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Abstract: Anurans (frogs and toads) are among the most globally threatened taxonomic groups. Successful con-
servation of anurans will rely on improved data on the status and changes in local populations, particularly for rare
and threatened species. Automated sensors, such as acoustic recorders, have the potential to provide such data by
massively increasing the spatial and temporal scale of population sampling efforts. Analyzing such data sets will
require robust and efficient tools that can automatically identify the presence of a species in audio recordings. Like
bats and birds, many anuran species produce distinct vocalizations that can be captured by autonomous acoustic
recorders and represent excellent candidates for automated recognition. However, in contrast to birds and bats,
effective automated acoustic recognition tools for anurans are not yet widely available. An effective automated call-
recognition method for anurans must be robust to the challenges of real-world field data and should not require
extensive labeled data sets. We devised a vocalization identification tool that classifies anuran vocalizations in
audio recordings based on their periodic structure: the repeat interval-based bioacoustic identification tool (RIB-
BIT). We applied RIBBIT to field recordings to study the boreal chorus frog (Pseudacris maculata) of temperate
North American grasslands and the critically endangered variable harlequin frog (Atelopus varius) of tropical
Central American rainforests. The tool accurately identified boreal chorus frogs, even when they vocalized in
heavily overlapping choruses and identified variable harlequin frog vocalizations at a field site where it had been
very rarely encountered in visual surveys. Using a few simple parameters, RIBBIT can detect any vocalization
with a periodic structure, including those of many anurans, insects, birds, and mammals. We provide open-source
implementations of RIBBIT in Python and R to support its use for other taxa and communities.

Keywords: acoustic, amphibian, classification, detection, endangered, machine learning, monitoring, signal
processing

Resumen: Los anuros (ranas y sapos) se encuentran dentro de los grupos taxonómicos más amenazados a nivel
mundial. La conservación exitosa de los anuros dependerá de información mejorada sobre el estado y los cambios
en las poblaciones locales, particularmente para las especies raras y amenazadas. Los sensores automatizados,
como las grabadoras acústicas, tienen el potencial para proporcionar dicha información al incrementar masiva-
mente la escala espacial y temporal de los esfuerzos de muestreo poblacional. El análisis de dicha información
requerirá herramientas robustas y eficientes que puedan identificar automáticamente la presencia de una especie
en las grabaciones de audio. Como las aves y los murciélagos, muchas especies de anuros producen vocalizaciones
distintivas que pueden ser capturadas por las grabadoras acústicas autónomas y también son excelentes candidatas
para el reconocimiento automatizado. Sin embargo, a diferencia de las aves y los murciélagos, todavía no se cuenta
con una disponibilidad extensa de herramientas para el reconocimiento acústico automatizado de los anuros. Un
método efectivo para el reconocimiento automatizado del canto de los anuros debe ser firme ante los retos de los
datos reales de campo y no debería requerir conjuntos extensos de datos etiquetados. Diseñamos una herramienta
de identificación de las vocalizaciones: la herramienta de identificación bioacústica basada en el intervalo de
repetición (RIBBIT), el cual clasifica las vocalizaciones de los anuros en las grabaciones de audio con base en
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su estructura periódica. Aplicamos la RIBBIT a las grabaciones de campo para estudiar a dos especies: la rana
coral boreal (Pseudacris maculata) de los pastizales templados de América del Norte y la rana arlequín variable
(Atelopus varius), críticamente en peligro de extinción, de las selvas tropicales de América Central. Mostramos
que RIBBIT puede identificar correctamente a las ranas corales boreales, incluso cuando vocalizan en coros con
mucha superposición, y puede identificar las vocalizaciones de la rana arlequín variable en un sitio de campo
en donde rara vez se le ha visto durante censos visuales. Mediante relativamente unos cuantos parámetros sim-
ples, RIBBIT puede detectar cualquier vocalización con una estructura periódica, incluyendo aquellas de muchos
anuros, insectos, aves y mamíferos. Proporcionamos implementaciones de fuente abierta de RIBBIT en Python y
en R para fomentar su uso para otros taxones y comunidades.

