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We quantize super Yang-Mills action in N = 3 harmonic superspace using “Fermi-Feynman” gauge and
also develop the background field formalism. This leads to simpler propagators and Feynman rules that are
useful in performing explicit calculations. The superspace rules are used to show that divergences do not
appear at one loop and beyond. We also compute a finite contribution to the effective action from a four-
point diagram at one loop, which matches the expected covariant result.
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I. INTRODUCTION

N =3 harmonic superspace in four dimensions was
developed by GIKOS around three and a half decades
ago [1,2], and it provided the first successful off-shell
formulation of four-dimensional (4D) A = 3 super Yang-
Mills (SYM) theory. This theory was quantized in “Landau”
gauge a few years later by Delduc and McCabe [3]; however,
the propagators obtained did not lend themselves to easier
calculations. It is well known that the field content of a N =
3 vector multiplet is the same as that of a N' = 4 one, and
Zupnik explicitly showed this hidden supersymmetry of the
N =3 SYM in [4]. The N = 3 superspace also manifests
the full superconformal symmetry, and using such symmetry
arguments, low-energy effective action for N/ =3 and
N =4 were considered by Zupnik and collaborators in
[5-8]. A “twistorial” perspective on the N' = 3 SYM action
was presented in [9] a few years ago, but no concrete
progress has yet been made “to bring the quantization
scheme into a form suitable for computations” [2].
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We present evidence of some progress in the
direction of simplifying computations here. We choose
“Fermi-Feynman” gauge to drastically reduce the number
(9 — 1) and simplify the form ({chiral, antichiral, linear}-
analytic — justanalytic) of propagators when compared to
[3]. This simplifies the proof of the nonrenormalization
theorem as one might expect. Moreover, we also introduce
the background field formalism in the A/ = 3 harmonic
superspace to simplify computations further.

In Sec. II, we review the basic ingredients of the NV = 3
harmonic superspace and the N'=3 SYM action. In
Sec. III, we introduce the Fermi-Feynman gauge to gauge
fix this SYM action and derive the propagators. As an
application, we prove the nonrenormalization theorem. In
Sec. 1V, we introduce the background field gauge to
simplify the diagrammatic computations and present a
sample calculation. Finally, we conclude with some dis-
cussion in Sec. V.

II. REVIEW

Our notation will closely follow [3], and we review it here
for orientation purposes. The full 4D A/ = 3 superspace has
the usual set of ordinary bosonic (x**) and fermionic
7, 0'%) coordinates with i = 1, 2, 3. The harmonic super-
space augments these with six internal bosonic coordinates
of the R-symmetry coset SU(3)/U(1) x U(1), denoted
collectively as u. Using these internal coordinates, an
“analytic” subspace with eight out of the twelve 0’s of
the full superspace is identified, which allows one to

Published by the American Physical Society
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construct an off-shell action for the /=3 SYM and
proceed with its quantization. In this section, we discuss
the internal coordinates in some detail first, then the
fermionic ones, and finally the superspace action of
N = 3 SYM. The quantization is dealt with in subsequent
sections.

A. Internal coordinates

A SU3)/U(1) x U(1) coset element can be para-
metrized in matrix form as follows:

U= (u},u?,u}) = (ul(.l’l) uE_l’l),ul(.O’_2)),

b
ﬁl] ﬁi(—l,—l)

U =\a |=| at-n |, (2.1)
i, 7i0.2)
Constraints: U'U =UUT =1, deti =1,
= i, - ub = whub =8, ulil, = 8,
efuluiul = 1. (2.2)

The notation (g, g,) denotes the charges corresponding to
the two Cartan U(1) generators Qy, Q, of SU(3). Given the
constraints in Eq. (2.2), we have eight independent coor-
dinates in the &/ matrix, as expected for SU(3). However,
we also require the two U(1) charges to be fixed (i.e.,
Q;u = q;u), which effectively implements the U(1)? quo-
tient, and we are left with six independent coordinates.

