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Abstract. Motivated by the complex processes of cellular transport when dif-
ferent types of biological molecular motors can move in opposite directions along
protein filaments while also detaching from them, we developed a theoretical
model of the bidirectional motion of driven particles. It utilizes a totally asym-
metric simple exclusion process framework to analyze the dynamics of particles
moving in opposite directions along the lattice of discrete sites while the particles
might also dissociate from the filament in the bulk of the system. Mean-field theo-
retical arguments supported by extensive Monte Carlo simulations are presented
in order to understand how the localized particle dissociations affect the bidi-
rectional dynamics and spontaneous symmetry-breaking phenomena. It is found
that changes in the amplitudes and in the symmetry of dissociation rates lead to
significant modifications in the dynamic properties and in the stationary phase
diagrams. These changes are explained using simple physical arguments. Our
theoretical method clarifies some aspects of microscopic mechanisms of complex
transport phenomena in biological systems.
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1. Introduction

The translocation of several classes of enzymatic molecules, known as molecular motors
or motor proteins, along protein filaments inside living cells plays an important role in
diverse biological processes [1–4]. These motors are the active agents that utilize chem-
ical energy released during the hydrolysis of adenosine triphosphate for their motion
along the filaments and for carrying various cellular cargoes to specific cellular com-
partments [1, 2, 4]. They are crucial for assembly, self-organization, functioning of cells,
cell division and in the transfer of genetic information [4, 5]. These biological processes
exhibit non-zero molecular fluxes, which is a signature of the non-equilibrium state of
living systems.

In recent years, the mechanochemical properties of individual motor proteins have
been thoroughly investigated for both in vivo and in vitro conditions using various
advanced single-motor experimental techniques [4, 6, 7]. These biological motors, how-
ever, are known to function in living cells in large groups. Stimulated by the necessity
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to study their collective motion, several theoretical models have been proposed and
explored [7–10]. One such approach considered the biological transport phenomena as
an example of driven particle diffusive systems that can be analyzed using totally asym-
metric simple exclusion processes (TASEPs) [7, 10]. These are widely known stochastic
models that have been extensively studied and employed for investigating various trans-
port phenomena in chemistry, physics and biology [3, 10–16]. The original TASEP model
was proposed in 1968 to investigate the kinetics of biopolymerization [17]. Since then
these models have been used to provide a better understanding of molecular transport
processes in various fields [7, 10, 18]. Such particle systems are frequently described in
terms of coarse-grained driven lattice gas models wherein the filament is considered as
a one-dimensional (1D) lattice. In TASEP models, the motor proteins are viewed as
particles that hop on the linear tracks obeying the hard core exclusion principle under
some preassigned dynamical rules. The very rich dynamics of motor protein transport
have been explored by incorporating associations, dissociations of particles and other fea-
tures in numerous TASEP models of biological transport phenomena [19–22]. They have
been successfully utilized for clarifying many interesting phenomena such as phase sepa-
rations, boundary-induced phase transitions, shock formations and symmetry breaking
[23–27].

Filament-based intracellular transport involves oppositely directed motor proteins
such as kinesins and dyneins whose direction of movement is prescribed by the polar-
ity of biofilaments [1, 2, 4]. These proteins move various cellular cargoes in opposite
directions. To describe these processes, multi-species-driven diffusion models have been
proposed and explored [10]. Several interesting phenomena, including spontaneous sym-
metry breaking (SSB) when identical particles moving in opposite directions exhibit
different dynamic properties, have been reported [10, 14, 15, 23, 28]. The bridge model
was the first model to discuss the existence of the broken symmetry under similar
dynamical rules for two distinct types of driven particles on the linear track [28]. In
recent years, various versions of the SSB phenomena in bidirectional transport have
been extensively explored. Owing to the existence of the oppositely moving molecular
motors in different states, studies have been carried out to analyze how the collective
motion of motor proteins affects the SSB processes [29, 30]. Further, the understanding
of symmetry breaking has also been extended to non-Markovian bidirectional transport
processes [31]. However, the mechanisms of symmetry-breaking phenomena are still not
fully understood [15, 27, 32].

Stimulated by the bidirectional transport of biological molecular motors along pro-
tein filaments, such as the motion of kinesins and dyneins along microtubules and
myosins-V and myosins-VI along actin filaments [4, 33], in this paper we investigate
the effect of local irreversible dissociations on the dynamics of two types of driven par-
ticles that move in opposite directions along a single linear track. It is argued that the
localized dissociation sites divide the originally inhomogeneous system into two homoge-
neous sub-lattices for which theoretical results are known. A new theoretical framework
based on mean-field approximations is developed and it is applied for investigating the
stationary dynamics, symmetry-breaking phenomena and the dynamic phases in the
system. Specifically, we address the following questions: (1) how do the local irreversible
dissociations influence the bidirectional transport? (2) For symmetric dissociation rates,
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how is the SSB affected by the local dissociations? (3) What changes in the stationary
phase diagram take place in systems with local dissociations? To test our theoretical
predictions, we also performed extensive Monte Carlo simulations. The proposed the-
oretical model clarifies some microscopic mechanisms of effective interactions between
oppositely moving molecular motors in biological transport phenomena.

2. Model

We consider a finite 1D lattice with N sites, each labeled as i = 1, 2, . . . ,N , as shown
in figure 1. The sites i = 1 and i = N designate the left and right boundaries of the
system, respectively, while the sites i = 2, . . . ,N − 1 correspond to the bulk of the
lattice. The progression of two distinct types of particles, labeled as (+) and (−), in
opposite directions is allowed on the lattice. The (+) particles move from left to right
while the (−) particles move from right to left, as shown in figure 1. The particles obey
the hard core exclusion principle that ensures the presence of at most one particle of
each kind at a given site. The left boundary, i = 1, permits the (+) particle to enter the
system with a rate α only if this site is empty. The (+) particles leave the lattice from
the site i = N with a rate β. Similarly, the (−) particles are allowed to enter the vacant
site i = N with a rate α from the right, and they leave the system from the site i = 1
to the left with a rate β. In the bulk, the particles hop to the adjacent empty site in
their specified direction with a unit rate. Also, when both types of particles encounter
each other on the neighboring sites they swap their positions with a rate q (figure 1).
Thus, both types of particles are identical to each other and they can be distinguished
only by the direction of their motion.