Palabras Clave: acústico, anfibio, aprendizaje mecánico, clasificación, detección, en peligro, monitoreo, proce-
samiento de señal

Introduction

Globally, many anurans (frogs and toads) are in danger
of extinction (Scheele et al. 2019). Over 2000 (25%) of
the approximately 7900 known amphibian species are
classified as vulnerable, endangered, or critically endan-
gered (IUCN 2020), and over 1000 of these threatened
species are categorized as data deficient (González-del-
Pliego et al. 2019). In response, several authors have sug-
gested that biologists need to significantly expand anu-
ran monitoring in order to prevent dramatic biodiver-
sity loss (Young et al. 2001; Storfer 2003; Collins & Hal-
liday 2005). Traditional anuran monitoring approaches
include both visual encounter and acoustic surveys by
trained human observers (Dodd 2010). In practice, how-
ever, logistical and financial limitations lead to trade-offs
between the number of sites sampled and amount of
time spent at each site (Dorcas et al. 2009). For example,
many acoustic survey protocols use 5-min listening pe-
riods (Dorcas et al. 2009), even though longer listening
periods could increase the biodiversity observed (Pierce
& Gutzwiller 2007).

Autonomous recording units (Hill et al. 2019) can
expand monitoring efforts by performing acoustic
monitoring at spatial and temporal scales far beyond
what is feasible for human observers (Blumstein et al.
2011). Compared with human point counts, acoustic
monitoring with autonomous recording units can sample
as many or more species in an equivalent sampling
period (Darras et al. 2019) but can simultaneously
sample hundreds of sites for months at a time, with
each device sampling for multiple hours each day. As a
result, the data sets generated by acoustic monitoring
can quickly become so large that they are impossible
to review manually. To address this challenge, scientists
have developed automated recognition tools that en-
able the detection of species-specific vocalizations in
acoustic recordings with minimal manual labeling effort
(Priyadarshani et al. 2018). In concert with automated
acoustic recorders, automated recognition is currently
being used to monitor biodiversity in novel ways. For
instance, this technology has allowed researchers to

evaluate the effectiveness of regional conservation
plans for species that are otherwise difficult to observe,
including bats (Weller 2008), forest elephants (Wrege
et al. 2017), nocturnal birds (Shonfield et al. 2018), and
cetaceans (Mellinger et al. 2007).

Various approaches have been proposed for auto-
mated identification of anurans in audio recordings,
but few have been applied successfully to field data.
Dutilleux and Curé (2018) built a custom signal pro-
cessing model that accurately detected the European
common spadefoot toad (Pelobates fuscus) in field data
collected across multiple years and locations with under-
water hydrophones, which record minimal background
noise. Willacy et al. (2015) monitored the Richmond
mountain frog (Philoria richmondensis) over thousands
of hours of field data across multiple sites with a detector
built with the proprietary Song Scope software (Wildlife
Acoustics 2011) to identify the species with high
accuracy. The authors reported that to prepare the Song
Scope classifier, they spent 80 person-hours tuning pa-
rameters and selecting vocalizations of the target species.
Measey et al. (2017) used the software PAMGuard
(PAMGuard 2020), which was developed for cetaceans,
to monitor the Cape peninsula moss frog (Arthroleptella
lightfooti) in a 4-month study with six field recorders.

To date, two challenges have limited the use of auto-
mated recognition for detecting anurans. First, real-world
field recordings of anurans often contain background
noise and heavily overlapping choruses of vocalizations
from many individuals. For anurans in particular, large
groups of vocalizing individuals can form choruses that
sound very different from an isolated vocalization. Addi-
tionally, field data can span broad temporal and spatial
scales, leading to variation in the vocalization of interest
and the composition of background noise. For instance,
ambient temperature influences the pitch and pulse rep-
etition rate of many anuran calls (Narins 2001). A use-
ful automated classifier must be able to provide accu-
rate species identifications even in the presence of these
complexities.