Furthermore, the six harmonic covariant derivatives
acting on these coordinates are

.0
Dy =utgm T (@#b) (23)
These derivatives satisfy the SU(3) Lie algebra given by
[D$, DY) = 8, D4 — 64D5,. (2.4)

We note here that the two Cartan generators are given in
terms of D% (no sum over a) as follows:

D{-D}=%(01+ Q)

Q,=D}-D3 3
D}—-D3=3(0,-0).

2.5
Qy=D}+D3-2D3 >

Their commutators with the harmonic derivatives are
[Q;, D§] = q;D% with the charges given by

U(1» | by D3 Dy D} Di Di
q, 11 2 -1 -1 =2
92 3 -3 0 -3 3 0

In what follows, we will mostly be dealing with
functions defined at two different points in this coset
space, labeled as u and v. We denote their products by
the notation U%, = u® - v, and U,> = i1, - v such that the
covariant derivatives in this basis simply read

0
ou®b,

N (a#b). (26)

ou,*

Finally, the integration over this coset space is defined
such that only a SU(3) singlet integrand gives a non-
vanishing result, i.e.,

/dul—l,

The latter integral allows one to integrate by parts in the
u space.

/ duDs f () = 2.7)

B. Fermionic coordinates

We make a coordinate transformation of the usual 8’s
with SU(3) indices to 8’s having definite U(1) charges as
follows:

0% = 67, 0% = ut0's, (2.8)
The index a identifies the U(1) charges straightforwardly
via Eq. (2.1). Then the corresponding spinorial covariant
derivatives satisfy the following commutators:

{Dg,D"} 0, {Da,,,[)bj,} =0, {Dg, _bb} 16705
(2.9)
[D§, Dg] = 8,D4, [D4. Do) = =8¢Dys.  (2.10)

Explicitly, the U(1)? charges of the spinorial derivatives are

U(1)> | D, Di D} Dy, Dy Dy
q; 1 -1 0 -1 1 0
4 11 =2 -1 -1 2

The harmonic superspace is an analytic subspace
of the full superspace, where the coordinates @ and 0%
do not appear explicitly in a given harmonic superfield
<I>(q1'q2)(x, 0.u), ie.,

Dld-a) = D, dlaa) = (. (2.11)

Note that these analytic constraints are preserved by the
three harmonic derivatives D}, D}, D3.

Finally, we can define an analytic measure [ dud{ on
harmonic superspace via the full superspace as follows:

/d4xd129duz/dudé’ﬁ(le(Dz)z
= / deB = / ey (D2(D(D) (D). (2.12)

We frequently use the notation [Dj]i = (D")?(D,)? to
denote the four @’s that are not part of the harmonic
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superspace. The [D$]3] has U(1)? charge (4,0), the negative
of that for the measure d¢%?

C. SYM action

We do not review here the procedure for finding
prepotentials of the ' =3 SYM in harmonic superspace
but instead simply state the results. The A" = 3 prepoten-
tials are the gauge connections of the analyticity-preserving
harmonic derivatives, i.e., we have three connections
defined by V = D + iA. The gauge transformations read
as usual: A = —V . The field strengths are introduced via
the “flat” commutation relations as follows:

V2. V3] =F, (V3. V3] =F5,

V3, V3] =V, + 3.

(2.13)

The equations of motion are, of course, all F = 0. These
are generated simply by the following Chern-Simons-like
action:

S—tr / dud¢Z2(ALFS + A3FIL 1 ALF3) — iAL[AL A2)).
(2.14)

Also, notice that one of the three prepotentials is related
algebraically to the other two on shell,

DIA3 — D3AL +i[AL A3 = AL, (2.15)

from which we start the quantization procedure in the next
section.

