and the Q-deformed B-model on a cigar D, respectively. To alleviate technicalities, we will
not consider gauge symmetry yet.

After we formulate the Q2-deformed B-model with a complex target space, we will show
that its circle reduction gives supersymmetric quantum mechanics. Then, we will discuss
boundary conditions in the respective theories, and reduction to a zero-dimensional theory.
Finally, we will explain how to construct good boundary conditions using a gradient flow.

2.1 Q-deformation of the B-model

The B-model is a topological quantum field theory of cohomological type, and may be
constructed from N = (2,2) supersymmetric sigma model by the B-type topological
twist [43, 44]. For the presence of N' = (2,2) supersymmetry, the target space of the
model must be a Kéhler manifold, and for the B-twist to make sense, it must moreover
be Calabi-Yau. If, however, one does not require the B-model to originate from a physical
theory via topological twist, the target space can be more general.

For us, the target space is a complex manifold X with complex structure I, which is
not necessarily Kéahler. We still require its first Chern class to vanish, ¢;(X) = 0, so that
the theory suffers no anomalies. If X is a Kéhler manifold, this requirement means that
X is Calabi-Yau. We will use letters u, v, ... for real indices, 4, j, ... for holomorphic
indices, and 7, 7, ... for antiholomorphic indices.

The spacetime (or worldsheet) of the B-model is a surface ¥, endowed with a Rie-
mannian metric v. In this paper we will take 3 to have rotation symmetry and v to be
rotation invariant.

The final input data of the B-model is the superpotential W, which is a holomorphic
function on X.

The fields of the B-model are a bosonic field

¢ € Map(%, X) (2.1)



and fermionic fields

n € NS, * T X)), (2.2)
p € NQY (S, " TH0X),
p € M8, T X) . (2.4)

Here QP(X, E) is the space of p-forms on ¥ with values in the vector bundle E over X,
and 70X and T%!'X are the holomorphic and antiholomorphic tangent bundles of X,
respectively; II denotes parity reversal. In the off-shell formulation which we will employ,
the theory also has auxiliary bosonic two-form fields

Ge Q%' THX),
Ge Q¥(%, "1 X).

All of these fields come from a chiral multiplet of N' = (2,2) supersymmetry.
The B-model has supersymmetry generated by a fermionic conserved charge Qy. The
supercharge )y squares to zero,

Qi=0, (2.7)

and is used to define cohomology in the space of states and in the space of operators. The
path integral of the theory, with (Jy-closed operators inserted on ¥ and (Jg-closed states
specified on 0%, depends only on the QQg-cohomology classes of those operators and states.

The essential point is that the metric v on X enters the theory only through Qg-exact
terms in the action. As a consequence, under deformations of +, the integrand of the path
integral varies by QQp-exact terms and its QQp-cohomology class remains intact. Thus, by
passing to Qg-cohomology, the theory becomes invariant under deformations of . In this
sense the B-model is a topological theory.

We will not explain here how Q¢ acts on the fields and how the action functional of
the B-model is constructed. Rather, we directly proceed to describe the Q2-deformation of
the B-model.

The Q-deformation of the B-model [2] is a deformation that may be applied whenever
> admits an isometry. Let V be a Killing vector field generating this isometry. The -
deformed B-model has deformed supersymmetry generated by a supercharge @y. The
)-deformed supercharge @)y reduces to Qg for V= 0, and squares to the generator Ly of
the isometry:

Qi = Ly . (2.8)

On fields, Ly acts by the Lie derivative by V.
Slightly more generally, we allow V to be a complex linear combination of Killing
vector fields, provided that it commutes with its complex conjugate V:

[V7 V] =0. (29)



This condition ensures that £y commutes with LV.3 The fact that V' generates a complex-
ified isometry implies that £y commutes with the Hodge star operator *.

As in the case of the ordinary B-model, in the 2-deformed B-model one considers the
Qv -cohomologies of states and operators. The difference is that in the (2-deformed case,
one has to restrict the action of the supercharge to V-invariant states and operators, for
only in the spaces of such states and operators does one have the relation Q%/ = 0. By
restriction to the Qy-invariant sector, the 2-deformed B-model becomes quasi-topological:
the path integral is invariant under deformations of + as long as V' remains as a Killing
vector field.

Now we describe the Q-deformation more explicitly.

The field content of the 2-deformed B-model is the same as that of the ordinary B-
model. On the fields, Qv acts by the variations

5" = 1y p’, (2.10)
§pt = dy¢’ + 1y G, (2.11)
6G! =dp’, (2.12)
5" =1, (2.13)
o' = V(@) (2.14)
5t =G, (2.15)
5G' = duy i’ (2.16)

where we have described the map ¢ locally on X with a tuple of complex functions (¢*, @),
corresponding to holomorphic and antiholomorphic coordinates. We see that the vector
field d¢,, in the field space representing the action of Qv satisfies

5, = duy + tyd. (2.17)

The right-hand side is the Lie derivative by V on differential forms.

While the transformations (2.10)—(2.16) satisfy the desired supersymmetry algebra,
they are not covariant under diffeomorphisms of X because d¢g,, and d are not covariant
derivatives. For the construction of the model, it will be more convenient to rewrite the
above formulas in manifestly covariant forms. This can be achieved as follows.

Choose a torsion-free connection V on X that preserves the complex structure:

VI=0. (2.18)
The connection coefficients I' of V are symmetric,

Iy, =15, (2.19)

3 A quick way to see this is to note that since V' +V and i(V — V) are two commuting real vector fields,
one can find local coordinates (z,y) such that V = 8, + 19, (or V = cd, for some ¢ € C if V and V are
linearly dependent). In terms of these coordinates, L acts on tensors by 9, + iy, and the commutativity
is obvious.



and has no mixed components, that is,
F’V‘p =0 (2.20)

unless p, v, p are all holomorphic or all antiholomorphic indices. When X is Kéhler, many
of the formulas that follow will simplify greatly if one chooses V to be the Levi-Civita
connection associated with the Kahler metric.

Using V, we define the covariant exterior derivative dy as the exterior derivative d
coupled to the pullback of V by . For example,

dyp' = dp' + de"T; A g/ . (2.21)
Likewise, we define the covariant variation by
Syp' =p' + 5g0kI’§cj Ap (2.22)
and so on. Also, we introduce new auxiliary fields F?, F by
— G4l 5 ]kp] APk, (2.23)
F=G+ I”kn T (2.24)

Then, the variations (2.10)—(2.16) can be written covariantly as

5SOZ — vai ’ (225)

Sypt = de' + 1y F, (2.26)

IvF' = dyp' - ( (Ry) jraeve’ + 5 (RV) jki" )PJ A", (2.27)

65 =1, (2.28)

oy’ =V(¢'), (2:29)

Syt =F', (2.30)

SoF = dguyp’ — <(RV) dve + (Rv) k]ml_> Puk (2.31)

Here Ry is the curvature tensor for V:

(Rv)F1pe = 0,1, — Oy e, + .y, —Te I, (2.32)

In particular, (Ry)jn = Ok; — Ol + T4, U7 — T, T and (Ry)' ;57 = =0T}

To write down the action Sqp for the Q2-deformed B-model, we pick a Riemannian
metric g on X that is compatible with the complex structure. The action is a sum of
two pieces:

Sop = Sas,c + SoB.w - (2.33)

The main part Sop ¢ of the action is QQy-exact and contains the kinetic terms:
SoB,c = 09, / g¢j<pi A *(d@j + Lvﬁj) +FiA *,uj) . (2.34)
)

This is Qy-invariant because £y commutes with x and ¢y7, and the integrand is V-invariant.



The second piece Sopw is constructed from the superpotential. Assume that V is
nonvanishing on the boundary of ¥ (which is a collection of circles if 3 is compact), and
let 6 be a coordinate on 9%. Then,

. 1 . . N do
SQB’W = / <FZ81W + Qpl VAN pJVﬁ]W — 5QV (,LLZ ZVV)) — WW . (2.35)
b )

The Qy-invariance of Sqopw is easily checked if Sopw is expressed with the original
auxiliary fields G, G.

Although the above action depends on the choice of the connection V, the Qy-invariant
sector of the theory does not. Written in terms of G and G, the supersymmetry transfor-
mations (2.10)—(2.16) are independent of V, while the action depends on V only through
Qv-exact terms. By the same token, the Qy-invariant sector is independent of the choice
of the target metric g.

2.2 Reduction to supersymmetric quantum mechanics

As a preliminary step to understanding the cigar reduction of the 2-deformed B-model,
let us establish the relation between the circle reduction of the Q-deformed B-model and
supersymmetric quantum mechanics. In the following analysis we will not take into account
the effects of the boundary of X.

Suppose that the B-model is placed on the product ¥ = R x S! of the real line R and
a circle S, endowed with coordinates (s,f) and a rotation invariant metric

v(s,0) = fyss(s)dSQ + ’ygg(s)dﬁz , (2.36)
and we apply the Q-deformation with respect to the vector field
V = €0y (2.37)

generating rotations, where € is a complex constant. We will use the indices 3, 6 to denote
components of tensors with respect to the orthonormal vectors 0; = /75305, 9; = \/Wae
and one-forms ds = ,/75ds, df = /ypedf. In this notation, the norm [|[V| of V is
equal to |Vé|.

In general, the path integral whose integrand is supersymmetric localizes to the field
configurations such that the supersymmetry variations of fermions vanish: away from
this locus in the field space, the parameter of supersymmetry transformations serves as
a fermionic coordinate, but the supersymmetric integrand is by definition independent of
this coordinate and hence the Grassmannian integration vanishes. Since dg,, (tvp?) = V(%)
and g, n" = V(@'), in the case at hand the path integral localizes to rotation invariant
maps. This means that the Q-deformed B-model on R x S! can be described as a one-
dimensional theory on R.

~10 -



To understand this reduction to one dimension in a more down-to-earth manner, we
can add to the action the Qy-exact terms

dqy / ugiz(V (") A + LyFE Ax Lypr?)
RxS?t
= / ugi;(V (") A* V(@) + LyF A *Evﬁj
+V(wp") Ax? + Lydp' A * Lop?) + -+, (2.38)

where - - - indicates higher-order terms. Expand each field ¥ in Fourier modes along S' as
Uv=>3 U,,e . If we take the limit u — 0o, the above modification gives infinitely large
mass to all nonzero modes W, n # 0, thereby suppressing their contributions. Thus, we
are left with only the zero modes W, which describe fields in the one-dimensional theory.

We now show that this one-dimensional theory is supersymmetric quantum mechanics
with target space X, in the presence of a potential that is determined by W.

The version of supersymmetric quantum mechanics that we will find is a topologically
twisted one, relevant for Morse theory [49]. The theory consists of bosonic fields

¢ € Map(R, X), (2.39)
Hec QY(R, ¢*TX) (2.40)
and fermionic fields
Y € INY(R, ¢*TX), (2.41)
x € IQY R, ¢*TX), (2.42)

and has supersymmetry transforming them as

S = (2.43)
5vl’¢)“ = O, (244)
6V’X“ = d(bll —|— iHM, (245)
SorHH = idoph — %(Rv,)ﬂmxwwg. (2.46)

Here V' is any torsion-free connection on X. If one wishes, one could absorb V' by a
redefinition of the auxiliary field H.

The action of the theory depends on a real function h and a flat abelian gauge field a
on X. It is given by

1 1 . 1 .

SSQM = héQ/ §g‘ul,xu *(dQSV —1iH ) + ﬁ / (—5Q(Xuauh) + dh + lgb CL) y (247)
R R

where £ is the Planck constant and é¢g denotes the supersymmetry variation. The flatness

of a is necessary for the action to be supersymmetric. (As mentioned already, we neglect

the effects of the boundary of R. Appropriate boundary conditions are assumed so that

Jg dh is supersymmetric.)

- 11 -



The equations of motion for H is
HY = ig"0,h + 5667 "7V g X% (2.48)
After H is integrated out, the bosonic part of the action becomes
1 (1 s o1, i .
= | d8( 59w 059" 0:0" + 59" OuhOLh | + — | 7a. (2.49)
hJr 2 2 hJr
We see that h provides a potential energy. This is an analog of the superpotential W in

N = (2,2) supersymmetric sigma model.

The on-shell supersymmetry variation of x is

doiXs = 0s¢t — g" OLh. (2.50)
The connection V/ which appears in this formula is different from V'’ and preserves the
metric:?
Vig=0. (2.51)
Its coefficients are
~ 1
Ll =T+ 59" Vigop- (2.52)

Note that setting dg,x = 0 gives the equation for the gradient flow generated by h. This
is how the relation to Morse theory arises.

The supercharge ) generating the transformations (2.43)—(2.46) satisfies Q? = 0. Since
the metric on R appears only inside the @-exact part of the action, the (J-cohomology
defines a topological theory.

Let us go back to the 2-deformed B-model. The equations of motion for the auxiliary

fields are
i 1 g i AT o T ik j
Foo = 1T V|2 <V 030"+ g"HW +V'g k5<p“Vug,-€jpé> , (2.53)
=7 1 5o _ ,
Fog = ———— (V00:@" — g90;W — g6V ,gui’ ) - 92.54
80 1+ ”V||2 ( ¥ g-0j g oy ugij§9> ( )

4The connection in the on-shell supersymmetry variation of x can be changed to any other connection
that preserves the metric as follows. Let us add to the action the Q-exact term —d¢g fR ds %Twp&b”xg’xg’,
where Y,,, = —Y .. Then, the equation of motion for H is modified, and the connection in question
becomes V' whose coefficients are fff‘p = f% + 9" Yyop. The new connection v again preserves the metric
(though may not be torsion-free any longer), and any connection preserving the metric can be obtained
in this way. A similar modification can be made for the Q-deformed B-model for |[V| = 1 so that V' is
modified to V',

For example, V'’ can be the Levi-Civita connection VC. In this case we can also take V' = V"€ since
VL€ is torsion-free. (However, for a metric g that is compatible with the complex structure but not Kéhler,
I'““ has mixed components and we cannot take V = V*.) Another example is V' = vk +VY©JJ, where
J is an almost complex structure compatible with g. This connection preserves both g and J, and is used
in [31].
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Plugging these into the supersymmetry variations of pé and ', we find

. 1 . s
b= %:i(ag iyt ”afw) :
VAT TR\ T

—0

VIZ (- 7
TV VP

b 5 -
5 (V'uy) = o).

where the connection V is given by

4

~ i E i
F:U - FLJ' + 1+ HVH2gZ Vg

~ _ 1 ok
Fiij = Filj—i_ ng Vugkj.

