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Effect of scheme transformations on a beta function
with vanishing one-loop term
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It is commonly stated that because terms in the beta function of a theory at the level of # > 3 loops and
higher are scheme dependent, it is possible to define scheme transformations that can be used to remove
these terms, at least in the vicinity of zero coupling. We prove that this is not, in general, possible in the
situation where a beta function is not identically zero but has a vanishing one-loop term.

DOI: 10.1103/PhysRevD.102.056016

I. INTRODUCTION

Let us consider a quantum field theory in d spacetime
dimensions, with some set of fields and a dimensionless
interaction coupling g. Two cases of particular interest are a
non-Abelian gauge theory in d = 4 dimensions, where g is
the gauge coupling, and a scalar theory with a cubic
interaction in d = 6 dimensions, where g is the coefficient
of the cubic interaction. Quantum corrections render g
dependent upon the Euclidean energy/momentum scale u
where it is measured: g = g(u). The dependence of g on u
is determined by the renormalization-group (RG) beta
function of the theory, B, = dg/dt, where dt =dInu
[1]. This function has the series expansion

ﬂg:ga,gaf, (1.1)
/=1

where a = c,¢> [2] and ¢, is a factor arising from
momentum integrals in loop diagrams: ¢, = S,;/(27)¢ with
S, =2x%%/T(d/)2), so, eg., c,=1/(167%), etc. An
equivalent beta function is

da =
=—=2 ‘ 1.2
=g =24 bea (12)

The one-loop coefficient b; is independent of the scheme
used for regularization, and (for mass-independent
schemes) this is also true for the two-loop coefficient b,
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[3,4]. In contrast, the higher-loop coefficients b, with
¢ > 3 are scheme dependent [5]. It was thus expected that,
at least for sufficiently small coupling, as in the deep
ultraviolet (UV) limit of quantum chromodynamics (QCD),
it would be possible to carry out a scheme transformation
that eliminates these terms and yields a beta function with
only one- and two-loop terms [6]. Such a scheme has been
called the ’t Hooft scheme. References [7-10] calculated
explicit formulas for the effect of scheme transformations
on the coefficients of a beta function and used these to
construct scheme transformations that remove terms at loop
order £ > 3 from the beta function. A set of necessary
conditions for a scheme transformation to be physically
admissible was given in [7,8], and it was shown that
although these conditions can easily be satisfied if one
applies a scheme transformation in the vicinity of the origin
in coupling constant space, as in applications to optimized
schemes in perturbative quantum chromodynamics [11],
they are not automatically satisfied and are a significant
constraint on the application of scheme transformations,
when investigating a zero of the beta function away from
the origin. In an asymptotically free theory, such a zero
would be an infrared fixed point (IRFP) of the renormal-
ization group, while in an infrared-free theory, such a zero
would be an ultraviolet fixed point (UVFP) of the RG. An
example of an IRFP occurs in an asymptotically free non-
Abelian gauge theory with sufficiently many massless
fermions [12], while an (exactly solved) example of a
UVFP occurs in the O(N) nonlinear ¢ model ind =2 + ¢
dimensions in the large-N limit [13].

In this work we consider the situation in which a theory
has a beta function (which is not identically zero) with
vanishing one-loop coefficient, b; = 0. We prove that in
this case it is not, in general, possible to construct and apply
a scheme transformation, even in the vicinity of the origin,
a = 0, that removes the scheme-dependent terms b, with
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¢ > 3 in the beta function. We discuss implications for the
study of zeros of the beta function in this type of theory.

