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It is commonly stated that because terms in the beta function of a theory at the level of l ≥ 3 loops and
higher are scheme dependent, it is possible to define scheme transformations that can be used to remove
these terms, at least in the vicinity of zero coupling. We prove that this is not, in general, possible in the
situation where a beta function is not identically zero but has a vanishing one-loop term.
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I. INTRODUCTION

Let us consider a quantum field theory in d spacetime
dimensions, with some set of fields and a dimensionless
interaction coupling g. Two cases of particular interest are a
non-Abelian gauge theory in d ¼ 4 dimensions, where g is
the gauge coupling, and a scalar theory with a cubic
interaction in d ¼ 6 dimensions, where g is the coefficient
of the cubic interaction. Quantum corrections render g
dependent upon the Euclidean energy/momentum scale μ
where it is measured: g ¼ gðμÞ. The dependence of g on μ
is determined by the renormalization-group (RG) beta
function of the theory, βg ¼ dg=dt, where dt ¼ d ln μ
[1]. This function has the series expansion

βg ¼ g
X∞
l¼1

blal; ð1:1Þ

where a ¼ cdg2 [2] and cd is a factor arising from
momentum integrals in loop diagrams: cd ¼ Sd=ð2πÞd with
Sd ¼ 2πd=2=Γðd=2Þ, so, e.g., c4 ¼ 1=ð16π2Þ, etc. An
equivalent beta function is

βa ¼
da
dt

¼ 2a
X∞
l¼1

blal: ð1:2Þ

The one-loop coefficient b1 is independent of the scheme
used for regularization, and (for mass-independent
schemes) this is also true for the two-loop coefficient b2

[3,4]. In contrast, the higher-loop coefficients bl with
l ≥ 3 are scheme dependent [5]. It was thus expected that,
at least for sufficiently small coupling, as in the deep
ultraviolet (UV) limit of quantum chromodynamics (QCD),
it would be possible to carry out a scheme transformation
that eliminates these terms and yields a beta function with
only one- and two-loop terms [6]. Such a scheme has been
called the ’t Hooft scheme. References [7–10] calculated
explicit formulas for the effect of scheme transformations
on the coefficients of a beta function and used these to
construct scheme transformations that remove terms at loop
order l ≥ 3 from the beta function. A set of necessary
conditions for a scheme transformation to be physically
admissible was given in [7,8], and it was shown that
although these conditions can easily be satisfied if one
applies a scheme transformation in the vicinity of the origin
in coupling constant space, as in applications to optimized
schemes in perturbative quantum chromodynamics [11],
they are not automatically satisfied and are a significant
constraint on the application of scheme transformations,
when investigating a zero of the beta function away from
the origin. In an asymptotically free theory, such a zero
would be an infrared fixed point (IRFP) of the renormal-
ization group, while in an infrared-free theory, such a zero
would be an ultraviolet fixed point (UVFP) of the RG. An
example of an IRFP occurs in an asymptotically free non-
Abelian gauge theory with sufficiently many massless
fermions [12], while an (exactly solved) example of a
UVFP occurs in the OðNÞ nonlinear σ model in d ¼ 2þ ϵ
dimensions in the large-N limit [13].
In this work we consider the situation in which a theory

has a beta function (which is not identically zero) with
vanishing one-loop coefficient, b1 ¼ 0. We prove that in
this case it is not, in general, possible to construct and apply
a scheme transformation, even in the vicinity of the origin,
a ¼ 0, that removes the scheme-dependent terms bl with
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l ≥ 3 in the beta function. We discuss implications for the
study of zeros of the beta function in this type of theory.