(2.55)

(2.56)

(2.57)

(2.58)

(Adding the deformation terms (2.38) affects the equations of motion and the on-shell

supersymmetry variations only for the nonzero modes.)

The quantities that appear on the right-hand sides of the above equations are complex

conjugate of each other if
Vi =1,
that is, if we choose .
Yoo = W .
From now on we assume that this choice is made. Thus, we can write
Vo —

for some a € R/27Z. We set

and define real functions h, f by
2 1
ZW = (h+if),
€ h

or

)

h = 2Re(e *W)
f=2Im(e*W)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
(2.65)

Comparing various formulas, especially (2.50), (2.55) and (2.56), we find that for the

zero modes, the on-shell supersymmetry of the 2-deformed B-model is the same as that of

supersymmetric quantum mechanics with potential A and the connection V' = V, under

the following identification between the fields:

= o,
(UEA
V=,

* X' =2e Yy xpp

i

*x X' =27 %l
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In components, the last two equations are x4 = 2(pf))s and x} = o7 (11§) 5- Note that we
have V = V' for |V = 1.

Let us check that the actions also agree between the two theories. The part of the
)-deformed B-model action that contains W can be written as

do . do
1) — " O W dW A — . 2.71
Qv /RxSl Vep * /RXSl Ve ( )

Thus, up to Qy-exact terms, the zero mode action is given by

2r dwzl/(dh—i—idf). (2.72)
R

€ R h
This is the action for supersymmetric quantum mechanics in the presence of the potential
h and the gauge field

a=df, (2.73)

with the Planck constant £ given by the expression (2.62).
Even more directly, one can show that the supersymmetry transformations and the
actions match at the off-shell level if the auxiliary fields are identified as

H' = —i (del) + 20/ Fp) (2.74)
H' = +i (dgh + 207 ) - (2.75)

Thus, we have shown that the circle reduction of the (2-deformed B-model is the topological
twist of supersymmetric quantum mechanics.

2.3 Cigar reduction of the 2-deformed B-model

Having understood the circle reduction of the (2-deformed B-model, let us now consider
the cigar reduction. We take ¥ to be a cigar D, consisting of a finite cylinder capped at
one end. As before, we endow D with a rotation invariant metric, with yge(s) = 1/|e|?
on the cylinder part. The boundary of D is located at s = £, and the flat cylinder region
continues till a small value of s, where the cylinder is curved abruptly inward to cover the
hole. The tip of the cigar is at s = 0.

Reduction on the circle fibers of D produces supersymmetric quantum mechanics on
the interval I = [0, ¢]. The space has two boundaries, one coming from the boundary circle
of D and the other from the region near the tip. We wish to understand what happens at
these points.

At s = £, the boundary conditions for supersymmetric quantum mechanics is simply
the reduction of the boundary conditions chosen on 0D in the 2-deformed B-model. We
take the latter boundary conditions to be Qy-invariant. Then, the former are Q-invariant.

In general, in the 2-deformed B-model on ¥, one imposes a brane-type boundary
condition such that the bosonic field maps the boundary to a chosen submanifold L C X:

p(0%) C L. (2.76)
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If ¥ has more than one boundary components, one picks such a submanifold for each
component of 0.

Furthermore, one may turn on a boundary superpotential Wy, a locally constant func-
tion on L. This introduces an additional term to the boundary part of the action, which
is now given by

- [ v -wagg. (2.77)

Finally, for the path integral to not diverge, one must choose L in such a way that the
integrand of the boundary action is bounded from above on L:

W — Wy
Re(ve )

The rest of the boundary conditions are as follows. Since the boundary conditions

< 400, (2.78)
L

should preserve Qy, the supersymmetry variation of the condition (2.76) must also hold:
wp'Oi+n'oeT,LaC. (2.79)
Requiring that no boundary term arises when we vary fermions in the action, we find
b p'0; + %' € NyL @ C (2.80)

on the boundary, where N, L is the normal space to L at ¢. The supersymmetry variation
of this condition gives
(Osp" — g""0,h)0, € N,L . (2.81)

Here we used the fact that V is a metric connection and hence the covariant variation og
maps a normal vector to a normal vector.

The above boundary conditions reduce to the following boundary conditions in super-
symmetric quantum mechanics:

€L, (2.82)

Y eTyL®C, (2.83)

*X € NyL®C, (2.84)

xd¢p — ¢* (g 'dh) € NyL. (2.85)

The boundary conditions at s = 0 have a different flavor as they comes from the tip
of the cigar, which is not a boundary in two dimensions. Since ¢ is unconstrained at the
tip, ¢ can also take any values in X. At the tip V vanishes, so we have

P'=x"'=0 (2.86)

at s = 0. From the point of view of the {2-deformed B-model, the origin of these boundary
conditions is the positive curvature near the tip of the cigar. The curvature makes the
one-form p massive, thereby eliminating it from the effective description.

Taking the supersymmetry variations of these equations, we find

Bsph — g™ A,h = 0. (2.87)
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As we will see, the path integral for supersymmetric quantum mechanics may be localized
to the solutions of this equation. Hence, the boundary condition at s = 0 does not really
constrain ¢.

Let us calculate the action. The tip of D is a special point, so we first excise a small
disk Dy around it. On D\ Dy, the calculation is the same as in the case of R x S!, except this
time we want to take boundary terms into account. Up to Qy-exact terms, the action is

1 1 1 1
/ dW A df — / wdé + - Wodf = — Wodé . (2.88)
€ JD\Dyg € Jo(D\Do) € Job € Job

To this we add the contribution from Dg. We can evaluate it by taking the radius of
Dy to zero. The bulk integral then vanishes since the Lagrangian has no singularity at the
tip, but the boundary integral remains and gives

2
~Tw(0). (2.89)
€
Therefore, the action for supersymmetric quantum mechanics on I is, up to Q-exact
terms,
27 1 . .

where we have defined the constants hg, fo by 2nWy/e = ho + ifo. This is nothing but

;Amh+nﬁy+;wwﬁh—h@ydﬂ@% (2.91)

namely the non-Q-exact part of the action (2.47) plus boundary terms at s = ¢ which
come from the boundary term (2.77) in the Q-deformed B-model. Note that the boundary
conditions at s = 0 make this expression @-invariant since h+if is a holomorphic function.

2.4 Reduction to zero-dimensional sigma model

In [2], it was shown that if X is Kéhler and the support L of the brane on 9D is a Lagrangian
submanifold of X, the path integral for the {2-deformed B-model on D is equivalent to the
path integral for a zero-dimensional bosonic sigma model. Here we derive a slightly more
general result, applicable to the case in which X is not necessarily Kéhler, starting from
the description in terms of supersymmetric quantum mechanics.

Let us rescale the metric of I by a very small factor. Then, the kinetic term for ¢ in
the action (2.49) becomes very large, whereas the potential term becomes very small. The
path integral thus localizes to constant maps. By the boundary condition at s = ¢, these
maps must be valued in L. The boundary condition on ¢ at s = 0 reduces to ds¢ = 0 and
is satisfied by constant maps.

Now, suppose that L is middle-dimensional and the pullback of the two-form w = gI
by the inclusion map i7: L — X vanishes:

Gw=0. (2.92)

If g is a Kéhler metric (that is, if dw = 0), then w defines a symplectic structure on X and
this condition means that L is a Lagrangian submanifold. In general, w is only an almost
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symplectic structure, but we will still call such a submanifold L Lagrangian, and refer to
the corresponding boundary conditions at s = £ as a Lagrangian brane with support L.

When L is Lagrangian, the fermionic fields have no zero modes, as can be shown
as follows. The boundary conditions (2.86) at s = 0 kill the constant modes of ¥’ and
x'. Then, by the boundary conditions (2.83) and (2.84) at s = ¢, the constant modes of
¥'0; and x%0; must belong to T,L @ C and NyL ® C, respectively. Since ijw = 0, we
have g(v,Jw) = 0 for any v, w € TyL and therefore I(Ty,L) C NygL. As L is middle-
dimensional, I exchanges T,,L and NyL. Thus, we have I(¢'9;) = —iyp'0; € NyL @ C and
—ix%0; € TyL ® C. It follows that both ¢'9; and x%d; belong to TyL ® C and NyL ® C
simultaneously, hence they are actually zero.

Finally, the integration over the fluctuations of the bosonic and fermionic fields produce
one-loop determinants that cancel each other out. This is because of supersymmetry and
the fact that the fluctuations of ¢, ¥ and Iy all obey the same boundary conditions:
they vanish at s = 0 and belong to T, L ® C at s = /.

With the fluctuations integrated out, the only remaining integration variables is the
zero mode of ¢. We conclude that the path integral for supersymmetric quantum mechanics
on I reduces to the bosonic integral

/ voly, exp<27r(W - Wo)> = / voly, exp(ili(h +if —ho — if())) , (2.93)
L € L

where voly, is a volume form on L. This is the path integral for a zero-dimensional sigma
model with target L.

2.5 Multivalued superpotentials

There is an important generalization of the above story that will be relevant for many
applications. A crucial observation is the following: if 3 has no boundary, W does not
have to be single-valued. Indeed, all we need to write down the action for the Q2-deformed
B-model is dW, not W itself.

If ¥ does have a boundary, W may still be multivalued but one must make sense of the
boundary term (2.77), in which W appears directly. Hence, in the presence of boundary,
one must define W on L. The definition of W needs to be given only modulo ieZ since the
action appears as e~ in the path integral.

Given a 1-form dW on X, one may try to define W on L as follows. In each path-
connected component L, of L, one picks a reference point p, and declares W (p,) = 0. Then,
at any point p of L, one defines W (p) by choosing a path P from p, to p and setting

W(p)_W(pa):/PdW. (2.94)

The resulting function is generally multivalued since this definition depends on the
choice of the path. This is not a problem if dW satisfies

[i3dW] € ieH(L; Z), (2.95)

for then W is well-defined modulo ieZ. Therefore, this construction provides a good def-
inition of W on L, as long as the above quantization condition is obeyed. Note that the
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real part of the quantization condition says that dh is trivial in the cohomology, so h is
single-valued on L.

If W does not exist as a well-defined function modulo ieZ on all of X, the expres-
sion (2.90) of the action is not valid because the meaning of W (0) is ambiguous. If either
the real or imaginary part of dWW/e obeys the quantization condition on the entire X, then
the Stokes theorem can be applied to that part in the expression (2.91).

At any rate, the localization formula (2.93) remains valid since the path integral local-
izes to L, where W is well-defined modulo i€Z.

The situation that will arise when we discuss the relation between the 2-deformed
Rozansky-Witten theory and the A-model is that the imaginary part of dIW/e obeys the
quantization condition on X. In terms of the flat connection a = 27hIm(dW/e), the

quantization condition is
[a] € 2nhHY (X;7Z) . (2.96)

Moreover, we will find that for the condition (2.78) to be satisfied, we must have h—hy = 0
on L. This condition can be satisfied by an appropriate choice of hg if and only if A is

locally constant on L:
i7(dh) =0. (2.97)

In this situation, we can define the function f modulo 27/ on X, and the action can

be written as

7 [an+ (- 1), (2.98)

up to @-exact terms. We may think of this expression as the action for supersymmetric
quantum mechanics with potential h, with f(0) and fy being zero-form boundary gauge
fields turned on at s = 0 and s = ¢, respectively.

2.6 Lagrangian branes from the gradient flow

If M is Kahler, there is a way to construct good Lagrangian submanifolds, which at the
same time provides a definition of W without help of any quantization condition [9, 30, 50].
These Lagrangian branes are the boundary conditions produced at s = 0 by supersymmetric
quantum mechanics on the half-line [0, +00).

Consider supersymmetric quantum mechanics on [0, +00), and rescale the Q-exact part
of the action (2.47) by a large factor u. Then, the bosonic part of the action becomes

u / 82 g0 (D50 — gP0 D) (D50 — g7 Dh) + ~ / (dh +i¢*a).  (2.99)
R Jjo400) 2 R J10,400)
The real part of the action remains positive semidefinite, so this is a valid deformation.
We see that in the limit u — oo, the path integral localizes to the solutions of the
gradient flow equation
st — g"0,h = 0. (2.100)

For a solution (ng with initial condition qASp(O) = p, the real part of the bosonic action
evaluates to (h(¢p(+00)) —h(p))/h. Since h is monotonically increasing along the flow, the
contribution to the path integral from ¢, vanishes unless ¢,(400) is a critical point of h.
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For this reason, let us choose the boundary condition at s = +o00 in such a way that
¢(+00) lies in a submanifold L of the critical locus Crit(h) of h, and define L to be the
set of all points p such that the gradient flow qAﬁp reaches Lo, at s = +o00:

L={pecX|dp(+) € Loo}. (2.101)

For L thus constructed, the condition (2.78) is satisfied since h|f, is bounded above by the
constant Al .

