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1 Introduction

The study of entanglement in many-body quantum systems has opened new windows to

understanding strongly coupled phenomena. Entanglement measures in lattice models have

helped identify phases of matter and universal dynamical processes. In Poincare-invariant

quantum field theory (QFT), entanglement measures have taught us about universal long-

range correlation patterns, and renormalization monotones [1–3]. In holographic QFT,
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entanglement measures play an important role in the emergence of geometry out of quantum

states [4]. In this work, we study the entanglement theory in quantum systems with

conserved charges.

In the conventional quantum information theory, the Hilbert space of a bipartite system

A12 ≡ A1 ∪A2 with A1 and A2 non-overlapping is the tensor product of the Hilbert spaces

of each: H12 = H1⊗H2. There are local algebras of operators on A1 and A2 that we denote

by F1 and F2, respectively. For instance, the algebra of operators of a d-level quantum

system (qudit) is the algebra of d×d complex matrices. The global algebra of the bipartite

system A12 is F12 = F1⊗F2. The local algebra F1 is a subalgebra of F12, and the reduced

state on this subalgebra is given by a partial trace on F2. The entanglement measure we

are interested in captures the amount of information erased by partial trace. Entanglement

is a resource that can be distilled in the form of Einstein-Podolosky-Rosen (EPR) pairs

and can be used to teleport quantum states. For instance, for a bipartite qudit density

matrix ρ1⊗ ρ2 the amount of information erased by partial trace on A2 is log d− SvN (ρ2),

where SvN (ρ) = −tr(ρ log ρ) is the von Neumann entropy. The state ρ1⊗ I2/d is unique in

that it loses no information under partial trace. The distinguishability of an arbitrary state

ρ12 with respect to the invariant state of partial trace ρ1 ⊗ I2/d can be used to quantify

the amount of information lost in partial trace of A2. In quantum information theory, the

distinguishability of a state ρ from σ is measured by the relative entropy

S(ρ‖σ) = tr(ρ log ρ)− tr(ρ log σ) (1.1)

which is non-negative and vanishes if and only if ρ = σ. We choose the relative entropy

S(ρ12‖ρ1 ⊗ I2/d) = log d − SvN (ρ12) + SvN (ρ1) as our measure of the information lost in

partial trace.1

In systems with symmetries and conserved charges, the degrees of freedom in A1 and

A2 are not completely independent. Charge conservation requires that any physical process

that creates a charge particle in A1 also creates the opposite charge in A2. If we superpose

states of different charge, there is no information in their relative phase because they cannot

be detected in any physical process made out of charge conserving operations. The naive

relative entropy for a charged system cannot be used as a resource to distill entangled

pairs [6, 7]. In this work, we argue that the measure of entanglement with the correct

operational interpretation is the sum of two relative entropies. One term captures the

entanglement due to the charge-neutral degrees of freedom. These operators are invariant

under the symmetry transformation. The second term captures the contribution of charged

operators, and is a measure of the asymmetry of states in the resource theory of symmetry

[6, 7]. In section 2, we motivate a generalized entanglement entropy beyond the case

of tensor products, and connect it to the coarse-grained entropy defined by the Jaynes

maximum entropy principle [8]. For other definitions of generalized entanglement see [9, 10].

The charge-neutral operators in F form a sub-algebra that we denote by A; figure 1. In

the bipartite setup, the algebra of charge-neutral operators localized in A1 is a subalgebra

of all charge-neutral operators of A12: A1 ⊂ A12. However, it is not true that A1 and

1It has an operational interpretation in the language of the state merging protocol [5].
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Figure 1
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Figure 1. (a) A charge neutral operator in region A: a ∈ AA. (b) A charged operator in region

A: b ∈ FA.

A2 generate all the charge-neutral operators of A12. The operators that spontaneously

create a pair of charge particle in A1 and its anti-charge in A2 belong to A12, but not to

A1 ⊗ A2. In section 3, we call such operators bi-local intertwiners due to the role they

play in the representation theory of the symmetry group; see figure 2. Our goal is to

quantify the contribution of the local intertwiners to the entanglement. The key idea is to

associate to any state ρ an invariant state E∗(ρ). The expectation value of all charge-neutral

operators A in E∗(ρ) and ρ match, however the probability for the spontaneous creation

of a charge/anti-charge pair in the invariant state is zero. The relative entropy S(ρ‖E∗(ρ))

measures the distinguishability of the two states. It is a measure of the asymmetry of ρ

and captures the information contained in the bi-local intertwiners. In section 2, we argue

that this relative entropy added to the mutual information between region A1 and A2 due

to the charge-neutral algebra A1⊗A2 captures the total amount of entanglement between

A1 and A2. This quantity is also discussed in previous work of [11, 12] and some of the

ideas here parallel those of [12].

In section 3, we review the representation theory of symmetry groups and the super-

selection sectors. A special role is played by the charge creation/annihilation operators

that take charge neutral operators from a superselection sector to another. They are called

intertwiners and together with the charge neutral sub-algebra they generate the algebra

of all charged particles. In section 3 we provide simple physical examples from qubits to

QFT to demonstrate the formalism. A reader who is already familiar with the formalism

can skip this section. In section 4, we make the distinction between global algebras and

local algebras. In the global case, we consider the algebra of charge neutral operators as

a sub-algebra of all charged operators A ⊂ F . In the local case, we consider the tensor

product of charge neutral operators in non-overlapping regions A1 and A2 as a sub-algebra

of charge-neutral operators of A1 ∪A2: A1 ⊗A2 ⊂ A12.

The study of entanglement in QFT is subtle due to absence of a tensor product HA ⊗
HA′ that reflects itself as ultra-violet divergence in the entanglement entropy [11, 13, 14].

Modular theory is a mathematical framework that is well-suited for the study of entangle-

ment in any quantum system from qubits to QFT. In modular theory, instead of tensor

products and local density matrices, the algebra of operators localized in a region and

locality constraints among them are used to define entanglement measures. In section 5,
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Figure 2

A1

+
−

A2

+
−

A1

+

A2

−

A1

+

A2

−−
−

(a)

Figure 2

A1

+
−

A2

+
−

A1

+

A2

−

A1

+

A2

−−
−

(b)

Figure 2

A1

+
−

A2

+
−

A1

+

A2

−

A1

+

A2

−−
−

(c)

Figure 2. (a) Charge neutral operators in region A1 ∪A2: a ∈ A1⊗A2. (b) A bi-local intertwiner

in A1 ∪A2: I12 ∈ A12. (c) Local intertwiners, or charged operators in A1 ∪A2 that belongs to the

global algebra F1 ⊗F2.

we use modular theory to define both the relative entropies that measure the entanglement

between non-touching regions A1 and A2 in a QFT with conserved charges. We highlight

the difference in the analysis of entanglement between QFTs and lattice models. Finally,

we discuss an extension of the QFT algebra that factors out charged excitations and brings

the QFT algebra closer to lattice models.

In this work, we focus on global symmetries, however, the formalism can be generalized

to many gauge theories [15, 16]. We postpone this to future work.

2 Generalizations of entanglement

2.1 Conditional expectation as generalization of partial trace

Consider the algebra of operators of two qudits F12 = F1 ⊗ F2 and the subalgebra of

operators localized on the first system F1 ⊗ I2. The reduced density matrix on F1 is given

by the partial trace over F2: ρ1 = tr2(ρ12). In the classical case, ρ12 =
∑

kk′ pkk′ |kk′〉 〈kk′|
the reduced density matrix on the first qudit is ρ1 =

∑
k qk |k〉 〈k| where qk =

∑
k′ pkk′ are

the classical conditional expectations to obtain result k in a measurement on first qudit:

qk = tr ((|k〉 〈k| ⊗ I)ρ12). In a mathematical analogy, one can think of density matrices as

non-commutative probabilities and partial trace as non-commutative conditional expecta-

tion [17].

To compute how much information was erased during partial trace we have to pull ρ1

back to the bipartite Hilbert space by a linear map that we denote by α∗(ρ1) = φ12 with

the following properties:

1. It is consistent with ρ1: tr2(φ12) = ρ1.

2. The state φ12 is invariant under partial trace and α∗: α∗(φ1) = φ12 so that α∗ does

not add any information.

We call such α∗ maps recovery maps or state extensions [17, 18]. In the partial trace case,

the recovery map with the properties above is α∗(ρ1) = ρ1 ⊗ I2/d.2 It is convenient to

think of partial trace and recovery together as one linear map that sends density matrices

2An example of a map that satisfies the first property but not the second is α∗(ρ1) = ρ1⊗ω2 for some ω2.
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on F12 to the density matrices on the subalgebra F1 ⊗ I2: E∗(ρ12) = ρ1 ⊗ I2/d. The dual

of the E∗ is a projection from F12 down to the subalgebra F1 ⊗ I2:

E(b1 ⊗ b2) = b1 ⊗ I2 tr

(
b2
d

)
. (2.1)

Here, by the duality we mean going from the Schrodinger to the Heisenberg picture3

tr(E∗(ρ12)(b1 ⊗ b2)) = tr(ρ12E(b1 ⊗ b2)) = tr(ρ1b1) tr

(
b2
d

)
. (2.2)

The map E has the property that it squares to itself, i.e. E2 = E, so that E∗(ρ12) is

invariant state of E:

tr(E∗(ρ12)E(b1 ⊗ b2)) = tr (E∗(ρ12)(b1 ⊗ b2)) . (2.3)

The relative entropy of ρ12 with respect to the invariant state E∗(ρ12) = ρ1 ⊗ I2/d mea-

sures the asymmetry of the state or the amount of information erased in partial trace:

S(ρ12‖E∗(ρ12)) ≥ 0; see figure 3.

A simple way to generalize partial trace is to consider a more general dual map E :

F12 → F1 ⊗ I2:

E(b1 ⊗ b2) = b1 ⊗ D(b2)

D(b) =
∑
k

bkk |k〉 〈k| (2.4)

where {|k〉} is some distinguished basis of the second qudit. In the Schrodinger picture,

the state transforms according to

E∗(ρ12) =
∑
k

pkρ
(k)
1 ⊗ |k〉2 〈k|2

pkρ
(k)
1 = 〈k|2 ρ12 |k〉2 , pk = tr(ρ12(I⊗ |k〉2 〈k|2)) (2.5)

that dephases the density matrix and erases the information in the off-diagonal operators

|k〉 〈k′|. Similar to the E of partial trace we have the property that E(I) = I so that E∗(ρ)

is properly normalized. Furthermore, E squares to itself which implies that E∗(ρ12) is an

invariant state of E.

In systems with conserved charges, the subalgebra of charge-neutral operators corre-

sponds to matrices that are block-diagonal in some basis labelled by charge. For instance,

take a qubit and the symmetry transformation σz. The Abelian subalgebra D ⊂ F of 2×2

complex matrices diagonal in σz basis is the charge neutral algebra. The dephasing map

E(b) = D(b) projects operators from F to D. For a general quantum system with symmetry

we need to define a linear map E : F → A with A ⊂ F the subalgebra of charge-neutral

3An alternative notation used in [12] is to denote E∗(ρ) by ρ ◦ E.
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Figure 3

ρ12 E*(ρ12) = ρ1 ⊗ I2/d
ρ1

E*

tr2 α*
S(ρ12 | |E*(ρ12))

ρ D(ρ) = ∑
k

|k⟩⟨k |ρkk
E* S(ρ | |E*(ρ))

(a)

Figure 3

ρ12 E*(ρ12) = ρ1 ⊗ I2/d
ρ1
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tr2 α*
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ρ D(ρ) = ∑
k
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(b)

Figure 3. Our entanglement measure is the relative entropy of the state ρ with respect to its corre-

sponding invariant state E∗(ρ): S(ρ‖E∗(ρ)). (a) The example where the map E∗ is a composition

of partial trace of system 2 and the recovery map α∗ which results in an invariant state E∗(ρ12).

(b) The example where the map E∗ decoheres the density matrix ρ in a particular basis {|k〉}.

operators as a generalization of partial trace. An example of one such maps is the Haar

average over the group G:

E(b) =
1

|G|

∫
dtU †g bUg . (2.6)

The operator E(b) is charge-neutral for any charged operator b. In analogy to partial

trace, we require this map preserves the identity operator, and it leaves the charge-neutral

operators unchanged so that the state E∗(ρ) defined by (E∗(ρ))(b) = ρ(E(b)) for all b ∈ F is

invariant under the map E: E(E∗(ρ)) = E∗(ρ). The generalization of partial trace is called

the non-commutative conditional expectation (or in short conditional expectation) that is

a linear map from F to an arbitrary subalgebra A such that E(I) = I and E(ab) = aE(b)

for all a ∈ A and b ∈ F [17, 19].4 Since E(a) = a all invariant operators are in A and every

operator in A is invariant. As a result, E∗(ρ) ∈ A.