II. SCHEME TRANSFORMATIONS

In this section we give a brief review of relevant
methodology on scheme transformations that will be
needed here. One may define a scheme transformation
as a mapping relating a and a’ given by

a=df(d), (2.1)
where f(a’) is the scheme transformation function. If the
theory is free, then its properties must remain the same
under a scheme transformation, so f(0) = 1. The function
f(d') is taken to have the power series expansion

Smax

fla) =1+ Z ko(a')?, (2.2)

where s, may be finite or infinite. The corresponding
Jacobian J = da/da’ has the series expansion

S max

J=14> (s+ k(). (2.3)
s=1
The beta function in the transformed scheme is
po=tt A0l g, 24)
This beta function has the series expansion
B =2 S bl 25)
=1

with a new set of coefficients b/,. As noted above, the one-
loop and two-loop coefficients are left invariant by this
scheme transformation, i.e., b} = b, and b}, = b, [3.4].
Reference [7] presented explicit expressions for the b, in
terms of the b, and k, for loop order 3 < # < 5 and Ref. [8]
extended these up to # = 8 inclusive. For b} and b, these
expressions are [7]

by = by + kiby + (ki — k)b, (2.6)

and

bi‘ = b4 + 2k1b3 + k%bz + (—Zk? + 4k1k2 - 2k3)b1
(2.7)
For the reader’s convenience, we list some of these

expressions for b, with higher # in the Appendix, from
Refs. [7,8].

As noted above, one important application of the study
of schemes and scheme transformations is to calculations
of higher-order corrections in perturbative QCD scattering
processes at high energies. In this application, one is
interested in choosing a scheme such that higher-order
terms are small, so that one can achieve as accurate as
possible a description of experimental data at a given order
in perturbation theory. A different type of application is to
the investigation of a possible zero of the beta function
away from the origin in coupling constant space.

As specified in [7,8], in order for a scheme trans-
formation to be physically acceptable, it must satisfy the
following necessary conditions:

(i) C,: the scheme transformation must map a real

positive a to a real positive @', since a map taking
a > 0to a’ = 0 would be singular, and a map taking
a > 0 to a negative or complex a’ would violate the
unitarity of the theory.

(i) C,: the scheme transformation should not map a
value of a for which perturbation theory may be
reliable, to a value of &' that is so large that
perturbation theory is unreliable.

(iii) Cs: J should not vanish in the region of a and a’ of
interest, or else there would be a pole in Eq. (2.4).

(iv) Cy4: The existence of an IR or UV zero of f has
physical significance and must therefore be scheme
independent. Hence, a scheme transformation must
satisfy the condition that 3, has a zero away from the
origin if and only if , has a corresponding zero
away from the origin.

Clearly, these conditions apply both for a given scheme
transformation and its inverse.

Although b, is nonzero in QCD, there are theories in
which b; may be zero (without the beta function being
identically zero). One example of a theory in which b, can
vanish is a vectorial non-Abelian gauge theory with gauge
group G and N Dirac fermions transforming according to
a representation R of G. The one-loop coefficient of the
beta function is [14]

1
and the two-loop coefficient is [15]
1

3

where C, and C; = C,(R) are the quadratic Casimir
invariants of the adjoint representation and the fermion
representation R, respectively, and 7y = T(R) is the trace
invariant of R [16]. The coefficient b; vanishes if
Nf = Nf,blz’ where
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11C

Nipi, = F:- (2.10)
If Nf = Nf,blz? then bz = CA(7CA + 11Cf>’ which is
positive, so the theory with Ny = N, is IR-free. As
an explicit example, one could take G = SU(2) and R
equal to the fundamental representation, so that
Ny, = 11. That is, an SU(2) gauge theory with these
11 Dirac fermions has »; = 0. Examples can also be given
of chiral gauge theories in which, for a special choice of
gauge group and fermion content, b; = 0. In all of these
cases, the choice of parameters that renders »; = 0 leaves a
nonzero b,.

Moreover, the vanishing of b; can occur in scalar field
theories; a recent example is a scalar theory with a cubic
self-interaction in d = 6 dimensions in which the scalar
transforms as a bi-adjoint representation of a global
SU(N) ® SU(N) symmetry group [17]. In this theory,
the first nonzero term in the beta function is b,, which is
negative. A study of a possible IRFP in this theory was
carried out in [18].