Second, automated recognition algorithms typically
rely on a set of example recordings of the target species,
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Figure 1. Boreal chorus frog (Pseudacris maculata) (left) and variable harlequin frog (Atelopus varius) (right)

known as training data, to train the recognition model.
Many supervised machine learning classifiers for bats and
birds, for example, are trained with hundreds of labeled
audio clips of the target species (e.g., Priyadarshani
et al. 2018). Such extensive training data, however,
are not widely available for most anuran species. For
example, only a fraction of amphibian species accounts
on AmphibiaWeb (AmphibiaWeb 2020) has any audio
recordings compared with virtually all bird species
accounts on All About Birds (Cornell Lab of Ornithology
2020). Two alternatives to supervised machine learning
classification may require less training data. Template-
based approaches (e.g., Lasseck 2013) were popular
before deep learning became widely available, but
they rely on stereotyped vocalizations and struggle to
generalize (Huetz & Aubin 2012). Signal processing
approaches (reviewed by Xie et al. 2018]) can recognize
curated examples but have not been tested with field
data, with the exception of one recognizer designed for
one species (Dutilleux & Curé 2018).

We developed a new method for automated identifica-
tion of anuran calls that can be applied to real-world field
recordings without requiring extensive training data.
The repeat interval-based bioacoustic identification tool
(RIBBIT) is an open-source detection and classification
algorithm designed to detect vocalizations containing
periodic structure. We applied this tool to detect
vocalizations of the boreal chorus frog (Pseudacris
maculata) (Figure 1) and critically endangered variable
harlequin frog (Atelopus varius) (Figure 1). This tool
provides an efficient method for monitoring populations
of both species for conservation purposes, as well
as a general framework for detecting and classifying
vocalizations of other taxa with periodic structure.

Methods

Anurans often produce calls with a periodic structure in
which short elements within a call repeat at a consistent
rate, called the pulse repetition rate (Ryan 2001). For ex-
ample, a boreal chorus frog call has a pulse repetition
rate of about 15 pulses per second (Figure 2a). We de-
veloped RIBBIT to detect such periodic acoustic signals
occurring in specific frequency ranges.

We calculated a score for each audio clip using RIB-
BIT in three steps. First, we converted the audio sig-
nal (Figure 3a) into a spectrogram, a frequency versus
time representation of audio created using the discrete
Fourier transform (Figure 3b). Second, we created a sum-
marized amplitude signal with one value for each column
of the spectrogram (Figure 3c). Pixels in a preidentified
signal band, containing the frequency range in which
a species vocalizes, make positive contributions to this
amplitude signal, whereas pixels in preidentified noise
bands make negative contributions. Noise bands specify
frequency ranges with undesired sounds, such as back-
ground noise, microphone pops and clicks, or the vocal-
izations of other species. Third, we measured the pres-
ence of periodic structure in the audio by calculating
the power spectral density of the summarized amplitude
signal (Figure 3d). The RIBBIT score is the maximum
value of the power spectral density within a predefined
range of pulse repetition rates. We ran RIBBIT on laptop
computers and on a high-performance computing clus-
ter; typical computation speeds were 25–70 h of audio
analyzed per core hour.

When possible, we assessed the performance of our
models with precision, recall, and F1 scores. Preci-
sion indicates what fraction of the events receiving
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Figure 2. Spectrogram of a (a) boreal chorus frog call and (b) a chorus of many overlapping boreal chorus frog
vocalizations, (c) scalogram (visual representation created from wavelets) of the rapid pulsing within a call of a
variable harlequin frog, and (d) spectrogram of several consecutive variable harlequin frog calls. Graphs have
different time and frequency scales to maximize resolution of features of interest

RIBBIT scores above a threshold actually contained the
target vocalization. Recall indicates what fraction of
all files that contained the target vocalization received
scores above this threshold. The F1 score is the har-
monic mean of the precision and recall scores and
provides an indication of the overall accuracy of the
model.