2.2 Generalized entanglement entropy and coarse-grained entropy

In conventional quantum information theory, the amount of entanglement between A1 and

A2 is measured by the distinguishability of the ρ12 with respect to the unentangled state

ρ1 ⊗ ρ2:

S(ρ12‖ρ1 ⊗ ρ2) = −SvN (ρ12) + SvN (ρ1) + SvN (ρ2) (2.7)

which is called the mutual information. Consider a multi-partite global state |Ω〉AA′ and

its reduced states ρA and ρA′ on region A and the complementary region A′, respectively.

The distinguishability of |Ω〉 from the tensor product state ρA ⊗ ρA′ is measured by the

relative entropy

S(|Ω〉 〈Ω| ‖ρA ⊗ ρA′) = 2SvN (ρA) . (2.8)

4In this paper, the operator b is chosen to belong to the algebra of charged operators, whereas a denotes

a charge-neutral operator.
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The tensor product state ρA⊗ρA′ has the same expectation values as |Ω〉 for all operators in

FA⊗I and I⊗FA′ , however, all correlations between A and A′ are erased. The expectation

of all operators b⊗b′ with b ∈ FA and b′ ∈ FA′ factors in the tensor product state ρA⊗ρA′ .
To generalize the notion of entanglement to a general subalgebra A ⊂ F we invoke the

Jaynes maximum entropy principle. Consider the set of all density matrices σ that have the

same expectation values as ρ for operators in A: tr((σ− ρ)a) = 0 for all a ∈ A. According

to Jaynes the entropy of a state ρ with respect to a subalgebra A is the supremum of the

von Neumann entropy SvN (σ) over the set of all consistent states σ [8]:

SJ(ρ,A) = SvN (σmax) (2.9)

where σmax is consistent with ρ and has the maximum entropy. Hereafter, we suppress the

vN index of the von Neumann entropy.

The Jaynes maximum entropy consistent state is precisely our invariant state E∗(ρ).

Given a general conditional expectation E and a state σ consistent with ρ on A we have

tr((E∗(σ)− E∗(ρ))b) = tr((σ − ρ)E(b)) = 0, (2.10)

therefore E∗(σ) = E∗(ρ). At the end of section 2.1 we showed that the invariant state is

in A, therefore the logarithm of an invariant states is also in A:

tr(σ logE∗(ρ)) = tr(σE(logE∗(ρ))) = tr(E∗(σ) logE∗(ρ))

= tr(E∗(ρ) logE∗(ρ)) = −S(E∗(ρ)) . (2.11)

In the above, we have assumed that the conditional expectation preserves the trace:

tr(E(b) − b) = 0 [12].5 From the definition (1.1) it follows that the relative entropy of

any consistent state σ consistent with ρ on A with respect to the invariant state E∗(ρ) is

S(σ‖E∗(ρ)) = −S(σ) + S(E∗(ρ)) ≥ 0 . (2.12)

From the positivity of relative entropy we conclude that the invariant state of a conditional

expectation E is the maximum entropy state appearing in the Jaynes formula:

E∗(ρ) = σmax (2.13)

and the non-degeneracy of relative entropy tells us that this state is unique.6 Therefore,

our proposed measure of the information lost in E is the entanglement deficit from the

maximum value:

S(ρ‖E∗(ρ)) = S(σmax)− S(ρ) . (2.14)

As an example, consider the subalgebra of matrices A = F1 ⊗D2 and the set of all σ

that are consistent with ρ on A and maximize the entropy among them. The consistent

5We thank Horacio Casini for pointing this out to us.
6If σmax and σ′max are both maximum entropy then S(σmax‖σ′max) = 0, therefore σmax = σ′max.
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states are all σ12 that satisfy tr((σ12 − ρ12)(a1 ⊗ |k〉 〈k|)) = 0 for all basis vectors |k〉. The

relative entropy of σ12 with respect to the invariant state in (2.5) is

S

(
σ12‖

∑
k

pkρ
(k)
1 ⊗ |k〉 〈k|

)
= −S(σ12) +H(p) +

∑
k

pkS(ρ
(k)
1 ) ≥ 0 (2.15)

where H(p) = −
∑

k pk log(pk) is the Shannon entropy of pk [20]. The maximum entropy

state is the invariant state, and the Jaynes entropy is

SJ(ρ12,F1 ⊗D2) = S(E∗(ρ12)) = H(p) +
∑
k

pkS(ρ
(k)
1 ) . (2.16)

The reduced state on system A1 is ρ1 =
∑

k pkρ
(k)
1 . The von Neumann entropy of ρ1 is less

than the Jaynes entropy because of the inequality [20]

S

(∑
k

pkρ
(k)
1

)
≤ H(p) +

∑
k

pkS(ρ
(k)
1 ) . (2.17)

The definition of Jaynes entropy can be generalized beyond subalgebras to any subspace

of observables P :

SJ(ρ, P ) = sup
σ∈F∗

{SvN (σ)|tr((σ − ρ)a) = 0, ∀a ∈ P} (2.18)

where F∗ denotes the set of all states of the global algebra F . For instance, consider the

subspace of observables built out of linear sums of a1⊗ I and I⊗a2 and a bipartite density

matrix ρ12. The relative entropy S(σ12‖ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2)− S(σ12) = I(1 : 2) ≥ 0,

where I(1 : 2) is the mutual information between site one and two. Therefore, the maximum

entropy state in the Jaynes formula that reduces to both ρ1 and ρ2 is ρ1 ⊗ ρ2 and as a

result SJ(ρ12, P ) = S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2) [18]. Our relative entropy measure

S(ρ12‖σmax) = S(ρ12‖ρ1 ⊗ ρ2) = I(1 : 2) (2.19)

equals the mutual information that well captures the amount of correlations between A1

and A2. In the absence of a subalgebra and a conditional expectation σmax replaces E∗(ρ)

and we propose S(ρ‖σmax) as a measure of the information lost under restriction to the

subspace of observables P [18]. To find the maximum entropy state consider the Lagrange

multipliers λi and the function

−tr(σ log σ) +
∑
i

λitr((ρ− σ)Oi) (2.20)

where Oi is a basis for the subspace of observables P . Setting the variation of the expression

above with respect to σ and λi establishes that the maximum entropy state log σmax =∑
i µiOi ∈ P for some constants µi. Similar to the case of conditional expectation the

maximum entropy state belongs to the subspace P , i.e. σmax ∈ P , and the expectation

value of every operator that is not in P is zero. As a result

S(ρ‖σmax) = −S(ρ)− tr(ρ log σmax) = S(σmax)− S(ρ) . (2.21)

– 8 –
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In QFT the von Neumann entropy of a region is divergent7 and we can only compute

the relative entropy of states. This motivates us to replace Jayne’s maximum entropy

principle with the supremum of S(ρ‖σ) over all σ consistent with ρ on P :

IP (ρ) = sup
σ∈F∗

{S(ρ‖σ)|tr((σ − ρ)a) = 0, ∀a ∈ P} (2.22)

that is the measure of information entropy produced under the restriction to a subspace

of observables P and has the advantage of being well-defined in QFT like in systems with

density matrices. We postpone further discussion of the generalized entanglement to future

work and in the remainder of this work focus on the case of charge-neutral subalgebras.

In a system with an internal symmetry group G, the symmetry transformation acts

on the local algebra of region A as a unitary transformation: bi → U †g biUg for all bi ∈ Fi
and Ug some unitary representation of G. The operators in Fi that are invariant under the

action of the symmetry form a subalgebra of uncharged operators that we denote by Ai:

U †gaiUg = ai, ∀ai ∈ Ai . (2.23)

On a lattice, there is a unitary operator localized in Fi that acts the same way as Ug on Fi:

τgbiτ
†
g = UgbiU

†
g , ∀bi ∈ Fi (2.24)

we call this operator the twist and it generates another representation of the group that we

call the twist group Gτ : τgτh = τgh. The commutator of the twist with the group action is

UgτhU
†
g = τghg−1 . (2.25)

For instance, in a bipartite system with symmetry transformation Ug = eig(Q1+Q2) where

Q1 + Q2 is the total charge of A12 the twist is τg = eigQ1 ; see figure 2. It belongs to F1

and acts the same way as Ug on F1. We postpone the subtleties in defining τg in QFT to

section 5. The algebra A12 of charge-neutral operators in A12 is larger than the algebra

generated by locally charge-neutral operators of A1 and A2, namely A1 ⊗ A2. This is

because there are operators that correspond to the creation of a pair of charged particles

of opposite charge one in region A1 and the other in A2. We call these operators the bi-

local intertwiners I12. We will see in section 4 that there exists a conditional expectation

constructed from the twist group Eτ : A12 → A1 ⊗ A2 that washes out the information

content of the bi-local intertwiners: Eτ (I12) = 0.8 The amplitude for the invariant state

E∗τ (ρ12) to spontaneously create an entangled pair of charge/anti-charge particles is zero.

The relative entropy S(ρ12‖E∗τ (ρ12)) measures the amount of correlations due to the bi-

local intertwiners. Note that the reduced state on A1⊗A2 still contains lots of correlations

in between region one and two. It is only the correlations due to intertwiners that are

washed out. In the presence of charges, the naive mutual information SF12(ρ12‖ρ1 ⊗ ρ2)

contains unphysical correlations that cannot be accessed in any charge-conserving process.

We would like to discard all operators that create charge on A12. First, we restrict the

7It is a property of the algebra and not the states.
8The map Eτ is from F12 to A1 ⊗A2. However, we will be mostly concerned with its action on A12.
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Figure 5

 : E* ρ   E*(ρ)
 : E* E*(ω)   E*(ω)

Figure 4. A pictorial description of the relative entropy property in equation (2.27) written in

terms of states of F . The relative entropy of blue states S(ρ||E∗(ω)) is the relative entropy the red

ellipse S(ρ‖E∗(ρ)) plus the relative entropy of the green ellipse S(E∗(ρ)‖E∗(ω)). Note that since

both E∗(ρ) and E∗(ω) are invariant under E, the green relative entropy is the same as SA(ρ‖E∗(ω)).

relative entropy to the invariant algebra A12. In general, the relative entropy SA(ρ‖ω) is a

measure of distinguishability of the two states using only the operators in A. Alternatively,

one can think of this relative entropy as

SA12(ρ‖ω) = SF12(E∗(ρ)‖E∗(ω)) (2.26)

where E : F12 → A12. The expression above implies that the distinguishability of invariant

states of E does not change under the restriction to the invariant subalgebra A12 [17].

Second, we replace ρ1 with E∗τ (ρ1) to make sure that E∗τ (ρ1)⊗ρ2 has no bi-local intertwiners.

Therefore, we consider the measure SA12(ρ12‖E∗τ (ρ1 ⊗ ρ2)).

A useful property of relative entropy is that it satisfies the following equality (Theorem

9.3 of [17]); see figure 4:

SF (ρ‖E∗(ω)) = SA(ρ‖E∗(ω)) + SF (ρ‖E∗(ρ)) (2.27)

where E : F → A. Applying the identity above to the twist conditional expectation Eτ
implies that our measure splits into two terms9

SA12(ρ12‖E∗τ (ρ1)⊗ ρ2)) = SA1⊗A2(ρ12‖E∗τ (ρ1)⊗ ρ2) + SA12(ρ12‖E∗τ (ρ12)) . (2.28)

The first term is the relative entropy with respect to the charge-neutral operators of A1 and

A2, and the second term is the contribution due to the bi-local intertwiners. We can use

the conditional expectation E : F12 → A12 to rewrite both terms in terms of the charged

algebras:

SF12(E∗(ρ12)‖E∗(E∗τ (ρ12))) + SF12(E∗(E∗τ (ρ12))‖E∗(E∗τ (ρ1)⊗ ρ2)) . (2.29)

In section 3, we will see that the conditional expectations E and Eτ are Haar averages

over the group and the twist group, respectively. If ρ12 is invariant under Ug we get the

following simplification

SF12(ρ12‖E∗τ (ρ12)) + SF12(E∗τ (ρ12)‖ρ1 ⊗ ρ2) . (2.30)

9This identity was also used in [21] to compute relative entropies in QFT.
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From the conditional expectation in (2.6) it is clear that our relative entropies have

the general form S(
∑

k pkρk‖
∑

k qkωk). Relative entropy satisfies the inequality

S

(∑
k

pkρk‖
∑
k

qkωk

)
≤ H(p‖q) +

∑
k

pkS(ρk‖ωk) (2.31)

where H(p‖q) is the classical Kullback–Leibler divergence of the probability distributions

pk and qk. To see this, consider the block-diagonal density matrices ρ = ⊕kpkρk and

ω = ⊕kqkωk the relative entropy

S(ρ‖ω) = H(p‖q) +
∑
k

pkS(ρk‖ωk) . (2.32)

With respect to the subalgebra of operators I⊗a the density matrix is
∑

k pkρk and
∑

k qkωk
and since relative entropy is monotonic under restriction to the subalgebra we find that

relative entropy satisfies (2.31). In section 5, we generalize this inequality to QFT and use

it to bound the relative entropies in (2.30) from above and below.