III. QUANTIZING SYM IN
FERMI-FEYNMAN GAUGE

The N =3 SYM action (2.14), after substituting the
algebraic equation defining A} (2.15), depends only on two
harmonic connections and reads

S =t [ dudg{(DIALY + (DAL + 244 (D3DIAY

— 243D,A3 + 2i[A;, AS](D3A3 — D3A3)

- 45,431} (3.1)
We choose the following gauge-fixing function:
Sy =t / dudZ2(DIAY + DIALY
— [ dudgH{(DIAL) + (D31
~24}(DIDIAD)}. (3.2)

such that the gauge-fixed action for SYM in Fermi-
Feynman gauge becomes

S+8, =t / dudZ2{2A1(DID3 + DID} —2DY)A3

+2i[A3,A3](D3A3 - D3AY) - [A3. A3} (3.3)
where we use [D,D3] = D) once. The ghost action
follows from the Becchi-Rouet-Stora-Tyutin formalism

(BRST) straightforwardly by using 6A = —DA — i[A, 1]:
Sy =t / dud2{bY(DLD} + D3IDY)c
+i(D3b3[A3. c] + D3b;[AS. c])}. (34)

Having just introduced new fields, let us recap the U(1)?
charges of all the fields here (which are straightforwardly
deduced from the covariant derivatives):

U1 | A} A} A} 4 ¢ b}
q 1 1 2 00 2
9 3 =30 00 0

A. Propagators

From the gauge-fixed SYM and ghost actions given
above, we can derive the equations to solve for the Green’s
functions for vector and ghost superfields:

(K1)oGoa(1.2) = [6]55(1.2).
(K1)oGrjo(1.2) = 8]0 (1.2).
(K1) GAh(1.2) = [82]353(1.2).
(K3)_1G33(1.2) = [a] a5 (1.2), (35)

where (K}), = (1 + |a|)({D}, D3} + 2aD)) and the ana-
lytic delta functions explicitly read

[Balafy (1,2) = 8(x12) (D418 (012)33 (1. )
= 5(x12) (D348 (012) (U1 0,2)8 (u. ),
m%amammmwww%ﬁ>
6(x12)[Df),9]£512(912)( )256(’4 v),
mﬁuaammmwwm%w@
:5(x12)[Di19]55512(912)( )356(” v),
[Balia (1.2) = 8(0x12) (D2 146"2(012) 8330 (. v)
:5(x12)[D1,9]55512(912)( )356(” v). (3.6)

The general form of G’s which satisfy the Green’s function
equations then looks like
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(c(1)bL(2)) = Goa(1,2)

_ 2R (u,

1
111 Dm‘)] [Dis]%‘sl (012)8(x12),

0)=]
(3.7)

(B(1)c(2)) = Gyjo(1.2)
= P2 0) & (DL D8 52(0,)5(x1),
(3.8)

(AL (1DA3(2))=G35(1.2)

_ 2223 (u,

1
13|11 =[Dys15[D3]556" (012)8(x12).

o)l
(3.9)

(A3(DAY2)=G3h(1.2)

= FE0) S D DY H62(012)6(x1).
(3.10)

such that
<K;>af:}:<u,v>f—<02> (wo).  (311)

The 5:}:(u, v) functions are the same 5-functions appearing

in the corresponding [54] } (1,2) defined in Eq. (3.6).

Equation (3.11) is motivated by the identity1

(D3)*D? D388 (u, v) = 200D% 355 (u, v), (3.12)
which can be used to prove that Eqgs. (3.7)—(3.10) indeed
satisfy Eq. (3.5).

In order to make the above equations simpler and more
tractable, we choose the following “independent” internal
coordinates in the {U%,, U,"} basis:

U119 U13’ U219 U3lv UZI’ 0227 UZ3

U2, (3.13)

and the “zero charge” é-function in these coordinates reads

U'5)8(U%)8(05?)
)5(U%1)5(U,").

