
 

Simplifying 4D N = 3 harmonic superspace

Dharmesh Jain *

Department of Theoretical Sciences, S. N. Bose National Centre for Basic Sciences,
Block JD, Sector III, Salt Lake City, Kolkata 700106, India

Chia-Yi Ju †

Department of Physics, National Chung Hsing University,
145 Xingda Road, South District, Taichung City 40227, Taiwan

Warren Siegel‡

C. N. Yang Institute for Theoretical Physics, Stony Brook University,
100 Nicolls Road, Stony Brook, New York 11794-3840, USA

(Received 5 August 2020; accepted 27 August 2020; published 24 September 2020)

We quantize super Yang-Mills action inN ¼ 3 harmonic superspace using “Fermi-Feynman” gauge and
also develop the background field formalism. This leads to simpler propagators and Feynman rules that are
useful in performing explicit calculations. The superspace rules are used to show that divergences do not
appear at one loop and beyond. We also compute a finite contribution to the effective action from a four-
point diagram at one loop, which matches the expected covariant result.
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I. INTRODUCTION

N ¼ 3 harmonic superspace in four dimensions was
developed by GIKOS around three and a half decades
ago [1,2], and it provided the first successful off-shell
formulation of four-dimensional (4D) N ¼ 3 super Yang-
Mills (SYM) theory. This theory was quantized in “Landau”
gauge a few years later byDelduc andMcCabe [3]; however,
the propagators obtained did not lend themselves to easier
calculations. It is well known that the field content of aN ¼
3 vector multiplet is the same as that of a N ¼ 4 one, and
Zupnik explicitly showed this hidden supersymmetry of the
N ¼ 3 SYM in [4]. The N ¼ 3 superspace also manifests
the full superconformal symmetry, and using such symmetry
arguments, low-energy effective action for N ¼ 3 and
N ¼ 4 were considered by Zupnik and collaborators in
[5–8]. A “twistorial” perspective on theN ¼ 3 SYM action
was presented in [9] a few years ago, but no concrete
progress has yet been made “to bring the quantization
scheme into a form suitable for computations” [2].

We present evidence of some progress in the
direction of simplifying computations here. We choose
“Fermi-Feynman” gauge to drastically reduce the number
(9 → 1) and simplify the form (fchiral; antichiral; linearg-
analytic → just analytic) of propagators when compared to
[3]. This simplifies the proof of the nonrenormalization
theorem as one might expect. Moreover, we also introduce
the background field formalism in the N ¼ 3 harmonic
superspace to simplify computations further.
In Sec. II, we review the basic ingredients of the N ¼ 3

harmonic superspace and the N ¼ 3 SYM action. In
Sec. III, we introduce the Fermi-Feynman gauge to gauge
fix this SYM action and derive the propagators. As an
application, we prove the nonrenormalization theorem. In
Sec. IV, we introduce the background field gauge to
simplify the diagrammatic computations and present a
sample calculation. Finally, we conclude with some dis-
cussion in Sec. V.

II. REVIEW

Our notation will closely follow [3], andwe review it here
for orientation purposes. The full 4DN ¼ 3 superspace has
the usual set of ordinary bosonic (xα _α) and fermionic
(θαi ; θ̄

i _α) coordinates with i ¼ 1, 2, 3. The harmonic super-
space augments these with six internal bosonic coordinates
of the R-symmetry coset SUð3Þ=Uð1Þ ×Uð1Þ, denoted
collectively as u. Using these internal coordinates, an
“analytic” subspace with eight out of the twelve θ’s of
the full superspace is identified, which allows one to
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construct an off-shell action for the N ¼ 3 SYM and
proceed with its quantization. In this section, we discuss
the internal coordinates in some detail first, then the
fermionic ones, and finally the superspace action of
N ¼ 3 SYM. The quantization is dealt with in subsequent
sections.

A. Internal coordinates

A SUð3Þ=Uð1Þ × Uð1Þ coset element can be para-
metrized in matrix form as follows:

U ¼ ðu1i ; u2i ; u3i Þ≡ ðuð1;1Þi ; uð−1;1Þi ; uð0;−2Þi Þ;

U† ¼

0
B@

ūi1
ūi2
ūi3

1
CA≡

0
B@

ūið−1;−1Þ

ūið1;−1Þ

ūið0;2Þ

1
CA; ð2:1Þ

Constraints∶ U†U ¼ UU† ¼ 1; detU ¼ 1;

⇒ ūa · ub ¼ ūiaubi ¼ δba; uai ū
j
a ¼ δji ;

ϵijku1i u
2
ju

3
k ¼ 1: ð2:2Þ

The notation ðq1; q2Þ denotes the charges corresponding to
the two CartanUð1Þ generatorsQ1,Q2 of SUð3Þ. Given the
constraints in Eq. (2.2), we have eight independent coor-
dinates in the U matrix, as expected for SUð3Þ. However,
we also require the two Uð1Þ charges to be fixed (i.e.,
Qiu ¼ qiu), which effectively implements the Uð1Þ2 quo-
tient, and we are left with six independent coordinates.
Furthermore, the six harmonic covariant derivatives

acting on these coordinates are

Da
b ¼ uai

∂
∂ubi − ūib

∂
∂ūia ða ≠ bÞ: ð2:3Þ

These derivatives satisfy the SUð3Þ Lie algebra given by

½Da
b;D

c
d� ¼ δcbD

a
d − δadD

c
b: ð2:4Þ

We note here that the two Cartan generators are given in
terms of Da

a (no sum over a) as follows:

Q1¼D1
1−D2

2

Q2¼D1
1þD2

2−2D3
3

⇒
D1

1−D3
3¼ 1

2
ðQ1þQ2Þ

D2
2−D3

3¼ 1
2
ðQ2−Q1Þ:

ð2:5Þ

Their commutators with the harmonic derivatives are
½Qi;Da

b� ¼ qiDa
b with the charges given by

Uð1Þ2 D1
3 D3

2 D1
2 D3

1 D2
3 D2

1

q1 1 1 2 −1 −1 −2
q2 3 −3 0 −3 3 0

In what follows, we will mostly be dealing with
functions defined at two different points in this coset
space, labeled as u and v. We denote their products by
the notation Ua

b ¼ ua · v̄b and Ūa
b ¼ ūa · vb such that the

covariant derivatives in this basis simply read

Da
b ¼ Ua

c
∂

∂Ub
c
− Ūb

c ∂
∂Ūa

c ða ≠ bÞ: ð2:6Þ

Finally, the integration over this coset space is defined
such that only a SUð3Þ singlet integrand gives a non-
vanishing result, i.e.,Z

du1 ¼ 1;
Z

duDa
bfðuÞ ¼ 0: ð2:7Þ

The latter integral allows one to integrate by parts in the
u space.

B. Fermionic coordinates

We make a coordinate transformation of the usual θ’s
with SUð3Þ indices to θ’s having definite Uð1Þ charges as
follows:

θαa ¼ ūiaθαi ; θ̄a _α ¼ uai θ̄
i _α: ð2:8Þ

The index a identifies the Uð1Þ charges straightforwardly
via Eq. (2.1). Then the corresponding spinorial covariant
derivatives satisfy the following commutators:

fDa
α;Db

βg ¼ 0; fD̄a _α; D̄b_βg ¼ 0; fDa
α; D̄b _βg ¼ _ιδab∂α _β;

ð2:9Þ

½Da
b;D

c
α� ¼ δcbD

a
α; ½Da

b; D̄c _α� ¼ −δacD̄b _α: ð2:10Þ

Explicitly, theUð1Þ2 charges of the spinorial derivatives are

Uð1Þ2 D1
α D2

α D3
α D̄1_α D̄2_α D̄3_α

q1 1 −1 0 −1 1 0

q2 1 1 −2 −1 −1 2

The harmonic superspace is an analytic subspace
of the full superspace, where the coordinates θα1 and θ̄2_α

do not appear explicitly in a given harmonic superfield
Φðq1;q2Þðx; θ; uÞ, i.e.,

D1
αΦðq1;q2Þ ¼ D̄2_αΦðq1;q2Þ ¼ 0: ð2:11Þ

Note that these analytic constraints are preserved by the
three harmonic derivatives D1

2; D
1
3; D

3
2.

Finally, we can define an analytic measure
R
dudζ on

harmonic superspace via the full superspace as follows:Z
d4xd12θdu≡

Z
dudζ2211ðD1Þ2ðD̄2Þ2

⇒
Z

dζ2211 ¼
Z

d4xAðD2Þ2ðD3Þ2ðD̄1Þ2ðD̄3Þ2: ð2:12Þ

We frequently use the notation ½D4
ϑ�1122 ≡ ðD1Þ2ðD̄2Þ2 to

denote the four θ’s that are not part of the harmonic
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superspace. The ½D4
ϑ�1122 hasUð1Þ2 charge (4,0), the negative

of that for the measure dζ2211.

C. SYM action

We do not review here the procedure for finding
prepotentials of the N ¼ 3 SYM in harmonic superspace
but instead simply state the results. The N ¼ 3 prepoten-
tials are the gauge connections of the analyticity-preserving
harmonic derivatives, i.e., we have three connections
defined by ∇ ¼ Dþ _ιA. The gauge transformations read
as usual: δA ¼ −∇λ. The field strengths are introduced via
the “flat” commutation relations as follows:

½∇1
2;∇1

3� ¼F11
23; ½∇3

2;∇1
2� ¼F31

22; ½∇1
3;∇3

2� ¼∇1
2þF1

2:

ð2:13Þ
The equations of motion are, of course, all F ¼ 0. These
are generated simply by the following Chern-Simons-like
action:

S ¼ tr
Z

dudζ2211ðA1
2F

1
2 þ A3

2F
11
23 þ A1

3F
31
22 − _ιA1

2½A1
3; A

3
2�Þ:

ð2:14Þ
Also, notice that one of the three prepotentials is related
algebraically to the other two on shell,

D1
3A

3
2 −D3

2A
1
3 þ _ι½A1

3; A
3
2� ¼ A1

2; ð2:15Þ

from which we start the quantization procedure in the next
section.