3 Symmetry and intertwiners

3.1 Superselection sectors and intertwiners

We start by reviewing some definitions and set the notations for our discussion of quantum

systems with symmetries. Consider a quantum system and its Hilbert space H. The set

of all bounded linear operators acting on this Hilbert space forms an algebra, B(H), that

acts irreducibly on H. We call this algebra the field algebra and denote it by F . All proper

subalgebras of F act reducibly on H. A symmetry is a linear transformation of operators in

the algebra b→ αg(b) ∈ F that respects operator multiplication: αg(b1b2) = αg(b1)αg(b2)

and is invertible.10 The set of all symmetry transformations of the algebra forms the

symmetry group G. By Wigner’s theorem, any symmetry is represented by either a unitary

or anti-unitary transformation of the Hilbert space, i.e. |Ψ〉 → Ug |Ψ〉, and acts on the

algebra as αg(b) = U †g bUg. The set of operators a that commute with Ug form a subalgebra

A ⊂ F that we refer to either as the invariant subalgebra, or the subalgebra of charge-

neutral operators. On a lattice if the group G is Abelian Ug is itself charge neutral and

belongs to A.11

If there exist vectors in the Hilbert space such that

〈Φ|Ug|Ψ〉 = 0 (3.1)

for all Ug ∈ G we say that |Φ〉 and |Ψ〉 belong to different selection sectors.12 The Hilbert

space splits into a direct sum of selection sectors H = ⊕rKr⊗Hr where Kr is the irreducible

representation r of G and Hr is the Hilbert space corresponding to the charge neutral

10In mathematical language, such a transformation is called an automorphism of the algebra. If we relax

the invertibility assumption we have an endomorphism of the algebra.
11When Ug is not in A we say the symmetry transformation is an outer automorphism of the algebra A.
12If there exists no selection sectors; that is to say the only subspace of H invariant under the symmetry

transformation is the whole H we say the action of the symmetry is ergodic. For instance, the action of

modular flow on local algebras of QFT is ergodic.
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degrees of freedom. The basis of the Hilbert space is |r, i〉⊗ |α〉 where i = 1, · · · , dr with dr
the dimension of the irreducible representation r. The group acts as U = ⊕rU (r)

g ⊗ 1r, and

by Schur’s lemma the invariant operators of each irreducible representation are Ir⊗a, where

Ir =
∑dr

i=1 |r, i〉 〈r, i| is the identity operator in the Hilbert space Kr of representation r. The

subalgebra of invariant operators is ⊕rIr ⊗ a which has the non-trivial center ⊕rλrIr ⊗ 1r.

If the group G is Abelian all its irreducible representations are one-dimensional and we can

label them by charge q: H = ⊕q |q〉 〈q| ⊗ Hq or simply H = ⊕qHq.
Consider the Abelian group Zd and its irreducible representations labelled by charge

q: U qg = e2πigq/d with g = 0, · · · d− 1 and q = 0, · · · d− 1. The regular representation of G

is the vector space K of a qudit:

Ug =
∑
h

|(g + h) mod d〉 〈h| (3.2)

where g + h is the group multiplication and the identity element is zero charge. The

irreducible representations are all one-dimensional and correspond to basis where all Ug
are diagonal

Ug =
∑
q

e2πigq/d |q〉 〈q|

|q〉 =
∑
g

e−2πigq/d |g〉 . (3.3)

The dual group Ĝ is the Fourier space generated by

Ûq =
∑
g

e−2πigq/d |g〉 〈g| =
∑
k

|(q + k) mod d〉 〈k| . (3.4)

The elements of the dual group take us in between irreducible representations and commute

with the action of the invariant subalgebra

Ûq |k〉 〈k| = |k + q〉 〈k + q| Ûq . (3.5)

The operators that satisfy the equation above are called the intertwiners, and physically

they are charge creation/annihilation operators. Take the infinite Abelian group G =

U(1) of rotations around a circle. The irreducible representations are constant momentum

modes and the intertwiners are the operators that add momentum Ûq =
∑

q |q + k〉 〈k| and

generate the dual group Ĝ = Z with the multiplication operation that adds charges k + q.

Consider a finite non-Abelian group G represented in its regular representation by a

qudit of dimension |G|:

Ug =
∑
h

|gh〉 〈h| (3.6)

where gh is the group multiplication. The Hilbert space splits into K = ⊕r,iKr,i where the

irreducible representation r with the index i running from zero to the dimension dr. The

irreducible representation r appears dr times in the decomposition of the regular represen-

tation, therefore
∑

r d
2
r = |G|. An operator in Kr can be written as

∑
ij bij |r, i〉 〈r, j| but by
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Schur’s lemma the invariant operators are proportional to Ir. The intertwiners are linear

maps that take us in between different irreducible representations and commute with the

action of the invariant operators in the algebra:

Vr,iIr = |0〉 〈0|Vr,i . (3.7)

The partial isometry Vr,i = 1√
dr
|0〉 〈r, i| satisfies this equation, and is the non-Abelian

analog of |0〉 〈q|. The map ρr maps operators from the charged sectors to the vacuum sector:

ρr(Ira) =
∑
i

Vr,iIraV †r,i (3.8)

where a ∈ C is a complex number here. In the Abelian case, we constructed a unitary

Ûk by adding |q + k〉 〈q| that generates the dual group Ĝ. For an arbitrary charge-neutral

operator ã =
∑

q aq |q〉 〈q| we have

ρk(ã) = Û †k ãÛk

Ûk =
∑
q

|q + k〉 〈q| (3.9)

which is a generalization of (3.4) to an arbitrary Abelian group. However, in the non-

Abelian case, adding a charge r to another charge r′ corresponds to the tensor multiplica-

tion of two irreducible representations that is not irreducible. The dual Ĝ to a non-Abelian

group G is not a group. The elements of the dual to a non-Abelian group are different rep-

resentations (not necessarily irreducible), and their multiplication is tensor multiplication

but there is no inverse operation. As we will see in the next section, when the representa-

tion is infinite dimensional the operators Vr,i can be thought of as isometries that take us

between the irreducible representations.

If the symmetry group G is compact there is a normalizable Haar measure dg and we

can integrate over the group to project to the zero charge sector P0 = |0〉 〈0| ⊗ 1:

1

|G|

∫
g∈G

dg Ug |Ψ〉 = P0 |Ψ〉 (3.10)

where |G| is the volume of the group. The resulting subspace is called the vacuum sector

which is spanned by all the invariant states of G. For an Abelian group G the other

irreducible representations are found using a Fourier transform with q ∈ Ĝ with the group

multiplication being the addition of charges:

1

|G|

∫
g∈G

dg e
2πigq
|G| Ug |Ψ〉 = Pq |Ψ〉 . (3.11)

The non-Abelian analog of this projector is

Pr =
dr
|G|

∫
g∈G

dg χ∗r(g) Ug (3.12)

where χr(g) is the character of the irreducible representation r.
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We say two vectors |Ψ〉 and |Φ〉 belong to different superselection sectors of algebra

A if 〈Ψ|aΦ〉 = 0 for all a ∈ A. For instance, states |Ψq〉 and |Φq′〉 that were in different

selection sectors of F , belong to different superselection sectors of the neutral subalgebra

A. Given an algebra F and a compact symmetry group G the linear map E : F → A
that computes the group average of an operator b ∈ F is a conditional expectation to the

charge-neutral subalgebra

E(b) =
1

|G|

∫
g∈G

dg U †g bUg . (3.13)

because it satisfies E(ab) = aE(b) for all a ∈ A and b ∈ F . This is the conditional

expectation that we advocated in section 2.

We can reconstruct the field algebra F from the charge-neutral subalgebra algebra Aq
by adding the intertwiners back. In the Abelian case, the intertwiners Ûq =

∑
q |q ± 1〉 〈q|

are unitaries of the dual group. They create or annihilate charges. Enlarging the algebra of

charge-neutral operators by added to it Ûq and taking the closure generates the full algebra

of charged operators. In the non-Abelian case, Ĝ the dual group is mathematically not a

group. However, we can still enlarge the charge-neutral algebra by adding the intertwiners

to obtain the full algebra F . In representation theory language, enlarging the algebra A
by including intertwiners corresponds to the crossed product of A by the dual group Ĝ:

Ao Ĝ, see appendix A for the definition of the dual group and crossed product.

In the remainder of this section, we provide several examples of quantum systems

with symmetry and highlight the role of the intertwiners. The first four examples have an

Abelian symmetry group and the last two have a non-Abelian symmetry. We postpone the

discussion of intertwiners for local algebras until the next section.

3.2 Example 1: qudit

Consider the Hilbert space of a qubitH2 and the algebra of 2×2 complex matrices. Take the

symmetry transformation to be the group Z2 generated by the transformations: α1(a) = a

and αg(a) = σzaσz.
13 Here, Ug = σz = (−1)Q where Q = 1

2(1− σz) is the charge operator.

The algebra of charge neutral operators D2 is the algebra of matrices diagonal in the σz
basis. The Hilbert space splits into two sectors H0⊕H1 with Pq = |q〉 〈q| projecting to the

sector of charge q. The intertwiner V = |0〉 〈1| solves the equation (3.5) and relates the

two charged sectors. The dual group is the Z2 that is generated by σx = V + V †. If we

add the intertwiner (or the generator of the dual group σx) to the invariant algebra D2 we

obtain the full algebra of the qubit.

For a qudit the Hilbert space is spanned by |k〉 with k = 1, · · · d, and we take the sym-

metry group to be Zd generated by the diagonal matrices
∑

k e
2πigk/d |k〉 〈k|. The invariant

sub-algebras are one-dimensional Ak = a |k〉 〈k| and the projections to the superselection

sectors are Pk = |k〉 〈k|. Each |k′〉 〈k| is a unitary intertwiner from Hk to Hk′ . The dual

group is the Fourier transform Zd generated by the unitary
∑

k |(k + 1) mod d〉 〈k|.
The generalization to infinite dimension is immediate. Take the Hilbert space of a

free particle on a circle and the rotation group around the circle: G = U(1). The Hilbert

13We use the notation Zn = Z/nZ.
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space splits into one dimensional irreducible representations of the rotation group H =

⊕k∈Z |k〉 〈k| where |k〉 is a momentum eigenstate. The invariant algebras are Ak = a |k〉 〈k|,
and the intertwiners are |k′〉 〈k|. The dual group is Z generated by the momentum addi-

tion/subtraction operator
∑

k |k ± 1〉 〈k|. Adding the intertwiners to the invariant algebra

gives all operators in the Hilbert space of free quantum particle on a circle.

3.3 Example 2: non-relativistic quantum fields

Consider a non-relativistic bosonic or fermionic field on a circle and assume that the total

number of particles is conserved. The particle number operator is N =
∫
dx a†(x)a(x) and

the symmetry transformations are eiαN . The Fock space is a direct sum of sectors with fixed

particle number n: H = ⊕n∈NHn with vectors in each Hn represented by totally symmetric

(anti-symmetric) wave-functions of n-variable: ψ
(n)
± (x1, · · ·xn). The intertwiners that take

us in between sectors are the creation/annihilation operators a†±(f)/a±(f) that map Hn
to Hn+1 and back according to

(a†±(f)ψ(n))(x1, · · · , xn+1)

=
1√
n+ 1

n+1∑
k=1

(±1)k−1f(xk)ψ
(n)(x1, · · · , xk−1, xk+1, · · · , xn+1)

(a±(f)ψ(n+1))(x1, · · · , xn)

=
√
n+ 1

∫
dyf(y)ψ(n+1)(y, x1, · · · , xn) (3.14)

and f is a bounded complex function on the circle [22]. There are many intertwiners

corresponding to different functions f , however adding one of them to the invariant algebra

suffices to generate the full algebra. We choose
∫
dx|f(x)|2 = 1 so that the intertwiner is

an isometry: (a(f)a†(f)ψ(n)) = (a†(f)a(f)ψ(n)) = ψ(n). The full algbera F is generated

by operators a±(f) and a†±(f) satisfying

[a±(f), a±(g)]± = 0, [a±(f), a†±(g)]± = 〈f, g〉 I

[a, b]− ≡ ab+ ba, [a, b]+ = ab− ba, 〈f, g〉 =

∫
dxf(x)g(x) . (3.15)

The dual group is generated by the field operator Φ(f) = a(f) + a†(f).