56(I/l, U) = ﬂ'Ul]Uzzé(

x 8(052 (3.14)

The rest of the U coordinates can be written in terms of the
chosen ones as follows:

"We will suppress the SU(3) “indices” on [D3]1} from now on.

g UMD U D)

2 U22 )
e — ULZWU* U, +U;'\ U U - U, U2 - U

2—= U11022 s
U2 _U13U21_D32

P

1

- _ UL+ UL U+ 0,70

2— Ullez s
. UBU + 0y

=T g,

1

Ull__UZ]UZIUZZ_U31[_]21U32+U13U3I+UZZ

- Ulll_]22 ’
[_J 2 U21022+U3IU32

1 —= Ul s

1

U3:_Uzl022[723+U31023U32+U11U31

1 Ullez 5
_ U,'U2-U! _ U202+ U!

J= 2 Uj 3 0= U3 +U (3.15)

U,? U,?

The differential operators get modified as well, leading to
the following expressions:

D12:U1183217 13:U116331’
3, = UP, 8321 - 022%32, (3.16)
Dh = U% agll U5 6313 B 0126521
B Ulzang 0138323

—U2 6 + U13U2]—U32 (9
7 taut, U, oU',

<—U21l7211722 - U3 U, U2 +ULZUP + UQZ)
U11022
y _a (U%Uz2 + U3]l732> _a
ou,! U, 0U,>
N <U21l722f]23 + U3, l:]23l732 + UL U3
U11U22

1\ 0
oU,?’

(3.17)

P P 0
U3 -U,?
aut, T Va0, T Y a0

_ 0 N U13U*1+U2
Lout, aul

N U U0,° + U? U;
U, 8U32’

D = U3

(3.18)
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D2 — 1 0 o 59 b2 59 s ? Relabeling U =x, Uy=3% U*=y U =3y,
3 Yous, TP oom,t TP au2 TP ou,? U=z U=2 0,2=A, Uy =B, and a+1=b,
o Ul — 07,102\ 0 _ 9 we get a simple looking partial differential equation
_ n 3= Uh Us A
U7, 7,2 a0, 00,2
(UL + 0057 0 (3.19)
0,? 90,3 ' (0,0, —AD,, + b, ) F |,
n . _ .
Using all these expressions, we can write Eq. (3.11) =————=B"AM(x)6(%)6(y)d" (¥)6(2)6(2).  (3.21)
6 9 : _ 2(1+|al)
explicitly in the following form:
0? _ o0?
1 U3 -0,
(1+la) { Yout,au3, T 802003, We solve it by choosing an ansatz of the form

(a3 i 71 Al e a2 a0

il 'y (Ay+xz\! (By+iz\ !
-cum 5 (B (B o
+5)
. zr _ _
A.‘. = 5 )" (U2*)28(U'3)8(05°)8"(U,') - with
1

(=1,2)  for {c(1)b3(2)). where € is an infinitesimal parameter and the exponents p,
(0,3)  for (b)(1)c(2)), g, r, s, t along with the normalization factor C, are to be
(ny,mny) (1L1)  for (A}(1)A3(2)), deteqnined. Plugging Eq. (3.22) into the lhs of Eq..(3.2.1 )
3 | we find that the values t = —b, r = b — 1, s = 0 simplify

(=2,4)  for (A;(1)A;(2)). the expression to a single term as follows:

3C, bAPT2Ra+b b+2(Ay + xz)—b 2
(Ay +x2)(BY +22)(yy + €2)*
C,bAP*2BITH(A + 52)~b
2(Ay + xz)(By + &%)

r +2 pg+b A2 b a 5 /(=
:§CabA1’ B <A—|—y> 5(x)6(2)8(2)8(2)8(y)8" (9)

lhs of Eq. (3.21) =

76(y)8" ()

=gCabB"“’A”“"’é(x)f?(fOé( )8"(9)6(2)8(2). (3.23)
|
vyhgre we use the fact that 5.’s for y, y are prgducgd in the 7l _ 1 Am+b-2gm—b
limit of ¢ —» 0 and y — 0 via the following identity: T (14 a))
b-1 A -b /By + %3\ !
Y 23< yHZ) ( y+”) . (3.25)
3+ B A

(m+ 1)!(=y)"e?