III. QUANTIZING SYM IN
FERMI-FEYNMAN GAUGE

The N ¼ 3 SYM action (2.14), after substituting the
algebraic equation defining A1

2 (2.15), depends only on two
harmonic connections and reads

S ¼ tr
Z

du dζ2211fðD1
3A

3
2Þ2 þ ðD3

2A
1
3Þ2 þ 2A1

3ðD3
2D

1
3A

3
2Þ

− 2A1
3D

1
2A

3
2 þ 2_ι½A1

3; A
3
2�ðD1

3A
3
2 −D3

2A
1
3Þ

− ½A1
3; A

3
2�2g: ð3:1Þ

We choose the following gauge-fixing function:

Sgf ¼ −tr
Z

dudζ2211ðD1
3A

3
2 þD3

2A
1
3Þ2

¼ −tr
Z

dudζ2211fðD1
3A

3
2Þ2 þ ðD3

2A
1
3Þ2

− 2A1
3ðD3

2D
1
3A

3
2Þg; ð3:2Þ

such that the gauge-fixed action for SYM in Fermi-
Feynman gauge becomes

SþSgf ¼ tr
Z

dudζ2211f2A1
3ðD1

3D
3
2þD3

2D
1
3−2D1

2ÞA3
2

þ2_ι½A1
3;A

3
2�ðD1

3A
3
2−D3

2A
1
3Þ− ½A1

3;A
3
2�2g; ð3:3Þ

where we use ½D1
3; D

3
2� ¼ D1

2 once. The ghost action
follows from the Becchi-Rouet-Stora-Tyutin formalism
(BRST) straightforwardly by using δA ¼ −Dλ − _ι½A; λ�:

Sgh ¼ −tr
Z

dudζ2211fb12ðD1
3D

3
2 þD3

2D
1
3Þc

þ _ιðD1
3b

1
2½A3

2; c� þD3
2b

1
2½A1

3; c�Þg: ð3:4Þ

Having just introduced new fields, let us recap the Uð1Þ2
charges of all the fields here (which are straightforwardly
deduced from the covariant derivatives):

Uð1Þ2 A1
3 A3

2 A1
2 λ c b12

q1 1 1 2 0 0 2

q2 3 −3 0 0 0 0

A. Propagators

From the gauge-fixed SYM and ghost actions given
above, we can derive the equations to solve for the Green’s
functions for vector and ghost superfields:

ðK1
2Þ0G0j1

0j2ð1; 2Þ ¼ ½δA�1j12j2ð1; 2Þ;
ðK1

2Þ0G1j0
2j0ð1; 2Þ ¼ ½δA�11j022j0ð1; 2Þ;

ðK1
2Þþ1G

1j3
3j2ð1; 2Þ ¼ ½δA�11j323j2ð1; 2Þ;

ðK1
2Þ−1G3j1

2j3ð1; 2Þ ¼ ½δA�13j122j3ð1; 2Þ; ð3:5Þ

where ðK1
2Þa ¼ ð1þ jajÞðfD1

3; D
3
2g þ 2aD1

2Þ and the ana-
lytic delta functions explicitly read

½δA�1j12j2ð1;2Þ¼ δðx12Þ½D4
vϑ�1122δ12ðθ12Þδ1j22j1ðu;vÞ

¼ δðx12Þ½D4
vϑ�1122δ12ðθ12ÞðU1

1Ū2
2Þδ6ðu;vÞ;

½δA�11j022j0ð1;2Þ¼ δðx12Þ½D4
vϑ�1122δ12ðθ12Þδ11j2222j11ðu;vÞ

¼ δðx12Þ½D4
vϑ�1122δ12ðθ12ÞðU1

1Ū2
2Þ2δ6ðu;vÞ;

½δA�11j323j2ð1;2Þ¼ δðx12Þ½D4
vϑ�1122δ12ðθ12Þδ11j2323j11ðu;vÞ

¼ δðx12Þ½D4
vϑ�1122δ12ðθ12ÞðU1

1Þ3δ6ðu;vÞ;
½δA�13j122j3ð1;2Þ¼ δðx12Þ½D4

vϑ�1122δ12ðθ12Þδ13j2222j13ðu;vÞ
¼ δðx12Þ½D4

vϑ�1122δ12ðθ12ÞðŪ2
2Þ3δ6ðu;vÞ: ð3:6Þ

The general form of G’s which satisfy the Green’s function
equations then looks like
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hcð1Þb12ð2Þi≡G0j1
0j2ð1; 2Þ

¼ F 22j2
11j1ðu; vÞ

1

□
½D4

uϑ�1122½D4
vϑ�1122δ12ðθ12Þδðx12Þ;

ð3:7Þ

hb12ð1Þcð2Þi≡G1j0
2j0ð1; 2Þ

¼ F 2j22
1j11ðu; vÞ

1

□
½D4

uϑ�1122½D4
vϑ�1122δ12ðθ12Þδðx12Þ;

ð3:8Þ

hA1
3ð1ÞA3

2ð2Þi≡G1j3
3j2ð1;2Þ

¼F 22j23
13j11ðu;vÞ

1

□
½D4

uϑ�1122½D4
vϑ�1122δ12ðθ12Þδðx12Þ;

ð3:9Þ

hA3
2ð1ÞA1

3ð2Þi≡G3j1
2j3ð1;2Þ

¼F 23j22
11j13ðu;vÞ

1

□
½D4

uϑ�1122½D4
vϑ�1122δ12ðθ12Þδðx12Þ;

ð3:10Þ

such that

ðK1
2ÞaF ·j·

·j·ðu; vÞ ¼
1

2
ðD2

1Þ2δ·j··j·ðu; vÞ: ð3:11Þ

The δ·j··j·ðu; vÞ functions are the same δ-functions appearing

in the corresponding ½δA�·j··j·ð1; 2Þ defined in Eq. (3.6).