3.4 Example 3: free relativistic fermions

In a general relativistic theory particle number is not conserved. However, in the case

of free fermions the transformation (−1)Q with Q =
∫
j0(x) remains a symmetry, where

j0(x) =: Ψ†(x)Ψ(x) : is the charge density operator. The full algebra F is generated by

Ψ(f) =
∫
d2xf(x)Ψ(x) where f is a function of spacetime that solves the classical equations

of motion [11]. The Hilbert space splits into two sectors H = H+ ⊕ H− that correpond

to the even and odd number of fermions. The invariant algebra A is generated by all

the operators with an even number of fermions, e.g. X = Ψ(y)Ψ(z) or Y = Ψ(y)Ψ(z)†.14

14The commutators are [Q,X] = −2X and [Q,Y ] = 0.
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The operator Ψ(f) adds a unit of charge and intertwines the two sectors. The unitary

Û(f) = Ψ(f) + Ψ†(f) with
∫
dx |f(x)|2 = 1 generates the Z2 dual group: (1, Û(f)). It has

the following properties:

Û(f)X = XÛ(f)− f(z)Ψ(y) + f(y)Ψ(z)

Û(f)Y = Y Û(f)− f(z)Ψ(y) + f(y)Ψ†(z) . (3.16)

Each choice of f leads to a particular choice of Z2. If we add any Û(f) to the algebra of

invariant operators all other charged operators Û(g) are created by closing the algebra, be-

cause Û(f)†Û(g) is charge-neutral. Representations with different values of f are unitarily

equivalent by the inner automorphism Û(f)†Û(g).

The maps ρf (a) ≡ Û(f)aÛ(f)† are outer automorphisms of the invariant algebra

a ∈ A:

ρf (a) ∈ A
ρf (a1a2) = ρf (a1)ρf (a2) . (3.17)

For instance, for the total charge we have

ρf (Q) = Q+ Ψ(f)Ψ†(f)−Ψ†(f)Ψ(f) . (3.18)

The operator Û(f) has charge one:

ρf ((−1)Q) = −(−1)Q (3.19)

which implies that an average over the dual group kills the symmetry transformation

(−1)Q + ρf ((−1)Q) = 0 . (3.20)

3.5 Example 4: U(1) current algebra

As the next example, consider the algebra of a free compact relativistic boson in two

dimensions on a circle. The shift of the scalar field φ→ φ+ a is a U(1) global symmetry.

In the radial quantization frame, we consider the algebra of W (u) = eiJ(u) with J(u) =∫
dz
2πiJ(z)u(z) with u(z) a smooth function on the circle. It is generated by the U(1)-

invariant current J(z) = (∂φ)(z) =
∑

n∈Z z
−n−1jn. The scalar field expanded in terms of

jn modes is

φ(z, z̄) = φ0 − i(j0 ln z + j̄0 ln z̄) + i
∑

06=n∈Z

1

n

(
jnz
−n + j̄nz̄

−n) . (3.21)

The operator φ0 and j0 are canonical conjugates of each other: [φ0, j0] = i. The U(1)

symmetry group is generated by Ua = eiaj0 . The vertex operator Vk(z, z̄) =: eikφ(z,z̄) :

acting on the vacuum creates eigenstates of the conjugate momenta j0 |k〉 = k |k〉 with

|k〉 = Vk(0) |Ω〉 and 〈k|k′〉 = δkk′ . In fact, the vertex operator satisfies [j0, Vk] = kVk which

implies that it is a unitary intertwiner.
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We can consider α(z) functions on the circle and the unitary vertex operator V (α) =:

eiφ(α) : with φ(α) =
∫
dzα(z)φ(z). Under the transformation φ → φ + 2π the vertex

operator should be invariant therefore the charge qα =
∫
dzα(z) is quantized. When

qα = 0 the vertex operator V (α) is charge-neutral but when qα =
∫
dz α(z) 6= 0 it is an

intertwiner of charge q. The dual group is Z and is generated by charged vertex operators

V (kα) for k ∈ Z. As in the case of fermions, adding one intertwiner of unit charge adds all

of them because V (α)V †(β) with qα = qβ is a charge-neutral operator. The action of the

dual group on the invariant algebra at point is

ρα(J(z)) ≡ V (α)J(z)V †(α) = J(z) + α(z) (3.22)

which does not leave the neutral operators invariant. Instead it shifts it by an element of

the center of the algebra [23]. The action of the dual group on the symmetry generator is

ρα(Ua) = V (α)UaV
†(α) = eiaqαUa . (3.23)

The dual group is not compact, but we can formally define an average over the charged

sector as a distribution

∞∑
k=−∞

ρkα(Ua) =
2π

|qα|
δ(a) . (3.24)

3.6 Example 5: permutation group

The simplest example of a non-Abelian group is the permutation group S3. Consider three

qubits and the symmetry group S3 that swaps the qubits. The elements of the group are the

identity, the two-cycles and the three cycles. The two-cycles are represented by U(12) = S12,

U(13) = S13 and U(23) = S23 where Sij is the swap operator of site i and j: S(12) =∑
ab |ab〉 〈ba|. The three-cycles are U(123) =

∑
abc |abc〉 〈bca| and U(132) =

∑
abc |abc〉 〈cab|.

The invariant algebra A is the set of 4 × 4 dimensional matrices |αi〉 〈αj | where |αi〉 are

invariant vectors of S3: |α0〉 = |000〉, |α1〉 = |111〉, |α2〉 = 1
3(|001〉 + |010〉 + |100〉) and

|α3〉 = 1
3(|011〉+ |101〉+ |110〉).

The Hilbert space has two sectors H = (K1 ⊗ H1) ⊕ (K2 ⊗ H2). The vacuum repre-

sentation K1 is the trivial one-dimensional representation, and H1 = A |000〉 is the Hilbert

space of states invariant under S3 that is four dimensional and spanned by |αi〉. The

Hilbert space K2 is the two-dimensional irreducible representation of S3 corresponding to

the Young tableaux . The vectors |v0〉 = |100〉−|001〉, and |v1〉 = 2 |010〉−(|100〉+ |001〉)
provide a basis for this representation. It is straightforward to see that the action of S3

leaves the two-dimensional subspace spanned by these vectors invariant. Acting with the

invariant algebra, in particular |α3〉 〈α2| on these vectors generates two perpendicular vec-

tors |v2〉 = |011〉 − |110〉 and |v3〉 = 2 |101〉 − (|011〉+ |110〉), and the new two-dimensional

subspace is also preserved under the action of S3. The sector K2⊗H2 is the four dimensional

subspace A |v1〉. There is no totally anti-symmetric representation for qubits.

3.7 Example 6: the O(n) model

Consider a real vector field Φ(f) with N components of form ϕ(j)(fj) and f a collec-

tion of functions f1, · · · , fN . The algebra F is generated by the Weyl operators W (f) =
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ei
∑
j ϕ

(j)(fj). The symmetry group O(N) acts on the vector fields which is equivalent to

rotating fi: UgW (f)U †g = W (g.f) and (g.f)i =
∑

j gijfj . The invariant algebra A is the

algebra of O(N) singlets generated by operators like Φ(f) ·Φ(f) =
∑

i ϕ
(i)(fi)ϕ

(i)(fi). The

vacuum sector is A |Ω〉. The other sectors correspond to other irreducible representations

of O(N). Take the operator Φ(T ) =
∑N

i1,··· ,ik=1 T
i1,··· ,ikϕ(i1)(f1) · · ·ϕ(ik)(fk) where the ten-

sor T has symmetries under the permutation of indices that is characterized by a young

tableaux λ = (λ1, · · · , λs) with the total number of boxes k =
∑s

j=1 λi. Such operators

acting on the vacuum sector take us to the charged sector with the irreducible represen-

tation characterized by the Young tableaux λ and dimension dim(λ). One can find an

orthonormal basis of such operators Φ(Tj) with j = 1, · · · , dim(λ) [23].

4 Bi-local intertwiners

Consider a multi-partite quantum system on a lattice with a symmetry Ug = eigQ and

local algebras FA associated with each region A (collection of sites on a lattice or a region

of space).15 We say a symmetry of the global algebra F = FAA′ is internal if it preserves

local algebras:

UgaU
†
g ∈ FA ∀a ∈ FA . (4.1)

There is a unitary group τg = eigQA localized in A that generates the group action in (4.1)

for operators in FA; see figure 5. In section 2 we called the operator τg the twist and its

corresponding group the twist group Gτ . When the group is Abelian τg is charge-neutral

UhτgU
†
h = Ug and provides a center for the algebra of neutral operators. When the group

G is non-Abelian the operator Pr in (3.12) is in the center of the algebra: Z = ⊕rλrPr.
Locality implies that FA commutes with the algebra of the complementary region FA′ .

Define the commutant of algebra FA to be F ′A: the set of all operators in the global algebra

FAA′ that commute with FA. From locality it follows that FA′ ⊂ F ′A. We say the region A

has the duality property if F ′A = FA′ . The full algebra of all charged operators satisfy the

duality property, however the algebra of charge-neutral operators A violate it. For instance,

on a lattice the total charge is Q = QA + QA′ and HAA′ = HA ⊗ HA′ the action of the

symmetry transformation on AA is captured by the twist operator τg = eigQA . The local

algebraAA has a non-trivial center ZA = ⊕rλrIr with r irreducible representations of τg and

λr complex numbers. The duality relation for charge-neutral algebras is: A′A = ZA ⊗AA′ .
Note that here the commutant A′A is defined to be the algebra of operators in AAA′ that

commute with AA. On a lattice, the failure of duality is due to a non-trivial center for

the algebra of charge-neutral operators. However, in QFT the duality property can fail

even though the local charge-neutral algebra has a trivial center. The reason is that the

operator Pr defined in (3.12) is not part of the local algebra of region A because it acts

singularly on the boundary of A.

More generally, consider the region A12 = A1∪A2 with two disconnected pieces A1 and

A2. On a lattice the algebra of all charged particles is additive that is to say F12 = F1⊗F2.

15For the sake of the argument we have assumed G is a Lie group. However, the discussion applies to

any group G.
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Figure 4
A1 A2

A1 A2

A1 A2

Q1

Q1 Q2

Eτ : ℱ1 → 𝒜1

E : ℱ12 → 𝒜12

Eτ : 𝒜12 → 𝒜1 ⊗𝒜2
Q1

(a)

Figure 4
A1 A2

A1 A2

A1 A2

Q1

Q1 Q2

Eτ : ℱ1 → 𝒜1

E : ℱ12 → 𝒜12

Eτ : 𝒜12 → 𝒜1 ⊗𝒜2
Q1

(b)

Figure 4
A1 A2

A1 A2

A1 A2

Q1

Q1 Q2

Eτ : ℱ1 → 𝒜1

E : ℱ12 → 𝒜12

Eτ : 𝒜12 → 𝒜1 ⊗𝒜2
Q1

(c)

Figure 5. Consider the operator eig
∫
x∈B c(x)j(x) where j(x) is the charge density and the region

B is the blue region. (a) On a lattice we pick c(x) = 1 that is the twist operator τg = eigQ1 . It

generates the action of the symmetry group on the local algebra of A1. Averaging over τg is a

conditional expectation that projects F1 to A1. (b) The action of the symmetry on the region A12

is given by eig(Q1+Q2). Averaging over this unitary projects from F12 to A12 c) In a QFT choosing

c(x) = 1 in A1 and c(x) = 0 outside of A1 leads to an operator that has a violent behavior at the

boundary of A1 due to the discontinuity in c(x). If there is a gap between A1 and A2 we can choose

a c(x) = 1 inside A1 and make it smoothly fall out to zero without entering region A2. This is

the analog of the twist operator in a QFT. Averaging over this twist projects from A12 down to

A1 ⊗A2.