In addition, we allow both types of particles to irreversibly dissociate from the lattice
at the special sites. In the present work, we consider these sites to be far away from
the boundaries, and this will ensure that the dissociations do not affect the entrance
and exit to the system in the thermodynamic limit (N � 1). For convenience, it is
assumed that these special sites are k = N/2 and k + 1 (figure 1). If the (+) particle
is found on the lattice site i = k it can dissociate with a rate δ+. Similarly, if the (−)
particle is found on the lattice site i = k + 1 it can dissociate with a rate δ−. The
irreversible dissociation of both types of particles and the motion along the lattice are
considered equally. This means that the particle at the special site will dissociate with
the probability δ±/(1 + δ±), and the horizontal motion will happen with the probability
1/(1 + δ±) if this jump is allowed. For the case when δ+ = δ− = 0, the system reduces to
a simple bidirectional transport TASEP model that has been investigated before [23, 28].
The density profiles for particles in the system are characterized by a set of occupancy
numbers. Distinctively, τ j

i , (i = 1, . . . ,N and j = +,−) corresponds to the occupancy
number of the (+) and (−) particles at the ith site, respectively. Each of them is either
0 (vacant site) or 1 (occupied site).
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Figure 1. A schematic representation of the bidirectional transport model with
local dissociations of the particles at sites far away from the boundaries. Symbols
(+) and (−) denote the two types of particles moving in opposite directions: the (+)
particles translocate from left to right and the (−) particles translocate from right to
left, respectively. The entry and the exit rates for both types of particles are α and
β, respectively. In the bulk, the particles hop with the unit rate in their respective
directions. The two distinct particles are allowed to swap their position with a rate
q when they are found at the neighboring sites. The (+) particle can dissociate
from the site k = N/2 with the rate δ+, and the (−) particle can dissociate from
the site k + 1 with the rate δ−.

3. Theoretical analysis

Multiple asymmetric exclusion processes with homogeneous bulk dynamics have been
successfully analyzed using a variety of theoretical methods [10]. However, the TASEP
model for the bidirectional transport with local dissociations considered in this paper has
inhomogeneous dynamic rules. This makes it very difficult to apply the known theoretical
tools that work for homogeneous systems [10]. At the same time, the inhomogeneity is
local, and it divides the lattice into two coupled homogeneous sub-lattices; the left sub-
lattice L1: i = 1, . . . , k and right sub-lattice L2: i = k + 1, . . . ,N (figure 1). Now, we can
utilize the known results for the homogeneous bidirectional TASEP model to analyze the
properties of our model. This approach of mapping the inhomogeneous TASEP model
into a coupled homogeneous process has been adopted to study numerous dynamic
processes [34–37]. Thus, we view our system as two coupled bidirectional systems with
a connection at the special sites k and k + 1.

Both sub-lattices can be properly coupled by determining the effective rates for the
particles. It is assumed that the (+) particles can exit the left sub-lattice from the site
k with the effective exit rate β+

eff and they can enter the right sub-lattice at i = k + 1
with the effective rate α+

eff. Similarly, the (−) particles moving in the opposite direction
can leave the right sub-lattice from i = k + 1 with the effective rate β−

eff, and they can
enter the left sub-lattice at i = k with the effective rate α−

eff. Then using the stationary
current arguments, the two sub-lattices can be coupled, and we can explicitly calculate
the effective entry and exit rates for both types of particles. After that procedure,
employing the results of the homogeneous TASEP model for bidirectional transport we
are able investigate the dynamic properties of the two sub-lattices separately.
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3.1. Mean-field approximation for homogeneous bidirectional TASEP model

The temporal evolution of the occupancy numbers for (+) and (−) particles can be
written as

d〈τ+
i 〉

dt
= J+

i−1,i − J+
i,i+1,

d〈τ−
i 〉

dt
= J−

i+1,i − J−
i,i−1, (1)

where 〈. . .〉 represents the statistical average over all possible particle configurations.
The terms J+

i,i+1 and J−
i+1,i denote the currents induced in the bulk of the lattice due to

the (+) and (−) particles, respectively, and they are given by

J+
i,i+1 = 〈τ+

i (1− τ+
i+1 − τ−

i+1)〉+ q〈τ+
i τ

−
i+1〉, (2)

J−
i+1,i = 〈τ−

i+1(1− τ+
i − τ−

i )〉+ q〈τ−
i+1τ

+
i 〉. (3)

At the same time, at the boundaries for the currents we have

J+
entr = α〈(1− τ+

1 − τ−
1 )〉, J+

exit = β〈τ+
N 〉, (4)

J−
entr = α〈(1− τ+

N − τ−
N )〉, J−

exit = β〈τ−
1 〉. (5)

As the simplest approach, we assume that the occupancy of the lattice sites is
independent of the occupancy status of the neighboring sites,

〈τ+
i τ

+
i+1〉 ≈ 〈τ+

i 〉〈τ+
i+1〉, 〈τ−

i τ
−
i+1〉 ≈ 〈τ−

i 〉〈τ−
i+1〉, (6)

where the average occupation numbers are denoted as,

〈τ+
i 〉 = ρ+i 〈τ−

i 〉 = ρ−i . (7)

This approximation neglects the nearest-neighbor correlations, and it is known as a
mean-field approximation. It has been widely utilized in investigations of various TASEP
systems [10].