Calculation of the RIBBIT score

Calculating a RIBBIT score involves creating a spectro-
gram from an audio file, reducing the spectrogram to
a one-dimensional amplitude signal, and calculating the
maximum value of the power spectral density of that sig-
nal within a specified range of pulse repetition rates.

When creating a spectrogram, there is a trade-off be-
tween frequency and time resolution, which is con-
trolled by the spectrogram window size. For example,
in case study 1 (described below) the audio has a 32 kHz
sampling rate. We used 256 audio samples per window,
with no overlapping samples between consecutive win-
dows. Therefore, each vertical column of the resulting
spectrogram represented 256 samples of audio with a
sample rate of 32,000 samples per second, and there-
fore spanned a time period of 1/125 (32,000/256) sec-
onds. This choice of spectrogram window length give
sufficient temporal resolution to detect amplitude modu-
lation up to 62.5 (125/2) pulses per second.

To better isolate the vocalization from other sounds
in a recording, we defined a range of frequencies called
the signal band containing the frequencies in which the
focal species typically vocalizes. We also defined spe-
cific noise bands containing frequencies with undesired

sounds. If the spectrogram is represented as an array of
values across time and frequency S f,t , then the ampli-
tude signal is the per-column sum of values in the signal
band minus the values in the noise bands. With two noise
bands, for example, this calculation is

anet (t ) = α

fs1∑

f = fs0

S f,t − β

fA1∑

f = fA0

S f,t − β

fB1∑

f = fB0

S f,t , (1)

where fs0 and fs1 are, respectively, the low and high
frequencies of the signal band; fA0 and fA1 are, respec-
tively, the low and high frequencies of noise band A; fB0

and fB1 are, respectively, the low and high frequencies of
noise band B; and α and β normalize the contributions
from the signal and noise band by frequency range so
that the maximum possible contributions from the signal
band and the combined noise bands are equal. The α and
β were calculated, respectively, as

α = 1

fs1 − fs0
, (2)

β = 1[(
fA1 − fA0

) + (
fB1 − fB0

)] . (3)

Negative values of the net amplitude signal, which oc-
curred when the noise bands were stronger than the sig-
nal band, were set to zero to create the final amplitude
signal.

Next, we measured the presence of periodic structure
in the amplitude signal by calculating the power spec-
tral density with Welch’s method (Welch 1967). Given
the minimum and maximum pulse repetition rates typi-
cal of the target species, Rl and Rh, the RIBBIT score P
is defined as the maximum value of the power spectral
density within the range [Rl , Rh] (Figure 3d).
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Figure 3. Calculation of RIBBIT score
for boreal chorus frog in three steps:
first, (a) the audio signal is converted
into a spectrogram, which displays (b)
frequency content versus time (the
darker the pixel, the higher the value);
second, values of the spectrogram
inside the signal band are summed
vertically and pixels in the noise
bands are subtracted to create an (c)
amplitude time signal; third, (d) the
power spectral density of the
amplitude signal is calculated. The
RIBBIT score is the maximum value of
the (unnormalized) power spectral
density within the pulse repetition rate
search range

When calculating a RIBBIT score for long recordings,
we divided audio files into segments of a fixed analysis
window length with no overlap between windows. Each
segment yielded a single P, and we called the sequence
of RIBBIT scores for each segment start time the RIB-
BIT score sequence, Pss. Additional analysis, which we
termed a continuity filter, can then be applied to the Pss

to return a positive detection only when multiple adja-
cent clips score above a chosen threshold. The continu-
ity filter calculates a forward-looking moving-minimum
(Pmm) on Pss over n segments:

Pmm (i) = min[Pss (i) , Pss (i + 1) , . . . Pss (i + n − 1)],
(4)

where Pss(i) selects P at each analysis window from
Pss(0) to Pss(l − n) if Pss has length l . We used this conti-
nuity filter in case study 1.