In QFT, the additivity property holds when A1 and A2 are not touching.16 Both on a lattice

or in QFT when we restrict to the subalgebra of locally charge-neutral operators additivity

fails: A1 ⊗A2 6= A12. Of course, A1 ⊗A2 is a subalgebra of A12 but there exist operators

in A12, namely the bi-local intertwiners, that are not generated in A1 ⊗ A2. The bi-local

intertwiner adds a charge q to region A1 and the opposite charge −q to the region A2 so

that the total charge Q1 +Q2 is conserved. The action of the symmetry group on F1 can

be captured by a local transformation eigQ1 on a lattice. In QFT, the operator eigQ1 has a

singular behavior at the boundary of A1. However, as long as there is a gap between region

A1 and A2 there is a unitary transformation τg that matches eigQ1 on A1 and has a smooth

tail that leaks outside of A1 but does not enter A2; see figure 5. In analogy with the lattice

systems, we call this operator the twist and the symmetry it generates the twist group:

b1 → eigQb1e
−igQ = τ †g b1τg ∀b1 ∈ F1

[τg, a2] = 0, ∀a2 ∈ A2 . (4.2)

In QFT, the local neutral-algebra has a trivial center. When G is compact one has the

conditional expectation E : A12 → A1 ⊗A2 that is an average over the twist group:

E(b) =
1

|G|

∫
g∈G

dg τ †g bτg . (4.3)

By construction, the conditional expectation above sets any operators charged under Q1

including bi-local intertwiners to zero. The conditional expectation projects down to the

invariant algebra. To go in the opposite direction, we need to enlarge the algebra A1⊗A2 by

adding the bi-local intertwiners to obtain A12. Enlarging an algebra A by the intertwiners

16We have assumed that QFT has the split property [16].
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of symmetry G is mathematically described by the crossed-product of the algebra with its

dual group, A12 = (A1 ⊗A2) o Ĝ; see appendix A for details.

In QFT, there is no local Hilbert space H1, and we only have the global Hilbert space

H and local algebras A1. In a QFT with charges, analogously, we have the global Hilbert

space of type ⊕rKr ⊗Hr. The intertwiner |r, i〉 〈0| ⊗ 1 takes us from the global vacuum to

the global charged sector |r, i〉 but it might not be localized in region A. We come back to

this issue in section 5.3. Similar to the Abelian case where we added |q〉 〈q + 1| to get the

unitary Û1, we would like to extend the domain of |r, i〉 〈0| to an operator that adds charge

r to any state. The tensor product of two irreducible representations r and r′ is a direct

sum of irreducible representation with Clebsch-Gordon coefficients. A charged operator

that is localized in A commutes with all a′ ∈ A′ and removes a charge r [24–26]:

Vr,i(|r, i〉 ⊗ a |Ω〉) = a |Ω〉
Vr,ia |Ω〉 = |r∗, i〉 ⊗ a |Ω〉 , (4.4)

where r∗ is the conjugate representation of r. The action of Vr,i on a vector |r′, j〉 ⊗ |Ω〉 is

decided by the Clebsch-Gordon coefficients in the tensor product of representations r and

r′. The dual transformation maps the algebra of charge-neutral operators Ir ⊗ a back to

the vacuum sector

ρr(a) =
∑
i

Vr,iaV
†
r,i . (4.5)

The map ρr(a) maps the charge-neutral operators A to itself and since it is the represen-

tation of the local algebra it respects the multiplication rule17

ρr(a1a2) = ρr(a1)ρr(a2) . (4.6)

The condition above together with (4.5) imply that Vr,i should satisfy the algebra

V †r,iVr,j = δij∑
i

Vr,iV
†
r,i = 1 . (4.7)

The algebra above is called the Cuntz algebra [27]. The Cuntz algebra has no finite dimen-

sional representations; however, it is easy to build representations of the Cuntz algebra in

infinite dimensions. For instance, take the Hilbert space of a particle on a circle and split

it into two sectors defined by projections to the even and odd momenta P+ =
∑

k |2k〉 〈2k|
and P− =

∑
k |2k + 1〉 〈2k + 1|. The isometries V1 =

∑
k |2k + 1〉 〈k| and V2 =

∑
k |2k〉 〈k|

satisfy the Cuntz algebra with i = 1, 2.

The particle number is not conserved in relativistic QFT. Acting with V †r,i creates one

charged particle but applying it again we can have several charged particles. There is a

subalgebra of the Cuntz algebra that corresponds to a sector with one charged particle

17Such a map is called an endormophism of the algebra.
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∑
r,i aijVr,iV

†
r,j , where aij are invariant operators. These operators can be represented by

a dr × dr matrix algebra.

The operators Vr,i satisfies the non-Abelian intertwiner equation

Vr,ia = ρr(a)Vr,i, ∀a ∈ A (4.8)

and V †r,i acting on the vacuum sector creates charged states in representation r: |r, i〉 =
√
drV

†
r,i |Ω〉. The factor

√
dr is needed to make sure 〈r, i|r, i〉 = 1. There are also the states

in the conjugate representation that are created by |r∗, i〉 = Vr,i |Ω〉.18 The conjugate

representation is

ρr∗(a) =
1

dr

∑
i

V †r,iaVr,i . (4.9)

In a charged sector the expectation value of a charge neutral operator satisfies∑
i

〈r, i|a|r, i〉 = 〈Ω|ρr(a)|Ω〉 . (4.10)

If ρr(a) = a, one cannot distinguish charged sectors. However, if ρr(a) 6= a, this is no

longer true. An example of this is the compact boson example:

ρα(J(z)) = J(z) + α(z) . (4.11)

The group transformation Ug = ⊕rU rg acts on the intertwiner according to the equation

U †gVr,i = Dr(g)ijVr,jU
†
g (4.12)

where Dr(g)ij are the matrix elements of the representation matrix Dr(g) with the orthog-

onality relations19

dr
|G|

∑
g

Dr(g)ikDr′(g)∗jl = δrr′δijδkl . (4.13)

In QFT, in analogy with lattice systems, it is tempting to take the local algebra of

A to be all charged operators |r, i〉 〈r′, i′| ⊗ a, however as we discussed above, in QFT

|r, i〉 〈0| ⊗ 1 is not localized in A, and the charge neutral algebra has no non-trivial center.

Local charges on A are created by the intertwiners V †r,i, instead of |r, i〉 〈0| ⊗ 1. Therefore,

we define the local algebra of charge operators to be the algebra generated by charge

neutral operators a and the isometries V †r,i. Consider charged operators
∑

i aiVr,i. Bi-local

intertwiners create/annihilate a charge in A1 and create/annihilate the opposite charge in

A2 so that the net charge is preserved:

I(r)
12 =

∑
i

(V
(1)
r,i )†V

(2)
r,i (4.14)

with V
(1)
r,i and V

(2)
r,i supported on A1 and A2, respectively. This is a unitary map in the

global algebra that is charge-neural. However, from the point of view of algebra A1 it is

an intertwiner.

In the remainder of this section, we provide several examples of bi-local intertwiners

in finite quantum systems and QFTs.

18Note that in this case there is no need for a factor
√
dr to normalize the state.

19In the case of an Abelian group this is U†gVq = e
− 2πigq
|G| VqUg.
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4.1 Example 1: qubits

Consider two qubits in H1 ⊗H2 and the symmetry group Z2 corresponding to the action

of (−1)Q = σz ⊗ σz where the total charge Q = Q1 ⊗ I+ I⊗Q2 and Qi = 1
2(I− σz) counts

the number of excitations “|1〉”. The action of the symmetry group on the local algebra F1

is captured by the twist group τ1 = (−1)Q1 that is localized in A1. The algebra of global

charge-neutral operators A12 is the set of all operators that commute with Q. The charge

neutral sub-algebras A1 ⊗ I2 and I1 ⊗ A2 commute with Q, however, A12 includes more

operators. In particular, the operator that creates a charge on site one and annihilates it

on site two commutes with Q:

[Q, σ± ⊗ σ∓] = 0, σ± =
1

2
(σ(x) ∓ iσy) . (4.15)

The algebra A12 also includes operators that increase Q by two units, |00〉 〈11| ∈ A12 and

its †. The subspace H′1 = A12 |00〉 that is spanned by |00〉 and |11〉 is the zero charge sector

and the charged sector is H′2 = A12 |01〉 which is spanned by |01〉 and |10〉.
The subalgebra of A12 invariant under the twist group (−1)Q1 is A1 ⊗ A2. Each

sector H′1 and H′2 further splits into two sectors depending on the eigenvalue of σ
(1)
z . The

operator |11〉 〈00| is an internal intertwiner for the twist group that is a unitary in H′1, and

σ−⊗σ+ = |10〉 〈01| is an internal intertwiner for the twist group in H′2. Local intertwiners

create a pair of charge/anti-charge excitations. The group average over the twist is a

conditional expectation Eτ : A12 → A1 ⊗A2 that washes out local intertwiners:

Eτ (b) =
1

2

(
b+ σ(1)

z bσ(1)
z

)
. (4.16)

This can be easily extended to n qubits with the global symmetry Z2 that is measured

by the total charge (−1)Q = ⊗ni=1σ
(i)
z and the local charge associated with the region A

that is the first m qubits τ = (−1)Q
′

= ⊗mi=1σ
(i)
z . The global Hilbert space splits into two

sectors H = H+ ⊕H− where H± is spanned by all |s1, · · · sn〉 with s1s2 · · · sn = ±1. The

twist symmetry τ = (−1)Q
′

further splits each sector into two: s1s2 · · · sm = ±1. The

operator |s1 · · · sm, tm+1 · · · tn〉 〈s′1 · · · s′m, t′m+1 · · · t′n| with s1 · · · sm = −1 = −s′1 · · · s′m and

tm+1 · · · tn = ±1 = ∓(t′m+1 · · · t′n) is an example of a local intertwiner.

As an example of a region with two non-overlapping pieces consider the local algebras

A12 and A1⊗A2 where there are a total of three qubits. We first check the duality property.

Once we include the centers of local algebra the duality property holds: A′12 = Z12 ⊗ A3

and A′3 = Z3 ⊗ A12. Note that the operator τ13 = (−1)Q1+Q3 = σ
(1)
z ⊗ σ(3)

z is in A′3 but

not in A12. In fact, if we only add τ13 to A12 we generate the full Z3 ⊗A12. The operator

τ13 is a twist operator similar to the ones in QFT because it acts on A1 like (−1)Q1 , it is

supported outside of A1 but its support does not enter A2. We learn that another way to

express the duality relation for charge-neutral algebras is by enlarging A12 with the twist

τ13. In mathematical language, we write the crossed product A′3 = A12 oG13 where G13 is

the symmetry group generated by τ13. We could replace τ13 with τ23 or τ3 and the result

remains the same. However, for the opposite region we have to enlarge A3 by τ12 to obtain
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A′12: A′12 = A3 oG12. If we have four qubits, then the equations become more symmetric:

A′12 = A34 oG12

A′34 = A12 oG34 . (4.17)

A much simpler way to write the duality equation for charge-neutral algebras is A′A =

AA′ oG where G = (−1)Q is the generator of the symmetry in the global algebra.

The interplay between duality and additivity of local algebras plays an important role

in the study of quantum systems with symmetries [12]. The action of a symmetry on a

local region Ai is captured by the twist group Gik generated by τik with Ak some region

outside of Ai. On a lattice, one can take the twist to be τi. Denote the local intertwiner

that creates a charge on Ai and annihilates it in Aj by Iij . It generates a group dual to

the twist group Gi; or Gik for k 6= j in QFT. When the algebra is Abelian this duality

transformation is a Fourier transform and indeed we find [Iij , τi] 6= 0. In the qubit example,

we have [Iij , τi] = 2Iij .

4.2 Example 2: free relativistic fermions

Consider free fermions in (1 + 1)-dimensions. As we discussed in section 3.4 the symmetry

of the global algebra is (−1)N where N is the total number of fermions, and the invariant

global algebra is all operators with an even number of fermions. The local algebra of a

region is generated by Ψ(fA) with fA any bounded complex function supported only a

region A.20 The symmetry acts on the local algebra as τ = (−1)NA where NA is the total

number of fermions in a region A. This operator is discontinuous at the boundary of A and

we can smooth it outside of A. The Hilbert space splits into four sectors corresponding

to two charges (N mod 2) = 0, 1 and (NA mod 2) = 0, 1. The operator Ψ(fA′)Ψ
†(gA)

creates a pair of charge/anti-charge particles in A and A′. It is a bi-local intertwiner for AA.

If we take two regions of space A1 and A2 that are non-overlapping and non-touching

the complementary region also has two disconnected pieces. This is analogous to the case

of four qubits we discussed above.21 In addition to A1⊗A2 the algebra of A12 includes the

intertwiners from region A1 to A2 that are Ψ†(f1)Ψ(f2) with fi supported in Ai. The twist

operator τ = (−1)Q1 needs to be smoothed out outside of A1 without leaking inside A2.