For L to be a Lagrangian submanifold, L., must obey an additional condition. Since
h = 2Re(e 1 *W), we have Crit(h) = Crit(W). The critical locus is therefore a complex
submanifold of X and itself Kéhler. A necessary and sufficient condition is that L., is a
Lagrangian submanifold of Crit(W).

To see that this is sufficient, note that the gradient flow generated by h coincides
with the Hamiltonian flow generated by f (if f is globally defined, to be precise) because
Lo pw = g Oyhwy, deP = 0,h1Y,d¢P = —df. It follows that w is preserved along the flow:
Lo pw = (dtg,p + tg,sd)w = 0.° Since w is preserved, we can evaluate w(v,w) for any v,
w € T, L by pushing the vectors forward along the flow ¢: [0,00) x X = X. Following the
flow, we eventually reach a fixed point, where we have w(¢(400),v, ¢(+00)sw) = 0 if Lo
is Lagrangian. Hence, w(v,w) = 0. That L is middle-dimensional follows from the fact
that the Hessian of h has the same number of positive and negative eigenvalues because h
is the real part of a holomorphic function.

The necessity of the above condition is clear since L., is itself contained in L, and
Lo must be a middle-dimensional submanifold of Crit(W) in order for L to be middle-
dimensional in X.

On a Lagrangian brane constructed in this way, one can define h at p € L in terms of the
value of h at the fixed point d;p(“FOO) € Lo by integrating the gradient flow equation. The
value of f is constant along the flow. Since W is constant on L, defining W on L amounts
to choosing a single complex number as the value of W on each connected component of
L. This constant may be absorbed in Wy, so does not introduce further ambiguity.

3 Rozansky-Witten theory, A-model and quantum mechanics

As a first application of the results obtained above, in this section we establish the equiv-
alences between the ()-deformed Rozansky-Witten theory on D x M, the A-model on
I x Mj and quantum mechanics on M;. These equivalences connect two approaches to
quantization, namely brane quantization [1] and quantization by the {2-deformation [2].

3.1 Rozansky-Witten theory

Rozansky-Witten theory [39] is a three-dimensional topological field theory, and may be
obtained by topological twist from N = 4 supersymmetric sigma model, for which the

5This is where the Kéhler condition dw = 0 is necessary. In the almost symplectic case, the argument
goes through provided ¢g,¢dw = 0.
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target space must be hyperkahler. However, just as the B-model can be constructed for non-
Kahler target spaces, the target space of Rozansky-Witten theory can be more generally a
complex symplectic manifold.

A complex symplectic manifold Y is a complex manifold endowed with a holomorphic
symplectic form €2, a closed nondegenerate (2,0)-form. The real and imaginary parts of {2
are real symplectic forms w; and wg:

Q=wy+iwg . (3.1)

We denote the complex structure of Y by I.

There exists an almost complex structure K such that wg is compatible with K and
—wg K is positive. Moreover, one can choose K in such a way that IK = —K1I. Then,
J = K1 is also an almost complex structure, and w; is compatible with J since Jtw;J =
—JtwiIK = JwgK = —J!K'wg = I'wg = wy. The three almost complex structures I,
J, K satisfy the quaternion relations

P=lP=K=IJK=-1. (3.2)

There is a metric g compatible with both (J,wy) and (K, wgk):

g=—wjJ =wjIK = —wgK . (3.3)
This metric is also compatible with I since I'gl = —I'w;JI = —wix K = g, and
wr =gl (3.4)

is a (1,1)-form with respect to I. In general, w; is not closed and ¢ is not Ké&hler. In
fact, Y is hyperkéhler if and only if wy is closed [51]. A hyperkéhler manifold has three
integrable complex structures I, J, K, obeying the quaternion relations, and a metric g
that is Kéahler with respect to each of I, J, K.

The fields of Rozansky-Witten theory with complex symplectic target Y, placed on a
three-manifold M3, are

¢ € Map(M3,Y), (3.5)
n € IO (M3, p*T%1Y),
p € TIQY (M3, o*T10Y).

The theory has supersymmetry which transform the fields as

5p' =0, (3.8)
5pt = dyt, (3.9)
5o =", (3.10)
o' =0. (3.11)

The supercharge (¢ for these transformations satisfies Q% = 0, and one considers the
(Qo-cohomology.
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To write down the action for Rozansky-Witten theory, one must choose a metric g and
a torsion-free connection V on Y, both compatible with I, and a metric on Ms. The action
is given by

i

Srw = 6Q, / gisp' Axd@’ — 1
M3

A 1 S
/ (QijpZ Ndyp? + gkaijngZ Ap? A pk
Mg
1

- ng’j(Rv)ijPi AP A ﬂlnm)- (3.12)

The metric g appears only in the QQg-exact part of the action, so the theory does not depend
on the choice of g. It turns out that the non-Qp-exact part changes by a Qg-exact term if V
is replaced by another connection. Thus, the theory is also independent of the choice of V.

3.2 B-model formulation of Rozansky-Witten theory

In order to apply the results from the previous section, we need to describe Rozansky-
Witten theory as a B-model. This is possible when the spacetime is of the form Mg =
> x My, where ¥ is a two-manifold and M is a one-manifold. We denote a coordinate on
Ml by t.

In this case, the bosonic field ¢: ¥ x M — Y of Rozansky-Witten theory may be
identified with a map from ¥ to Map(My,Y). As such, it can be the bosonic field of the
B-model on ¥ with target space

X =Map(M;,Y). (3.13)

A vector field v on X, evaluated at ¢ € X, is a section of the bundle ©*TY over My
and can be written locally as v(t) = v#(t)0,. Tensor fields on X can be expressed likewise.
A complex structure I and a compatible torsion-free connection V on X are naturally
induced from those on Y: for a vector v and a tensor w on X,

(Iv)(t) = Tv(t), (3.14)
(Vow)(t) = Vyyw(t) . (3.15)

Similarly, given a metric on M, a metric on X is induced from that on Y: the inner
product between v, w € T, X is given by

g(v,w) = /M dtg(v(t),w(t)), (3.16)

where we have chosen t in such a way that the metric on M is d¢?.

As can be seen from the above formula for the metric, one may think of the coordinate
t as a “continuous index.” In diffeomorphism invariant expressions, ¢ should be integrated
over, just as the indices 4, j, ... and 7, 7, ... are to be summed over.

Keeping this in mind, we can immediately write down the standard B-model action
(the formula (2.34) with V' = 0) for the target space X:

Sp,c =5Qo// dt giz(p* Az ds@’ + F Axg p?) . (3.17)
3 JM;y
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The Hodge star and the exterior derivative in this action are defined with respect to X
since the spacetime of the B-model is ¥ and does not include M.

Compared to the Rozansky-Witten action (3.12), many terms are missing from this
action. Crucially, all kinetic terms that involve derivatives along M; cannot be present
here because, again, M is not part of the spacetime. These missing terms must come from
a superpotential.

A superpotential with the required property is constructed as follows. Since the holo-
morphic symplectic form 2 is closed, locally we can write it as

0 =dA (3.18)

for some holomorphic one-form A. Then, for ¢ € X, we set
i *
W(p) = 2/ ©*A. (3.19)
My

(The precise definition of W involves the integral of Q2 over a cobordism from a reference
copy of M inside Y to ¢(M;), as explained in section 2.5.) In terms of local holomorphic
Darboux coordinates (P, @™) such that 2 = dP,, A dQ™, we may write A = P, dQ™.

In the present setup, the derivative 9, that appears in the superpotential action (2.35)
should be replaced by the functional derivative §/d¢H(t). For the above superpotential,
the functional derivative of W is

— .. J

The equations of motion for the auxiliary fields are

*3 F = _igijﬁjl}at@]} )

o ) ) (3.21)
—3 iy .
*»F = —§QZ]ij5t90k - g”nkvwﬂ*z ,ul )
and we have the on-shell supersymmetry variation
_ i - -
v (xs ') = = g7 QUrdre” — g0 Vigxs it (3.22)

2

Comparing the last equation with the supersymmetry variations (3.8), (3.9) and (3.10)
in Rozansky-Witten theory, we deduce the identification
i

597} (3.23)

= —

The rest of the fermions, n and p in the B-model, are identified with 1 and the components
of p along ¥ in Rozansky-Witten theory.

Under this identification of the fields, we can show that the action for the B-model
matches that for Rozansky-Witten theory. To show this, we take the metric g to be the
one given by the relations (3.3). This metric satisfies ﬁtg_IQ =2g(1 —il) = 2(1 +il)‘g,
or ﬁ,-ﬁgm(llj = 4g;;. Furthermore, we choose V to be a connection that preserves €. Such
a torsion-free connection compatible with I exists [52].
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It is clear that the Qg-exact terms
. I _
5Q0 / dt A (gijpz AR dggﬁj + *uzszat@j> , (3.24)
XM 2

contained in the B-model action, reproduce the Qp-exact part of the Rozansky-Witten

action (3.12). The remaining terms in the B-model action are
/ dt A (g,-J—Fi Ax *Fj + HEVEgijFi A *x ,uj + lFiQijé)tgoj
XMy 2
. 1 . o _ i . .
+ gz‘j(dv,zpl - §(RV)ljkl_77lp] A Pk) Axs p! = 2 Qip" A Vtﬁ’) . (3.25)

where dy x is the operator dy restricted to ¥ and dy v, = d¢t AV;. The terms proportional
to F cancel by the equation of motion for F. Using the first Bianchi identity (Ry)*,p0 +
(Rv)*pov + (Rv)"o1vp = 0, which holds for any torsion-free connection, and the identity
Qik(Rv)kﬂm + ij(Rv)kjlm = 0, which follows from V) = 0, one can check that the other
terms reproduce the non-Qg-exact part of the Rozansky-Witten action.

3.3 Q-deformed Rozansky-Witten theory and quantum mechanics

Let us take X to be a disk D with a rotation invariant metric. Being a B-model, Rozansky-
Witten theory on D x M; can be subjected to the Q2-deformation described in section 2. As
we now show, this )-deformed Rozansky-Witten theory is equivalent to quantum mechanics
with vanishing Hamiltonian.

The support L of the brane on JD must be a “middle-dimensional” submanifold of X
such that the symplectic form w on X, induced from w; by

wv,w) = /M dt wy (v(t),w(t)), (3.26)

vanishes when pulled back to L. In the present infinite-dimensional setup, this condition
should be interpreted as the requirement that the action of the complex structure exchanges
the tangent bundle and the normal bundle of L. To impose this condition in a local fashion,
we take a Lagrangian submanifold M C Y and set

L = Map(My, M). (3.27)

(Recall that we have defined a Lagrangian submanifold of an almost symplectic manifold
to be a middle-dimensional submanifold on which the pullback of the almost symplectic
form vanishes.)

The boundary superpotential is given by the integral of a complex gauge field Ag on M:

Wolp) = ;/M ¢ Ao (3.28)

For Wy to be locally constant on L, the boundary gauge field must be flat:

dAo = 0. (3.29)
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We should also make sure that h—hg is bounded on L. This condition actually requires
h —ho =0 on L [9]. To see this, let us consider the case M; = S!. Then, for any point
¢ € L, the map ¢, defined by ¢,(t) = ¢(nt) with n € Z is also a point in L. Since
h(en) — ho(en) = n(h(e) — ho(p)), if h — hg is nonzero somewhere in L, it is unbounded.
For this condition to be satisfied, Im(e~%i%,A/¢) must be a flat connection so that we

—io g *

can set Im(e7*Ag/€) = — Im(e71%7%,A/¢). Equivalently, we must have Im(e™%%,Q) = 0,
or
i wr, =0, (3.30)

where wg, = gK, is the (1, 1)-form associated with the almost complex structure
Ky =Kcosa— Jsina. (3.31)

Therefore, M is a Lagrangian submanifold with respect to both w; and wg_ . Since I
and K, swap T M and N M, the action of the almost complex structure

Jo =Kyl = Jcosa+ Ksina (3.32)

leaves T'M invariant. In other words, M is holomorphic in J,. It follows that wj;, = gJ,
is nondegenerate on T'M, so M is a symplectic manifold with symplectic form 73,w, .
The quantization condition (2.95) translates to the condition

[i3,9Q] € 2¢H?*(M;7Z), (3.33)
which, in view of the condition (3.30), is equivalent to
[i%ywy,] € 2nhH?(M;Z) . (3.34)
This condition means that A/h, with
A =Re(e %% ,A), (3.35)
is a connection on a complex line bundle over M with curvature

%dA = ﬁﬁwaa . (336)

The localization formula (2.93), applied to the present setup, gives

/L VolLeXp<; /M | w*(A—Ag)), (3.37)

where Ay = Re(e™1*Ay) is a flat connection. In terms of real Darboux coordinates (pg, ¢°)
on M such that
A— Ay =pgdq®, (3.38)

we may write the above integral as

/Dp[ﬂ)qﬁexp<;_l/ pg@tq’gdt>. (3.39)
L My

This is the path integral for quantum mechanics on M with vanishing Hamiltonian, quan-
tizing the symplectic manifold (M, i},wy, ).
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3.4 Reduction to the A-model

In the above argument, we have established the equivalence between the {2-deformed
Rozansky-Witten theory and quantum mechanics by directly writing down the localized
expression for the path integral. We could have also done this in two steps, as we did
in section 2, via the intermediate supersymmetric quantum mechanics which we obtain
by cigar reduction. Doing so connects the 2-deformed Rozansky-Witten theory with the
A-model setup studied by Gukov and Witten [1].

Let us recall the construction of the A-model [31]. The target space is a symplectic
manifold Y, endowed with an almost complex structure and a compatible symplectic form.
We will see that in the present context the almost complex structure is K, and the sym-
plectic form is wg_ , so we will use this notation. The A-model further depends on a choice
of a closed real two-form B on Y.