A different type of situation occurs in an N/ = 2 super-
symmetric gauge theory with gauge group SU(N,) and N
matter hypermultiplets. A closed form expression for the
beta function was calculated in [19] (see also [20]). This
beta function has the property that b, =0 if n > 2. By
choosing N appropriately, one can make b; = 0, so that
the beta function vanishes identically. In contrast, here we
discuss theories in which b, =0 (either because of a
special choice of parameters, as in Eq. (2.10), or identically,
as in [17,18]), but the beta function is not identically zero.

III. SCHEMES TO REMOVE TERMS IN
BETA FUNCTION OF ORDER THREE
LOOPS AND HIGHER

An important application of scheme transformations is
to the analysis of possible zero(s) of the beta function
away from the origin. The beta function of an asymp-
totically free non-Abelian gauge theory has an ultraviolet
zero at a = a/(4x) = 0, which is a UVFP. If the theory
contains sufficiently many massless fermions, the (per-
turbatively calculated) beta function may also have an
infrared zero at a nonzero value of the gauge coupling.
The theory is weakly coupled at this IRFP if the number of
fermions is close to the upper limit allowed by asymptotic
freedom, namely, Ny, in a theory with fermions in a
single representation R, and hence is amenable to a
perturbative treatment using series expansions in the
variable Ay, = N, — Ny [12].

Since the terms of loop order # > 3 in the beta function
are scheme dependent, so is the value of the IR zero when
calculated to three-loop or higher-loop order. In order to
understand the physical implications of this IR zero, it is
necessary to assess the effect of scheme dependence on its

value. A study of this dependence was carried out in [8,9]
using several scheme transformations. Related studies were
performed in [21-23].

One type of procedure that would be natural for a
quantitative study of scheme dependence of a zero of
the beta function would be to construct and apply a scheme
transformation that would remove successively higher-loop
terms in the beta function and, at each stage, determine how
this removal shifted the position of the IR zero. Extending
the results of [8], Ref. [9] constructed a set of scheme
transformations Sk, with m > 2 with k; = 0 in Eq. (2.2)
that remove the terms in the beta function at loop order
¢ =3to? = m + 1, inclusive, and determined the range of
a over which S, and S 5 could be applied to study the IR
zero of the beta function of an asymptotically free gauge
theory while satisfying the criteria to avoid introducing
unphysical pathologies. Reference [10] presented a gener-
alized one-parameter class of scheme transformation,
denoted S, x, With m > 2, depending on k,;, with the
property that an Sg ,, ;, scheme transformation eliminates
the Z-loop terms in the beta function of a quantum field
theory from loop order # = 3 to order £ = m + 1, inclu-
sive. A transformation in this class reduces to Sg,, if
k, = 0. These types of scheme transformations have also
been used in the analysis of a possible ultraviolet zero in the
beta functions of a U(1) gauge theory [24] and an O(N)
Ald|* theory [25].

Although our focus here is on scheme transformations,
we note that one can also analyze properties of (physical,
gauge-invariant) operators at the IRFP in a non-Abelian
gauge theory with sufficiently many fermions via series
expansions in powers of A ;. These have the advantage that
they are manifestly scheme independent. This program has
been carried out up to the O((A)?) level in [26,27] and up
to the O((Ay)*) level in [28,29], the latter using the five-
loop beta function [30,31].

To set the stage for our new results, we briefly recall the
procedure for the construction of the Sg, ;, scheme
transformation in [10]. The first step is to use Eq. (2.6)
and solve the equation b} = 0 for k,. This yields the result

by b
k2 = —3 —zk] + k% for SR,m.k]

ith > 2.
b, b wi m >

(3.1)

This suffices for Sg,,. The reason that we solve for k,
instead of k; is that this involves the solution of a linear
equation for k;, whereas the equation b4 = 0 is a quadratic
equation in ki, so one would have to choose which of the
two solutions of this quadratic would be used.