In the stationary state, the particle fluxes become constant and we can label them as
J+ and J−, respectively. For the case when two different particles swap with the unit rate
q = 1, the above expressions of current in the bulk (1 < i < N) given by equations (2)
and (3) reduce to,

J+ = ρ+i (1− ρ+i ), J− = ρ−i (1− ρ−i ). (8)

Meanwhile, for the boundaries we have

J+ = α(1− ρ+1 − ρ−1 ), J+ = βρ+N , (9)

J− = α(1− ρ+N − ρ−N), J− = βρ−1 . (10)

When q = 1 the particles of different types are effectively interacting with each other
only at the boundaries by blocking the entrance/exit sites to particles of other type, and
in the bulk the system can be viewed as two independent single-species TASEP models.
Since we are interested in understanding the general quantitative features associated
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with the presence of local dissociations in the bidirectional transport of driven particles,
in this work we focus only on this simplest scenario. In this case, the modified entry rates
for the (+) and (−) particles, α+ at i = 1 and α− at i = N , respectively, are explained
in [23, 28],

α+ =
J+

J+

α
+ J−

β

, α− =
J−

J−

α
+ J+

β

. (11)

3.2. Coupling of two sub-lattices

In the left sub-lattice L1, the (+) particles enter with the rate α+ at i = 1 and leave
from the site i = k with the rate β+

eff whereas the (−) particles enter at the site i = k
with the rate α−

eff and escape the lattice from the site i = 1 with the rate β. In the right
sub-lattice L2, the (+) particles enter with the rate α+

eff at the site i = k + 1 and exit
the lattice from i = N with the rate β whereas the (−) particles enter at the site i = N
with the rate α− and move out of the lattice from the site i = k + 1 with the rate β−

eff.
We denote the bulk current induced due to the (+) and (−) particles as J+

bulk,Lj
and

J−
bulk,Lj

, respectively, where j = 1 is the left sub-lattice and j = 2 the right sub-lattice.

Consequently, the modified entry rates in equation (11) are rewritten as,

α+ =
J+
bulk,L1

J+
bulk,L1

α
+

J−
bulk,L1

β

, (12)

α− =
J−
bulk,L2

J+
bulk,L2

α
+

J−
bulk,L2

β

. (13)

Now, the stationarity of the particle flux for the (+) particles requires that the exit
current from the left sub-lattice (J+

exit,L1
) at site i = k is equal to the sum of the current

due to dissociation of the particle from the kth site and the jump of the particle from
site k to k + 1, written as,

J+
exit,L1

= J+
off + J+

pass, (14)

where

J+
exit,L1

= β+
effρ

+
k , J+

off = δ+ρ
+
k , J+

pass = ρ+k (1− ρ+k+1). (15)

Then equation (14) implies that

β+
eff = δ+ + 1− ρ+k+1. (16)

Also, the current entering into the right sub-lattice L2 (J+
entr,L2

) at the site i = k + 1 is
equal to the current that passes from site k to k + 1,

J+
entr,L2

= J+
pass, (17)
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where

J+
entr,L2

= α+
eff(1− ρ+k+1), (18)

leading to

α+
eff = ρ+k . (19)

Similarly, for the (−) particles progressing in the opposite direction, utilizing the
condition of the current stationarity, the current leaving the right sub-lattice L2 (J

−
exit,L2

)
at site i = k + 1 is equal to the sum of the current induced due to the dissociation of
(−) particles from site i = k + 1 and current passing from site k + 1 to k, given by,

J−
exit,L2

= J−
off + J−

pass, (20)

where

J−
exit,L2

= β−
effρ

−
k+1, J−

pass = ρ−k+1(1− ρ−k ), J−
off = δ−ρ

−
k+1. (21)

Then equation (20) reduces to

β−
eff = δ− + 1− ρ−k . (22)

The current that enters into the left sub-lattice L1 (J−
entr,L1

) is equal to the current
passing from site k + 1 to k,

J−
entr,L1

= J−
pass, (23)

where

J−
entr,L1

= α−
eff(1− ρ−k ), (24)

yielding

α−
eff = ρ−k+1. (25)

In addition, the current is constant throughout the left and right sub-lattices
separately, producing the following relations,

α+
eff(1− ρ+k+1) = J+

bulk,L2
, β+

effρ
+
k = J+

bulk,L1
,

α−
eff(1− ρ−k ) = J−

bulk,L1
, β−

effρ
−
k+1 = J−

bulk,L2
. (26)

Substituting ρ+k+1, ρ+k , ρ−k and ρ−k+1 from equations (16), (19), (22) and (25) into
equation (26), we observe that for the limiting case δ+ = δ− = 0, the above equations
reduce to J+

bulk,L1
= J+

bulk,L2
and J−

bulk,L1
= J−

bulk,L2
, in agreement with the homogeneous

bidirectional TASEP model. But for δ+ �= 0 and δ− �= 0 we obtain the effective
entrance/exit rates as follows,
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Table 1. Summary of results for a simple homogeneous TASEP model.

Phase region ρ1 ρbulk ρN Current (J)

LD α < min{β, 0.5} α α α(1−α)
β

α(1− α)

HD β < min{α, 0.5} 1− β(1−β)
α

1− β 1− β β(1− β)
MC 0.5 < min{αβ} 1− 1

4α 0.5 1
4β 0.25

α+
eff =

J+
bulk,L1

− J+
bulk,L2

δ+
, (27)

β+
eff =

J+
bulk,L1

δ+

J+
bulk,L1

− J+
bulk,L2

, (28)

α−
eff =

J−
bulk,L2

− J−
bulk,L1

δ−
, (29)

β−
eff =

J−
bulk,L2

δ−

J−
bulk,L2

− J−
bulk,L1

. (30)

These effective rates should help us in quantifying the dynamic phase diagram in the
system. Furthermore, we can determine the density profiles for the existing phases.

The simplest version of a homogeneous TASEP model, where a single type of particle
enters a 1D lattice with the rate α, hops uni-directionally with the rate 1 and leaves
the lattice with the rate β, has been extensively studied [10, 11]. For our theoretical
analysis, it is important to recall the main results of this model. There are three distinct
stationary phases in this system: low density (LD), high density (HD) and maximal
current (MC). For convenience, the conditions of existence, the particle densities and
the fluxes for the different phases are summarized in table 1.