II. SCHEME TRANSFORMATIONS

In this section we give a brief review of relevant
methodology on scheme transformations that will be
needed here. One may define a scheme transformation
as a mapping relating a and a0 given by

a ¼ a0fða0Þ; ð2:1Þ

where fða0Þ is the scheme transformation function. If the
theory is free, then its properties must remain the same
under a scheme transformation, so fð0Þ ¼ 1. The function
fða0Þ is taken to have the power series expansion

fða0Þ ¼ 1þ
Xsmax

s¼1

ksða0Þs; ð2:2Þ

where smax may be finite or infinite. The corresponding
Jacobian J ¼ da=da0 has the series expansion

J ¼ 1þ
Xsmax

s¼1

ðsþ 1Þksða0Þs: ð2:3Þ

The beta function in the transformed scheme is

βa0 ≡ da0

dt
¼ da0

da
da
dt

¼ J−1βa: ð2:4Þ

This beta function has the series expansion

βa0 ¼ 2a0
X∞
l¼1

b0lða0Þl ð2:5Þ

with a new set of coefficients b0l. As noted above, the one-
loop and two-loop coefficients are left invariant by this
scheme transformation, i.e., b01 ¼ b1 and b02 ¼ b2 [3,4].
Reference [7] presented explicit expressions for the b0l in
terms of the bl and ks for loop order 3 ≤ l ≤ 5 and Ref. [8]
extended these up to l ¼ 8 inclusive. For b03 and b04 these
expressions are [7]

b03 ¼ b3 þ k1b2 þ ðk21 − k2Þb1 ð2:6Þ

and

b04 ¼ b4 þ 2k1b3 þ k21b2 þ ð−2k31 þ 4k1k2 − 2k3Þb1:
ð2:7Þ

For the reader’s convenience, we list some of these
expressions for b0l with higher l in the Appendix, from
Refs. [7,8].

As noted above, one important application of the study
of schemes and scheme transformations is to calculations
of higher-order corrections in perturbative QCD scattering
processes at high energies. In this application, one is
interested in choosing a scheme such that higher-order
terms are small, so that one can achieve as accurate as
possible a description of experimental data at a given order
in perturbation theory. A different type of application is to
the investigation of a possible zero of the beta function
away from the origin in coupling constant space.
As specified in [7,8], in order for a scheme trans-

formation to be physically acceptable, it must satisfy the
following necessary conditions:

(i) C1: the scheme transformation must map a real
positive a to a real positive a0, since a map taking
a > 0 to a0 ¼ 0would be singular, and a map taking
a > 0 to a negative or complex a0 would violate the
unitarity of the theory.

(ii) C2: the scheme transformation should not map a
value of a for which perturbation theory may be
reliable, to a value of a0 that is so large that
perturbation theory is unreliable.

(iii) C3: J should not vanish in the region of a and a0 of
interest, or else there would be a pole in Eq. (2.4).

(iv) C4: The existence of an IR or UV zero of β has
physical significance and must therefore be scheme
independent. Hence, a scheme transformation must
satisfy the condition that βa has a zero away from the
origin if and only if βa0 has a corresponding zero
away from the origin.

Clearly, these conditions apply both for a given scheme
transformation and its inverse.
Although b1 is nonzero in QCD, there are theories in

which b1 may be zero (without the beta function being
identically zero). One example of a theory in which b1 can
vanish is a vectorial non-Abelian gauge theory with gauge
group G and Nf Dirac fermions transforming according to
a representation R of G. The one-loop coefficient of the
beta function is [14]

b1 ¼ −
1

3
ð11CA − 4NfTfÞ; ð2:8Þ

and the two-loop coefficient is [15]

b2 ¼ −
1

3
½34C2

A − 4ð5CA þ 3CfÞNfTf�; ð2:9Þ

where CA and Cf ¼ C2ðRÞ are the quadratic Casimir
invariants of the adjoint representation and the fermion
representation R, respectively, and Tf ¼ TðRÞ is the trace
invariant of R [16]. The coefficient b1 vanishes if
Nf ¼ Nf;b1z, where
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Nf;b1z ¼
11CA