Case study 1

In case study 1, our goal was to automatically detect calls
of the boreal chorus frog. Chorus frogs often vocalize
in large groups, producing a blended aggregate sound
called a chorus (Figure 2b) that can be heard from hun-
dreds of meters away (Garman 1892). These choruses
often begin after dusk and can continue for hours. Dur-
ing the mating season, male boreal chorus frogs produce
loud calls consisting of a series of slightly rising, wide-
band (1.5–6 kHz) pulses at a pulse repetition rate be-
tween 10 and 20 pulses per second (Figure 2a). Other
anurans and birds at this site, including the great plains
toad (Anaxyrus cognatus) and the Western meadowlark
(Sturnella neglecta), sometimes produce vocalizations
with a similar frequency range and pulse repetition rate.

We collected recordings from a mixed-grass prairie
ecosystem in north-central Montana (USA) within the
Northern Great Plains (48N, 108W) from private and
public lands that are used mostly for cattle ranching
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Table 1. Parameters used for the repeat interval-based bioacoustic identification tool (RIBBIT) analysis in case studies of boreal chorus frog and variable
harlequin frog.

Parameter Unit Symbol Boreal chorus frog Variable harlequin frog

Audio sampling rate kHz 32 22.05
Spectrogram window length Samples 256 32
Spectrogram window overlap Samples 0 16
Signal band Hz fs0, fs1 1000, 3300 1500, 2500
Noise band 1 Hz fA0, fA1 100, 1000 0,1000
Noise band 2 Hz fB0, fB1 1800, 2500 3500,4000
Pulse rate (min, max) Hz Pl , Ph 13, 30 120, 150
Analysis window s 2 0.5
Continuity filter Windows n 10 –

operations. The long-term goal of this research is to de-
termine the effects of cattle and bison (Bison bison) graz-
ing on the presence of five anuran species that breed in
the region. We collected audio recordings from 23 sites
during the boreal chorus frog breeding season in May
and June of 2019 with AudioMoth recorders (Hill et al.
2019). We mounted recorders in plastic bags on rebar
stakes, 50 cm above the ground, facing south. We set the
devices to record at a 192 kHz sampling rate on medium
gain and later down sampled audio to 32 kHz. The de-
vices recorded three or six 10-min segments (depending
on the site) starting at dusk for seven consecutive days,
which resulted in a data set of 819 ten-minute files. To
create a human-annotated data set, we extracted the first
60 s of each 10-minute file and reviewed each 60-s file
for boreal chorus frog vocalizations by simultaneously
viewing the spectrogram and listening with closed-back
headphones.

Typical soundscapes recorded from this landscape are
dominated by grassland birds, especially Western Mead-
owlark, Vesper Sparrow (Pooecetes gramineus), and
Grasshopper Sparrow (Ammodramus savannarum)
(Shamon, 2021). The two common sources of geophony
are wind, which creates low-frequency energy in record-
ings, and rain, which creates wide-band pops when it
strikes the recording device. We did not measure the
environmental noise with a calibrated sound pressure
meter. To approximate environmental noise levels, we
first recorded 69 dBA pink noise with an AudioMoth on
medium gain and measured the digital level to be −19
dBFS, calculated as dBFS = 20 log10(

√
2 · rms), where

rms is the root mean square value of the signal. This
yielded a difference of −88 dB between the test signal
in dbA and digital level in dbFS. We then calculated the
digital level of our labeled files as −49 dBFS. Assuming
very coarsely that the soundscape approximates pink
noise, we estimated the average environmental noise to
be around 40 dBA.

We selected the RIBBIT analysis parameters for bo-
real chorus frog detection (Table 1) through experimen-
tation. An analysis window length of 2 s allowed suffi-
cient temporal resolution while capturing entire calls.
We found that using a signal band corresponding to the

entire vocalizing range of boreal chorus frogs yielded
many false positives, so we used a signal band of 1.0–
3.3 kHz to target the strongest frequencies of the vo-
calization. Initial tests returned many files with broad-
band noises such as rain hitting the microphone and
some great plains toad vocalizations. In addition to a low-
frequency noise band (100–1000 Hz), we used a second
noise band within the signal band (1.8–2.5 kHz) to fil-
ter out the relatively narrow-band vocalizations of great
plains toads. Because vocalizations of a group of boreal
chorus frogs normally last for 20 s or more, whereas sim-
ilar vocalizations produced by grassland birds are shorter
and separated by periods of silence, we used a continu-
ity filter to detect only events with high scores for 10
consecutive 2-s analysis windows.