(yy te )m+2 ﬂé(y)(s(m) ()_))’

(3.24)

Finally, the complete propagators in terms of the U
variables read as follows:

and 6(z) Z%, etc., for rest of the four nonconjugate

(D%)anrh—Z(U})n,—h (U2 )h—l
complex variables. Now, comparing Eq. (3.23) to the rhs

Gl (1.2) =

3
of Eq. (3.21), we can deduce that p=n, +b -2, b(1+al) (U2 +5 [ )
—ny — -1 . i i U
q =ny — b, and C, = gy - Thus, the final form of 77 " (— 11) _D4QD;4]9512(9]2)5(X]2)' (3.26)
that solves Eq. (3.21) reads (=U',) O«
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B. Feynman rules

The Feynman rules are now derived as usual. The vector
and ghost propagators are given in Eq. (3.26), but we
reproduce them here individually with explicit harmonic

factors in momentum space (replace éé(x 1) = _Lkz);
203 ()= (=07
(e(py(2)) =7 2
(U )2 (U2 + 2]) U2
1
k Dix‘)DvSéu(elZ)a (327)
2T,2): (U?)F (-U,2)7
(e = 27T _(C00)
(U (D) +&)° UL
1
X 13 DigD3p0 (612), (3.28)
7 2\1 2\ —U 2\—2
(A}(1)A3(2)) = (U21 L -(IU L 3( A
3(UY)2 (U, +J—zl) U,
1
x pDisDis‘Slz(elz), (3.29)
77 2)3 2 \-3 772 1
waaye) = -+ G R
(UM)2 (U2 +47) U
1
X pDiﬁDiﬁn(@lz), (3.30)
|
Dy D3y Dyy = [(W3)2 (W2 )2 (V)2 (Vo) + (W

+ (W) (W2 (V15)2(V2?)2(D*)*(D

where D§ = (D?)?(D*)*(D,)*(D3)%, V4, = vy, Wb =
wau?, etc. The first term which contains D$D} [recall
that D} = (D')?(D,)?] can be used to kill one 5'%(0).
This means that a two-point function trivially vanishes, as it
does not have enough Dg’s, and a three-point function
cannot have any divergent piece due to the presence of three

[’s in the denominator, i.e., f 3 is finite. In fact, no

higher-point function can have any divergent piece at one
loop because the numerator can generate at most (p — 3)
[’s (together with a Dg) compared to p[l’s in the
denominator, so the difference is always n >3, ie.,
"
J ey
This power counting readily generalizes to multiloop
graphs because each one-loop subgraph needs to follow
this procedure of D algebra, and hence the whole graph is

is finite.

B2 (W' )2 (V1) (V,P)?
(W0, V(Y32 (79)2) Dl = W22 (WY )
— DWW 2 (VS PV D22, + (W

32+ (W) (W2 )2(VI3)2 (V)2 (D)2 (D3)*)| Dy

where we have kept the e prescription explicit. The vertices
can be read from Egs. (3.3) and (3.4):

((A3)9(A3)"(A3))/((A3)%(A})"(A}))
-2 / duds0feb<[D}/ D3],

(A (A ()Y =i [ dudogerese

(Ae (b)) (AL (bL)) = [ dudor [}/ D
(3.31)

where [d%0 = (D*)*(D*)*(D,)*(D5)?, fe¢ are structure
constants of the gauge group and the harmonic derivatives
act on the leg corresponding to the group index ‘c’.

Evaluating loop graphs

Let us first focus on one-loop graphs. We can generate
J d'?6 from the analytic measure at vertices by taking off
one factor of D} from the propagators. After this, we are
left with (v3 + vy4) [ d'?0 integrals from three- and four-
point vertices, p D§5'%(0)’s from propagators. As usual, we
need to saturate all but one [ d'?6, which means that we
need to kill one of the §'>(0). This is achieved by using
three D}’s and the identity

+ (Wh)2 (W32 (VI5)3(V,1)?

V,')2D? - 9 - D3(D?*)*(D,)?