4Tf
: ð2:10Þ

If Nf ¼ Nf;b1z, then b2 ¼ CAð7CA þ 11CfÞ, which is
positive, so the theory with Nf ¼ Nf;b1z is IR-free. As
an explicit example, one could take G ¼ SUð2Þ and R
equal to the fundamental representation, so that
Nf;b1z ¼ 11. That is, an SU(2) gauge theory with these
11 Dirac fermions has b1 ¼ 0. Examples can also be given
of chiral gauge theories in which, for a special choice of
gauge group and fermion content, b1 ¼ 0. In all of these
cases, the choice of parameters that renders b1 ¼ 0 leaves a
nonzero b2.
Moreover, the vanishing of b1 can occur in scalar field

theories; a recent example is a scalar theory with a cubic
self-interaction in d ¼ 6 dimensions in which the scalar
transforms as a bi-adjoint representation of a global
SUðNÞ ⊗ SUðNÞ symmetry group [17]. In this theory,
the first nonzero term in the beta function is b2, which is
negative. A study of a possible IRFP in this theory was
carried out in [18].
A different type of situation occurs in an N ¼ 2 super-

symmetric gauge theory with gauge group SUðNcÞ and Nf

matter hypermultiplets. A closed form expression for the
beta function was calculated in [19] (see also [20]). This
beta function has the property that bn ¼ 0 if n ≥ 2. By
choosing Nf appropriately, one can make b1 ¼ 0, so that
the beta function vanishes identically. In contrast, here we
discuss theories in which b1 ¼ 0 (either because of a
special choice of parameters, as in Eq. (2.10), or identically,
as in [17,18]), but the beta function is not identically zero.

III. SCHEMES TO REMOVE TERMS IN
BETA FUNCTION OF ORDER THREE

LOOPS AND HIGHER

An important application of scheme transformations is
to the analysis of possible zero(s) of the beta function
away from the origin. The beta function of an asymp-
totically free non-Abelian gauge theory has an ultraviolet
zero at a ¼ α=ð4πÞ ¼ 0, which is a UVFP. If the theory
contains sufficiently many massless fermions, the (per-
turbatively calculated) beta function may also have an
infrared zero at a nonzero value of the gauge coupling.
The theory is weakly coupled at this IRFP if the number of
fermions is close to the upper limit allowed by asymptotic
freedom, namely, Nf;b1z in a theory with fermions in a
single representation R, and hence is amenable to a
perturbative treatment using series expansions in the
variable Δf ¼ Nu − Nf [12].
Since the terms of loop order l ≥ 3 in the beta function

are scheme dependent, so is the value of the IR zero when
calculated to three-loop or higher-loop order. In order to
understand the physical implications of this IR zero, it is
necessary to assess the effect of scheme dependence on its

value. A study of this dependence was carried out in [8,9]
using several scheme transformations. Related studies were
performed in [21–23].
One type of procedure that would be natural for a

quantitative study of scheme dependence of a zero of
the beta function would be to construct and apply a scheme
transformation that would remove successively higher-loop
terms in the beta function and, at each stage, determine how
this removal shifted the position of the IR zero. Extending
the results of [8], Ref. [9] constructed a set of scheme
transformations SR;m with m ≥ 2 with k1 ¼ 0 in Eq. (2.2)
that remove the terms in the beta function at loop order
l ¼ 3 to l ¼ mþ 1, inclusive, and determined the range of
α over which SR;2 and SR;3 could be applied to study the IR
zero of the beta function of an asymptotically free gauge
theory while satisfying the criteria to avoid introducing
unphysical pathologies. Reference [10] presented a gener-
alized one-parameter class of scheme transformation,
denoted SR;m;k1 with m ≥ 2, depending on k1, with the
property that an SR;m;k1 scheme transformation eliminates
the l-loop terms in the beta function of a quantum field
theory from loop order l ¼ 3 to order l ¼ mþ 1, inclu-
sive. A transformation in this class reduces to SR;m if
k1 ¼ 0. These types of scheme transformations have also
been used in the analysis of a possible ultraviolet zero in the
beta functions of a U(1) gauge theory [24] and an OðNÞ
λjϕ⃗j4 theory [25].
Although our focus here is on scheme transformations,