The worldsheet of the A-model is a Riemann surface C, whose complex structure we
call j, equipped with a metric. On one-forms, j acts from the right: if z is a holomorphic
coordinate on C', we have dzj =idz and dzj = —idz.

The fields of the A-model are

¢ € Map(C,Y), (3.40)
Y e IO (C,p*TY), (3.41)
x € IQYN(C, ¢*TY), (3.42)
He QY(C,¢*TY). (3.43)
The one-form fermion x and auxiliary field H obey the self-duality constraint
x = Kaxj, (3.44)
H=K.Hj. (3.45)

The A-model has a supercharge ) which squares to zero. The covariant supersymmetry
variations of the fields are

5 = g,
5V’ o= 0)
Sy = dgr + (Ka)",de”j +iH, (3.46)

(R upo XY + P (V) Ko ) dg?j .

. v i
(SV/H‘u = l(dvlwu + (Ka)“udv'1/1 j) - 5

As in supersymmetric quantum mechanics, V' is a torsion-free connection on Y.
The action of the A-model is given by

1 1 1
Sa =70 /C 1 (g Ax(d0” + (Ka) 407 —iH) ) + /C ¢ (~wr, +1B). (347

The second integral is a topological term and therefore Q)-invariant.
The equation of motion for the auxiliary field H is

HH = %M”g“"v’ugapxp, (3.48)
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and the on-shell supersymmetry variation for y is
Soix = A+ Kaddj, (3.49)

where V' is the metric connection (2.52). If H is integrated out, the bosonic part of the
A-model action becomes

1 1 i
Ll 4 axds’+ - [ o'B. .
h/CZgM¢A*¢+h/C¢ (3.50)

Let us return to the (2-deformed Rozansky-Witten theory. We place the theory on
R x S' x My, and view it as the Q-deformed B-model on ¥ = R x S! with target X =
Map(My,Y). Then, we reduce the theory on S' and compare the resulting supersymmetric
quantum mechanics with the A-model on C' =R x M with target Y.

The coordinates on R and M are s and ¢, respectively. For notational simplicity, we
take the metric on R to be ds? so that § can be replaced everywhere by s. We give C a
complex structure by declaring that

Z=s+it (3.51)

is a holomorphic coordinate. Then, we have

Jts=—7% =1, (3.52)
and C is locally isomorphic to the complex plane C with the standard metric ds? + dt2.
For the superpotential (3.19), we have

oh

Soh — (WK, ) 09", (3.53)

so the on-shell supersymmetry variation (2.50) of y in supersymmetric quantum mechan-
ics is
56/)(? = s¢u + (Ka)uu8t¢y . (3.54)
This coincides with the supersymmetry variation of xs in the A-model.
In fact, all the supersymmetry variations of the fields match between the circle reduc-
tion of the Q-deformed Rozansky-Witten theory and the A-model. (The component x; of

X is determined from xs by the self-duality constraint.) The actions of the two theories
also match, with the B-field given by

B=uwy,. (3.55)

Thus, we have found that upon reduction on a circle, the Q-deformed Rozansky-Witten
theory with complex symplectic target Y and complex structure I becomes the A-model
with target Y, symplectic structure wg,, and B-field wy, .

Next, let us consider the 2-deformed Rozansky-Witten theory on D x My, and reduce
it on the circle fibers of the cigar D to obtain the A-model on I x M;. We wish to identify
the boundary conditions at s = 0 and /.

~ 96 —



We have already seen that the brane at s = ¢ must be supported on a Lagrangian
submanifold M C Y with respect to wg,. The boundary conditions (2.82)-(2.85) in
supersymmetric quantum mechanics translates to the boundary conditions

peM, (3.56)
Y eTyM ®C, (3.57)
Xs € NpaM @ C, (3.58)
056 € NyM (3.59)

in the A-model. Here we have used the fact that d;¢ is tangent to M, so K, = g 'wk,
sends it to a vector normal to M.

The boundary condition for ¢ is the Dirichlet condition. To rewrite the boundary
conditions for the fermions in a more familiar form, one may switch to the notation ¥,
commonly used in /' = (1, 1) supersymmetric sigma model. These fermions are related to

Y, Xs by

Y= S+ iKYy + (1= Ko = (s +9o) + 2 Kaly — ),

i i 1 i (3.60)
Xs = _Z(l - iKa)w—&- + Z(l + iKa)w— = _ZKa(w+ + w—) - Z(w—i- - ¢—) :
In terms of 14, the boundary conditions for the fermions is
Yy +Yo € TyM (3.61)
Yy —p_ € NyM. (3.62)

These are the boundary conditions for a Lagrangian A-brane, that is, a boundary condition
in NV = (2,2) supersymmetric sigma model that preserves half of the four supercharges,
including the one used in the construction of the A-model.

Unlike the Lagrangian brane at s = ¢, the boundary conditions at s = 0 does not
restrict the value of ¢. There is a natural candidate for the corresponding brane: a canonical
coisotropic brane [32], whose support is the entire target space.

Indeed, the boundary conditions at s = 0 require (1 —il)y) = (1 —il)x = 0, which is
equivalent to demanding

Vi = —Jatho. (3.63)

This is precisely the boundary condition on the fermions imposed by the canonical
coisotropic brane whose Chan-Paton line bundle carries a connection with curvature wy, .
On the bosonic field, the boundary condition simply requires ¢ to obey the equation

for a K,-holomorphic curve
0s¢ + Ko0ip = 0. (3.64)

If K, is integrable, this equation says that ¢ is a holomorphic map. This is the familiar
localization property of the A-model.

Thus, we have essentially shown that the boundary condition at s = 0 is the canonical
coisotropic brane, with the curvature of the Chan-Paton connection being w;, . For this
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identification to make sense, however, w;, must satisfy the quantization condition on Y,

not just on M:
[wy,] € 2rhH*(Y;Z). (3.65)

This is simply because the canonical coisotropic brane is supported everywhere on Y, and
the curvature of a connection on any complex line bundle obeys the quantization condition.

Let us assume that this quantization condition is satisfied, and verify that the Chan-
Paton connection in question is present in the action. Under this assumption, the action
is given, up to @-exact terms, by the formula (2.98):

s S|
- Wi, + = Ap— & A. 3.66
RJoas, R {6} xM; " h {0} x M, (3.66)

The gauge field A (extended to a one-form on all of Y) has curvature w;y, and is indeed
the Chan-Paton connection for the canonical coisotropic brane. The flat gauge field Ag is
the Chan-Paton connection for the Lagrangian A-brane.

To summarize, the (2-deformed Rozansky-Witten theory on D x My, reduced on the
circle fibers of D, is equivalent to the A-model on I x M;, with the canonical coisotropic
brane with the Chan-Paton curvature wy, at s = 0 and a Lagrangian brane at s = ¢ whose
support M is Lagrangian with respect to wr and wg,, and holomorphic in .J,. This A-model
setup quantizes M, viewed as a symplectic manifold with symplectic form i},w;, .

3.5 Hamiltonians

As we have seen, quantum mechanics arising from the Q-deformed Rozansky-Witten theory
on D x M has vanishing Hamiltonian. The reason can be traced back to the topological
invariance of Rozansky-Witten theory, which in particular implies that translation along
the time axis M is trivial.

To get quantum mechanics with a nontrivial Hamiltonian, one must modify the the-
ory and break topological invariance on M, while preserving the supercharge Q. Once
Rozansky-Witten theory is expressed as a B-model, one can readily achieve such a modi-
fication with introduction of a nontopological term to the superpotential.

Let w be an I-holomorphic function on Y, and suppose that the Lagrangian brane M
is chosen in such a way that Im(w/e) = 0 on M. (More generally, w may have an explicit
dependence on t.) We add the following term to the superpotential (3.19):

AW(p) = /M Srwdt. (3.67)
1

Then, the localized path integral becomes

/ voly, exp(l / o (A — Ag— Hdt)> , (3.68)
L h M,

H = —Re(e “w). (3.69)

where

Therefore, the 2-deformed Rozansky-Witten theory, modified by this additional superpo-
tential, is equivalent to quantum mechanics with Hamiltonian H.
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Conversely, if a real function H on M can be extended to an I-holomorphic function on
Y, we can devise a modification of Rozansky-Witten theory so that upon the 2-deformation
it reduces to quantum mechanics on M with Hamiltonian H.

Although this is a perfectly good way to introduce a nonzero Hamiltonian from the
point of view of Rozansky-Witten theory, it makes the relation to the A-model less straight-
forward. As a matter of fact, for the Hamiltonian to be realized in the A-model, H must
be rather special.

In the A-model, the Hamiltonian originates, if at all, from a superpotential. A super-
potential in the A-model is a one-form with values in real functions on Y:

Z € QNC, ¢*Oy). (3.70)

It obeys the constraint
OuZ +0,Z(Ka)" uj =0. (3.71)

If K, is integrable, this constraint means that we can write
Z = w'dz + w'dz = 2Re(w’)ds — 2Im(w')dt (3.72)
for some K ,-holomorphic function w’ on Y.
The superpotential enters the A-model through the action

1 1 1
Saz=—=0 [ =x!noZ+—- | dZ. 3.73
o= [ genozeg | (3.73)

The addition of this action shifts the equation of motion for H by AH# = —igh” x 9,7, and
produces the potential

1 1
h/c4g’“’8uZ/\*al,Z. (374)

For C =1 x My, the supersymmetry transformations of the A-model with superpoten-
tial Z coincide with those of supersymmetric quantum mechanics on I, obtained by cigar
reduction of the 2-deformed Rozansky-Witten theory with the modified superpotential, if

we identify
Z; = —Im(e %w). (3.75)

The actions also match, provided that the boundary couplings
i

1 : 1 1
L am - / e~y dt = —/ Hdt — / Zdt (3.76)
h /ac b J oy xomy b Jioy <, b J oy, '

are included in the A-model action. The first term on the left-hand side accounts for the
change in the B-field in the A-model, while the second term accounts for the change in
the boundary coupling in the Q2-deformed Rozansky-Witten theory. These boundary terms
combine with the second term in S4 7 to form the I-holomorphic boundary coupling

1L / e~y dt (3.77)
B J{oyxn,

which is Q-invariant by the boundary condition (1 —il)) =0 at s = 0.
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We have found that for this A-model construction to work, the Hamiltonian must be
the real part of the I-holomorphic function —e™*w whose imaginary part is the imaginary
part of a K,-holomorphic function —2w’.

This is a strong constraint, but as pointed out in [9], there is a natural way to con-
struct a Hamiltonian obeying this condition if Y is a hyperkahler manifold that admits a
Hamiltonian action of a Lie group preserving the hyperkahler structure. Using the moment
maps [, Wj,, Wk, for this Hamiltonian hyperkahler action with respect to the symplectic
structures wy, wy,, wk,, one defines w = i(ny + ipg) and w’ = —(ur +ipy,)/2. Then,
H = pug, and this Hamiltonian satisfies the required condition.

4 Gauge symmetry

So far we have studied the relation between A-type and B-type constructions in the case in
which the theories involved do not possess gauge symmetry. In this section, we extend the
analysis in section 2 to incorporate gauge symmetry. We will formulate the Q2-deformation
of the gauged B-model, and establish the equivalences between the 2-deformed gauged
B-model on a disk, supersymmetric gauged quantum mechanics on an interval, and a zero-
dimensional gauged sigma model with complexified gauge group.

4.1 Q-deformed gauged B-model

The Q-deformation of B-twisted gauge theories with linear targets was formulated in [18].
Here we generalize this formulation so that the target space is allowed to be curved. We
will focus on the Kéhler case to avoid being overly technical, though the discussion that
follows can be modified to accommodate non-Kéhler target spaces. In any event, we will
not encounter such target spaces in the gauge theory applications we will study.

Let G be a compact Lie group (or the space of maps from My to a compact Lie group H
in higher-dimensional applications), and G its complexification. We choose a basis {7} }
of the Lie algebra g of G. Our convention is such that T, are represented by antihermitian
matrices in a unitary representation of G.

The target space of the gauged B-model [42] is a Kdhler manifold X that admits a
holomorphic G¢-action with G acting in a Hamiltonian fashion. We let v, denote the vector
field generated by T,. Since the Gc-action preserves the complex structure I, the compo-
nents v’ of v, are holomorphic functions, while v, = v are antiholomorphic functions. If
{T,} satisfy the commutation relations [T,,T}] = fap Te, then [vg, vp] = — fap ve.

The G-action being Hamiltonian means that there are real functions {p,} such that
dpu, = ty,w, where w is the Kéhler form. As a consequence, the G-action preserves the
Kihler form: L,,w = (diy, + ty,d)w = d?u, = 0. Since £,,I = 0 and the Kihler metric g
is given by ¢ = —wl, the G-action is an isometry. The functions {u,} define the moment
map p: X — g* by ng = (i, 7,). We assume that p is G-equivariant, that is, (u(g-x), &) =
(W(x),Ady-1 &) for any g € G, § € g.

In addition to the chiral multiplet fields (2.1)—(2.6), the gauged B-model has a gauge
field which is locally a one-form valued in g,

AeQ(z,g), (4.1)
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as well as bosonic fields

and fermionic fields

o€ QI(E,g),
D € Q°(%,g)

a € HQO(Z,g) ,
A eTIQN (S, g),
¢ € IQ* (2, g),

all in the adjoint representation. These fields form a vector multiplet.

It is convenient to define complex gauge fields

A=A+io,
A=A—io.

(4.7)
(4.8)

The field strengths of Ais FF'=dA+ A A A. In a like manner, we define F =dA+ AN A

and F =dA+ AN A.

The Q-deformed supercharge Qv acts on the vector multiplet by

0A =1y (,

0A =2) — 1y,

6N =1y F —idayo,
o =7F,

da=D,

0D = ydya.