3.3. Existence of stationary phases

Let us investigate what stationary phases might exist in the inhomogeneous bidirectional
TASEP model. To clarify our discussions, we label the possible phases as A−B/C −
D, where A and B describe the phases manifested in the left and right sub-lattices,
respectively, due to the (+) particles. Similarly, C and D illustrate the phases exhibited
by the (−) particles in L1 and L2 segments, respectively. In addition, a phase is denoted
as a symmetric phase if the bulk density of the (+) particles in L1 is equal to the
bulk density of the (−) particles in L2 and vice-versa (i.e. ρ+bulk,L1

= ρ−bulk,L2
and ρ−bulk,L1

=

ρ+bulk,L2
). Otherwise, the phase is designated as an asymmetric phase and labeled in

italics.
Since each sub-lattice can be found in one of three phases (MC, LD or HD), the

theoretical maximal possible number of stationary phases is 34 = 81. However, the great
majority of these phases cannot exist due to various restrictions. For example, because
of the irreversible dissociations of the (+) and (−) particles, if the system is in the MC
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phase in the entering sub-lattice then it will never reach the MC phase in the exiting
sub-lattice. Also, the same sub-lattices cannot exhibit the HD and the MC phases for two
different particles simultaneously because the total density at each lattice site cannot
exceed 1. It can be shown that all these constraints reduce the number of particles to
only six possible dynamic regimes. Let us now discuss explicitly the conditions for the
existence of distinct stationary phases.

3.3.1. MC–LD/LD–MC phase. In this phase, the (+) particles exhibit the MC phase
in the left sub-lattice L1 and the LD phase in the right sub-lattice L2. On the other
hand, the (−) particles are in the LD phase in the left sub-lattice L1 and in the MC
phase in the right sub-lattice L2. The conditions that determine the existence of this
phase are the following,

0.5 < min{α+, β+
eff}, α+

eff < min{β, 0.5}, (31)

0.5 < min{α−, β−
eff}, α−

eff < min{β, 0.5}. (32)

The currents in the two sub-lattices are given by,

J+
bulk,L1

= 0.25, J+
bulk,L2

= α+
eff(1− α+

eff), (33)

J−
bulk,L1

= α−
eff(1− α−

eff), J−
bulk,L2

= 0.25. (34)

We begin by solving equations (33) and (34) using equations (27) and (29),
respectively, for the effective entry rates of two distinct particles, yielding

α±
eff =

1

2

[
1 + δ± −

√
δ±(2 + δ±)

]
. (35)

The effective exit rates are then computed by solving equations (28) and (30),

β±
eff =

1

4α±
eff

. (36)

At the boundaries, the modified entry rates are evaluated by substituting the expressions
of the current from equations (33) and (34) into equations (12) and (13), producing

α± =
αβ

β + α(1− 4δ∓α
∓
eff)

. (37)

The explicit expressions of the effective entry and exit rates, and the modified entry
rates simultaneously satisfying equations (31) and (32) help us to evaluate the region of
existence of this phase for a general set of values of the dissociation rates. In addition,
the calculated densities in each sub-lattice are summarized in table 2.

One can easily observe that for the symmetric rates δ+ = δ− from equations (35)–(37)
we have α+ = α−, α+

eff = α−
eff and β+

eff = β−
eff. As a result, the density of the (+) particles in

L1(L2) is equal to the density of the (−) particles in L2(L1) that classifies this dynamic
regime as the symmetric phase. However, for the asymmetric dissociation rates δ+ �= δ−,
we have α+ �= α−, α+

eff �= α−
eff and β+

eff �= β−
eff. Then the densities of the particles in the LD
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Table 2. Densities in the MC–LD/LD–MC phase.

ρ1 ρbulk,L1
ρk ρk+1 ρbulk,L2

ρN

(+) 1− 1
4α+ 0.5 1

4β+
eff

α+
eff α+

eff
α+
eff(1−α+

eff)
β

(−)
α−
eff(1−α−

eff)
β α−

eff α−
eff

1

4β−
eff

0.5 1− 1
4α−

phase are unequal to each other, making MC–LD/LD–MC in this case the asymmetric
phase. Furthermore, for δ+ = δ− = 0, equations (35)–(37) reduce to α±

eff =
1
2
, β±

eff =
1
2

and α± = αβ
α+β

that agrees with the existence of the MC/MC phase for the bidirectional

homogeneous TASEP model [23, 28].

3.3.2. LD–HD/LD–LD phase. Without any loss of generality, we might consider the
(+) particles to be in the LD phase in the L1 segment and in the HD phase in the L2

segment. At the same time, the (−) particles are in the LD phase in both sub-lattices
L1 and L2. The LD–HD/LD–LD phase is specified by the following conditions,

α+ < min{β+
eff, 0.5}, β < min{α+

eff, 0.5}, (38)

α− < min{βeff, 0.5}, α−
eff < min{β, 0.5}. (39)

The bulk currents in both the sub-lattices are given by,

J+
bulk,L1

= α+(1− α+), J+
bulk,L2

= β(1− β), (40)

J−
bulk,L1

= α−
eff(1− α−

eff), J−
bulk,L2

= α−(1− α−). (41)

Substituting the current expressions from equations (40) and (41) into (13) gives us the
modified entry rate for the (−) particles,

α− =
1 + α−

√
(1 + α)2 − 4αβ

2
. (42)

Further, solving equation (29) provides the expression of the effective entry rate α−
eff as,

α−
eff =

1 + δ− −
√

4α(α− − β) + (1− δ−)2

2
. (43)

Now, using the current in each sub-lattice from equation (30) leads to the effective exit
rate of the (−) particles from L2,

β−
eff =

α(2β − α−)

2α−
eff

. (44)

Next, the modified entry rate α+ is computed from equation (12),

α+ =
1

2

⎛
⎝1 + α−

√
4αJ−

bulk,L1

β
+ (1− α)2

⎞
⎠ (45)
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Table 3. Densities in the LD–HD/LD–LD phase.

ρ1 ρbulk,L1
ρk ρk+1 ρbulk,L2

ρN

(+) α+ α+ α+(1−α+)

β+
eff

1− β(1−β)

α+
eff

1− β 1− β

(−)
α−
eff(1−α−

eff)
β α−

eff α−
eff

α−(1−α−)

β−
eff

α− α−

which is used in equations (27) and (28) to obtain α+
eff and β+

eff. These expressions are
then utilized to determine the parameter range of this phase that satisfies equations (38)
and (39) for varying values of the dissociation rates. The corresponding densities in the
two sub-lattices are summarized in table 3.