)2 (W) (VI5)2(V,')2(D?)*(Dy)?

(3.32)

rendered finite. This proves the nonrenormalization
theorem at all loops for N'=3 SYM or, equivalently,
N =4 SYM.

IV. QUANTIZING SYM IN BACKGROUND
FIELD GAUGE

The computation of finite terms for loop graphs is still
cumbersome with the Feynman rules discussed in the
previous section because manifestly covariant expressions
are not obtained for individual graphs. For that purpose, we
develop the background field formalism in this section.

Let us gauge covariantize all the differential operators
(D -V =D+iA). Then we do a background splitting
of the connections in a straightforward manner, A —
A,y + a,, where the subscripts are suppressed in favor
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of self-explanatory fonts. Next, we choose different rep-
resentations for these connections: the ‘“real” rep for
background A’s, meaning that the three harmonic con-
nections vanish (A} = A} = A3 = 0), and the “analytic”
rep for the quantum a’s, meaning that the four fermionic
connections vanish (al = a,, =0= Dy - Vy = D,g)

Let us write down the consequences of these choices on
connections and field strengths from various commutators:

{Ve.V,;} = i3V,
{Vs, V”} = e W,
{vao'u vb/}} = € 3Wap,
(V8. Vel = =68V,
(V5. Vil = 3,Vi = 63V,

; (“unchanged”),

(4.1)

Of course, the W’s are antisymmetric in the two indices,
and they satisfy a few Bianchi identities along with some
analytic plus harmonic constraints [5,8]. The most relevant
identity for us is

(8. DEW e = 8DEW ). (4.2)

| =

DW=

Propagators :

All but one background vertex :

One background vertex :

All quantum vertices:

Note that the background d’Alembertian is expanded as
O = D*D,;, = O, + - - -, where [J, corresponds to —k? in
the momentum space.

One-loop graph computation

Let us focus on the computation of a four-point function
here. It is finite and, from the symmetry arguments of

*Such a choice was used in the case of N =2 projective
superspace to construct the background field formalism [10]. It
ensures that the effective action is independent of background
fields with dimension O (like the harmonic connections), which is
required for the nonrenormalization theorems to hold [11].
However, the simple splitting of A" = 3 prepotentials is remi-
niscent of the background field formalism for the N =2
harmonic superspace developed in [12], with further refinements
and explicit calculations appearing in [13,14].

]—':}:(u, U)_Lkzpﬁspi&‘slz
_L;{z58(912)56(uv

/ dud®0(C] - Oy),

Another thing to note is that the spinorial background-
covariant derivatives DY, and D, still possess the structure
of Eq. (2.9), so that the “background analytic” superfields
can be defined: D.® = D,,® = 0. Moreover, the fourth
and fifth equations of Eq. (4.1) tell us that the harmonic
connections we are most interested in are now background
analytic. We will also need the following identity defining a
generalized d’Alembertian:

D}(V3)*D} = 201D
- 2[(D - 2W12W21) - vl . vawla

+2V2.D'W,, + V3(D')2W,, D4 (4.3)

A. Feynman rules

Since the harmonic connections appearing in the action
as well as the ghosts are purely quantum superfields but
background analytic, only [ changes to (] in the propa-
gators were derived in the previous section, whereas the
vertices in the Lagrangian remain the same. However, we
can expand the 0 to get vertices with explicit field
strengths, which leads to covariant results in the loop
calculations directly. With this structure, we can write down
the background Feynman rules as follows:

(01,), ignore background vertices,

v), consider all such vertices but one,

/dudvdSQ(Ki)atf(u, v),
same as Eq. (3.31).

|
Sec. 5.5 of [8], it is known to look like (W3W,3)? in
N = 3 harmonic superspace.