we note that one can also analyze properties of (physical,
gauge-invariant) operators at the IRFP in a non-Abelian
gauge theory with sufficiently many fermions via series
expansions in powers of Δf. These have the advantage that
they are manifestly scheme independent. This program has
been carried out up to the OððΔfÞ3Þ level in [26,27] and up
to the OððΔfÞ4Þ level in [28,29], the latter using the five-
loop beta function [30,31].
To set the stage for our new results, we briefly recall the

procedure for the construction of the SR;m;k1 scheme
transformation in [10]. The first step is to use Eq. (2.6)
and solve the equation b03 ¼ 0 for k2. This yields the result

k2 ¼
b3
b1

þ b2
b1

k1 þ k21 for SR;m;k1 with m ≥ 2: ð3:1Þ

This suffices for SR;2;k1. The reason that we solve for k2
instead of k1 is that this involves the solution of a linear
equation for k1, whereas the equation b03 ¼ 0 is a quadratic
equation in k1, so one would have to choose which of the
two solutions of this quadratic would be used.
To obtain SR;m;k1 with m ≥ 3, removing the l ¼ 3, 4

terms in βa0 , one substitutes the solution for k2 from
Eq. (3.1) into Eq. (2.7) and solves the equation b04 ¼ 0

for k3. Again, this is a linear equation, with a unique
solution, which is

EFFECT OF SCHEME TRANSFORMATIONS ON A BETA … PHYS. REV. D 102, 056016 (2020)

056016-3



k3 ¼
b4
2b1

þ 3b3
b1

k1 þ
5b2
2b1

k21 þ k31 for SR;m;k1

with m ≥ 3: ð3:2Þ

One continues in this manner to determine the ks with s ≥ 4
such as to remove the terms in the beta function up to
successively higher loop orders.
This procedure requires b1 to be nonzero, since other-

wise various multiplicative factors involving 1=b1 in the ks
with s ≥ 2 and higher powers of 1=b1 in the ks with s ≥ 4
would be singular. Here we investigate the situation
where b1 ¼ 0.

IV. IMPOSSIBILITY OF REMOVING
ALL HIGHER-LOOP TERMS WITH
l ≥ 3 IF b1 = 0: CASE WHERE b2 ≠ 0

In this and the next section we show that if the one-loop
term in the beta function is zero, i.e., if b1 ¼ 0, then it is, in
general, not possible to apply Eqs. (2.1) and (2.2) to
transform to a scheme in which all of the scheme-dependent
l-loop coefficients with l ≥ 3 are zero. We begin in this
section with the case where b1 ¼ 0 and b2 ≠ 0. If b2 > 0,
then this theory is IR-free, while if b2 < 0, the theory is
UV-free (i.e., asymptotically free).
We proceed to analyze scheme transformations intended

to try to set higher-loop coefficients equal to zero. From
Eq. (2.6), it follows that in order to have b03 ¼ 0, the
unique solution for k1 in the scheme transformation (2.1)
and (2.2) is

k1 ¼ −
b3
b2

: ð4:1Þ

Substituting this in Eq. (2.7) for b04, we obtain

b04 ¼ b4 −
b23
b2

: ð4:2Þ

In general, this is nonzero. This proves that if b1 ¼ 0, then
there is, in general, no scheme transformation of the form
(2.1) with (2.2) that can be used to render b04 zero, and
hence, a fortiori, it is not possible to remove all of the
scheme-dependent terms in the beta function.
For completeness, we comment on the extent to which

one can remove higher-loop terms with l ≥ 5 in this case.
Substituting the value of k1 from (4.1) in Eq. (A1) for b05,
we obtain