Now, one can clearly observe that, whether the dissociation rates are symmetric or
asymmetric, the sub-lattice L2 being in the HD phase for the (+) particles displays
ρ+bulk,L2

> 0.5 and the sub-lattice L1 being in the LD phase for the (−) particles shows

ρ−bulk,L1
< 0.5. Hence, the densities in the two sub-lattices always remain unequal to each

other, and this stationary regime is always the asymmetric phase.

3.3.3. HD–HD/LD–LD phase. Using a similar approach, we assume that the (+) par-
ticles are in the HD phase in both the sub-lattices, while the (−) particles are in the
LD phase in both sub-lattices. This phase exists when,

β+
eff < min{α+, 0.5}, β < min{α+

eff, 0.5}, (46)

α− < min{β−
eff, 0.5}, α−

eff < min{β, 0.5}. (47)

For this phase, the particle fluxes in the sub-lattices are given by,

J+
bulk,L1

= β+
eff(1− β+

eff), J+
bulk,L2

= β(1− β), (48)

J−
bulk,L1

= α−
eff(1− α−

eff), J−
bulk,L2

= α−(1− α−). (49)

Using equation (28), we first evaluate the effective exit rate for the (+) particles
from the left sub-lattice L1,

β+
eff =

1 + δ+ −
√
(1− 2β)2 + δ+(δ+ − 2)

2
. (50)

Since β+
eff < 0.5, the above equation leads to the following inequality,

β <
1−

√
2δ+

2
, (51)

which implies that this phase exists only when δ+ < 0.5. The modified and the effec-
tive entry rates for the (+) particles are obtained by solving equations (12) and (27),
respectively, yielding

α+
eff =

1− δ+ +
√

(δ+ − 1)2 − 4J+
bulk,L2

2
, α+ =

αA

2αJ−
bulk,L1

+ A
(52)
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Table 4. Densities in the HD–HD/LD–LD phase.

ρ1 ρbulk,L1
ρk ρk+1 ρbulk,L2

ρN

(+) 1− β+
eff(1−β+

eff)
α+ 1− β+

eff 1− β+
eff 1− β(1−β)

α+
eff

1− β 1− β

(−)
α−
eff(1−α−

eff)
β α−

eff α−
eff

α−(1−α−)

β−
eff

α− α−

where

A = β
[
2J+

bulk,L2
+ δ+(2β

+
eff − 1)

]
. (53)

Now, since the (−) particles are in the LD phase in both sub-lattices, the expressions
for the corresponding effective and modified rates are given by equations (42)–(44).
Combining all the obtained expressions for entry and exit for two distinct particles,
depending on the conditions presented in equations (46) and (47) one can specify the
conditions for the existence of this dynamic regime. For this phase, the densities of both
types of particles are given in table 4. Since the (+) particles exhibit the HD phase in
both sub-lattices, the density is greater than 0.5, whereas (−) particles are in the LD
phase for which L1 and L2 exhibit a density less than 0.5. As a consequence, whether
the dissociation rate is symmetric or asymmetric, this phase is always an asymmetric
phase. For the limiting case δ+ = δ− = 0, the conditions for this phase reduce to HD/LD
phase with uniform density as observed in bidirectional homogeneous systems [23, 28].

3.3.4. MC–LD/LD–LD phase. For this phase, let us assume for convenience that the
(+) particles are in the MC and in the LD phases in sub-lattices L1 and L2, respectively.
At the same time, both sub-lattices must have the LD phase for the (−) particles. The
conditions for the existence of this phase satisfy

0.5 < min{α+, β+
eff}, α+

eff < min{β, 0.5}, (54)

α− < min{β−
eff, 0.5}, α−

eff < min{β, 0.5}. (55)

The bulk currents in the sub-lattices are expressed as,

J+
bulk,L1

= 0.25, J+
bulk,L2

= α+
eff(1− α+

eff), (56)

J−
bulk,L1

= α−
eff(1− α−

eff), J−
bulk,L2

= α−(1− α−). (57)

The effective and modified entry and exit rates for the (+) particles have already
been computed in equations (35)–(37). The expression of α+

eff can now be utilized to
evaluate the modified entry rate for the (−) particles (α−) from equation (13),

α− =
1

2

⎛
⎝1 + α−

√
4αJ+

bulk,L2

β
+ (1− α)2

⎞
⎠ (58)
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Table 5. Densities in the MC–LD/LD–LD phase.

ρ1 ρbulk,L1
ρk ρk+1 ρbulk,L2

ρN

(+) 1− 1
4α+ 0.5 1

4β+
eff

α+
eff α+

eff
α+
eff(1−α+

eff)
β

(−)
α−
eff(1−α−

eff)
β α−

eff α−
eff

α−(1−α−)

β−
eff

α− α−

Using equation (29), the effective entry rate of the (−) particles into the L2 segment is
given by,

α−
eff =

1 + δ− −
√

(1 + δ−)2 − 4J−
bulk,L2

2
(59)

Further, utilizing the current induced in L1 and L2 due to the (−) particles, equation (30)
provides the effective exit rate β−

eff. These explicit relations determine the region satisfy-
ing equations (54) and (55) that describes the MC–LD/LD–LD phase in the stationary
regime. In each of the sub-lattices, the densities of two types of particles are summarized
in table 5.

One can see that in the left sub-lattice L1, the bulk density of the (+) particles
is 0.5 while in the right sub-lattice L2, the (−) particles exhibit the LD phase where
the density is less than 0.5. Hence, there is no pair of dissociation rates δ+ and δ− for
which ρ+bulk,L1

= ρ−bulk,L2
= 0.5. This shows that the MC− LD/LD− LD phase is always

the asymmetric phase for any chosen values of the dissociation rates.

3.3.5. MC–HD/LD–LD phase. In this phase, we again assume that the (+) particles
are in the MC phase in the left sub-lattice and in the HD phase in the right sub-lattice,
while the (−) particles are in the LD phase in both sub-lattices. The conditions that
determine the existence of the MC–HD/LD–LD phase are

0.5 < min{α+, β+
eff}, β < min{α+

eff, 0.5}, (60)

α− < min{β−
eff, 0.5}, α−

eff < min{β, 0.5}. (61)

The particle fluxes are given by,

J+
bulk,L1

= 0.25, J+
bulk,L2

= β(1− β), (62)

J−
bulk,L1

= α−
eff(1− α−

eff), J−
bulk,L2

= α−(1− α−). (63)

The effective and modified rates for the (−) particles have already been evaluated
above in equations (42)–(44). The effective entry rate of the (+) particles into the right
sub-lattice is obtained by solving equation (27) that yields,

α+
eff =

(2β − 1)2

4δ+
. (64)
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Table 6. Densities in the MC–HD/LD–LD phase.