Case study 2

In case study 2, we focused on the variable harlequin,
a diurnal frog found in Panama and Costa Rica (Savage
1972; Pounds & Crump 1994). This species had been ex-
tirpated from large portions of its range due to human ac-
tivity but remained common in less disturbed sites until
the late 1980s. However, many populations crashed dra-
matically, beginning around 1987 in Costa Rica and 1999
in Panama (Crump & Pounds 1985; Pounds & Crump
1994; Lips et al. 2006), following the emergence and
spread of the fungal disease chytridiomycosis (Berger
et al. 1998; Longcore et al. 1999). These declines coin-
cided with a larger pattern of disease-induced extirpa-
tions of anurans in the region (Lips et al. 2006; Craw-
ford et al. 2010) and around the world (Scheele et al.
2019). Many populations of the variable harlequin frog
appeared to have disappeared completely by 1996 in
Costa Rica (González-Maya et al. 2013). In some parts
of Panama, populations declined precipitously follow-
ing disease outbreaks (Crawford et al. 2010), and the
species has been observed infrequently since (González-
Maya et al. 2013; Perez et al. 2014; Voyles et al. 2018).
This species is currently considered critically endangered
(Pounds et al. 2010).

Male variable harlequin frogs call from streamside
territories during the daytime, producing a simple
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croak-like call repeated at semiregular intervals of about
3.5 s (Figure 2d). The call has the most energy between
1500 and 2200 Hz and consists of rapid amplitude modu-
lation at a pulse repetition rate of around 130 pulses per
second (Figure 2c) (Cocroft et al. 1990). This extremely
rapid pulsing is perceived by human listeners as a contin-
uous tone. We show a scalogram in Figure 2c because it
provides higher time resolution than a spectrogram, but
only spectrograms were used during analysis.

For this case study, we deployed AudioMoths to record
at three sites in Panama. We selected the three sites based
on previous observations of individual variable harlequin
frogs following disease-induced declines (Perez et al.
2014; Voyles et al. 2018): two sites near the town of El
Copé, Coclé Province, including inside the G. D. Omar
Torrijos National Park, and one site near the town of
Santa Fe, Veraaguas Province, near Santa Fe National
Park. These areas are tropical moist forests with a dry
season lasting from mid-December to mid-April and a
wet season lasting from mid-April to mid-December. At
each site, we placed eight to 10 AudioMoth recorders
in plastic bags on a streamside transect with 10- to
20-m spacing between devices. We placed AudioMoths
on trees within 1.5 m of the stream and approximately
0.5–1.5 m above the water or ground. We programed
the devices to record on medium gain for 55 min/h, 24
h a day, for three consecutive days during one wet sea-
son (August 2019) and one dry season (December 2019).
This approach generated 2345 h of audio. We resampled
all recordings to 22 kHz and split all files into 60-s clips.

Typical daytime soundscapes recorded from this de-
ployment are dominated by stream noise, which masks
all but the nearest animal vocalizations. The sites featured
high biodiversity with as many as 60 amphibian species
(Crawford et al. 2010). We manually reviewed a random
sample of 300 ten-second files from the field data and
found no vocalizations of variable harlequin frogs. Using
the same procedure as in case study 1, we estimated the
average noise level in the soundscapes as approximately
65 dBA based on a random sample of 1000 sixty-second
files.