b05 ¼ b5 −
3b3b4
b2

þ 3b33
b22

− 2k2b3 − k3b2: ð4:3Þ

It is always possible to render this b05 ¼ 0 by setting

k3 ¼
b5
b2

−
3b3b4
b22

þ 3b33
b32

−
2k2b3
b2

: ð4:4Þ

As is evident from Eq. (4.4), there is thus an infinite set of
pairs ðk2; k3Þ that render b05 ¼ 0. Note that in the special
case where b3 ¼ 0, k3 takes on the unique value k3 ¼
b5=b2 while k2 is undetermined. Examining Eq. (A2), we
see that with k3 given by Eq. (4.4), one can solve the
equation b06 ¼ 0 (as a linear equation in k4) for a value of
k4. Similarly, with these ks values chosen, one can solve
b07 ¼ 0 (as a linear equation in k5) for k5, and so forth for
higher b0l.
Thus, in the transformed scheme,

βa0 ¼ 2ða0Þ3½b2 þ b04ða0Þ2�

¼ 2ða0Þ3
�
b2 þ

�
b4 −

b23
b2

�
ða0Þ2

�
: ð4:5Þ

The function βa0 has a formal zero away from the origin at
a ¼ az, where

a0z ¼
�
−

b2

b4 −
b2
3

b2

�
1=2

: ð4:6Þ

This is physical if the expression in the square root is
positive. There are two cases with nonzero b2 to consider,
namely, b2 < 0 and b2 > 0. Let us first consider the case
b2 < 0, where the theory is UV-free. Then the condition
that a0z is physical is that b4 − ðb23=b2Þ > 0, i.e.,

b4 > −
b23
jb2j

for IRFP if b1 ¼ 0 and b2 < 0: ð4:7Þ

This is a necessary condition for the theory to have a
physical IRFP at a0z, but is not sufficient; the scheme
transformation to the primed scheme must also satisfy the
conditions C1–C4 from [7,8] listed above.
Next, we consider the case b2 > 0, where the theory

is IR-free. Here the condition that a0z > 0 is that
b4 − ðb23=b2Þ < 0, i.e.,

b4 <
b23
b2

for UVFP if b1 ¼ 0 and b2 > 0: ð4:8Þ

Again, this is a necessary but not sufficient condition for the
theory to a physical UVFP at a0z; the scheme transformation
must also satisfy conditions C1–C4.

V. IMPOSSIBILITY OF REMOVING ALL
HIGHER-LOOP TERMS WITH l ≥ 3

IF b1 = 0: CASE WHERE b2 = 0

Next, we consider the case in which both b1 ¼ 0 and
b2 ¼ 0, i.e., the maximal scheme-independent part of the
beta function is zero. Here, Eq. (2.6) reduces to
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b03 ¼ b3: ð5:1Þ

In the generic situation in which b3 ≠ 0, this immediately
proves that if b1 ¼ b2 ¼ 0, then there is, in general, no
scheme transformation that one can use to remove all higher-
loop terms with l ≥ 3 in the beta function. Here we assume
that b3 ≠ 0 and comment on the special case b3 ¼ 0 below.
We remark on specific results for other higher-loop coef-
ficients. The condition that b04 ¼ 0 can be satisfied by
choosing

k1 ¼ −
b4
2b3

: ð5:2Þ

Substituting this into Eq. (A1), we see that it is possible to
render b05 ¼ 0 with the choice

k2 ¼ −
b5
b3

þ b24
b23

: ð5:3Þ

Substituting these values of k1 and k2 into the expression
(A2), we obtain

b06 ¼ b6 −
2b4b5
b3

þ b34
b23

: ð5:4Þ

This does not contain dependence on any other ks that can be
chosen to make it zero, and, in general, it is nonzero. With k1
and k2 set equal to their values in Eqs. (5.2) and (5.3), there is
an infinite number of values of the pair ðk3; k4Þ that can be
used to render b07 ¼ 0. Having done this, one can choose k5
to make b08 ¼ 0. Higher-loop coefficients can be analyzed in
a similar manner.
We next consider the hypothetical case in which not only