ρ1 ρbulk,L1
ρk ρk+1 ρbulk,L2

ρN

(+) 1− 1
4α+ 0.5 1

4β+
eff

α+
eff 1− β 1− β

(−)
α−
eff(1−α−

eff)
β

α−
eff α−

eff
α−(1−α−)

β−
eff

α− α−

Utilizing the bulk current expressions from equations (62) and (63) in equation (28)
yields

β+
eff =

δ+
1− 4β(1− β)

. (65)

The modified entry rate of the (+) particles entering the left sub-lattice is evaluated
from equation (12). The parameter range for which this phase exists is determined by
the conditions given in equations (60) and (61). The particle densities in the L1 and L2

segments are summarized in table 6.
Furthermore, the (+) particles are in the MC phase in the sub-lattice L1, and the

corresponding bulk density for these particles is 0.5. At the same time, the bulk density
of the (−) particles in L2 is less than 0.5. Therefore, for no values of δ+ and δ− we can
have ρ+bulk,L1

= ρ−bulk,L2
. This observation suggests that the MC–HD/LD–LD phase is also

always the asymmetric phase.

3.3.6. LD–LD/LD–LD phase. In this phase, the two types of particles are in the LD
phase in both sub-lattices L1 and L2. The conditions that specify the existence of this
phase are,

α+ < min{β+
eff, 0.5}, α+

eff < min{β, 0.5}, (66)

α− < min{β−
eff, 0.5}, α−

eff < min{β, 0.5}. (67)

The particle currents in the system are given by,

J+
bulk,L1

= α+(1− α+), J+
bulk,L2

= α+
eff(1− α+

eff), (68)

J−
bulk,L1

= α−
eff(1− α−

eff), J−
bulk,L2

= α−(1− α−). (69)

We obtain the modified entry rates by solving equations (12) and (13), producing

α+ =
1

2

⎛
⎝1 + α+

√
4αJ−

bulk,L1

β
+ (1− α)2

⎞
⎠ , (70)

α− =
1

2

⎛
⎝1 + α+

√
4αJ+

bulk,L2

β
+ (1− α)2

⎞
⎠ . (71)
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Table 7. Density in LD–LD/LD–LD phase.

ρ1 ρbulk,L1
ρk ρk+1 ρbulk,L2

ρN

(+) α+ α+ α+(1−α+)

β+
eff

α+
eff α+

eff
α+
eff(1−α+

eff)
β

(−)
α−
eff(1−α−

eff)
β α−

eff α−
eff

α−(1−α−)

β−
eff

α− α−

Further, solving equations (27)–(30) provides the following expressions for the effective
entry and exit rates,

α+
eff =

1 + δ+ −
√

(δ+ + 1)2 − 4J+
bulk,L1

2
, β+

eff =
J+
bulk,L1

α+
eff

, (72)

α−
eff =

1 + δ− −
√

(δ− + 1)2 − 4J−
bulk,L2

2
, β−

eff =
J−
bulk,L2

α−
eff

. (73)

As before, we summarize the particle densities in both sub-lattices in table 7.
Since both types of particles are in the LD phase in the left and right sub-lattices,

this phase can be symmetric. But at the same time, we might have ρ+bulk,L1
�= ρ−bulk,L2

and ρ−bulk,L1
�= ρ+bulk,L2

, and this suggests that this phase might also be asymmetric. Thus,
we predict that depending on the values and symmetry of the dissociation rates, the
LD–LD/LD–LD phase might be symmetric or asymmetric.

4. Results and discussions

Our theoretical approach involves several approximations, and in order to test its valid-
ity we performed extensive Monte Carlo simulations for the bidirectional transport of
driven particles with local dissociations. The computer simulations are carried out by
considering lattices with a size N = 1000 for 2× 109 time steps and neglecting the first
5% of the time steps to ensure that the system reaches the steady state. We analyze the
system dynamics for two different scenarios: when the dissociation rates are symmetric,
δ+ = δ− = δ, and when the dissociation rates are asymmetric, δ+ �= δ−.

4.1. Case 1: symmetric dissociation rates (δ+ = δ− = δ) and SSB

To explore the effect of dissociation rates on the properties of the system, we investi-
gate the possible stationary phases by varying the entrance and exit rates α and β. In
the special case δ = 0, our model reduces to a well-studied homogeneous bidirectional
TASEP model [23, 28]. To better understand the dynamic properties of our system
with dissociations, we begin our discussions by recalling the important features of the
model without dissociations. The phase diagram for this limiting case is presented in
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Figure 2. Stationary phase diagrams for (a) δ = 0, (b) δ = 0.1, (c) δ = 0.5, (d)
δ = 0.7, (e) δ = 1. Solid lines are the phase boundaries obtained theoretically.
Symbols represent the Monte Carlo simulations results. Note that the asymmetric
LD–LD/LD–LD phase is at the border line between the symmetric LD–LD/LD–LD
and other asymmetric phases. Asymmetric phases are labeled in italics.
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Figure 3. Average density profiles for different stationary phases with symmetric
dissociation rates δ+ = δ− = δ. (a), (b) The symmetric density profiles, whereas
(c)–(e) are the asymmetric profiles. The parameter set (α,β, δ) is given in the sub-
caption of each density profile. Red and green filled markers are the simulated results
for (+) and (−) particles, respectively. Corresponding red and green solid lines are
theoretical results that are in good agreement with Monte Carlo simulations.