Before analyzing the field data, we had just one record-
ing of a variable harlequin frog vocalization collected dur-
ing prior research. We ran RIBBIT to search for amplitude
modulation between 120 and 150 pulses per second (pa-
rameters in Table 1). We chose a short analysis window
of 0.5 s because the call duration was approximately 0.3
s. To achieve the time resolution necessary to resolve 130
pulses per second, we used a spectrogram window size
of only 32 samples.

Results

Case study 1

We successfully detected boreal chorus frogs in the
American Prairie field data with RIBBIT. In a manual re-

view of the selected data, we found chorus frog vocaliza-
tions in 249 of the 819 files. For the classifier, the choice
of a threshold score controlled the trade-off between
high precision (few false positives) and high recall (few
false negatives) (Figure 4b). A histogram of RIBBIT scores
for the labeled files that contained boreal chorus frog vo-
calizations (positives) and those that did not (negatives)
revealed a natural threshold for determining the pres-
ence of boreal chorus frogs of 1.48 × 10−5 (Figure 4a).
At this threshold, the model achieved a precision of 0.90,
a recall of 0.56, and an F1 score of 0.69 on the human-
annotated files. The model generally scored background
noise, rain hitting the microphone, and vocalizations of
confusion species far below this threshold.

Case study 2

We were surprised to successfully detect variable
harlequin frog vocalizations in the field recordings from
Panama. With a logarithmic scale on both axes, the dis-
tribution of RIBBIT scores for the 60-s files appears to
have three distinct parts, with a natural break between
the highest and middle parts at a threshold of 3 × 10−7

(Figure 5). Of the over 120,000 audio clips, 72 scored
above this threshold. Seventy of these 72 files contained
variable harlequin frog vocalizations, for a precision of
0.97 at this threshold. These 70 audio files are publicly
available (see DATA AVAILABILITY). All of the detected
variable harlequin frog vocalizations were captured by
the same AudioMoth recorder during one 3-day deploy-
ment and may have been produced by a single indi-
vidual. We manually inspected a small set of files from
the centers of the middle and lower parts of the score
distribution and found that the lowest part contained
mostly silent files, whereas the middle part contained
mostly files with stream noise. Although the field sites
contain considerable anuran diversity, the model consis-
tently gave low scores to files that contained biotic noise
such as other frogs, insects, and birds and abiotic noise
such as rain and water.

Discussion

In case study 1, we demonstrated that our RIBBIT
method accurately detected the vocalizations of a com-
mon North American frog species, even in the presence
of several common challenges associated with real-world
field data. Using RIBBIT, we were able to detect bo-
real chorus frogs with high precision (0.90) and moder-
ate recall (0.56), despite the prevalence of heavily over-
lapping choruses, background noise, and calls of other
species with similar structure. Using the continuity filter
effectively reduced false positives from similar-sounding
species such as the Western meadowlark, but also caused
false negatives for isolated boreal chorus frog vocaliza-
tions separated by seconds of silence.
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In case study 2, we demonstrated that RIBBIT detected
vocalizations of a rare and endangered species when only
a single human-annotated training file was available. This
detection was particularly surprising because annual hu-
man transect surveys since 2012 have recorded only one
observation of a single individual variable harlequin frog
at this site (J.V., personal observation). Because we did
not have labeled data for this case study, we could not
measure the recall of the classifier and therefore could
not estimate how many variable harlequin frogs may have
been missed. Additionally, because the detected vocaliza-
tions occurred at a single date and site, it is possible that
our reported performance may reflect the call structure
of one or few individual variable harlequin frogs. A larger
dataset with vocalizations of many individuals would be
necessary to determine the robustness of these quantita-
tive results to variation in call structure across individu-
als.