Equation (3.11) is motivated by the identity1

ðD2
1Þ2D4

uϑD
4
vϑδ

6ðu; vÞ ¼ 2□D4
vϑδ

6ðu; vÞ; ð3:12Þ

which can be used to prove that Eqs. (3.7)–(3.10) indeed
satisfy Eq. (3.5).
In order to make the above equations simpler and more

tractable, we choose the following “independent” internal
coordinates in the fUa

b; Ūa
bg basis:

U1
1; U1

3; U2
1; U3

1; Ū2
1; Ū2

2; Ū2
3; Ū3

2; ð3:13Þ

and the “zero charge” δ-function in these coordinates reads

δ6ðu; vÞ ¼ πU1
1Ū2

2δðU1
3ÞδðU3

1ÞδðŪ2
3Þ

× δðŪ3
2ÞδðU2

1ÞδðŪ2
1Þ: ð3:14Þ

The rest of the U coordinates can be written in terms of the
chosen ones as follows:

U1
2¼−

U1
1Ū2

1þU3
1Ū2

3

Ū2
2

;

U2
2¼−

U1
1U2

1Ū2
1þU3

1U2
1Ū2

3− Ū2
3Ū3

2−U1
1

U1
1Ū2

2
;

U2
3¼

U1
3U2

1− Ū3
2

U1
1

;

U3
2¼−

U1
1U3

1Ū2
1þU1

3U3
1Ū2

3þŪ2
2Ū2

3

U1
1Ū2

2
;

U3
3¼

U1
3U3

1þŪ2
2

U1
1

;

Ū1
1¼−U2

1Ū2
1Ū2

2−U3
1Ū2

1Ū3
2þU1

3U3
1þŪ2

2

U1
1Ū2

2
;

Ū1
2¼−

U2
1Ū2

2þU3
1Ū3

2

U1
1

;

Ū1
3¼−

U2
1Ū2

2Ū2
3þU3

1Ū2
3Ū3

2þU1
1U3

1

U1
1Ū2

2
;

Ū3
1¼ Ū2

1Ū3
2−U1

3

Ū2
2

; Ū3
3¼ Ū2

3Ū3
2þU1

1

Ū2
2

: ð3:15Þ

The differential operators get modified as well, leading to
the following expressions:

D1
2 ¼ U1

1

∂
∂U2

1

; D1
3 ¼ U1

1

∂
∂U3

1

;

D3
2 ¼ U3

1

∂
∂U2

1

− Ū2
2

∂
∂Ū3

2
; ð3:16Þ

D2
1 ¼ U2

1

∂
∂U1

1

þ U2
3

∂
∂U1

3

− Ū1
2

∂
∂Ū2

1

− Ū1
2

∂
∂Ū2

2
− Ū1

3
∂

∂Ū2
3

¼ U2
1

∂
∂U1

1

þ
�
U1

3U2
1 − Ū3

2

U1
1

� ∂
∂U1

3

−
�
−U2

1Ū2
1Ū2

2 −U3
1Ū2

1Ū3
2 þU1

3U3
1 þ Ū2

2

U1
1Ū2

2

�

×
∂

∂Ū2
1
þ
�
U2

1Ū2
2 þ U3

1Ū3
2

U1
1

� ∂
∂Ū2

2

þ
�
U2

1Ū2
2Ū2

3 þ U3
1Ū2

3Ū3
2 þ U1

1U3
1

U1
1Ū2

2

� ∂
∂Ū2

3
;

ð3:17Þ

D3
1 ¼ U3

1

∂
∂U1

1

þU3
3

∂
∂U1

3

− Ū1
2

∂
∂Ū3

2

¼ U3
1

∂
∂U1

1

þ
�
U1

3U3
1 þ Ū2

2

U1
1

� ∂
∂U1

3

þ
�
U2

1Ū2
2 þ U3

1Ū3
2

U1
1

� ∂
∂Ū3

2
; ð3:18Þ

1We will suppress the SUð3Þ “indices” on ½D4
ϑ�1122 from now on.
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D2
3 ¼ U2

1

∂
∂U3

1

− Ū3
1

∂
∂Ū2

1
− Ū3

2
∂

∂Ū2
2
− Ū3

3
∂

∂Ū2
3

¼ U2
1

∂
∂U3

1

þ
�
U1

3 − Ū2
1Ū3

2

Ū2
2

� ∂
∂Ū2

1
− Ū3

2
∂

∂Ū2
2

−
�
U1

1 þ Ū2
3Ū3

2

Ū2
2

� ∂
∂Ū2

3
: ð3:19Þ

Using all these expressions, we can write Eq. (3.11)
explicitly in the following form:

ð1þjajÞ
�
U3

1

∂2

∂U2
1∂U3

1

−Ū2
2

∂2

∂Ū3
2∂U3

1

þ
�
aþ1

2

� ∂
∂U2

1

�
F ·j·

·j·¼Δ·j·
·j·δðU3

1ÞδðU2
1ÞδðŪ3

2Þ; ð3:20Þ

where

Δ·j·
·j· ¼

π

2
ðU1

1Þn1ðŪ2
2Þn2δðU1

3ÞδðŪ2
3Þδ00ðŪ2

1Þ with

ðn1; n2Þ ¼

8>>>><
>>>>:

ð−1; 2Þ for hcð1Þb12ð2Þi;
ð0; 3Þ for hb12ð1Þcð2Þi;
ð1; 1Þ for hA1

3ð1ÞA3
2ð2Þi;

ð−2; 4Þ for hA3
2ð1ÞA1

3ð2Þi:

Relabeling U3
1 ¼ x, U1

3 ¼ x̂, U2
1 ¼ y, Ū2

1 ¼ ȳ,
Ū3

2 ¼ z, Ū2
3 ¼ ẑ, Ū2

2 ¼ A, U1
1 ¼ B, and aþ 1

2
¼ b,

we get a simple looking partial differential equation

ðx∂x∂y−A∂x∂zþb∂yÞF ·j·
·j·

¼ π

2ð1þjajÞB
n1An2δðxÞδðx̂ÞδðyÞδ00ðȳÞδðzÞδðẑÞ: ð3:21Þ

We solve it by choosing an ansatz of the form

F ·j·
·j·¼CaApBq yrȳs

ðȳþ ϵ2

y Þ3
�
Ayþxz

B

�
t
�
Bȳþ x̂ ẑ

A

�
−1
; ð3:22Þ

where ϵ is an infinitesimal parameter and the exponents p,
q, r, s, t along with the normalization factor Ca are to be
determined. Plugging Eq. (3.22) into the lhs of Eq. (3.21),
we find that the values t ¼ −b, r ¼ b − 1, s ¼ 0 simplify
the expression to a single term as follows:

lhs of Eq: ð3.21Þ ¼ 3CabApþ2Bqþbybþ2ðAyþ xzÞ−bϵ2
ðAyþ xzÞðBȳþ x̂ ẑÞðyȳþ ϵ2Þ4

¼
CabApþ2BqþbðAþ xz

y Þ−b
2ðAyþ xzÞðBȳþ x̂ ẑÞ πδðyÞδ00ðȳÞ

¼ π

2
CabApþ2Bqþb

�
Aþ xz

y

�
−b
δðxÞδðzÞδðx̂ÞδðẑÞδðyÞδ00ðȳÞ

¼ π

2
CabBqþbApþ2−bδðxÞδðx̂ÞδðyÞδ00ðȳÞδðzÞδðẑÞ; ð3:23Þ

where we use the fact that δ’s for y, ȳ are produced in the
limit of ϵ → 0 and y → 0 via the following identity:

ðmþ 1Þ!ð−yÞmϵ2
ðyȳþ ϵ2Þmþ2

→ πδðyÞδðmÞðȳÞ; ð3:24Þ

and δðzÞ ¼ 1
z, etc., for rest of the four nonconjugate

complex variables. Now, comparing Eq. (3.23) to the rhs
of Eq. (3.21), we can deduce that p ¼ n2 þ b − 2,

q ¼ n1 − b, and Ca ¼ 1
bð1þjajÞ · Thus, the final form of F ·j·

·j·
that solves Eq. (3.21) reads

F ·j·
·j· ¼

1

bð1þ jajÞA
n2þb−2Bn1−b

×
yb−1

ðȳþ ϵ2

y Þ3
�
Ayþ xz

B

�
−b
�
Bȳþ x̂ ẑ

A

�
−1
: ð3:25Þ

Finally, the complete propagators in terms of the U
variables read as follows:

G·j·
·j·ð1; 2Þ ¼

ðŪ2
2Þn2þb−2ðU1

1Þn1−b
bð1þ jajÞ

ðU2
1Þb−1

ðŪ2
1 þ ϵ2

U2
1
Þ3

×
ð−Ū1

2Þ−b
ð−U1

2Þ
1

□
D4

uϑD
4
vϑδ

12ðθ12Þδðx12Þ: ð3:26Þ
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B. Feynman rules

The Feynman rules are now derived as usual. The vector
and ghost propagators are given in Eq. (3.26), but we
reproduce them here individually with explicit harmonic
factors in momentum space (replace 1