We call the smooth twist operator τ13 because it is supported on A13 and acts like (−1)N1

on A1. The group average over τ13 is a conditional expectation Eτ : A12 → A1 ⊗A2:

Eτ (b) =
1

2

(
b+ τ−1

13 bτ13

)
. (4.18)

It kills the local intertwiners: E(Ψ(f1)Ψ†(f2)) = 0. In QFT, there are no local density

matrices, instead the local state is a restriction of the global pure state to the local algebra:

ω(a1 ⊗ a2) = 〈Ω|a1 ⊗ a2|Ω〉 . (4.19)

20We thank Edward Witten for pointing this out to us.
21In higher than (1 + 1)-dimensions the complement of A12 is connected and the three qubit example is

a better analogy.
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Figure6

A1
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-qA1

A2q
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Figure 6. (a) The bi-local intertwiners in A1∪A2 conserve the total charge,
∫
A1∪A2

dzα(z) = q = 0.

(b) The subalgebra N1 ⊂ A1 does not have any operators that create and annihilate charges inside

A1 (the red excitations). Such an algebra is generated by J(f) with functions localized in A1.

The invariant state is

(E∗τ (ω))(a1 ⊗ a2) =
1

2

(
ω(a1 ⊗ a2) + ω(τ−1

13 (a1 ⊗ a2)τ13)
)

(4.20)

which can be thought of as the restriction of the global density matrix

1

2

(
|Ω〉 〈Ω|+ τ13 |Ω〉 〈Ω| τ−1

13

)
(4.21)

to the local algebra A12.

4.3 Example 3: U(1) current algebra

In the free (1 + 1)-dimensional compact boson model, the symmetry group is eiaj0 and

the Hilbert space has many sectors |α〉 with the vertex operators V (α) =: eiΦ(α) : with α

some function on the circle intertwining them. If we consider the local algebra generated

by eiJ(fA) with fA some smooth function supported only on A then the total charge on

A is j0(A) = 1
2π

∮
A J(z) where A is some angle on the unit circle in radial quantization.

The bi-local intertwiners between two non-touching, non overlapping regions A1 and A2

are V (α) with
∫
A1
dz α(z) = qA and

∫
A1∪A2

dz α(z) = q = 0 so that they do not change the

global sector; see figure 6.

5 Intertwiners and modular theory

In a Poincare-invariant QFT in (d+1)-dimensions, the global algebra of spacetime F is gen-

erated by the bounded functions of the field operator Φ(f) with Φ(f) =
∫
dd+1xf(x)Φ(x)

and f(x) a solution to the classical equations of motion that respects the boundary condi-

tions at infinity22 [11, 16, 26]. This algebra is represented irreducibly on a global Hilbert

space H. The local algebra FA ⊂ F is the subalgebra generated by Φ(f) where f is only

supported in A. The local algebra of QFT does not have an irreducible representation and

there is no local Hilbert space [14]. The local algebra FA and that of the complementary

region FA′ both act on the global Hilbert space. The local states are the restriction of the

global state to the local algebra:

ωA(b) = 〈Ω|bΩ〉 , ∀b ∈ FA . (5.1)

22Assumptions about the smoothness of the function f are implicit in what is meant by a solution to the

classical equations of motion.
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Since there are no local Hilbert spaces there are no density matrices either. Modular theory

is a mathematical formulation that allows us to define information theoretic quantities

using only global states and local algebras, with no need for the existence of local density

matrices; see [11]. It applies to any quantum system from qubits to QFT. In QFT the

algebras FA and FA′ are isomorphic and the global vectors of QFT are analogous to the

canonical purification of ρA a density matrix of A in terms of |Ω〉 a pure state of a double

copy Hilbert space HA ⊗HA′ :

ω =
∑
k

pk |k〉 〈k|

|Ω〉 =
∑
k

√
pk |k〉A ⊗ |k〉A′ . (5.2)

If A1 and A2 are two non-overlapping and non-touching regions of space, and F1 and

F2 are their corresponding local algebras in QFT, the additive algebra of the union A12 is

the algebraic tensor product of local algebras F12 = F1⊗F2.23 There is no tensor product

when the regions A1 and A2 touch. The algebra of invariant local operators A has a trivial

center because the twist operator eigQ1 does not belong to A1, however, when A1 and A2

are not touching the smoothed out twist commutes with both A1 and A2; see figure 5.

In section 2, we argued that the correct entanglement measure in the presence of

charges is the relative entropy in (2.29):

SF12(E∗(ω12)‖E∗(E∗τ (ω12))) + SF12(E∗(E∗τ (ω12))‖E∗(E∗τ (ω1)⊗ ω2)) (5.3)

with the conditional expectations

E∗(ω12) =
1

|G|
∑
g∈G

Ugω12U
†
g

E∗τ (ω12) =
1

|G|
∑
g∈G

τgω12τ
†
g (5.4)

where Ug = eigQ and τg is the smoothed out eigQ1 . By a unitary rotation of local states

we mean

(UωU †)(b) = ω(U †bU) . (5.5)

We have structured this section in the following way: in section 5.1, we start by

a discussion of the local charged states and a lower and an upper bound on (5.3). In

section 5.2, we review the Tomita-Takesaki modular theory (see [28] for a more detailed

review) and compute the modular operators for charged states |r, i〉, and comment on the

mirror operators in the presence of charges. Section 5.3 discusses the relation between the

cocycle operator in modular theory and local charges. Finally, in section 5.4 we introduce

a canonical enlarging of the algebra of QFT that decouples charged modes across the

entangling surface.

23In infinite dimensions, one has to be careful when tensoring von Neumann algebras since the weak

closure of operators depends on the Hilbert space on which it is acting [14]. This is the so-called split

property of QFT that we have assumed to hold in any reasonable model.
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5.1 Charged states

Consider the global invariant vector |Ω〉 and its local state ω on region A. Since |Ω〉 =

Ug |Ω〉, the expectation value of all charged operators of the form b− E(b) vanishes in ω:

ω(b) =
1

|G|
∑
g∈G
〈Ω|U †g bUgΩ〉 = 〈Ω|E(b)Ω〉 . (5.6)

All the charged states |r, i〉 are perpendicular to the vacuum since they belong to different

superselection sectors. We denote by |r, i, A〉 =
√
dr(V

(A)
r,i )† |Ω〉 a state with a charge

localized in region A. A vector |Φ〉 = 1√
2
(|Ω〉+ |r, i, A〉) that superposes the vacuum with

a charged state appears mixed to the local charge-neutral subalgebra of A:

〈Φ|aΦ〉 =
1

2
(ω(a) + ωr,i(a)) (5.7)

where ωr,i(a) = 〈r, i|a|r, i〉 is the local charged state, which turns out to be independent of

i; see (5.11). The same holds for the local state of the vector |χ〉 = 1√
2
(|r, i, A1〉+ |r, j, A2〉).

With respect to any charge neutral operator a ∈ A12 the state seems mixed

〈χ|aχ〉 =
1

2
(ωr,i(a) + ωr,j(a)) . (5.8)

This is because

〈r, i, A1|a|r, j, A2〉 = dr 〈Ω|V (1)
r,i a(V

(2)
r,j )†|Ω〉 =

dr
|G|

∑
g

〈Ω|U †gV
(1)
r,i a(V

(2)
r,j )†Ug|Ω〉 . (5.9)

Using the transformation rule of the intertwiner in (4.12) we find

〈r, i, A1|a|r, j, A2〉 =
dr
|G|

∑
glk

Dr(g)ikDr(g)∗jl 〈Ω|V
(1)
r,k a(V

(2)
r,l )†Ω〉

= δij
∑
k

〈Ω|V (1)
r,k a(V

(2)
r,k )†|Ω〉 =

δij
dr

∑
k

〈r, k, A1|a|r, k, A2〉 (5.10)

where we have used (4.13). We learn that 〈r, i, A1|r, j, A2〉 ∼ δij and when i = j the

expectation value of a is independent of j:

ωr,j(a) = 〈r, j, A|a|r, j, A〉 =
∑
k

〈Ω|Vr,kaV †r,k|Ω〉 = ω(ρr(a)) . (5.11)

Therefore, ωr(a) ≡ ω(ρr(a)) = ωr,j(a) which implies that one cannot distinguish |r, i〉 and

|r, j〉 using charge-neutral operators. For a general vector |Ψ〉 =
∑

r,i cr,i |r, i, A〉 we have

(E∗(ψ))(a) =
∑
r,i

|cr,i|2 〈r, i, A|a|r, i, A〉 =
∑
r

ωr(a)ζr = ψ(a), (5.12)

where ζr =
∑

i |cr,i|2.

Now, consider non-touching regions A1 and A2 and a global invariant state Ug |Ω〉 =

|Ω〉. The local states ω12 and ω1 ⊗ ω2 both have zero total charge Q1 + Q2 = 0 and
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we only need to consider the charge neutral subalgebra A1 ⊗ A2 and the bi-local unitary

intertwiners I12,r =
∑

i(V
(1)
r,i )†V

(2)
r,i . The bi-local intertwiner is a unitary operator that

creates an entangled pair of charge/anti-charge particles I12,r |Ω〉 = |I12,r〉. These states

are orthonormal: 〈Ir|Ir′〉 = δrr′ and 〈Ir′ |Is|Ir〉 = δr′s 〈Ω|Ir〉. They have an overlap with

the vacuum state

〈Ω|I12,r〉 =
∑
i

〈Ω|(V (1)
r,i )†V

(2)
r,i |Ω〉 =

1

dr

∑
i

〈r, i, A2|r, i, A1〉 . (5.13)

The vacuum state has a non-zero amplitude to fluctuate to a state with multiple entan-

gled pairs 〈Ω|I12,r1 · · · I12,rn〉 6= 0. If the symmetry group is Abelian I12,r1 · · · I12,rn =

I12,r1+···rn .

The average E∗τ projects the algebra A12 to A1 ⊗A2 by discarding the bi-local inter-

twiner I12. The averaged state E∗τ (ω12) has zero amplitude for the creation of an entangled

pair of charged particles between region A1 and A2. Adding any bi-local intertwiner I12

to A1 ⊗ A2 immediately enlarges it to A12. If we want to isolate the contribution of any

particular I12 = V †(x)V (y) with x ∈ A1 and y ∈ A2 to the relative entropy we need to

find a subalgebra of A12 that only includes this particular bi-local intertwiner, and none of

the others.

There is a subalgebra of global charged neutral operators that has no bi-local inter-

twiners in it; that is to say we have discarded I12 for any non-touching A1 and A2. This

is the algebra of QFT with no charge creation or annihilation operators. For instance, in

the example of the U(1) current model, the algebra generated by J(z) without any vertex

operators is such a subalgebra. We denote such a subalgebra by N . The restriction of

N to a region A1 gives a subalgebra N1 ⊂ A1 and a conditional expectation that washes

out any bi-local intertwiners within A1. The subalgebra N1 ⊗ N2 ⊂ A12 has no bi-local

intertwiners within A1, A2 or in between A1 and A2. Enlarging N1⊗N2 by adding any I12

gives a subalgebra of A12, rather than immediately generating the whole A12. For instance,

in regions A1 and A2 we can choose to add a bi-local intertwiner V †(x)V (y) with x ∈ A1

and y ∈ A2; see figure 6. The relative entropy

S(N1⊗N2)oI12(ω12‖E∗τ (ω12)) ≤ SA12(ω12‖E∗τ (ω12)) (5.14)

measures the contribution of this particular bi-local intertwiner, and we have used the

monotonicity of relative entropy to get a lower bound on our entanglement measure due

to bi-local intertwiners. The authors of [12] argued that the bi-local intertwiners with the

minimal distance |x−y| in between A1 and A2 give the tightest lower bound for the relative

entropy S(ω12‖E∗τ (ω12)). In the literature, such bi-local intertwiners are also known as the

edge modes.