To obtain Sk, with m > 3, removing the £ =3, 4
terms in f,, one substitutes the solution for k, from
Eq. (3.1) into Eq. (2.7) and solves the equation b}, =0
for k;. Again, this is a linear equation, with a unique
solution, which is
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b, 3by  5b,
ky=—"—"+"k +=—=k>+k forS
3 2b1 + bl 1 +2bl 1 + 1 or R,m,k,

with  m > 3. (3.2)

One continues in this manner to determine the k, with s > 4
such as to remove the terms in the beta function up to
successively higher loop orders.

This procedure requires b; to be nonzero, since other-
wise various multiplicative factors involving 1/b in the k;
with s > 2 and higher powers of 1/b; in the k; with s > 4
would be singular. Here we investigate the situation
where b; = 0.

IV. IMPOSSIBILITY OF REMOVING
ALL HIGHER-LOOP TERMS WITH
¢ >3 IF b; =0: CASE WHERE b, # 0

In this and the next section we show that if the one-loop
term in the beta function is zero, i.e., if b; = 0, then it is, in
general, not possible to apply Egs. (2.1) and (2.2) to
transform to a scheme in which all of the scheme-dependent
¢-loop coefficients with £ > 3 are zero. We begin in this
section with the case where b; = 0 and b, # 0. If b, > 0,
then this theory is IR-free, while if b, < 0, the theory is
UV-free (i.e., asymptotically free).

We proceed to analyze scheme transformations intended
to try to set higher-loop coefficients equal to zero. From
Eq. (2.6), it follows that in order to have b} =0, the
unique solution for k; in the scheme transformation (2.1)
and (2.2) is

bs
ky = ——2. 4.1
=7 1)
Substituting this in Eq. (2.7) for b}, we obtain
b2
by =by—>. (4.2)
by

In general, this is nonzero. This proves that if b; = 0, then
there is, in general, no scheme transformation of the form
(2.1) with (2.2) that can be used to render b} zero, and
hence, a fortiori, it is not possible to remove all of the
scheme-dependent terms in the beta function.

For completeness, we comment on the extent to which
one can remove higher-loop terms with Z > 5 in this case.
Substituting the value of k; from (4.1) in Eq. (A1) for b,
we obtain

3bsb, 3b3
—IB L T8 2kyby — k3b,.

by =b
ST by, B

(4.3)

It is always possible to render this b5 = 0 by setting

_bs 3bsby 30} 2kbs

ks =
Ty b2 B b

(4.4)

As is evident from Eq. (4.4), there is thus an infinite set of
pairs (kj, k3) that render b = 0. Note that in the special
case where b3 =0, k3 takes on the unique value k; =
bs/b, while k, is undetermined. Examining Eq. (A2), we
see that with k3 given by Eq. (4.4), one can solve the
equation by = 0 (as a linear equation in k,) for a value of
k4. Similarly, with these k, values chosen, one can solve
b, = 0 (as a linear equation in ks) for ks, and so forth for
higher b,
Thus, in the transformed scheme,

B =2(a')*[by + bi(a')?]
|

2

(4.5)

The function 8, has a formal zero away from the origin at
a = a,, where

(4.6)

This is physical if the expression in the square root is
positive. There are two cases with nonzero b, to consider,
namely, b, < 0 and b, > 0. Let us first consider the case
b, < 0, where the theory is UV-free. Then the condition
that @’ is physical is that b, — (b3/b,) > 0, i.e.,

2

D5 ot IREPif b, =0 and b, <0,

b4 > —|b‘2| (4.7)

This is a necessary condition for the theory to have a
physical IRFP at a., but is not sufficient; the scheme
transformation to the primed scheme must also satisfy the
conditions C;—C, from [7,8] listed above.

Next, we consider the case b, > 0, where the theory
is IR-free. Here the condition that a, >0 is that
b4 — (b%/bz) < O, i.e.,

for UVFP if by =0 and b, >0. (4.8)

Again, this is a necessary but not sufficient condition for the
theory to a physical UVFP at a’; the scheme transformation
must also satisfy conditions C;—C;.