Figure 4. Average density profiles for asymmetric LD–LD/LD–LD phase with
symmetric dissociation rates which is found to be restricted to a line. Since the the-
oretical phase boundaries are not in exact agreement with simulations, we present it
as a density profile for two different sets of parameters with simulations and theory
in (a) and (b) respectively for (α,β, δ) stated in sub-captions.
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Figure 5. Particle density histograms P (ρ+L1
, ρ−L2

) and P (ρ−L1
, ρ+L2

) for the symmet-
ric dissociation rate δ = 0.5: (a) symmetric phase MC–LD/LD–MC with α = 2.5,
β = 0.9 where we can clearly observe ρ+L1

= ρ−L2
= 0.5 and ρ−L1

= ρ+L2
= 0.2 < 0.5; and

(b) asymmetric phase LD–HD/LD–LD with α = 2.5, β = 0.1 where ρ+L1
= 0.08,

ρ−L2
= 0.32, ρ+L2

= 0.06 and ρ−L1
= 0.9 that satisfies ρ+L1

< ρ−L2
< 0.5, ρ+L2

< 0.5 and
ρ−L1

> 0.5.

figure 2(a). It was found that there are two symmetric phases: MC–LD/LD–MC and
LD–LD/LD–LD. Despite the symmetry of transition rates for the (+) and (−) particles,
the system also exhibits two asymmetric phases, LD–LD/LD–LD and HD–HD/LD–LD.
Calculations also show that in the thermodynamic limit the region of existence for the
LD–LD/LD–LD phase is restricted to a line corresponding to the border between the
symmetric LD–LD/LD–LD and asymmetric HD–HD/LD–LD phases. Since no bulk-
induced dynamics are involved in the homogeneous system, the density of both particles
remains uniform throughout the lattice.

Introducing the dissociation rate δ breaks the translational symmetry of the system
and it changes the stationary phase diagram. We observed that as soon as δ becomes
non-zero, the number of phases increases from four to five in comparison to that obtained
for δ = 0. A new asymmetric phase LD–HD/LD–LD appears as shown for δ = 0.1 in
figure 2(b). Further increase in the dissociation rate eliminates the asymmetric phase
HD–HD/LD–LD for δ � 0.5. This is because the rate of leaving the sub-lattice L1

becomes too large and it violates the condition for the existence of this phase given

in equation (51) (β < 1−
√
2δ

2
). Four stationary phases (two symmetric and two asym-

metric) are observed for δ = 0.5 as presented in figure 2(c). In addition, due to the
significant increase in the effective exit rate β+

eff, the symmetric MC–LD/LD–MC phase
expands. This also leads to the appearance of a new asymmetric MC–HD/LD–LD phase
in the stationary diagram, which grows with the increase in the dissociation rate; see
figures 2(d) and (e).

The density profiles for systems with symmetric dissociation rates are presented in
figure 3. One can clearly distinguish the symmetric phases (figures 3(a) and (b)) where
the density profiles are symmetric with respect to the location of the dissociation sites
(x = 0.5) from the asymmetric phases (figures 3(c)–(e) and 4) where such symmetry is
broken. We also notice that our mean-field theoretical approach is excellent in describing
the symmetric phase, while it has only limited success for the asymmetric phases. The
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Figure 6. Bulk densities at the peaks of distributions calculated via Monte Carlo
simulations for increasing rate β with the fixed rate α = 1.5. (a) Symmetric disso-
ciation rate δ = 0.1. (b) Asymmetric dissociation rates δ+ = 0.5 and δ− = 0.1. The
two types of particles (+) and (−) are represented in red and green color, respec-
tively. Open circles and stars denote the density of particles on sub-lattice L1 and
L2, respectively.

computer simulation results for densities in some sub-lattices agree only qualitatively
with theoretical predictions. In addition, the location of phase boundaries is not in exact
agreement with Monte Carlo simulations.

One of the most striking features of the bidirectional transport of driven particles is
the observation of the SSB. To investigate this phenomenon in a system with local dis-
sociations via Monte Carlo simulations, we probe particle density histograms P (ρ+L1

, ρ−L2
)

and P (ρ−L1
, ρ+L2

) where ρ+Li
and ρ−Li

are the instantaneous densities of the (+) and (−) par-
ticles, respectively, on the sub-lattice Li (i = 1, 2). Here, we chose such pairs because the
occurrence of the symmetric and asymmetric phase depends on the particle density of
the (+) particles in L1 and the (−) particles in L2, and on the (+) particles in L2 and the
(−) particles in L1. A phase is labeled as a symmetric phase for the case when the peaks
in density distribution satisfy ρ+L1

= ρ−L2
and ρ−L1

= ρ+L2
, otherwise the phase is labeled

as an asymmetric phase. For the symmetric dissociation rate δ = 0.5, typical density
histograms for the symmetric MC–LD/LD–MC and the asymmetric LD–HD/LD–LD
phases are presented in figure 5. One can see in figure 5(b) that the peaks in the dis-
tributions are achieved for ρ+L1

= ρ−L2
= 0.5 and ρ+L2

= ρ−L1
< 0.5 that correspond to the

symmetric MC–LD/LD–MC phase. Figure 5(b) demonstrates that the peaks occur for
ρ+L1

< ρ−L2
< 0.5 and for ρ+L2

< 0.5 and ρ−L1
> 0.5, which corresponds to the asymmetric

LD–HD/LD–LD phase. One can also observe the symmetry breaking by monitoring
the changes in the densities during the phase transitions as illustrated in figure 6 for
a fixed value of α = 1.5. Figure 6(a) presents the case of the symmetric dissociation
rates where the SSB phenomenon might be observed in the system. We found that for
smaller values of the rate β, the density of (+) particles in L1(L2) [represented by red
open circles (stars)] is not equal to the density of (−) particles in L2(L1) [represented
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Figure 7. Stationary phase diagrams for increasing the dissociation rate δ+ with
the fixed dissociation rate δ− = 0.1. Solid lines are theoretical phase boundaries,
while symbols represent the results from simulations.

by green stars (open circles)], and this corresponds to the asymmetric phases, whereas
beyond a critical value of the rate β these densities are always equal to each other, which
corresponds to the symmetric phases. Based on similar arguments, for the asymmetric
dissociation rates, figure 6(b) illustrates the possibility of having only the asymmetric
phase for all values of β. These results indicate that the SSB phenomena occur even in
bidirectional transport with local dissociations. The dissociations only affect the nature
of the emerging asymmetric phases.