RIBBIT will be most useful in future applications
when the target vocalization and environment meet
three basic conditions. First, the target vocalization
should contain regularly repeated pulses or calls, such as
those produced by many anurans (Ryan 2001) as well as
some birds and insects. For some taxa including anurans,
pulse repetition rate may depend in part on temperature
(Ryan 2001). For these species, the RIBBIT parameters
should be chosen to include the full range of pulse
repetition rates that may occur given the temperature
range at a site. If ambient temperature data are available,
these could be used to tighten this range, potentially
improving model performance. Second, the combination
of signal band and pulse repetition rate of the target
vocalization should be unique among sounds present in
the environment. If two species produce vocalizations
with the same signal band and pulse repetition rates, the
model has no way of differentiating them at the level of a
single file. For example, in case study 1 the RIBBIT model
could not reliably differentiate boreal chorus frog calls
from some elements of the Western Meadowlark song,
which led us to use a continuity filter to reject Western
Meadowlark songs. Third, sufficient information must
be available to select a signal band, noise bands, and
pulse repetition rate for the target vocalization. These
may be drawn from as little as one annotated audio
recording of the vocalization or may come from expert
knowledge.

Future work could expand on our methods in three
specific ways to create even more robust and generaliz-
able automated recognition methods. First, the pulse rate
recognition strategy used by RIBBIT may be generalized
by applying nonlinear transformations to the time
domain of the signal so that systematically nonperiodic
temporal patterns can be recognized. For example, in
pilot experiments, we were able to detect the acceler-
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ating drumming display of the Ruffed Grouse (Bonasa
umbellus) in audio recordings by applying a polynomial
transformation to the amplitude signal. Second, further
work could leverage alternative representations of audio
data. When creating a spectrogram, there is a well-
known trade-off between frequency resolution and time
resolution. Wavelet analysis can create an alternative
representation of audio that overcomes this frequency
and time resolution trade-off (Lang & Forinash 1998). We
used spectrograms in this work because spectrograms
provide sufficient resolution and wavelet analysis is
more computationally expensive. However, future
studies could use wavelet analysis if more frequency and
time resolution is required. Third, additional acoustic
features could be used to augment the RIBBIT score.
Including other features, such as spectral peak tracts,
mel-frequency cepstral coefficients, syllable duration,
and spectral energy measurements, alongside pulse
repetition rate could lead to more robust automated
recognition tools (Xie et al. 2018). In particular, because
the pulse repetition rate focuses heavily on temporal
information, features that characterize the spectral
characteristics of a vocalization could complement this
method.

To aid future investigators in applying RIBBIT to other
communities, we have provided open-source implemen-
tations of RIBBIT in Python and R under the MIT license
(see DATA AVAILABILITY).

In summary, we believe that RIBBIT has the
potential to be a broadly useful tool for automated recog-
nition in anuran conservation research. In two case stud-
ies, the method was specifically robust to three chal-
lenging characteristics of real-world anuran field record-
ings: heavily overlapping choruses, background noise,
and other species with similar vocalizations. In addition,
unlike many supervised machine learning classifiers, RIB-
BIT does not require extensive training data. In fact, with
as little as one example recording, an investigator could
try using RIBBIT to detect any vocalization with a peri-
odic amplitude fluctuation.

Given the global scale of amphibian declines, many
of which have occurred in remote areas of the
tropics, the ability to identify sites where rare and imper-
iled species persist from recordings has the potential to
rapidly improve understanding of threats, such as emerg-
ing diseases (Scheele et al. 2019) and climate change
(Cohen et al. 2019), and to aid in conservation efforts
to protect these species. Acoustic monitoring can allow
biologists to collect massive amounts of audio record-
ings from ecosystems around the globe, but investigators
will need automated recognition tools to help transform
these recordings into species-specific observations. In
combination with acoustic monitoring, we believe that
tools such as RIBBIT have the potential to support world-
wide efforts to mitigate ongoing losses of amphibian bio-
diversity.

Data Availability

The 70 audio files of A. varius vocalizations are publicly
available from Dryad (Kitzes et al. 2021). The Python
implementation of RIBBIT is in the open-source bioa-
coustics software package OpenSoundscape (Kitzes et al.
2020). The R implementation of RIBBIT is in an R
markdown notebook available on github (Lapp 2020a).
Python and R notebooks containing example analyses
for each case study are also available on github (Lapp
2020b).
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