b1 ¼ 0 and b2 ¼ 0, but also one starts in a scheme in which
some finite number of higher-loop coefficients bl with 3 ≤
l ≤ p are zero. As before, we find that it is not, in general,

possible to construct a scheme transformation that renders
all of the bl with l ≥ pþ 1 zero. This is simply proved by
noting that our general results in Refs. [7,8] have the form

b0l ¼ bl þ ðl − 2Þk1bl−1 þ � � � for l ≥ 3; ð5:5Þ

where the � � � in Eq. (5.5) denote a sum of ks-dependent
coefficients times the coefficients bk with 1 ≤ k ≤ l − 2.
Hence, if bl ¼ 0 for 1 ≤ l ≤ p, then b0pþ1 ¼ bpþ1. Since,
by assumption, bpþ1 is nonzero, so is b0pþ1, which proves
our claim.

VI. CONCLUSIONS

In conclusion, in this work we have proved that if the beta
function of a theory is not identically zero and if the one-loop
term in this beta function is zero, then, in general, it is not
possible to transform to a scheme where all of the scheme-
dependent coefficients b0l with l ≥ 3 are zero. We have
given explicit results for several specific cases, including the
case in which b1 ¼ 0 but b2 ≠ 0 and the case where
b1 ¼ b2 ¼ 0. In the case of greatest physical interest,
namely, where b1 ¼ 0 and b2 ≠ 0, we have also discussed
resultant necessary (but not sufficient) conditions for the
existence of a zero in the beta function away from the origin.
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APPENDIX: EXPRESSIONS FOR THE BETA
FUNCTION COEFFICIENTS b0l

For reference, we list some of the higher-loop coeffi-
cients b0l with l ≥ 5 from Refs. [7,8]:

b05 ¼ b5 þ 3k1b4 þ ð2k21 þ k2Þb3 þ ð−k31 þ 3k1k2 − k3Þb2 þ ð4k41 − 11k21k2 þ 6k1k3 þ 4k22 − 3k4Þb1; ðA1Þ
b06 ¼ b6 þ 4k1b5 þ ð4k21 þ 2k2Þb4 þ 4k1k2b3 þ ð2k41 − 6k21k2 þ 4k1k3 þ 3k22 − 2k4Þb2

þ ð−8k51 þ 28k31k2 − 16k21k3 − 20k1k22 þ 8k1k4 þ 12k2k3 − 4k5Þb1; ðA2Þ

and

b07 ¼ b7 þ 5k1b6 þ ð7k21 þ 3k2Þb5 þ ð2k31 þ 7k1k2 þ k3Þb4 þ ðk41 − 2k21k2 þ 4k1k3 þ 3k22 − k4Þb3
þ ð−4k51 þ 15k31k2 − 9k21k3 − 12k1k22 þ 9k2k3 þ 5k1k4 − 3k5Þb2
þ ð16k61 − 68k41k2 þ 40k31k3 − 21k21k4 þ 73k21k

2
2 − 58k1k2k3 þ 10k1k5 þ 16k2k4 − 12k32 þ 9k23 − 5k6Þb1: ðA3Þ
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14, 985 (1976); E. Brézin and J. Zinn-Justin, Phys. Rev. B
14, 3110 (1976); see also A. Polyakov, Phys. Lett. 59B, 79
(1975).

[14] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973);
G. ’t Hooft (unpublished).

[15] W. E. Caswell, Phys. Rev. Lett. 33, 244 (1974); D. R. T.
Jones, Nucl. Phys. B75, 531 (1974).