□
δðx12Þ → 1

−k2):

hcð1Þb12ð2Þi ¼
2ðŪ2

2Þ
1
2

ðU1
1Þ32

ðU2
1Þ−1

2

ðŪ2
1 þ ϵ2

U2
1
Þ3
ð−Ū1

2Þ−1
2

U1
2

×
1

k2
D4

uϑD
4
vϑδ

12ðθ12Þ; ð3:27Þ

hb12ð1Þcð2Þi ¼
2ðŪ2

2Þ32
ðU1

1Þ12
ðU2

1Þ−1
2

ðŪ2
1 þ ϵ2

U2
1
Þ3
ð−Ū1

2Þ−1
2

U1
2

×
1

k2
D4

uϑD
4
vϑδ

12ðθ12Þ; ð3:28Þ

hA1
3ð1ÞA3

2ð2Þi ¼
ðŪ2

2Þ12
3ðU1

1Þ12
ðU2

1Þ12
ðŪ2

1 þ ϵ2

U2
1
Þ3
ð−Ū1

2Þ−3
2

U1
2

×
1

k2
D4

uϑD
4
vϑδ

12ðθ12Þ; ð3:29Þ

hA3
2ð1ÞA1

3ð2Þi ¼ −
ðŪ2

2Þ32
ðU1

1Þ32
ðU2

1Þ−3
2

ðŪ2
1 þ ϵ2

U2
1
Þ3
ð−Ū1

2Þ12
U1

2

×
1

k2
D4

uϑD
4
vϑδ

12ðθ12Þ; ð3:30Þ

where we have kept the ϵ prescription explicit. The vertices
can be read from Eqs. (3.3) and (3.4):

hðA1
3ÞaðA3

2ÞbðA3
2Þci=hðA3

2ÞaðA1
3ÞbðA1

3Þci

→ 2

Z
dud8θfabc½D1

3=D
3
2�;

hðA1
3ÞaðA3

2ÞbðA1
3ÞcðA3

2Þdi→ _ι

Z
dud8θfabefecd;

hðA3
2Þacbðb12Þci=hðA1

3Þacbðb12Þci→−
Z

dud8θfabc½D1
3=D

3
2�;

ð3:31Þ

where
R
d8θ≡ ðD2Þ2ðD3Þ2ðD̄1Þ2ðD̄3Þ2, fabc are structure

constants of the gauge group and the harmonic derivatives
act on the leg corresponding to the group index ‘c’.

Evaluating loop graphs

Let us first focus on one-loop graphs. We can generateR
d12θ from the analytic measure at vertices by taking off

one factor of D4
ϑ from the propagators. After this, we are

left with ðv3 þ v4Þ
R
d12θ integrals from three- and four-

point vertices, p D4
ϑδ

12ðθÞ’s from propagators. As usual, we
need to saturate all but one

R
d12θ, which means that we

need to kill one of the δ12ðθÞ. This is achieved by using
three D4

ϑ’s and the identity

D4
wϑD

4
vϑD

4
uϑ ¼ ½ððW1

3Þ2ðW̄2
3Þ2ðV1

2Þ2ðV̄2
1Þ2 þ ðW1

3Þ2ðW̄2
1Þ2ðV1

2Þ2ðV̄2
3Þ2 þ ðW1

2Þ2ðW̄2
3Þ2ðV1

3Þ2ðV̄2
1Þ2

þ ðW1
2Þ2ðW̄2

1Þ2ðV1
3Þ2ðV̄2

3Þ2ÞD8
uθ − _ιðW1

2Þ2ðW̄2
3Þ2ðV1

3Þ2ðV̄2
1Þ2D3 · ∂ · D̄3ðD2Þ2ðD̄1Þ2

−
1

2
□ððW1

2Þ2ðW̄2
3Þ2ðV1

3Þ2ðV̄2
1Þ2ðD2Þ2ðD̄1Þ2 þ ðW1

3Þ2ðW̄2
3Þ2ðV1

3Þ2ðV̄2
1Þ2ðD3Þ2ðD̄1Þ2

þ ðW1
2Þ2ðW̄2

3Þ2ðV1
3Þ2ðV̄2

3Þ2ðD2Þ2ðD̄3Þ2 þ ðW1
3Þ2ðW̄2

3Þ2ðV1
3Þ2ðV̄2

3Þ2ðD3Þ2ðD̄3Þ2Þ�D4
uϑ; ð3:32Þ

where D8
θ ≡ ðD2Þ2ðD3Þ2ðD̄1Þ2ðD̄3Þ2, Va

b ≡ vaūb, W̄a
b ≡

w̄aub, etc. The first term which contains D8
θD

4
ϑ [recall

that D4
ϑ ≡ ðD1Þ2ðD̄2Þ2] can be used to kill one δ12ðθÞ.

This means that a two-point function trivially vanishes, as it
does not have enough D4

ϑ’s, and a three-point function
cannot have any divergent piece due to the presence of three
□’s in the denominator, i.e.,

R
d4k
ðk2Þ3 is finite. In fact, no

higher-point function can have any divergent piece at one
loop because the numerator can generate at most (p − 3)
□’s (together with a D8

θ) compared to p□’s in the
denominator, so the difference is always n ≥ 3, i.e.,R

d4k
ðk2Þn is finite.
This power counting readily generalizes to multiloop

graphs because each one-loop subgraph needs to follow
this procedure of D algebra, and hence the whole graph is

rendered finite. This proves the nonrenormalization
theorem at all loops for N ¼ 3 SYM or, equivalently,
N ¼ 4 SYM.