The exterior derivatives coupled to the gauge fields act on the vector multiplet in the usual

manner. For instance, dya = da + [ A4, af.
On the chiral multiplet, Qv acts by

5(102 = LVPi»
§p' = dap' + 1y G,
0G" = dap’ — (",

ar

0" =",
o' = tydad’,
St = Ci,
5G = daeyp’.

The action of d 4 on the chiral multiplet fields is determined by v,. We have

day' = d¢' + A%,
dap' = dp’" + A“9;0L A p?
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and similarly,

dap’ = dg' + A", (4.24)
dap’ = dp' + A0, A i . (4.25)

In the Q-deformed gauged B-model, the G-action is gauged. If € is a g-valued function
on Y, the infinitesimal gauge transformation J. with parameter ¢ acts by

St = %l (4.26)
Sep' = e"0;vp’ (4.27)

and so on. The operator d 4 does not commute with gauge transformations: although d 4
transforms covariantly,

0=(dap’) = e*Ojvpday’ (4.28)
the gauge transformation of d Api contains a nonhomogeneous term:
8:(dap’) = e Ojvpdap’ + e Op0jvda® A p . (4.29)

To construct a gauge covariant derivative, we need to pick a connection V. Recall that

V should be torsion-free and preserve the complex structure. Moreover, we require it to
be G-invariant:

(Lo, L), = ViV vl — (Re)! puovg = 0. (4.30)

This equation can be rewritten as

va(I'),) = 0o Ty, — Opvg TG, — Opvg L'y, — 0,0,v) - (4.31)
The left-hand side is the gauge transformation of I' with parameter ¢ = T,, whereas
the right-hand side is the action of the diffeomorphism on I' generated by T,. In other
words, this condition ensures that a gauge transformation acts on I' as the corresponding
diffeomorphism.

Since the G-action is an isometry and X is Kéahler, one choice of V is the Levi-
Civita connection. The above condition can be readily checked: from the Killing equation
V,u(va)y + Vi (va)u = 0, one gets Vil = —g g, Vivk and

Vi Vivh = =" gkmV;Viog = g% gmi[Vi Vil = " gmr R v = Rigjavy . (4.32)
where the equations V;v[* = 907" = 0 is used in the second equality.

Using V, we define the gauge covariant derivative d 4 v by coupling d 4 to the pullback
of V. For example,

davp’ =dap’ +dag’Ti A p*. (4.33)

In the gauge transformation of d4 v, the nonhomogeneous terms coming from d4 and
day’ F;k cancel. Thus, d 4 v commutes with the gauge symmetry.
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The supersymmetry transformations satisfy
5o, = daty + wyda, (4.34)

except when (%V acts on G, G, which yields extra terms involving second derivatives of
v,. These terms are present because G, G are not tensors. Rather, the auxiliary fields F, F
are tensors, and G, G differ from them by terms depending on I'; see the definitions (2.23)
and (2.24). The above relation holds on F, F.

The diffeomorphism covariant version of the supersymmetry transformations is

5" =1y p’, (4.35)
Syp' = dap’ +wF, (4.36)
: : : 1 , 1 R
ovF = d.A,vpZ — (Mg, — <3(Rv)1jklb\/pl + Q(Rv)zjkml>pj A ,Ok , (4.37)
55 = (438)
oy’ = tydag’, (4.39)
Sy’ =F, (4.40)
= 7 7 1 7 1 ),7,,k
ovF =davivp' — ((Rv) e+ 5 (Bv) z‘qr’ll>77]#k. (4.41)

The worldsheet derivatives that appear on the right-hand sides are all gauge covariant,
though dv itself does not commute with gauge transformation.
The action of the Q2-deformed gauged B-model consists of three pieces:

Saas = Sac,v + Sacs,c + SacB,w - (4.42)

The first piece is the action for the vector multiplet and given by

SoaB,v = 0Qy /
5

Tr((—*D + 1+2H1VH2(dA*U —i—*LVdAL\/O'))CK — MC*]—") )
(4.43)
where Tr is a negative semidefinite bilinear form on g. We have chosen this particular
integrand so that after the auxiliary fields are integrated out, the bosonic part of the
action takes a nice form, free of cross terms. The second one is the chiral multiplet action:

SQGB,C = 6QV / (gij (dZ@i + Lvﬁi) A *pj + gijﬂi* FJ + *iuaaa) . (444)
b

The third is the superpotential action and takes the same form as in the nongauged case:

. 1 . . S do
Socpr = / (FoW + o' Ao Vi0W — bg, (w'0W)) — | Wer. (4.45)

’ > 2 oz V

The superpotential W must be gauge invariant:

v (W) =0. (4.46)

This condition implies that 9;W and V;0;W transform under the gauge symmetry as
tensors, and the superpotential action is gauge invariant.
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4.2 Reduction to supersymmetric gauged quantum mechanics

Taking ¥ = R x S! and keeping only the zero modes along S' in the {-deformed gauged
B-model, we get a topologically twisted supersymmetric gauged quantum mechanics on R.
We recall that the metric on R x S is d§? + [e|2d6? and V = edy = 9;.

Supersymmetric gauged quantum mechanics that we obtain is constructed from a
vector multiplet consisting of fields

AeQ'(R,g), (4.47)
o€ Q' (R,g), (4.48)
e (R,g®C), (4.49)
D € Q°(R, g) (4.50)
a € IQO(R, g), (4.51)
A e QN (R, g) . (4.52)
k€ IQ°(R, g), (4.53)
¢ eI (R,g), (4.54)
and a chiral multiplet with fields (2.39)—(2.42).
Supersymmetry transforms the vector multiplet fields as
dA =)\, (4.55)
do=¢, (4.56)
ot =0, (4.57)
0T = K, (4.58)
0N = —dar, (4.59)
6§ = [, 0], (4.60)
ok = [1,7], (4.61)
da =D, (4.62)
0D =[1,q], (4.63)
and the chiral multiplet fields as

ot = pH | (4.64)
ot = Tk (4.65)
v xt =dad! + oIt v, +iH", (4.66)

S HY =idg wrp! +iXl — 4 TF vy,
(4.67)

1
— oI, VP =itV ulix” — o (B upax"9Py7

We have the relation 5%2 = d,, where the right-hand side is the infinitesimal gauge trans-
formation with parameter 7.
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The action for supersymmetric gauged quantum mechanics is

2 1
SsaQm = héQ/RTr (*(—D-i-i*dA*U— [, 7)) a + 2()\+i§)*dAr>

1 1
- 6Q/ (guux“ *(dad” —iHY) —xo"X"Oppa
he Je\2

+ (g + 1w ) TOEYY + % 2ia“ua>

g [(~80¢0h) +dh+i6%a). (468
R

The potential h is assumed to be invariant under the action of G¢, not only G. This
condition is satisfied if h is the real part of a gauge invariant holomorphic function, which
is the case when the theory is the reduction of the (2-deformed gauged B-model. Note
that due to this assumption, supersymmetric gauged quantum mechanics knows about the
complex structure of the Kéhler target space X.

Integrating out the auxiliary fields, one finds that the bosonic part of the action is

1

1 1 _
h/(yunﬂﬁ+wﬂw+yWﬂW+m@ﬂF
R

1 1 1
+ §||01A¢||2 + 5!\th!2 + §Hull2 + lo“val* + [[7%val|®
— *i[r, 7]y — *iT POy — (i Tr(x o[7, 7]) + % 0%1a) + 2aalva(h)> ., (4.69)
where the norms of various tensors are defined with the metrics on R and X as well as

the positive bilinear form — Tr on g. The first two terms in the last line cancel by the
equivariance of the moment map, which implies

va(“'b) = _fab0907 (470)

whereas the very last term vanishes since h is Ge-invariant. The integral of the total
derivative terms vanishes by appropriate boundary conditions.

The on-shell supersymmetry transformations are given by

i I, iy
5a_§*dA*o._§[T,T]_§u N (471)
05X = dad + 0" Tvg — g tdh, (4.72)

where p is the dual of p with respect to the metric — Tr on g.

As asserted already, upon reduction on S', the Q-deformed gauged B-model becomes
supersymmetric gauged quantum mechanics. The vector multiplet fields of the latter are
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expressed in terms of the zero modes of the vector multiplet fields of the former as follows:

*A=e%y %A, (4.73)
*xo=e Yy xog, (4.74)
=1/ Ay, (4.75)
* A =e Yy x g, (4.76)
k=230, (4.77)
*x € =1y« N +ie Y% (g, (4.78)
a=aqp, (4.79)
D=Dg. (4.80)

The left-hand sides refer to fields in supersymmetric quantum mechanics, the right-hand
sides the 2-deformed gauged B-model. The chiral multiplet fields are identified as in the
relations (2.66)—(2.70) and

HY = —i(da, ) + 080! + 20y Fl), (4.81)
H = +i(da,@h — 1080’ + 2057Fp) - (4.82)

Under the above identification of fields, the supersymmetry transformations of the §2-
deformed gauged B-model reproduce those of supersymmetric gauged quantum mechanics.
Likewise, the action for the zero modes of the )-deformed B-model coincides with the
action for supersymmetric gauged quantum mechanics.

To be precise, if supersymmetric gauged quantum mechanics is obtained by circle re-
duction, the real part of 7 is periodic due to the gauge symmetry. A better characterization
of 7 is in terms of the holonomy of A around S', which is valued in G rather than g. That
said, the topology of the target space does not really matter in the applications that we
will consider, for in the end the path integral localizes to a locus where 7 = 0.

4.3 Boundary conditions

Let us take ¥ = D and discuss the boundary conditions for supersymmetric gauged quan-
tum mechanics on I, obtained by cigar reduction of the 2-deformed gauged B-model.

In the Q-deformed gauged B-model, we impose boundary conditions on 0D such that
the gauge symmetry is unbroken. Then, the gauge field should satisfy the Neumann con-
dition F' = 0. We choose a gauge such that

As=0 (4.83)
on the boundary. Then, this condition reads
0sA49 =0. (4.84)

We also require the boundary conditions to be Qy-invariant. Taking the supersymme-
try variations of the above conditions, we get

As = Oshg = 0, (4.85)
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and taking further supersymmetry variations gives
0s09 = 0. (4.86)

Since the boundary values of Ay and oy are not fixed, to be compatible with the
equation of motion for D, the boundary value of D should not be fixed either. Since o and
D are paired by supersymmetry, both « and D obey the Neumann condition:

By =9,D=0. (4.87)

Since half of the fermions obey the Neumann condition, the other half should obey the
Dirichlet condition, and we get
¢(=0. (4.88)

Supersymmetry then tells that o should also obey the Dirichlet condition:
s =0. (4.89)

The boundary conditions for the chiral multiplet are not affected by the coupling to
the vector multiplet, and specified by a submanifold L C X. The only additional condition
compared to the nongauged case is that L must be Gc-invariant, which implies that v, is
tangent to L on the boundary.

Upon reduction to supersymmetric gauged quantum mechanics, the above boundary
conditions for the vector multiplet become

A=oc= =¢(=dr=dD=drk =da =0. (4.90)

In other words, all one-form fields and the derivatives of all zero-form fields vanish at s = £.
The boundary at s = 0 comes from the tip of the cigar. Looking at the identifica-
tions (4.73)—(4.80), we deduce

A=oc=7=A=k=0 (4.91)
at s = 0. The remaining fermions should obey the Neumann condition:
da=dx£=0. (4.92)

The boundary conditions for the chiral multiplet is the same as in the nongauged case.

Note that the condition A = 0 is really a gauge fixing condition, rather than a boundary
condition, because a gauge transformation can shift the boundary value of A. However,
the corresponding gauge transformation in the Q2-deformed gauged B-model is singular at
the tip of the cigar. Thus, the cigar geometry picks the gauge A =0 at s = 0.

4.4 Reduction to zero-dimensional gauged sigma model

Shrinking the interval I to a point, we can reduce supersymmetric gauged quantum me-
chanics to a zero-dimensional gauge theory. Let us determine this theory.
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To simplify the analysis we choose the gauge A = 0. We integrate the auxiliary fields
out, rescale the metric of I by 42, and take the limit u — oo. Then, all bosonic fields get
frozen to constants. By the boundary conditions at s = 0, the bosonic fields in the vector
multiplet are set to zero. By the boundary conditions at s = ¢, the bosonic field ¢ of the
chiral multiplet must be valued in L.

When the gauge symmetry is absent, we have chosen the support L of the brane at
s = £ to be a Lagrangian submanifold of X. To understand what sort of submanifold L
should be in the presence of gauge symmetry, let us rescale the target metric g by u at the
same time as the rescaling of the metric on I. This entails rescaling of the moment map p
by u, and further constrains ¢ to be a zero of w:

w=0. (4.93)

If we gauge the global gauge symmetry (which preserves the gauge A = 0 and, due to
the equivariance of p, the above equation), then the theory is effectively described by one
without gauge symmetry, whose target space is

X =uH0)/G. (4.94)

The space X is the symplectic quotient X /G of X, and is Kéhler. Hence, we should take
L to be a submanifold whose image in X is a Lagrangian submanifold £.

The submanifold L must also be Gc-invariant, and this condition can be naturally
satisfied. A key fact is that by a complex analytic version of the Kempf-Ness theorem,
X //G is isomorphic to the quotient X*°/G¢ of the set X*° of semistable points of X
by Gc. (A point in X is said to be semistable if the closure of its Gc-orbit intersects
1=1(0).) This fact shows that we may take L to be the preimage of £ under the projection
m: X% = X%/Gc:

L=n"1L). (4.95)

This is the support of a Lagrangian brane in the presence of gauged symmetry.