[16] We recall the general definitions of these group invariants.
Denote TR as a generator of the Lie algebra of a group G in
the representation R. Then the quadratic Casimir invariant
C2ðRÞ is defined by Ta

RT
a
R ¼ C2ðRÞI, where I is the dR × dR

identity matrix, and the trace invariant TðRÞ is defined by
TrRðTa

RT
b
RÞ ¼ TðRÞδab, where 1 ≤ a ≤ oðGÞ, with oðGÞ

the order of the group. We write CA ¼ C2ðAdjÞ and
Cf ¼ C2ðRfÞ. For SUðNcÞ, C2ðAdjÞ ¼ TðAdjÞ ¼ Nc and
for the fundamental representation, Cf ¼ ðN2

c − 1Þ=ð2NcÞ
and Tf ¼ 1=2.

[17] J. A. Gracey, Phys. Rev. D 101, 125022 (2020).
[18] J. A. Gracey, T. A. Ryttov, and R. Shrock, Phys. Rev. D 102,

045016 (2020).
[19] V. A. Novikov, M. A. Shifman, A. J. Vainshtein, and V. I.

Zakharov, Nucl. Phys. B229, 381 (1983).
[20] See also M. A. Shifman and K. V. Stepanyantz, Phys. Rev. D

91, 105008 (2015), and references therein.
[21] T. Ryttov, Phys. Rev. D 89, 016013 (2014); 89, 056001

(2014); 90, 056007 (2014).
[22] G. Choi and R. Shrock, Phys. Rev. D 90, 125029

(2014).
[23] J. A. Gracey and R. M. Simms, Phys. Rev. D 91, 085037

(2015).
[24] R. Shrock, Phys. Rev. D 89, 045019 (2014).
[25] R. Shrock, Phys. Rev. D 90, 065023 (2014); 96, 056010

(2017).
[26] T. A. Ryttov, Phys. Rev. Lett. 117, 071601 (2016).
[27] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 125005

(2016).
[28] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105014

(2016).
[29] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 105004

(2017); 96, 105015 (2017); 97, 025004 (2018).
[30] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Phys. Rev.

Lett. 118, 082002 (2017).
[31] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and A.

Vogt, J. High Energy Phys. 02 (2017) 090.

THOMAS A. RYTTOV and ROBERT SHROCK PHYS. REV. D 102, 056016 (2020)

056016-6

https://doi.org/10.1103/PhysRevD.2.1541
https://doi.org/10.1007/BF01649434
https://doi.org/10.1103/PhysRevD.9.1121
https://doi.org/10.1103/PhysRevD.9.1121
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1103/PhysRevD.18.3998
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1016/0550-3213(73)90376-3
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.065032
https://doi.org/10.1103/PhysRevD.86.085005
https://doi.org/10.1103/PhysRevD.88.036003
https://doi.org/10.1103/PhysRevD.90.045011
https://doi.org/10.1103/PhysRevLett.109.042002
https://doi.org/10.1103/PhysRevLett.109.042002
https://doi.org/10.1103/PhysRevLett.110.192001
https://doi.org/10.1016/0550-3213(82)90035-9
https://doi.org/10.1103/PhysRevD.14.985
https://doi.org/10.1103/PhysRevD.14.985
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1103/PhysRevB.14.3110
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(74)90093-5
https://doi.org/10.1103/PhysRevD.101.125022
https://doi.org/10.1103/PhysRevD.102.045016
https://doi.org/10.1103/PhysRevD.102.045016
https://doi.org/10.1016/0550-3213(83)90338-3
https://doi.org/10.1103/PhysRevD.91.105008
https://doi.org/10.1103/PhysRevD.91.105008
https://doi.org/10.1103/PhysRevD.89.016013
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.89.056001
https://doi.org/10.1103/PhysRevD.90.056007
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevD.90.125029
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1103/PhysRevD.91.085037
https://doi.org/10.1103/PhysRevD.89.045019
https://doi.org/10.1103/PhysRevD.90.065023
https://doi.org/10.1103/PhysRevD.96.056010
https://doi.org/10.1103/PhysRevD.96.056010
https://doi.org/10.1103/PhysRevLett.117.071601
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.94.125005
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.94.105014
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.96.105015
https://doi.org/10.1103/PhysRevD.97.025004
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1007/JHEP02(2017)090