IV. QUANTIZING SYM IN BACKGROUND
FIELD GAUGE

The computation of finite terms for loop graphs is still
cumbersome with the Feynman rules discussed in the
previous section because manifestly covariant expressions
are not obtained for individual graphs. For that purpose, we
develop the background field formalism in this section.
Let us gauge covariantize all the differential operators

ðD → ∇ ¼ Dþ _ιAÞ. Then we do a background splitting
of the connections in a straightforward manner, A →
Abg þ aq, where the subscripts are suppressed in favor
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of self-explanatory fonts. Next, we choose different rep-
resentations for these connections: the “real” rep for
background A’s, meaning that the three harmonic con-
nections vanish ðA1

2 ¼ A1
3 ¼ A3

2 ¼ 0Þ, and the “analytic”
rep for the quantum a’s, meaning that the four fermionic
connections vanish ða1α ¼ ā2_α ¼ 0 ⇒ Dϑ → ∇ϑ ≡DϑÞ.2
Let us write down the consequences of these choices on
connections and field strengths from various commutators:

f∇a
α; ∇̄b _βg ¼ _ιδab∇α_β ð“unchanged”Þ;

f∇a
α;∇b

βg ¼ ϵαβW̄ab;

f∇̄a _α; ∇̄b _βg ¼ ϵ _α _βWab;

½∇a
b;∇c

α� ¼ δcb∇a
α;

½∇a
b; ∇̄c _α� ¼ −δac∇̄b _α;

½∇a
b;∇c

d� ¼ δcb∇a
d − δad∇c

b: ð4:1Þ

Of course, the W’s are antisymmetric in the two indices,
and they satisfy a few Bianchi identities along with some
analytic plus harmonic constraints [5,8]. The most relevant
identity for us is

Da
αWbc ¼

1

2
ðδabDk

αWkc − δacDk
αWkbÞ: ð4:2Þ

Another thing to note is that the spinorial background-
covariant derivatives D1

α and D̄2_α still possess the structure
of Eq. (2.9), so that the “background analytic” superfields
can be defined: D1

αΦ ¼ D̄2_αΦ ¼ 0. Moreover, the fourth
and fifth equations of Eq. (4.1) tell us that the harmonic
connections we are most interested in are now background
analytic. We will also need the following identity defining a
generalized d’Alembertian:

D4
ϑð∇2

1Þ2D4
ϑ ¼ 2□̂D4

ϑ

¼ 2½ð□ − 2W̄12W21Þ − ∇̄1 · ∇̄aW̄1a

þ 2∇2 ·D1W21 þ∇2
1ðD1Þ2W21�D4

ϑ: ð4:3Þ

A. Feynman rules

Since the harmonic connections appearing in the action
as well as the ghosts are purely quantum superfields but
background analytic, only □ changes to □̂ in the propa-
gators were derived in the previous section, whereas the
vertices in the Lagrangian remain the same. However, we
can expand the □̂ to get vertices with explicit field
strengths, which leads to covariant results in the loop
calculations directly. With this structure, we can write down
the background Feynman rules as follows:

Propagators∶

(
F ·j·

·j·ðu; vÞ 1
−k2 D

4
uϑD

4
vϑδ

12ðθ12Þ; ignore background vertices;

1
−k2 δ

8ðθ12Þδ6ðu; vÞ; consider all such vertices but one;

All but one background vertex∶
Z

dud8θð□̂ −□0Þ;

One background vertex∶
Z

dudvd8θðK1
2Þaδ6ðu; vÞ;

All quantum vertices∶ same as Eq: ð3.31Þ.

Note that the background d’Alembertian is expanded as
□≡Dα _αDα _α ¼ □0 þ � � �, where□0 corresponds to −k2 in
the momentum space.

One-loop graph computation

Let us focus on the computation of a four-point function
here. It is finite and, from the symmetry arguments of

Sec. 5.5 of [8], it is known to look like ðW̄13W23Þ2 in
N ¼ 3 harmonic superspace.

We can obtain such a contribution by evaluating a bubble
graph and expanding the ð□̂ −□0Þ-vertex factors to get the
relevant W’s using Eqs. (4.3) and (4.2). The above
Feynman rules give the following expression for the graph
with vector loop shown in Fig. 1 (after performing θ and u
integrals at two of the vertices):

ΓðAÞ
4 ∼ Â4

Z
dudv

Z
d8θ1;2ð∇̄1 · ∇̄3W̄13ðp1ÞÞ

× ð∇̄1 · ∇̄3W̄13ðp2ÞÞððU2
1U1

2Þ∇2 ·∇3W23ðp3ÞÞ
× δ8ðθ12ÞðK1

2Þ−1F 22j23
13j11ðu; vÞD4

uϑðp4ÞD4
vϑðp4Þ

× δ12ðθ12Þδ6ðu; vÞ; ð4:4Þ

2Such a choice was used in the case of N ¼ 2 projective
superspace to construct the background field formalism [10]. It
ensures that the effective action is independent of background
fields with dimension 0 (like the harmonic connections), which is
required for the nonrenormalization theorems to hold [11].
However, the simple splitting of N ¼ 3 prepotentials is remi-
niscent of the background field formalism for the N ¼ 2
harmonic superspace developed in [12], with further refinements
and explicit calculations appearing in [13,14].
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where Â4 ∼
R
d4k 1