To find an upper bound on this entanglement measure we use the definition of E∗τ and

the inequality in (2.31):

SF12(ω12‖E∗τ (ω12)) ≤ log |G| (5.15)

In section 5.2, we demonstrate a generalization of the inequality (2.31) that applies to QFT.
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5.2 Modular theory in the presence of charges

Consider two global vectors of a QFT, |Ω〉 and |Ψ〉 and a local algebra FA. The relative

Tomita operator is defined using the equation

SFAΨ|Ωb |Ω〉 = b† |Ψ〉 , ∀b ∈ FA . (5.16)

This operator is labelled by the choice of two vectors and an algebra. To simplify the

notation, when it is clear from the context we suppress the algebra label. The equation

above defines the action of SFAΨ|Ω and its † everywhere in H if the action of operators in

FA and FA′ on |Ω〉 is dense in the Hilbert space: FA |Ω〉 = H [14]. Such a vector |Ω〉
is called a Reeh-Schlieder vector (cyclic and separating). In a Reeh-Schlieder state, the

action of local algebra FA on |Ω〉 can approximate any excitation in the global Hilbert

space, even those supported outside of A.24 The vector |Ω〉 is called Reeh-Schlieder if and

only if it is cyclic with respect to both FA and FA′ . The squared norm of the relative

Tomita operator is called the relative modular operator ∆Ψ|Ω = S†Ψ|ΩSΨ|Ω and we define

the anti-linear operator JΨ|Ω = SΨ|Ω∆
−1/2
Ψ|Ω . When both vectors are the same we call

SΩ ≡ SΩ|Ω the Tomita operator and ∆Ω ≡ ∆Ω|Ω the modular operator. The anti-linear

operator JΩ = ∆
1/2
Ω SΩ is called the modular conjugation of |Ω〉 and has the property that

bJ ≡ JbJ ∈ FA′ ∀b ∈ FA, (5.17)

where we have suppressed the Ω index of J . If |Ω〉 is Reeh-Schlieder the modular conju-

gation is an anti-unitary J = J−1 = J† [22]. An important result of the modular theory

is that the (relative) modular operator generates a flow called the (relative) modular flow

that is an outer automorphism of the algebra FA. This flow is independent of the second

vector (for a proof see [29, 30]); see figure 7:

(∆FAΩ|Ψ)itb(∆FAΩ|Ψ)−it = (∆FAΩ )itb(∆FAΩ )−it ∈ FA ∀b ∈ FA and ∀t ∈ R

(∆FAΩ|Ψ)itb′(∆FAΩ|Ψ)−it = (∆FAΨ )itb′(∆FAΨ )−it ∈ FA ∀b′ ∈ FA′ and ∀t ∈ R (5.18)

The above relations imply that the operator ∆it
Ω|Ψ∆−itΩ is in the commutes with all

operators in FA. This operator is called the cocycle. Similarly for the modular conjugation

we have

J†Ψ|ΩbJΨ|Ω = JΩbJΩ (5.19)

which implies that JΨ|ΩJΨ commutes with all FA. The correlation functions of the oper-

ators b, c ∈ FA in the state |Ω〉 have the KMS property which can be interpreted as an

analytic continuation of the modular flow to complex values of t: 〈Ω|b∆Ωc|Ω〉 = 〈Ω|cb|Ω〉.25

The set of operators h ∈ FA with the property that 〈Ω|[h, b]|Ω〉 = 0 for all b ∈ FA forms a

24In finite quantum systems, the canonical purification of a density matrix ρ is a Reeh-Schlieder vector

if and only if all the eigenvectors of ρ are non-zero. That is to say ρA is entirely entangled with A′.
25To show this we note that 〈Ω|b∆c|Ω〉 = 〈Ω|bS†Sc|Ω〉 = 〈ScΩ|Sb†Ω〉 = 〈Ω|cb|Ω〉, where we have used

the anti-linearity of S.
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Figure7

AA′ 

ΔitΩ

ΔitΩ J

AA′ 

ΔitΩ

ΔitΨ

(a)

Figure7

AA′ 

ΔitΩ

ΔitΩ J

AA′ 

ΔitΩ

ΔitΨ

(b)

Figure 7. If the region A is the Rindler wedge and the state is a QFT in the vacuum, the modular

flow is the boost that evolves operators geometrically according to the arrows in (a) [14]. The

modular conjugation map JΩ is the CRT (charge conjugation/reflection/time reversal) that sends

operators from A to A′ and vice versa. (b) The relative modular flow generated by ∆it
Ω|Ψ acts as the

modular flow of Ω on the operators in A and the modular flow of state Ψ on the operators in A′.

subalgebra of FA that we call the centralizer of ω and denote it by FωA [31, 32]. The KMS

property implies that

〈Ω|b(∆− 1)h|Ω〉 = 0 ∀h ∈ FωA . (5.20)

Since b |Ω〉 is dense in the Hilbert space the vector h |Ω〉 is an invariant state of the modular

operator. The operators in the centralizer have the important property that h and ∆

commute [31]

∆zh∆−z = h ∀z ∈ C . (5.21)

In fact, an operator h ∈ FA that is in the centralizer of Ω commutes with ∆Ω|Ψ for any

Ψ.26 Since h ∈ FωA are invariant under the modular flow, we sometimes refer to them as

the modular zero modes. The modular zero mode satisfies the equation

(h† − hJ) |Ω〉 = 0 . (5.22)

Note that hJ ∈ FA′ is also in the centralizer of Ω. If the algebra has a center Z, the center

is inside the centralizer of all states. The operators in the center z ∈ Z satisfy z† = zJ [33]:

z†b |Ω〉 = bz† |Ω〉 = S(zb†) |Ω〉 = J∆1/2zb† |Ω〉 = zJJ∆1/2b† |Ω〉 = zJb |Ω〉 . (5.23)

The relative Tomita operator for an excited state h |Ω〉 and h an invertible element of

the centeralizer is

SΩ|hΩ = ‖h |Ω〉 ‖SΩ(hJ)−1

∆Ω|hΩ = ‖h |Ω〉 ‖2∆Ω|hJ |−2 (5.24)

26To see this, we first rewrite b as limγ→∞ bγ in (5.43) that is entire meaning that bγ(z) defined in (5.44)

is in F1 for all complex z. Then, from (5.18) it follows that for all h in the centralizer of Ω we have

∆z
Ωh∆−zΩ = ∆z

Ω|Ψb∆
−z
Ω|Ψ = h.

– 29 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
6

where we have used (5.22). The relative entropy of two vectors with respect to an algebra

FA is given by [34]

SFA(Ψ‖Ω) = −〈Ψ| log ∆FAΩ|ΨΨ〉 . (5.25)

When |Ω〉 and |Ψ〉 are the canonical purifications of density matrices σ and ρ in (5.2) the

formula above matches the definition:

S(ρ‖σ) = tr(ρ log ρ)− tr(ρ log σ) . (5.26)

The elements of the centralizer are the operators that commute with the density matrix.

The local state associated with the excited state h |Ω〉 with h in the centralizer is ρh =

hρh†/tr(ρ|h|2) that commutes with ρ the local state of |Ω〉. The relative entropy of these

states with respect to the vacuum defined by (5.25) is

S(hΩ‖Ω) = −2 log ‖h |Ω〉 ‖+ 2 〈hΩ| log |hJ ||hΩ〉 (5.27)

where |hΩ〉 is the normalized state h |Ω〉. If v is an isometry in the centralizer of Ω then

v† |Ω〉 has the same local state as |Ω〉:

〈Ω|vbv†|Ω〉 = 〈Ω|v†vb|Ω〉 = 〈Ω|b|Ω〉 . (5.28)

That is why the equation (5.27) implies S(v†Ω‖Ω) = 0 for v in the centralizer. Since ρ and

ρh are simultaneously block diagonalizable their relative entropy can be understood as a

classical relative entropy. For instance, take ρ =
∑

k qk |k〉 〈k| and h =
∑

k

√
pk
qk
|k〉 〈k| with

pk a probability distribution that is in the centralizer of ρ. The state ρh =
∑

k pk |k〉 〈k| is

simultaneously diagonalized with ρ. The relative entropy above is

S

(∑
k

pk |k〉 〈k| ‖
∑
k

qk |k〉 〈k|
)

=
∑
k

pk(log pk − log qk) = H(p‖q) (5.29)

which is a special case of (2.32). More generally, for an operator h that in the centralizer

of |Ω〉 we have

SΨ|hΩ = ‖h |Ω〉 ‖SΨ|Ω(hJΩ
)−1

∆Ψ|Ω = ‖h |Ω〉 ‖2∆Ψ|Ω|hJΩ
|−2 (5.30)

where we have used the fact that [∆Ψ|Ω, hJΩ
] = 0 because hJΩ

∈ FA′ and in the centralizer

of Ω. Then, the relative entropy is

S(hΩ‖Ψ) = −2 log ‖h |Ω〉 ‖+ 2 〈hΩ| log |hJ ||hΩ〉 − 〈hΩ| log ∆Ψ|Ω|hΩ〉 . (5.31)

This is a QFT generalization of the equation (2.32). To see this, plug in the equation

above the block diagonal density matrices ρ = ⊕kqkρk, ψ = ⊕kpkσk and the operator

h = ⊕k
√

pk
qk
Ik that is the centralizer of both states:

S⊕kFk(ρ‖σ) = H(p‖q) +
∑
k

pkS(ρk‖σk) . (5.32)
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In the presence of an internal symmetry UgbU
†
g ∈ FA for all b ∈ FA. From (5.16) we

can solve for the modular operator of Ug |Ψ〉:

SAUgΨ = UgS
A
ΨU
†
g

∆A
UgΨ = Ug∆

A
ΨU
†
g . (5.33)

If |Ω〉 is the invariant vacuum, i.e. Ug |Ω〉 = |Ω〉, the modular operator and Ug commute:

∆ΩUg = Ug∆Ω. As a result, the modular flow ∆Ω of charge-neutral operators remains

charge-neutral if |Ω〉 is an invariant vector, and the charge of an operator Vr,i does not

change under the modular flow by ∆it
Ω. Now, consider the twist unitary τg. On a lattice,

the twist operator is in the center of the local charge-neutral algebra. In QFT the twist

operator is not in the center of the local algebra, but we still have

SA1⊗A2

Ψ|τgΩ = SA1⊗A2

Ψ|Ω τ †g

SA1⊗A2(τgΩ‖Ψ) = SA1⊗A2(Ω‖Ψ) . (5.34)

This is expected because τg |Ω〉 has the same local state as |Ω〉 with respect to the algebra

A1 ⊗A2.

The relative Tomita operator of the charged states |r, i〉 =
√
drV

†
r,i |Ω〉 is

S(r′i′)|(ri)b |r, i, A〉 = b† |r′, i′, A〉 , ∀b ∈ FA (5.35)

which can be solved by setting S(r′i′)|(ri) =
√

dr′
dr
V †r,iSΩVr′,i′ in the equation above. Below,

we suppress the algebra label in the relative modular operator and relative entropies if the

algebra is FA. Note that SΩ is the Tomita operator for all charged operators, and we have

used V †riVrj = δij . The relative Tomita operator kills the vectors b |s, j, A〉 for s 6= r, and

on its domain it satisfies

S(r′i′)|(ri) =

√
dr′

dr
V †r,iSΩVr′,i′

∆(r′i′)|(ri) =
dr′

dr
V †r′,i′S

†
ΩVr,iV

†
r,iSΩVr′,i′ . (5.36)

In particular, we find that
∑

i ∆(r′i′)|(ri) = 1
dr

∆(r′i′)|Ω. For an Abelian symmetry, the

intertwiner Vq is a unitary operator and

∆q|q′ = V †q ∆ΩVq . (5.37)

Therefore, the relative entropy states of sectors of charge q and q′ is

SFA(q′‖q) = −〈q′|V †q log ∆ΩVq|q′〉 = −〈q′ − q| log ∆Ω|q′ − q〉 . (5.38)

For bi-local intertwiners I12,r and the algebra F12 we have

SF12

Ω|Ir = IrSF12
Ω

SF12

Ir|Ω = SF12
Ω I†r

SF12(Ir‖Ω) = −〈Ir| log ∆Ω|Ir〉
SF12(Ω‖Ir) = −〈I†r | log ∆Ω|I†r〉 . (5.39)
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where for F1

SF1

Ω|Ir =
1

dr

∑
j

(V
(1)
r,j )†SF1

Ω (V
(2)
r,j )†,

SF1

Ir|Ω =
∑
j

(V
(2)
r,j )SF1

Ω (V
(1)
r,j ) . (5.40)

The relative Tomita equation defines the relative modular operator unambiguously

if the vector |Ω〉 is Reeh-Schlieder. The Poincare-invariant vacuum of QFT is a Reeh-

Schlieder vector for local algebras FA. In a Reeh-Schlieder vector the excitations inside the

region A can approximate an arbitrary excitations outside. We are interested in studying

the relative modular operator with respect to the local charge-neutral subalgebras AA, and

below we show that the vacuum vector is Reeh-Schlieder with respect to AA. That is to say

in QFT an arbitrary uncharged operator in A can be approximated using local uncharged

operators AA: AA |Ω〉 = A |Ω〉.
First, let us take a look at the Reeh-Schlieder property for the full algebra F of QFT.