With this choice of L, the same argument as before immediately tells us that the
fermion zero modes from the chiral multiplet that survive the boundary conditions are the
constant modes of 1'@; and ¥'0; that descend to zero vectors in X. In other words, they
must be in the kernel of m,. The kernel is spanned by vector fields generated by G¢ and,
on L, sits inside T'L ® C. Since * x must be normal to L at s = ¢, the zero mode of y must

vanish. However, the zero mode of ¢ may take the form
o = Biva0r (4.96)

with Sy being an arbitrary constant valued in Ilg.

There is another fermion zero mode that pairs up with §y. By looking at the boundary
conditions, we see that the zero mode of o can be an arbitrary constant o € Ilg. The only
nonvanishing term in the action that contains these fermion zero modes is

1 _
- / 2% BPul a0l . (4.97)
h Jr
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We can rewrite this term as

3 [ (b (a)ag + 1880 aa)af) (4.98)
R

h
By the relation (4.70) the second term in the integrand vanishes on w=1(0), to which the
path integral localizes. The first term has a nice interpretation.

The bosonic terms in the action for the zero-dimensional theory are those that appear
in the formula (2.93), and are G¢-invariant. Let us think of G¢ as a complex gauge group.
The isomorphism p=1(0)/G = X /G essentially says that the localization equation (4.93)
is a partial gauge fixing condition: it breaks the gauge group G¢ down to G. The first
term in the above integral produces the Faddeev-Popov determinant associated with this
partial gauge fixing, with «ag, By playing the roles of ghost fields.

Therefore, the Q2-deformed gauged B-model on 0D, and the corresponding supersym-
metric gauged quantum mechanics on I, are equivalent to a zero-dimensional gauged sigma
model with target L and gauge group Gg¢. The path integral for this zero-dimensional
theory takes the same form as the formula (2.93), but with L replaced by £ and W — W,
understood as a function on L.

5 Gauge theory applications

In the final section, we discuss examples of A-type and B-type constructions which re-
alize gauge theories of dimension d = 1 to 6. The theories constructed here are gauged
quantum mechanics, gauged symplectic bosons, and Chern-Simons theory and its higher-
dimensional variants.

5.1 Gauged quantum mechanics

Let us begin with d = 1. This example is a generalization of the example studied in
section 3, and relates the Q-deformed gauged Rozansky-Witten theory, the gauged A-
model and gauged quantum mechanics. We will restrict ourselves to the case when the
target spaces are hyperkéhler.

The target space of gauged Rozansky-Witten theory [53] with gauge group H is a
hyperkahler manifold Y with a triholomorphic Hc-action such that the H-action is tri-
Hamiltonian. Corresponding to the three complex structures I, J, K of Y, there are three
symplectic structures wy, wy, wx and three moment maps |y, Wy, Wx-

Placed on D x My, gauged Rozansky-Witten theory can be formulated as a gauged
B-model on . The B-model description singles out one of the complex structures of Y,
which we take to be I.

In the B-model description, we have a chiral multiplet whose scalar field takes values in
Y, as well as a chiral multiplet whose scalar field is the component A; of a complex linear
combination of a three-dimensional gauge field and a h-valued one-form field. Hence, the
target space of the gauged B-model is

X = Map(My,Y x be). (5.1)
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The gauge group is
G = Map(M, H), (5.2)

acting on X by the pointwise H-action on Y and h¢. This is the group of gauge trans-
formations for a gauge theory on M; with gauge group H. (More precisely, these are
local descriptions of X and G if the gauge bundle for gauged Rozansky-Witten theory
is nontrivial.)

The superpotential is the gauge invariant version of the functional (3.19). For simplic-
ity, let us assume that the holomorphic symplectic form 2 = wj +iwg for I can be written
as ) = dA for some H-invariant holomorphic one-form A. Using A, we can define n; and
ux by (”’J + iHK)a = —Ly, A since d(HJ + iHK)a = _(E'Ua. - Lvad)A = 1y,§2. Then,

W3 [ (oA A+ i) (5.3)
My
is the gauge invariant superpotential.

We apply the Q-deformation to this gauged B-model and perform cigar reduction.
Then, we obtain supersymmetric gauged quantum mechanics on I with target X, and this
is equivalent to the gauged A-model [42] on I x M; with target ¥ and symplectic form
Wg, = WK cosa —wysina. A generalization of the canonical coisotropic brane appears at
s =0. At s =/, we have a brane supported on an Hc-invariant submanifold M C Y such
that its image in Y //H is Lagrangian. This brane comes from a brane in the Q-deformed
gauged B-model whose support is L = Map(M;, M).

Finally, shrinking I to a point, we get a zero-dimensional gauged sigma model with
target L and gauge group Gg¢. The action of the model is given by W. This is gauged
quantum mechanics on M; with target M and gauge group Hc.

Integrating over A sets

Wy +ing =0, (5.4)

so this gauged quantum mechanics may also be regarded as nongauged quantum mechanics
with target space

(M N (g +ink)"1(0))/He (5.5)

which is a submanifold of the hyperkéahler quotient

YJH = (w7 (0) 0y (0) N i (00) /H 2 (s + inge) ™ (0)/ He (5.6)

As we have seen in section 3, for the whole construction to work we must choose M in
such a way that this submanifold of Y //H is Lagrangian with respect to w; and wg,,, and
symplectic with respect to wy, .

5.2 Gauged symplectic bosons

Next, we consider an example with d = 2. In this example, a chiral CFT on a Riemann
surface My is realized by an N' = 2 supersymmetric gauge theory on D x My [6, 7] and by
an N = 4 supersymmetric gauge theory on I x My [3, 4].
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Let us take a four-dimensional N' = 2 supersymmetric gauge theory, constructed from
a vector multiplet for gauge group H and a hypermultiplet in a complex symplectic repre-
sentation Y of H. The theory has eight supercharges Q2, Q a4, where o = &, & = & are
spinor indices, and A = + is an index for an R-symmetry group SU(2)g under which Q4

and Q4. transform in the fundamental and the antifundamental representations, respec-
1

5.

We place the theory on D x My and apply Kapustin’s twist [40]. Under the rotation
group U(1)p of D, the supercharges Qf, Q4 have spin Mp = +% and Q4, @ﬁ have
Mp = —%. Under the rotation group U(1)p, of My, Qf, @ﬁ have My, = +% and Q4, Q4

have My, = —%. The Kapustin twist replaces the rotation generators Mp, My, with the

tively. An R-symmetry group U(1), rotates Qﬁ with charge r = —|—% and @Q with r = —

twisted rotation generators®

Mp = Mp +r, (5.7)
My, = My, + R, (5.8)

where R is the generator of a subgroup U(1)r C SU(2)g such that QF, @f have R = :l:%.

Since Q7 Qy, Q1 and @_T_ have MMQ = 0, these supercharges become scalars on My
after the twist, and as such are preserved even when My is curved. Two of them have
Mp = —1—% and the other two have Mp = —%, so they generate N' = (2,2) supersymmetry
on . In the language of N' = (2, 2) supersymmetry, U(1)p is called the vector R-symmetry,
while U(1), is the axial R-symmetry, as can be seen from the fact that U(1), rotates the
scalars in the vector multiplet but U(1)r does not.

The replacement of Mp with M]) is the B-twist of N = (2,2) supersymmetry, which
by definition twists the rotation group with the axial R-symmetry. Among the four super-
charges, Q" and QT are scalars with respect to My,. The linear combination

Qo=Q T +Qt (5.9)

squares to zero, and by taking the Qg-cohomology we get a topological theory on D since
the components of the stress tensor along D are QQp-exact. It turns out that the generator
of antiholomorphic translations on My is also (QQg-exact, so the QQp-cohomology defines a
holomorphic-topological theory on D x My, which we will refer to as Kapustin theory.

As a gauged B-model on D, Kapustin theory has a chiral multiplet whose scalar field
is valued in Y and another chiral multiplet whose scalar is the component A; of the gauge
field along the antiholomorphic direction of My. The target space of the gauged B-model
is therefore

X = Map(Ma, Y x be), (5.10)

6The U(1), R-symmetry is anomalous if the one-loop beta function is nonzero. Nevertheless, one can
make sense of the following construction by introducing to the action a term that breaks the rotation
invariance on I [6]. This term is chosen in such a way that the anomaly in U(1), cancels the explicit
violation of U(1)p. This is done at the cost of losing gauge invariance, but gauge invariance is restored if
an appropriate surface defect is inserted at the center of . After the reduction to a theory on I x My,
the surface defect becomes a boundary theory localized at s = 0. Such boundary theories are important
ingredients in the construction of [4].
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and the gauge group is

G = Map(M,, H).. (5.11)

The hypermultiplet consists of a pair of chiral multiplets in conjugate representations.
In terms of the scalar fields ¢ and ¢ of these chiral multiplets, the superpotential is given

by [6]

W= G, (5.12)
M

up to an overall factor which can be absorbed by a rescaling of fields. Note that taking My =
M x S and performing dimensional reduction on S! reduces W to the superpotential (5.3)
for gauged Rozansky-Witten theory.

From this B-model description, we see that if we turn on the 2-deformation using
the rotation symmetry of D, Kapustin theory on D x Ms becomes equivalent to a chiral
CFT on My, described by the action W. This CFT is known as the system of gauged
symplectic bosons with values in Y. The integration cycle for the path integral is specified
by a Lagrangian brane placed on 9D.

Reducing the Q2-deformed Kapustin theory on the circle fibers of the cigar D, we arrive
at the corresponding A-type theory on I x M. By construction, this is a holomorphic-
topological theory on I x Ms. As we will argue shortly, it is a certain twist of the circle
reduction of the parent four-dimensional N/ = 2 supersymmetric gauge theory, which is a
twist of a three-dimensional ' = 4 supersymmetric gauge theory. This is a nontrivial state-
ment as one might have expected that the 2-deformation would affect the reduced theory.
For the moment let us accept this statement as a fact, and identify the relevant twist.

A three-dimensional N/ = 4 supersymmetric gauge theory has an R-symmetry group
SU(2)g x SU(2)¢ and eight supercharges QA, where o = + is a spinor index, A = + is
an SU(2)y index and A = & is an SU(2)¢ index. If the theory is constructed by reduction
from four dimensions, SU(2)y comes from SU(2)g, whereas U(1), becomes a subgroup
U(l)c € SU(2)c. In the case at hand, the supercharges are identified as QA+ = Q4
and Qéé = @ﬁ

Formulated on I x My, the theory admits two distinct twists [54]. One may twist it by
replacing the rotation group U(1)y, with the diagonal subgroup of U(1)y, x U(1)c. This is
called the C-twist. According to the definition (5.8) of the twisted rotation generator My ,
relevant for the A-type construction is the H-twist, which twists U(1)p, with a subgroup
U(1l)g € SU(2)H.

The H-twist makes four supercharges scalars on Ms. To see what linear combination
of these should be used for the construction of the holomorphic-topological theory, let us
take My = C and consider placing Kapustin theory on I x S' x C. We think of I x S as
modeling the flat cylinder part of ID.

On this spacetime all supercharges are unbroken, and the Lie derivative by V = eia(?é
acts on differential forms simply by acting on their coefficient functions with V. Then, the
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-deformed supercharge Qy can be written, up to an overall factor, as”

Qv =QT +QF +e%(Q7 —Q7), (5.13)

because this linear combination of supercharges satisfies Q%, o Ly. Upon dimensional
reduction in the #-direction, )y, descends to the supercharge

Q=Q + Q"+ QT -7 (5.14)

in an NV = 4 supersymmetric gauge theory on I x C. This is the supercharge whose
cohomology defines the holomorphic-topological theory.

The above argument explains why the {2-deformation “disappears” when a B-twisted
supersymmetric field theory is reduced on a circle, that is, the circle reduction of the €2-
deformed B-twisted theory is a twist of the reduction of the undeformed theory, not a
deformation thereof. The reason is that the Q2-deformed supercharge @y already exists in
the undeformed theory, and becomes the supercharge @) for the twisted theory obtained
by the reduction. The only thing the Q-deformation can do is to change the action by
Qy-invariant terms, which merely corresponds to a @-invariant deformation of the reduced
theory. We have fixed the action for the reduced theory by asking it to have the standard
bosonic terms (4.69).

In fact, we can characterize the ()-cohomology using only a half of ), and it is illu-
minating to do so. This characterization is based on the fact that the @y -cohomology of
operators is isomorphic to the Qy-cohomology of states by conformal invariance (which
the Qy-cohomology possesses), and by unitarity the latter is isomorphic to the space of
Qyv-harmonic states. If we define

Qv =QF +°Q7, (5.15)
Qv =Qf —°Q;, (5.16)

then Qv = Qv + Qv and
{Qv, QLY =2{Qv. @]} =2{@v. @}, (5.17)

where the hermiticity condition is given by (Q})T = —Q; and Q) = Q. Therefore,
the Qy-cohomology is isomorphic to both )y -cohomology and )y -cohomology.
Let us choose @)y. Under the dimensional reduction this supercharge becomes

@ =QF +eQ7T, (5.18)

and the @-cohomology is isomorphic to the ()-cohomology. The supercharge ) is used
in the discussions of holomorphic boundary conditions in [3, 4, 54] (up to a flip of the
spinor index).

"The supersymmetry transformation laws for the Q-deformed gauged B-model ‘may be obtained from
those in [55] by substitution 0y = id;, 01 = 0s and €+ = +i/2, ex = —(V§ + iVG)/2. This gives Qv
Qi+ Q_+ (VP —iVHQ_ + (VY +iV¥ Q.. According to [6], this supercharge is identified with QF +Qt +
(Vé —iVH; — (Vé + 1V5)@; in the Kapustin twist.
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There is something remarkable about (): it is proportional to a U(1) g rotation of the
supercharge QJ_F+ —i—fo for the A-twist [33], in which the rotation group SU(2) is replaced
by the (anti)diagonal subgroup of SU(2) x SU(2)y. Consequently, the ()-cohomology of
the twisted theory on I x M is actually fully topological in the bulk, not topological on I
and holomorphic on Ms as one might have expected.