ðk2
1
Þðk2

2
Þðk2

3
Þðk2

4
Þ is the scalar box integral

with the subscripts on loop momentum k denoting
the external momenta (pi) dependence. Note that we
had to partially integrate ðK1

2Þþ1 so that it changed to

ðK1
2Þ−1 acting on F ·j·

·j·, which gives, using Eq. (3.20),

ðK1
2Þ−1F 22j23

13j11ðu; vÞ ¼ 1
2
ðD2

1Þ2δ6ðu; vÞ − 4 ∂
∂U2

1
F 22j23

13j11. The

first term leads to a harmonic singularity with two

δ6ðu; vÞ functions, but this singularity will cancel with

the analogous contribution ΓðbcÞ
4 from the ghost loop in

Fig. 1. So we focus only on the second term, which has no
analog from the ghost loop graph (as a ¼ 0) and thus gives
the complete four-point function. To get rid of the δ12ðθ12Þ
function, eight spinorial derivatives should be gathered off
of W ’s in addition to D4

ϑ as follows3:

Γ4 ∼ Â4

Z
dudv

Z
d8θ1;2W̄13ðp1ÞW̄13ðp2ÞW23ðp3Þδ8ðθ12ÞD1

2F
22j23
13j11ðu; vÞ

× ð∇̄1Þ2ð∇̄3Þ2ððU2
1U1

2Þ∇2 ·∇3ÞðŪ2
1Ū2

1U2
1U1

2∇2 ·∇3W23ðp4ÞÞD4
vϑðp4Þδ12ðθ12Þδ6ðu; vÞ

∼ Â4

Z
du

Z
d8θW̄13ðp1ÞW̄13ðp2ÞW23ðp3ÞW23ðp4Þ

��
U1

1

ðŪ2
1Þ4ðU2

1Þ2
�
ðU2

1U1
2Þ2ðŪ2

1Þ2
�
ju→v

∼ Â4

Z
du

Z
d8θW̄13ðp1ÞW̄13ðp2ÞW23ðp3ÞW23ðp4Þ

�ðU1
2Þ2

ðŪ2
1Þ2

�
ju→v

; ð4:5Þ

where we use ∇8
θD

4
ϑδ

12ðθ12Þ ¼ 1 in the second step. In the
last step, the apparent harmonic singularity cancels as we
take the limit u → v, leading to the expected result for the
one-loop effective action,

Γ4 ∼
Z

dudζ2211Â4ðW̄13W23Þ2: ð4:6Þ

V. DISCUSSION

We have introduced a new gauge-fixing action to quantize
N ¼ 3 SYM in N ¼ 3 harmonic superspace. This leads to
simpler (and fewer) propagators for vector and ghost super-
fields in a Fermi-Feynman gauge. These are sufficient to
prove the nonrenormalization theorem forN ¼ 3, 4 SYM at
all loops. However, computation of loop graphs beyond the
divergent terms can be simplified more with the background
field formalism. With the background Feynman rules in

hand, we have computed the one-loop four-point contribu-
tion to the effective action, which gets a finite contribution
purely from the vector loop diagram.
The way that we derived the harmonic propagators here is

reminiscent of how N ¼ 2 projective superspace [15,16] is
derived from N ¼ 2 harmonic superspace [2,17] in [18]:
by choosing a special parametrization of the harmonic
R-symmetry coordinates on SUð2Þ=Uð1Þ ≃ S2 to obtain a
single (complex) coordinate on CP1 that forms the internal
coordinate for the projective case.4 Even though we did not
take this route to its full conclusion, it should be possible to
derive a N ¼ 3 projective superspace in such a way that it
simplifies the

R
du integrals to somethingmore tractable. For

example, viewing the R-symmetry coset SUð3Þ=Uð1Þ2 ≃
½SUð3Þ=ðSUð2Þ × Uð1ÞÞ� × ½SUð2Þ=Uð1Þ� ≃ CP2 × CP1,
one can expect to reduce the six (x; x̂; y; ȳ; z; ẑ) R-symmetry
coordinates of N ¼ 3 harmonic superspace to only three
(x, y, z) for a possible N ¼ 3 projective superspace. This
should then be followed by a projection of the harmonic

FIG. 1. One-loop four-point graph with external background field strengths.

3The requirement of collecting eight spinorial derivatives to get
∇8

θ [which is analogous to extracting D8
θ from Eq. (3.32) while

evaluating graphs in Fermi-Feynman gauge] is sufficient to make
Γ2 ¼ Γ3 ¼ 0 identically at one loop.

4The relation between these two hyperspaces was explored
from different points of view in [19,20].
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gauge condition and equations of motion for the gauge and
ghost fields to the projective superspace, which we leave for
future work.
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