We can obtain such a contribution by evaluating a bubble
graph and expanding the (ﬁ — Og)-vertex factors to get the
relevant W’s using Egs. (4.3) and (4.2). The above
Feynman rules give the following expression for the graph
with vector loop shown in Fig. 1 (after performing 6 and u
integrals at two of the vertices):

~.A4/dud1)/d8912

x (Vy - VaW3(py)) (U U',)V? - VP Was(p3))
x 3(612) (K3)_ F i (. 0) Dy (pa) Dy (pa)

13]11
x 512(012)8°(u, v),

V3W13(P1))

(4.4)
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W23 W13
W23 W13
FIG. 1.

where A4 is the scalar box integral

~ | ke
with the subscnpts on loop momentum k denoting
the external momenta (p;) dependence. Note that we

had to partially integrate (K}),, so that it changed to
(K})_, acting on .7-'}, which gives, using Eq. (3.20),

22[23 22|23
(K3)- 17:13}11( v) =5 (D7)*6°(u, v) - 8U2 ]:13}11 The
first term leads to a harmonic singularity with two

TN /W”’

(b3, )

W \ng,

One-loop four-point graph with external background field strengths.

8°(u,v) functions, but this singularity will cancel with
the analogous contribution ngc) from the ghost loop in
Fig. 1. So we focus only on the second term, which has no
analog from the ghost loop graph (as a = 0) and thus gives
the complete four-point function. To get rid of the 6'%(6,,)
function, eight spinorial derivatives should be gathered off

of W’s in addition to D} as follows:

A4/dudv/d8612W13(p1)W”(p2)W23(p3) (912>D17?§Iﬁ( )

< (VA(V3) (U U')V2 - V) (0510, U U V2 - VP Was (pa) ) Dy ()5

<A [ [ 0w (o)W Wt W) |

~A4/du/d89W13(P1)W13(P2)W23(P3)W23(P4)[

where we use V5D$6'2(6;,) = 1 in the second step. In the
last step, the apparent harmonic singularity cancels as we
take the limit u — v, leading to the expected result for the
one-loop effective action,

F4N/deC%%J2‘4(W13W23)2. (46)

V. DISCUSSION

We have introduced a new gauge-fixing action to quantize
N =3 SYM in N/ = 3 harmonic superspace. This leads to
simpler (and fewer) propagators for vector and ghost super-
fields in a Fermi-Feynman gauge. These are sufficient to
prove the nonrenormalization theorem for V' = 3,4 SYM at
all loops. However, computation of loop graphs beyond the
divergent terms can be simplified more with the background
field formalism. With the background Feynman rules in

The requirement of collecting eight spinorial derivatives to get
Vf; [which is analogous to extracting Dg from Eq. (3.32) while
evaluating graphs in Fermi-Feynman gauge] is sufficient to make
I'; =I'; = 0 identically at one loop.

(612)8°(u, v)
1

TR OO

(U12)2]

(0,'")? .

u—=v

Lo

(4.5)

|
hand, we have computed the one-loop four-point contribu-
tion to the effective action, which gets a finite contribution
purely from the vector loop diagram.

The way that we derived the harmonic propagators here is
reminiscent of how A/ = 2 projective superspace [15,16] is
derived from N = 2 harmonic superspace [2,17] in [18]:
by choosing a special parametrization of the harmonic
R-symmetry coordinates on SU(2)/U(1) ~ S? to obtain a
single (complex) coordinate on CP! that forms the internal
coordinate for the projective case.’ Even though we did not
take this route to its full conclusion, it should be possible to
derive a N = 3 projective superspace in such a way that it
simplifies the | du integrals to something more tractable. For
example, viewing the R-symmetry coset SU(3)/U(1)? ~
[SU3)/(SU(2) x U(1))] x [SU(2)/U(1)] ~ CP* x CP',
one can expect to reduce the six (x, X, y, y, z, 2) R-symmetry
coordinates of N/ = 3 harmonic superspace to only three
(x, y, z) for a possible N’ = 3 projective superspace. This
should then be followed by a projection of the harmonic

“The relation between these two hyperspaces was explored
from different points of view in [19,20].
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gauge condition and equations of motion for the gauge and
ghost fields to the projective superspace, which we leave for
future work.
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