This is consistent with the relation between gauged Rozansky-Witten theory and the
gauged A-model, discussed in section 5.1. If we take My = M; x S' and perform reduction
on S!, the supercharge QT + Q7 for Kapustin theory on I x My reduces to the supercharge

Qﬁ' —i—Qi; for an N' = 4 supersymmetric gauge theory on ID x Ml;. This is the supercharge
for the B-twist, so Kapustin theory reduces to gauged Rozansky-Witten theory. The cigar
reduction of the (2-deformed gauged Rozansky-Witten theory on D x M is the gauged
A-model on I x My, which has two-dimensional topological invariance, not just topological
on I and on M separately.

At first sight, it might be puzzling that one obtains something holomorphic like a
chiral CFT out of a fully topological theory. The resolution to this puzzle is that the three-
dimensional topological invariance is broken at the center of D where )y reduces to QF. On
the boundary at s = 0, boundary conditions allow for additional holomorphic observables.

Thus, we have found that the A-type theory on I x My that realizes the gauged symplec-
tic bosons with values in Y is the A-twist of an A" = 4 supersymmetric gauge theory. This
theory has a vector multiplet for gauge group H and a hypermultiplet valued in Y, orig-
inating from their counterparts in four dimensions. The vector multiplet has three scalar
fields transforming as a triplet under SU(2)¢. They come from the complex scalar in the
four-dimensional N' = 2 vector multiplet and the component Ay of the four-dimensional
gauge field. The hypermultiplet contains a pair of scalar fields ¢4, transforming as a double
under SU(2) . In terms of the four-dimensional fields, ¢* = ¢ and ¢~ = .

Let us determine the boundary conditions on these fields at s = 0.

If we describe the theory as supersymmetric gauged quantum mechanics on I with
target X and gauge group G, from the three-dimensional vector multiplet we get a one-
dimensional vector multiplet and a one-dimensional g-valued chiral multiplet whose scalar
field is Az. At s = 0, all bosonic fields of the one-dimensional vector multiplet are set to
zero, while Az satisfies the gradient flow equation (2.87). In the three-dimensional terms,
these conditions amount to the Dirichlet condition on the vector multiplet scalars and a
deformed Neumann condition

Fsz o e ((¢M)1T% )T, (5.19)

on the gauge field.

The three-dimensional hypermultiplet gives rise to a pair of chiral multiplets in super-
symmetric gauged quantum mechanics. At s = 0, the boundary condition for the scalar
fields of these multiplets demands

Dsq™ o< e 0q7 . (5.20)
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The boundary conditions just described are consistent with those discussed in [3, 4],
where it was found that symplectic bosons arise from boundaries in this three-dimensional
N = 4 supersymmetric gauge theory.

5.3 Chern-Simons theory

Now we discuss an example with d = 3. In this example, Chern-Simons theory on a three-
manifold M3 is realized by maximally supersymmetric Yang-Mills theories on D x M3 [18]
and I x M3 [8, 9].

Five-dimensional N' = 2 super Yang-Mills theory, like any other maximally super-
symmetric Yang-Mills theories, can be constructed from ten-dimensional super Yang-Mills
theory by dimensional reduction. Let (z!,...,2'?) be coordinates on R'°, and reduce super
Yang-Mills theory on R!'? in the directions of 2, ..., 2!'°. Then, the components Ag, ...,
Ajp of the ten-dimensional gauge field are turned into five scalar fields ¢s, ..., ¢19, valued
in the Lie algebra b of the gauge group H. They transform in the vector representation
of the R-symmetry group Spin(5) g, which originates from the rotation symmetry of R® on
which the reduction is performed. The sixteen supercharges of the theory transform in the
spinor representation of Spin(5)g.

We place this theory on D x M3, and twist the rotation group SU(2)y, on Mz by
the subgroup SU(2)g of Spin(5)r rotating ¢g, ¢9 and ¢19. The supercharges transform
as doublets under SU(2)n, and SU(2)g, so a quarter of the sixteen supercharges become
singlets under the diagonal subgroup of SU(2)m, % SU(2)g. These four supercharges are
scalars under the twisted rotation group on Mj, and can be preserved even when Mg is
curved. They have spins :t% under U(1)p, so generate N' = (2,2) supersymmetry on D.

Let U(1), be the subgroup of Spin(5)g rotating ¢g and ¢7. From the point of view of
N = (2,2) supersymmetry, U(1), is the axial R-symmetry rotating the two scalars in the
vector multiplet. Further twisting the theory on D with U(1),, we get a gauged B-model.

In the twisted theory, ¢g, @9, @19 are the components of a one-form on Mgs. They
combine with As, A4, As to form a @Q-invariant complex gauge field A on Ms:

A = (A3 +i¢g)dx® + (A4 + igg)dz? + (A5 + i¢1g)dz® . (5.21)

The components of A are the scalar fields of three chiral multiplets. Hence, the target
space X of the gauged B-model is the space of complex gauge fields on M3. The gauge
group G is the group of gauge transformations on M3, and G¢ acts naturally on X by
complex gauge transformations. If the gauge bundle is trivial, we have

X = Q'(Ms, be) (5.22)

and
G = Map(Ms, H) . (5.23)
The G-invariant Kéhler metric on X is given by
1

g(v,w) = —22/ Tr(v Axw+ 0 Axw), (5.24)
954 /M3
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where v, w are ho-valued one-forms on M3 and gsq is the gauge coupling of five-dimensional
N = 2 super Yang-Mills theory.

The superpotential W is a gauge invariant functional, given by the integral of a holo-
morphic function of A over Mi3. For the total action to be second order in derivatives after
the auxiliary fields are integrated out, W must be first order. In view of these requirements,
the only candidate for W is the integral of the Chern-Simons form

CS(A) = Tr(AAdA+ gA/\A/\A> (5.25)

over Mg, up to an overall normalization factor. The overall factor is meaningful in this
example since W is not homogeneous and cannot be absorbed by a rescaling of A. The
inhomogeneity of W also explains why the vector R-symmetry is absent in the B-model
description.

The absolute value of the normalization of W is fixed by the requirement that inte-
grating out the auxiliary fields reproduces the kinetic term

1

— 492/ Tr(F AxF) (5.26)
5d v/ DxMs

for the five-dimensional gauge field. This is satisfied if we take

1

= —5— CS(A). 5.27
w2 J, 5 (5.27)

The phase of W is not so important because shifting the phase has the same effect as the
action of the broken vector R-rotation that leaves A intact. Different choices of the phase
correspond to different ways to identify the supercharge of the twisted five-dimensional
theory and that of the gauged B-model.

From this superpotential, we learn that the Q-deformation of the twisted N' = 2 super
Yang-Mills theory on D x M3 with gauge group H is Chern-Simons theory with gauge
group Hc, described by the action

i

B 2
2695d M3

CS(A). (5.28)

Let us turn to the corresponding A-type construction. The A-type theory is the re-
duction of the above theory in the direction of 2 = 6. This is a topological twist of N = 4
super Yang-Mills theory on I x M3, with gauge coupling

€
gad =/ ’2’95(1 . (5.29)
s

As we now argue, the relevant twist is the GL-twist [34-36], with its CP!-valued parameter

equal to
1—
e (5.30)
sin
The GL-twist of N' = 4 super Yang-Mills theory on a four-manifold replaces the

rotation group Spin(4) with the diagonal subgroup of Spin(4) x Spin(4) g, where the second
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factor is a subgroup of the R-symmetry group Spin(6)z. In the present notation, Spin(6)r
rotates ¢g, ..., ¢10 and ¢2 which comes from Ay, and Spin(4)r rotates ¢g, ¢s, P9, P10-
Thea twist turns the latter four scalars into the components of the one-form

¢ = ¢edat + pgda® + poda? + proda® . (5.31)

(The coordinate on I is #! = s and those on M3 are (23, 2%, 2°).)
The GL-twisted theory has two scalar supercharges (Qy and Q,, and one picks a linear

combination

Q= Q¢+ tQ; (5.32)

to define the topological theory, where ¢ takes values in CP!. The supersymmetry trans-
formations generated by @ may be found in [36]. What is important to us is that there is
a two-form fermion y whose supersymmetry variation is given by

X" =(F=¢Ang)" +t(dad)™, (5.33)
oX~ =t(F—9ANd)” —(dao)”, (5.34)

where the superscripts + and — denote the self-dual and anti-self-dual parts, respectively.

We claim that when t is real, the GL-twisted N = 4 super Yang-Mills theory on I x M
can be reformulated as supersymmetric gauged quantum mechanics on I with target X and
gauge group G, with the identification

o5 = ¢ . (5.35)

Furthermore, the potential h is determined by the superpotential (5.27) via the rela-
tion (2.64), which shows that the theory is the cigar reduction of the Q-deformed B-model
described above.

One way to see this is to compare the supersymmetry variations of fermions that give
rise to flow equations. If we make the complex gauge field A = (A, + iog)ds + Azdx® +
Aydz* + Asda® and let F be the curvature of A, then we can write the supersymmetry
variation (4.72) as

Sxs = Lo, F + €% sy, F (5.36)

where we consider x; as a one-form Xf;’dx?’ + X;}dx‘l + ngx5. This is equivalent to the
supersymmetry variations (5.33) and (5.34), with ¢ given by the formula (5.30).

Another way to argue for this claim is to consider compactification to two dimensions.

Five-dimensional N/ = 2 super Yang-Mills theory has a unique full twist, which re-
places the rotation group Spin(5) with the diagonal subgroup of Spin(5) x Spin(5)r. The
topological twist we have performed is compatible with this twist. If we take M3 = R x M
for some compact Riemann surface My, then in the infrared, we get a fully twisted N = 4
supersymmetric sigma model on D x R with a hyperkahler target space. (Twisting along
My breaks half of supersymmetry.) This is Rozansky-Witten theory, and its target space
is the moduli space Mg of the Hitchin equations on My [56]. The Q-deformation and cigar
reduction then produce the A-model on I x R with target My.
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The GL-twisted N' = 4 super Yang-Mills theory for real ¢, upon compactification on
Mo, indeed reduces to the A-model with target My [36]. In Q-deforming Rozansky-Witten
theory with target My, we have picked a complex structure in which the complex gauge
field A 4 i¢ on My defines holomorphic coordinates. If we call it I, then according to [36],
the complex structure of the A-model thus obtained can be written in terms of the other
two complex structures J, K as

1—¢2 2t
1+1¢2 1+1¢2

J=Kcosa—Jsina. (5.37)

This agrees with the relation between the €)-deformed Rozansky-Witten theory and the
A-model which we found in section 3.

Thus, we conclude that the GL-twisted N/ = 4 super Yang-Mills theory on I x Mj
with gauge group H is equivalent to Chern-Simons theory on M3 with gauge group Hc,
assuming that appropriate boundary conditions are imposed. The boundary conditions at
s = 0 are such that when Mz = R x Mly, they correspond to the canonical coisotropic brane
in the A-model with target M. This conclusion is in accordance with the results obtained
in [1, 8, 9].

5.4 Higher-dimensional Chern-Simons theories

There are higher-dimensional analogs of the above A-type and B-type constructions, in
which higher-dimensional variants of Chern-Simons theories are realized by maximally
supersymmetric Yang-Mills theories in dimensions five and up.

These Chern-Simons theories are all related by dimensional reduction. The one of
highest dimension is six-dimensional Chern-Simons theory, also known as holomorphic
Chern-Simons theory [47]. This is a holomorphic theory that can be formulated on a
Calabi-Yau threefold Mg.

Suppose that we have Mg = My x R x S! for some Calabi-Yau twofold My, and reduce
the theory on S'. The holomorphy on the cylinder R x S implies that the reduced theory is
topological on R. What we get is a holomorphic-topological theory, called five-dimensional
Chern-Simons theory [48], placed on M5 = My x M with M; = R.

If we further take My = My x R x S' and perform reduction on S', we get four-
dimensional Chern-Simons theory [26-28] on My = My x Mf with Mj = R x M, which is
holomorphic on My and topological on M.

Finally, taking My = RxS! and reducing on S', we reach the ordinary, fully topological,
Chern-Simons theory on Mz = R x M.

Since six-dimensional Chern-Simons theory sits at the top of the hierarchy, let us
begin by discussing the constructions of this theory. We will be concise here; some of the
assertions made below are explained in more detail in appendix A.

The B-type construction uses eight-dimensional super Yang-Mills theory on D x M.
This is made topological on D by twisting of the rotation group U(1)p with the R-symmetry
U(1)r. The need for a U(1) R-symmetry with which the theory is twisted along D explains
why one cannot go higher than eight dimensions in the B-type constructions.

48 —



Covariantly constant spinors on D x Mg are linear combinations of the products of
covariantly constant spinors on ID and those on Mlg. The Calabi-Yau threefold Mg has two
covariantly constant spinors, one for each chirality. If I is flat, there are also two on D.
Accordingly, the theory has four supercharges when D is flat. Under U(1)p x U(1)g, two
of these supercharges have positive chirality on Mg and weights (:l:%, :l:%) The other two
have negative chirality on Mg and weights (:I:%, :F%) (The supercharges of ten-dimensional
super Yang-Mills theory are spinors of positive chirality.) These supercharges generate
N = (2,2) supersymmetry on D. As U(1)g rotates the scalars of the N' = (2,2) vector
multiplet, U(1)p is the axial R-symmetry and the twist on D is the B-twist.