V. IMPOSSIBILITY OF REMOVING ALL
HIGHER-LOOP TERMS WITH ¢ >3
IF b, =0: CASE WHERE 5,=0

Next, we consider the case in which both »; =0 and
b, =0, i.e., the maximal scheme-independent part of the
beta function is zero. Here, Eq. (2.6) reduces to
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(5.1)

In the generic situation in which b3 # 0, this immediately
proves that if by = b, =0, then there is, in general, no
scheme transformation that one can use to remove all higher-
loop terms with £ > 3 in the beta function. Here we assume
that b5 # 0 and comment on the special case b3 = 0 below.
We remark on specific results for other higher-loop coef-
ficients. The condition that b}, =0 can be satisfied by
choosing

ba

ky = .
YT 2,

(5.2)

Substituting this into Eq. (A1), we see that it is possible to
render b = 0 with the choice

2
k2: b5+ﬂ

- 53
b 1 33)

Substituting these values of k; and k, into the expression
(A2), we obtain

2b,bs b3
et (5.4)

by=b
T by T B

This does not contain dependence on any other k, that can be
chosen to make it zero, and, in general, it is nonzero. With k
and k, set equal to their values in Egs. (5.2) and (5.3), there is
an infinite number of values of the pair (ks, k) that can be
used to render &, = 0. Having done this, one can choose ks
to make b = 0. Higher-loop coefficients can be analyzed in
a similar manner.

We next consider the hypothetical case in which not only
b, = 0 and b, = 0, but also one starts in a scheme in which
some finite number of higher-loop coefficients b, with 3 <
¢ < p are zero. As before, we find that it is not, in general,
|

bl = bs + 3k by + (2K2 + ky)bs + (=3 + 3kiky — ks)by + (44 — 11K3ky + 6k ks + 4K2 — 3ky) by,

possible to construct a scheme transformation that renders
all of the b, with £ > p + 1 zero. This is simply proved by
noting that our general results in Refs. [7,8] have the form

blf :bf—i- (f—2>k1bbﬂ_1 + fOI' Lﬂ23, (55)
where the --- in Eq. (5.5) denote a sum of k,-dependent
coefficients times the coefficients b, with 1 <k <7 —2.
Hence, if b, = 0 for 1 < < p, then b;,H = b, Since,

' .1, which proves

by assumption, b, is nonzero, so is pr,

our claim.

VI. CONCLUSIONS

In conclusion, in this work we have proved that if the beta
function of a theory is not identically zero and if the one-loop
term in this beta function is zero, then, in general, it is not
possible to transform to a scheme where all of the scheme-
dependent coefficients b, with £ >3 are zero. We have
given explicit results for several specific cases, including the
case in which by =0 but b, # 0 and the case where
by = b, =0. In the case of greatest physical interest,
namely, where b; = 0 and b, # 0, we have also discussed
resultant necessary (but not sufficient) conditions for the
existence of a zero in the beta function away from the origin.
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APPENDIX: EXPRESSIONS FOR THE BETA
FUNCTION COEFFICIENTS b,

For reference, we list some of the higher-loop coeffi-
cients b, with £ > 5 from Refs. [7,8]:

(A1)

bl = bg + 4k, bs + (4K + 2ky) by + 4k kyby + (24 — 6Kk + 4k ks + 3k3 — 2k4) b,

+ (=8K + 28K3ky — 16k2ks — 20k K2 + 8k ky + 12kyks — 4ks )b,

and

(A2)

bl = by + 5kybg + (Tk3 + 3ky)bs + (2k3 + Tkiky + k3 )by + (kT — 2k3ky + 4k ks + 3k — ky)bs
+ (—4k] + 15k3ky — 93k — 12k k3 + Okyks + Skyky — 3ks)b,

+ (16K — 68Kk, + 40K3ky — 21K3ky + T3K2K3 — 58k koks + 10k ks + 16kyky — 12k3 + 9K2 — 5ke)b,.
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