4.2. Case 2: asymmetric dissociation rates (δ+ �= δ−)

Now let us investigate the bidirectional transport when the dissociation rates of the
two distinct particles are asymmetric δ+ �= δ− and the SSB phenomena cannot happen.
Due to the different dissociation rates, even if both particles exhibit the same phase
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Figure 8. Stationary phase diagrams for increasing the dissociation rate δ+ with
the fixed dissociation rate δ− = 0.5. Solid lines are theoretical phase boundaries,
while symbols represent the results from simulations.

the densities of (+) and (−) particles are not equal in the sub-lattices. Therefore, only
asymmetric phases exist in the system.

To explore the effect of asymmetric dissociation rates on the topology of station-
ary phase diagrams, we investigate our system for three different cases by choosing
fixed small, intermediate or large values of δ−, but simultaneously varying the rate δ+.
The results of our calculations and computer simulation predictions for the asymmetric
dissociation rate are presented in figures 7–9.

When one of the dissociation rates is small (δ− = 0.1), varying the other dissociation
rate strongly influences the phase diagram; see figure 7. Immediately as we reach δ− �= δ+
the number of stationary phases increases to six. Two new phases, MC–LD/LD–LD and
MC–HD/LD–LD, appear and grow in size because increasing the dissociation rate δ+
allows for larger fluxes of positive particles to go through the system, while the fluxes of
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Figure 9. Stationary phase diagrams for increasing the dissociation rate δ+ with
the fixed dissociation rate δ− = 0.9. Solid lines are theoretical phase boundaries,
while symbols represent the results from simulations.

negative particles do not increase. One symmetric phase, LD–LD/LD–LD, disappears
because the symmetry conditions for the rates are not satisfied anymore.

We now focus on the properties of the system for varying values of δ+ with the
intermediate value δ− = 0.5. The results of theoretical calculations and computer sim-
ulations are illustrated in figure 8. Here the changes in the stationary phases are more
complex. One can see that for δ+ = 0.1 < δ−, the same six asymmetric phases as dis-
cussed above can be in the system (figure 8(a)). Increasing δ+ (from 0.1 to 0.5) leads to
shrinking of the sizes of the HD–HD/LD–LD, MC–LD/LD–LD and MC–LD/LD–LD
phases. Ultimately, when the rates are symmetric δ+ = δ− only four phases are realized
in the system as presented in figure 8(b). However, further increase in δ+ > δ− changes
the stationary phase diagram again: the phases MC–HD/LD–LD and MC–LD/LD–LD
reappear and expand in size; see figure 8(b). As we argued above, the increase in the
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Figure 10. Density profiles for all possible stationary phases with the asymmet-
ric dissociation rates δ+ = 0.2 and δ− = 0.9. The entry and exit rates (α,β) are
specified in the sub-captions of the plots. Red and green symbols are the computer
simulations results for the (+) and (−) particles, respectively. Correspondingly, the
red and green solid lines are theoretical predictions.

dissociation rate δ+ favors the appearance of the MC phases in the left sub-lattice for
the (+) particles.

The results presented in figure 9 show how the increasing values of the dissociation
rate δ+ with the fixed dissociation rate δ− = 0.9 modify the stationary behavior of the
system. There are six phases in the system for δ+ = 0.3 (figure 9(a)), among which the
HD–LD/LD–LD phase is the most sensitive to the increase in the dissociation rate. It
vanishes for δ+ > 0.5 followed by a shrinkage in the size of the MC–LD/LD–LD phase
and expansion of the MC–HD/LD–LD phase as described in figure 9(b). Eventually,
for δ+ = δ− = 0.9 (figure 9(c)), the MC–LD/LD–LD phase completely disappears, but
still five stationary phases, including two symmetric and three asymmetric phases, can
be found in the system.

The density profiles for various stationary phases for the asymmetric dissociation
rates are illustrated in figure 10. The theoretical results are generally in good agreement
with computer simulations. Only a few deviations are found, suggesting that our theo-
retical method correctly captures the complex dynamics in the bidirectional transport
of driven particles with local dissociations.
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5. Summary and conclusions

To summarize, we investigated a theoretical model of bidirectional transport of driven
diffusive particles along a 1D track when the particles are also allowed to dissociate
irreversibly at special sites far away from the boundaries. It is stimulated by the motion
of motor proteins moving in opposite directions along the cytoskeleton filaments. The
model is formulated as the inhomogeneous version of the totally asymmetric simple
exclusion process for two oppositely moving types of particles. Our theoretical method
is based on the idea that local dissociations are viewed as a localized inhomogeneity that
divides the system into two coupled homogeneous processes for which specific results
are known. This allows us to develop a mean-field theoretical method to quantitatively
describe non-equilibrium processes in the system. Our analytical calculations are also
supported by extensive Monte Carlo computer simulations.

We specifically considered two different scenarios for the system dynamics: the sym-
metric case when dissociation rates for both types of particles are the same, and the
asymmetric case when these rates are different. Introducing symmetric dissociation
rates leads to significant changes in stationary phase diagrams depending on the ampli-
tudes of these transitions. New dynamic regimes appear, some phases disappear, and
other dynamic regimes expand or shrink. It is found that the SSB phenomena are still
observed, and all dynamic phases are either symmetric or asymmetric. If the disso-
ciation rates are not equal to each other (asymmetric scenario), the changes in the
stationary phase diagrams are also significant with up to six total phases found in
the system. But in this case all dynamic regimes are asymmetric. The exact number,
dynamic properties and locations of different phases depend on specific values of all
parameters in the system that include the entrance and exit transitions in addition to
the dissociation rates. Simple physical arguments are presented to explain the theoretical
observations.

Although our theoretical model captures some important features of the bidirectional
transport of biological molecular motors, it is important to emphasize that it relies
on several approximations. The main one is the assumption that dynamic processes in
different sub-lattices do not affect each other. While this approach works reasonably well
(as compared with computer simulation results), some deviations have been observed. In
addition, many realistic properties of motor protein transport are not taken into account
in our model. They include inhomogeneity in the translocation rates of different motors,
the possibility of associations and dissociations along all parts of the filament, and many
others. Incorporating such features into the existing model might help us to gain deeper
insights into the diverse non-equilibrium systems persisting in nature.
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