As a gauged B-model, the theory has three chiral multiplets whose scalar fields are the
antiholomorphic components Az, Az, As of the gauge field with respect to local coordinates

(23,24, 25) on Mg. These scalars make up a (0, 1)-form

A= A3dz° + A;dz* + AzdZ° (5.38)

on Mg with values in h¢, so the target space of the gauged B-model is

X = Q% (Ms, bhe) - (5.39)
The gauge group is

G = Map(Mg, H) , (5.40)
and G¢ acts on X by complex gauge transformations. The G-invariant Kahler metric is
given by

1
g(v,w) :—2/ Tr(v Axw+ 0 A *w) (5.41)
2ng Mg

for he-valued (0, 1)-forms v, w on Mg, where ggq is the gauge coupling.

This example may be thought of as the complexification of the B-type construction
of Chern-Simons theory discussed in section 5.3, in the sense that the real coordinates on
Ms in that example are replaced by complex coordinates on Mg here. Correspondingly,
the superpotential is essentially given by the Chern-Simons functional constructed from A.
The Chern-Simons form is a three-form, so to be integrated over Mg, it must be wedged
with the holomorphic volume form 3 of Mg:

2i
P / Qs A CS(A). (5.42)
98d /Mg
Here we have normalized €3 in such a way that Q3 A Q3 equals —i /8 times the volume form
of Mlg. The overall normalization is explained in appendix A.

The above superpotential is the action for holomorphic Chern-Simons theory. There-
fore, the 2-deformation of eight-dimensional super Yang-Mills theory on D x Mg is holo-
morphic Chern-Simons theory on Mg.

The corresponding A-type construction is based on seven-dimensional super Yang-Mills
theory on I x Mg. The theory may be reformulated as supersymmetric gauged quantum
mechanics on I with target X and gauge group G, and in this description we know what
the boundary conditions should be.
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Now we consider dimensional reductions to five- and four-dimensional Chern-Simons
theories.

First, let us take Mg = My xR xS' and reduce the theory on S' to get super Yang-Mills
theory on D x My xR. If we write 23 = (23 —i28)/2, 2* = (2*—i2?)/2 and 2% = (2°—iz!?)/2,
the superpotential becomes

1
g / Qs A CS(A), (5.43)
974 /My xR
where €29 is the holomorphic volume form of the Calabi-Yau twofold My, defined by Q3 =
Q9 A dzg, and

A = A3d23 + Azdat + (A5 + id1)da®, (5.44)

with the scalar ¢ coming from Ajg.

This superpotential is the action for five-dimensional Chern-Simons theory, so the €2-
deformation of seven-dimensional super Yang-Mills theory on D x M x R is five-dimensional
Chern-Simons theory on My x R. The A-type construction involves six-dimensional N =
(1,1) super Yang-Mills theory on I x My x R.

Taking My = My x R x S! and reducing the seven-dimensional theory on S!, we get
six-dimensional A" = (1,1) super Yang-Mills theory on D x My x R?. The superpotential
for the gauged B-model is

i

W - 72
2964

/ Q1 A CS(A), (5.45)
Mg XR2

with Qs = Q1 A dz?* and
A= A3d2® + (A + idg)dat + (As + igo)da®. (5.46)

With the Q-deformation turned on, this setup yields four-dimensional Chern-Simons
theory on My x R? [30]. The A-type construction makes use of five-dimensional N = 2
super Yang-Mills theory on I x My x R2. This setup is essentially the same as the one
proposed in [45, 46].

Taking My = R x S! and reducing these theories on S', we get back to the A-type and
B-type constructions for Chern-Simons theory on R?, described in section 5.3.

One can analyze the above sequence of dimensional reduction and deduce the relevant
twist for each of the theories that appear in these constructions. A comprehensive list of
twists and the relations between them under dimensional reduction may be found in [57].

The B-type constructions use (5 + n)-dimensional maximally supersymmetric Yang-
Mills theories on D x My, x R3™". Starting from n = 3 and going down to n = 2, 1 and
0, we find that they are twisted along D x R3™" with the Spin(5 — n) R-symmetry. In
particular, for n = 0, we have the fully twisted N' = 2 super Yang-Mills theory on I x R3.

On the A-type side, we have (44 n)-dimensional maximally supersymmetric Yang-Mills
theories on I x M, x R37". As we argued in section 5.3, for n = 0, we get the GL-twist
on I x R? with the parameter ¢ determined by the phase of the Q-deformation parameter
e. Tracing back the sequence of dimensional reduction, we deduce that the theories are
twisted along I x R3~" with an Spin(4 — n) subgroup of the R-symmetry group.
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A Eight-dimensional super Yang-Mills theory as N = (2, 2) supersym-
metric gauge theory

In this appendix we formulate eight-dimensional super Yang-Mills theory as an N = (2,2)
supersymmetric gauge theory when part of spacetime is a Calabi-Yau threefold. Since the
theory is the dimensional reduction of ten-dimensional super Yang-Mills theory, we will first
rewrite the supersymmetry of the latter theory in the form of N' = (2,2) supersymmetry.
To begin with, let us recall spinors in ten dimensions. We work in Euclidean signature.
Spinors in R! are representations of the Clifford algebra, generated by the gamma
matrices I'y, I =1, ..., 10, satisfying the relations

{T1,T;} =26, (A.1)

The chirality operator —il'y - - - I';9 has eigenvalues +1.
Introduce the complex coordinates z* = z2*~! +iz?, i =1, ..., 5. Then, the corre-
sponding gamma matrices

1 .
Vi = 5(F2¢—1 —ily;), (A.2)
1 .
Vi = §(F2171 + 1) (A.3)
obey the relations
{vi: ¥t = dij - (A.4)

Thus, one may think of 4; as fermion creation operators and -; as annihilation operators.

In this language, spinors are states in the fermionic Fock space built on the vacuum
by the action of the creation operators. The chirality operator can be expressed in terms
of the fermion number operators 7;; as

5
—i'y - Fl() = H(Q’_}/,L’}/z — 1) . (A5)

=1

Spinors of positive chirality have an odd number of excitations, and those of negative
chirality have an even number of excitations. They have sixteen components.

A concise way of presenting spinors on C° is to use differential forms. In this presen-
tation, spinors are linear combinations of (p,0)-forms, with p = 0, ..., 5. The action of
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the gamma matrices are operations changing the form degree by one:
Vi = Loy s (A.6)
Vi = dz' A . (A.7)

Positive chirality spinors and negative chirality ones are odd forms and even forms, respec-
tively. The product @8 of two spinors «, § is defined by

a8 = (a' A B)P, (A8)
where the transpose acts as
(dzt A Ad2P) =dzP Ao Ad2™ (A.9)

and a'°P is the top component of .
Now we consider super Yang-Mills theory on C°. The theory has a gauge field A and
a spinor field ¥, and supersymmetry transforms them by

0A; = iel'j ¥, (A.lO)

6V = i[F[,FJ]FIJE. (A.11)
Both the fermion ¥ and the supersymmetry parameter e are spinors of positive chirality.
If the spacetime is not flat, e must be a covariantly constant spinor. We are interested
in the case when the spacetime is C x Mg x C, where Mg is a Calabi-Yau threefold. In
this case, covariantly constant spinors are either zero-forms or top forms on Mg since they
are the only forms that are invariant under the holonomy group SU(3). Hence, using the
holomorphic volume form 3 of Mg, we can write

e=e_dzl +e,dz® — e, Q3 +e_d2t AQ3 AdL°. (A.12)
We also write ¥ as
U= -_dzt = A\ d2® + A Q3 — A_dzt AQ3AdS°
+ i(—id_}idzk + ipF dzt A d2F A d2® + il[)_’f_b@k Q3 A dz2® + ik dzt A Loy Qg) , (A.13)
k=2
where we have chosen complex coordinates (22, 23, z*) on Mg such that

Q3 = dz? Adz® Adet. (A.14)
Plugging the above expressions for € and ¥ into the supersymmetry variation (A.10)
of A, we get
§A; = —le_A_ —ie_\_, (
0A7 =iep Ay +ie Ay, (
§A5 = —ief A —ie_ A4, (
0As = —ie A —ie A, (A.18
0Ap = —e4F + et (
0AL = epF — eyt (
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From the supersymmetry variation (A.10) of ¥, we find

ONy = e (2F)7 — 2Fsg — F*)) 4 de_Fys, (A.21)
oA = —e_(2F)1 — 2F5s + F*y) — 4e, Fyz (A.22)
O\ = €4 (2F)7 + 2Fss + F*)) 4 46_Fyz, (A.23)
ON_ = —€_(2F)1 + 2Fs — F*,) — de, F5, (A.24)
Sk = die_Fyj, + diey Fyp, — 2ie ™™ Fy, (A.25)
oYF = die, Fyy — die_Fs — 2ie_eM"™Fy,, (A.26)
S = —die_ Fyy, — diey Fyj, + 2ie eMm (A.27)
oY* = —die, Fyy + die_ Fyp + 2ie_eMmEy (A.28)

Here e¥'™ k, 1, m = 2, 3, 4, are the components of a completely antisymmetric tensor on
Mg, with e234 = 1.

We compare these equations with N' = (2,2) supersymmetry transformation laws.®

An N = (2,2) vector multiplet transforms under supersymmetry as

SAL = 2iex Ay + 2ieL Ny, (A.29)
S0 = —ie A —ie Ay, (A.30)
66 = —ieg A —iE_Ap, (A.31)
Ay = —eq(Fo1 —2[o,0] —iD) +2e_D.7o, (A.32)
0N =e_(Fo1 —2[0,0]+1D) +2e4D_o, (A.33)
Ay = —€4(Fo1 + 2[0,5] +iD) +26_D, 0, (A.34)
SA_ =& (Fp1 +2[0,6] —iD) + 26, D_5, (A.35)
6D = €4 (D_Ay +2[0,A_]) + e~ (D4 A= + 2[5, A1) (A.36)

— e (D_As 2[5, A_]) — e-(Dy A+ 2[0, Ay]) .-

An N = (2,2) chiral multiplet transforms as

dp=€pth_ —e_thy. (A.37)
0y = 2ie_Dyp +4ie oo + 2e4F, (A.38)
0 = —=2ie, D_p — die_op +2e_F, (A.39)
OF = —ie (D_vy +26¢_ — 2iA_@) —ie_(Dytp_ + 200, +2id ). (A.40)
0p = —€4 ) +E . (A.41)
Sy = —2ie_ D, @ — die,op + 2¢,F, (A.42)
St = 2iey D_p + die_op + 2€_F, (A.43)
OF = —iey (D_t)y + 200p_ + 2iA_p) —ie_(Dytp_ + 261p, — 20N, p). (A.44)

8The following formulas are obtained from N = 1 supersymmetry transformations in 3 + 1 dimensions
by dimensional reduction in the z'- and 2*-directions. Compared to the formulas in [55], we have made
the rescaling ¢ — V20, ¢ — v/2¢ and F — v/2F.
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These are the supersymmetry transformations in Minkowski spacetime RV with coordi-
nates (20, z!); we have defined Ay = Ag 4+ Ay, O+ = g+ 01 and D1 = 0+ + [A, |.

0+ —iz? into account, we see that the supersymmetry varia-

Taking Wick rotation x
tions (A.15)—(A.28) are precisely of the form of N’ = (2,2) supersymmetry transformations

if we identify

o= Az, (A.45)
D =iFk,, (A.46)
o" = Ag, (A.47)
FF = —ickmE,, . (A.48)

Therefore, the scalars ¢* of three chiral multiplets, labeled by k = 2, 3, 4, are the compo-
nents of the one-form )
A= Azdz~. (A.49)

Let us reduce the theory to eight-dimensional super Yang-Mills theory on C x Mg.
This turns the components As, Az of the gauge field to scalars 7, 0. As an N = (2,2)
supersymmetric gauge theory, the target space of the theory is the space of he-valued
(0,1)-forms on Mg, where b is the Lie algebra of the gauge group. We need to determine
the superpotential.

To conform to the notations used in the main body of the paper, we should relate the
N = (2,2) supersymmetry transformations just described to the supersymmetry trans-
formations (4.9)—(4.21) for the Q-deformed gauged B-model. The Q-deformed B-twisted
supersymmetry is realized by the following supersymmetry parameters:

_ i
€+ = :|:§ ,
€r = —%(Vl +iV?). (A.51)

(A.50)

It is easy to identify various fields across the two notations; in particular, we have the
identification
F=—iFy,. (A.52)

The right-hand side is the component of the two-form auxiliary field F in the Q-deformed
B-model.
If we normalize the kinetic term of super Yang-Mills theory as

1
2
934 JCxMg

then the part of the B-model action that contains the auxiliary fields F, F is

/ (-3 T&"(FA*F)+F"35—W —F’“‘WV). (A.54)
CxMg 934 5AE 0 A
Choosing a basis {15} of h such that Tr(7},1}) = —d4p, we can write the equation of motion
for F as o

oW 2 2

0AL 934 98d
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Since

) 63 A CS(Z) = 2/ 53 A Qg TI‘(&klm(SAkF’lm)
Mo Mo (A.56)

= —16i / * Tr ("™ Ay Fipm)
Mg

we deduce

W= 12/ Q3 A CS(A). (A.57)
8954 /M

In section 5.4, we make a different choice for the chiral multiplet scalars. There, the
real coordinates on Mg are (x3, 24, 2%, 28, 2%, 2'°), and we treat A3, Az, Aj in the complex
coordinates 23 = (23 —iz8)/2, 2% = (2* —i2%)/2 and 25 = (2° — i2!?)/2 as chiral multiplet
scalars. This means that the volume form of Mg is (—da3 A da®) A (—da* A da®) A (—da® A
dz'%), and the holomorphic volume form Q3 = dz2 A dz® Adz* is normalized in such a way
that Q3 A Q3 is —i/8 of the volume form. The equation for motion for the auxiliary field is
modified to F¥ = —2ie*™ F},,,, but in the action there is an extra factor of 1/4 multiplying

the quadratic term in the auxiliary fields, so we obtain the superpotential (5.42).
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