In a Reeh-Schlieder state an arbitrary excitation in F1 ⊗ F1′ can be approximated using

operators in F1. We want to find bm ∈ F1 such that for some b′ ∈ F1′ we have b′ |Ω〉 '
bm |Ω〉. We call such an operator bm the mirror operator of b′. To construct the mirror

operator, we use the following strategy

b′ |Ω〉 = S′Ω(b′)† |Ω〉 = (∆′)−1/2J(b′)† |Ω〉 = ∆1/2(b′)†J∆−1/2 |Ω〉 (5.41)

with (b′)†J ≡ J(b′)†J ∈ F1 where we have suppressed the Ω index of ∆Ω and JΩ. For a

Reeh-Schlieder vector in finite quantum systems, it is straightforward to check that the

operator (ω1/2bTω−1/2 ⊗ 1) is the mirror of (1 ⊗ b) where T is the transpose in the basis

picked by the density matrix ω:

∑
k

√
pk(ω

1/2bTω−1/2 ⊗ 1) |kk〉 =
∑
kl

√
plbkl |lk〉 =

∑
l

√
pl(1⊗ b) |ll〉 . (5.42)

where we have used the canonical purification of ω in (5.2). Note that in the example

above, the modular conjugation operator J is the anti-linear swap operator in the Schmidt

basis of the state: Jc |kl〉 = c∗ |lk〉 where c is a complex number. In a Reeh-Schlieder state

since all pk > 0, ω−1/2 is well-defined. Furthermore, the operator ∆1/2(bT ⊗ 1)∆−1/2 =

ω1/2bTω−1/2 ⊗ 1 ∈ F1 ⊗ 1. In a QFT, for a general b ∈ F1, the modular flow b(t) ≡
∆itb∆−it is inside the algebra F1 for all t ∈ R, but the operator ∆1/2b∆−1/2 need not be

in F1. Luckily, as we demonstrate below, in QFT there are always operators in F1 that

approximate ∆1/2b∆−1/2 arbitrarily well.

Consider the operator

bγ =

√
γ

π

∫ ∞
−∞

dt e−γt
2
∆itb∆−it ∈ F1 (5.43)
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Figure8

A′ 

AA′ 

b′ b′ J
†

A

(a)

Figure7

A′ 

AA′ 

b′ b′ J

A

(b)

Figure 8. Consider the case where region A is the Rindler wedge and we have the vacuum of QFT

(a) If b′ is localized in the small red circle inside A′ the operator (b′J)† is also localized in the red

circle in A, however the mirror operator in (5.44) requires boosting that spreads its support in the

blue region (b) The operators in A′ that are approximately-invariant under modular flow (boost)

are localized in a small proper distance from the entangling surface. Their mirror operators are

also localized near the entangling surface in A.

In the limit γ →∞ this operator approximates b,27 and for any γ the modular flow of this

operator can be analytically continued to the whole complex plane [31]

bγ(z) ≡ ∆zbγ∆−z =

√
γ

π

∫ ∞
−∞

dt e−γ(t+iz)2
∆itb∆−it ∈ F1 . (5.44)

Therefore, we find that mirror operator of b′ in the algebra F1 that satisfies

b′ |Ω〉 ' bm |Ω〉

bm = lim
γ→∞

((b′)†J)γ(1/2) . (5.45)

If the operator b′ is an isometry, the equation

〈Ω|b′b†mΩ〉 = 1 (5.46)

implies that the probability for the spontaneous creation of the excitation b′b†m |Ω〉 is almost

one. In general, if b′ is localized in a small region of A1′ its mirror is highly delocalized in

A1. If [b′,∆] = 0 from the mirror equation (5.45) we find that bm = (b′)†J ; see figure 8.

Consider the symmetry group G acting on the global algebra F . If a′ ∈ A1′ is a

charge-neutral operator from (5.44) it is evident that the mirror operator am is also charge-

neutral, and is therefore in A1. This implies that we can generate A1′ |Ω〉 using A1 |Ω〉. The

only other operators in A are the bi-local intertwiners between A and A′: Ir =
∑

i V
†
r,iV

′
r,i.

Denote the mirror of V ′r,i by (Vr,i)m. It has the same charge as V ′r,i. Therefore, the operator

27Note that in the limit γ → 0 the operator b0 is the modular zero mode, and for finite values of γ

this operator sends off-diagonal elements |k〉 〈k′| → e
−

(log pk−log p
k′ )

2

4γ |k〉 〈k′|. It suppresses the off-diagonal

terms exponentially with parameter 1
γ

. The modular zero mode has the property that its modular flow is

trivial: (b0)γ = b0 for all γ.
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∑
i V
†
r,i(Vr,i)m is charge-neutral with respect to the local algebra and therefore belongs to

AA. Moreover, the mirror of all operators in A1′ also belong to A1, therefore in QFT

A1 |Ω〉 = A |Ω〉.
Since A1 |Ω〉 = A12 |Ω〉, it follows that for non-overlapping and non-touching A1 and

A2 we have A1 ⊗A2 |Ω〉 = A12 |Ω〉 = A |Ω〉. All intertwiners between region A1 and the

complement A′1 can be prepared locally by acting with A1 which includes the intertwiners

between regions A1 and A2. As a result, the algebra (A1 ⊗A2) |Ω〉 = A |Ω〉, and the Tomita

operator for the algebra A1 ⊗A2 is densely defined.

5.3 Cocycle and intertwiners

In this section, we show that the intertwiner Vr,i can be understood as an analytic contin-

uation of the unitary cocycle. Consider two vectors |Ω〉 and |Ψ〉 in different superselection

sectors of a QFT and the isometry defined by

T (a |Ψ〉) = a∆
1/2
Ψ|Ω |Ω〉 (5.47)

that maps vectors from the |Ω〉 to the |Ψ〉 sector. This is an intertwiner that takes us

from one charged sector to another and commutes with the action of FA [14]. When the

superselection sectors are due to symmetries, the intertwiner need not be localized in A.

We say the intertwiner is localized in A if Tb′ |Ω〉 = b′T |Ω〉 for all b′ charged operators

in A′. We would like to understand when the intertwiner T is localized in A. In the last

subsection, we saw that the cocycle operator

uΨ|Ω(t) = ∆it
Ψ|Ω∆−itΩ (5.48)

belongs to the algebra. In fact, if both Ω and Ψ are Reeh-Schlieder it is a unitary operator.

For real values of t the cocycle is an operator in A and commutes with b′ [32, 35]. The

isometry in (5.47) can be created by an analytic continuation of the cocycle to imaginary

values =(t) = −i/2:

Tb′ |Ψ〉 = b′∆
1/2
Ψ|Ω∆

−1/2
Ω |Ω〉 = b′uΨ|Ω(−i/2) |Ω〉 . (5.49)

The isometry in (5.47) commutes with all b′ ∈ FA′ if the analytic continuation of the cocycle

uΨ|Ω(−i/2) exists and belongs to FA.

On a lattice the cocycle is uΨ|Ω(t) = ψitω−it ⊗ 1′ with ψ and ω the reduced density

matrices on A of |Ψ〉 and |Ω〉, respectively. The analytic continuation of the cocycle to

=(t) = −i/2 corresponds to ψ1/2ω−1/2 ⊗ 1 which is well-defined if all the density matrix

ω has no zero eigenvalues. In fact, it suffices to assume that every zero eigenvalue of ω is

also a zero eigenvalue of ψ, because if ω |ξ〉 = ψ |ξ〉 = 0 we can define ψ1/2ω−1/2 |ξ〉 = 0.

In other words, the cocycle has an analytic continuation if there exists a λ > 0 such that

ω− λψ is a non-negative operator. This is the necessary condition for the relative entropy

S(ψ‖ω) to be finite. Similarly, in modular theory, the cocycle uΨ|Ω(t) can be analytically

continued to the 0 ≥ =(t) ≥ −1/2 if ω − λψ ≥ 0. That is to say there exists a λ > 0 such

that for all b ∈ FA:

ω(b†b)− λψ(b†b) ≥ 0 . (5.50)
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If |Ψ〉 and |Ω〉 are vectors corresponding to states ψ and ω with ω ≥ λψ for some

positive λ, the cocycle uψ|ω has an analytic continuation to the strip 0 ≥ =(t) ≥ −1/2 that

remains inside the algebra [36]. This implies that there is a map u(t) analytic in the strip

and strongly continuous in t with the property that

u(t) = uψ|ω(t)

u(t)b′ |Ω〉 = b′∆it
Ψ|Ω |Ω〉 . (5.51)

In particular at u(−i/2) we have the map

u(−i/2)b′ |Ψ〉 = b′u(−i/2) |Ψ〉 , (5.52)

which is the local intertwiners Vr,i we discussed in the case of charges in section 4. In our

examples of QFT with charges we have E∗τ (ω12) > 1
|G|ω12, therefore the cocycle uω12|E∗τ (ω12)

takes us from the sector |Ω〉 to the sector corresponding to E∗τ (ω).

5.4 Enlarging the QFT algebra

In section 4, we saw that one main difference between QFT and systems on a lattice is

that in QFT the twist operator τg = eigQA is not part of the local algebra, and as a result

the local invariant algebra has no center. It is natural to ask whether one can enlarge

the QFT algebra by including τg to make QFT more similar to the lattice models. The

local algebra of charged operators in QFT has charge neutral operators Ir ⊗ a ∈ AA and

charged operators V
(A)
r,i supported on A that belong to the dual group Ĝ: FA = AA oρ Ĝ.

If we further enlarge the QFT algebra by adding τg that belongs to G to it, we obtain

FAoG. If the group G is Abelian this is (AAo Ĝ)oG = AA⊗B(L2(Ĝ)). Physically, this

corresponds to adding a qudit of dimension |G| to the local algebra of QFT exactly as we

do on a lattice [31]. There will be an analogous degree of freedom on the complementary

region A′ and the global Hilbert space factors as H = ⊕q(KAq ⊗ KA
′

q ) ⊗Hq. The enlarged

local algebra is the tensor product of the algebra of charge neutral operators with a qudit

of dimension |G| that carries the charge: A1 ⊗GL(|G|,C) where GL(|G|,C) is the algebra

of a qudit. In this enlarged algebra, the charge neutral operators have a non-trivial center:

⊕qλq |q〉 〈q| ⊗ 1 similar to systems on a lattice. When the algebra is non-commutative, it is

still convenient to consider the algebra represented on the Hilbert space ⊕r(KAr ⊗KA
′

r )⊗Hr.
It is desirable to construct a conditional expectation that maps the enlarged algebra

FA oG back down to the QFT algebra FA. In the Abelian case, this is simply an average

over the dual group

Ẽ(|q′〉 〈q′′| ⊗ a) =
1

|Ĝ|

∑
q

Û †q (|q′〉 〈q′′| ⊗ a)Ûq . (5.53)

The QFT local algebra FA is generated by |0〉 〈0| ⊗ a and Ûq which transform under this

map to

Ẽ(|0〉 〈0| ⊗ a) =
1

|Ĝ|

∑
q

ρq(a)

Ẽ(Ûq) = Ûq (5.54)
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where in the second line we have used the fact that the group is Abelian. Under Ẽ any

new non-identity elements of the twist group τg =
∑

q e
igq |q, A〉 〈q, A| are washed out

Ẽ(τg) = δg0I . (5.55)

In the example of the free boson in section 3.5, the dual group is Z that is not compact

but we can still write

ρα(J(u)) = J(u) +

∮
dz

2πi
u(z)α(z) (5.56)

and the sum over charges in the range (−q, q) vanishes

1

2q + 1

q∑
k=−q

ρkα(J(u)) = J(u) . (5.57)

as one expects from a conditional expectation.

Our enlarged algebra has a representation in a Hilbert space that factors the charge

modes ⊕q(KAq ⊗ KA
′

q ) ⊗ Hq. We would like to find the vectors in this Hilbert space that

correspond to the states of the QFT algebra. We can extend our QFT states using the

conditional expectation Ẽ so that the relative entropy of states evaluated in the enlarged

algebra remains the same as that of the QFT algebra. For instance, the purification of the

state E∗(ψ) in (5.12) in this enlarged Hilbert space is

|Θψ〉 =
∑
r

√
ζr |Er〉 ⊗ |Ψr〉

|Er〉 =
1√
dr

∑
i

|r, i〉 ⊗ |r∗, i〉 (5.58)

where r∗ is the dual representation of r. The expectation values in this vector are∑
r

〈Θψ|(1r ⊗ a)|Θψ〉 =
∑
r

ζrρr(a)

〈Θψ|Vr,i|Θψ〉 = 0 (5.59)

and

〈Θψ|U rg ⊗ 1|Θψ〉 =
1

dr
tr(U rg ) = δ(g) (5.60)

as expected from an invariant state of Ẽ. This vector is also Reeh-Schlieder with respect to

the QFT algebra because the action of Vr,i and Ir⊗a take us everywhere in the Hilbert space.

For simplicity, we assume that the symmerty group is Abelian for the remainder of

this section. The relative Tomita equation for the vectors |Θω〉 = |00〉 ⊗ |Ω〉 and |Θψ〉 =

|00〉 ⊗ |Ψ〉 is

SFΘψ |Θω(|q〉 〈q′| ⊗ a) |Θω〉 = (|q′〉 〈q| ⊗ a†) |Θψ〉

SAΘψ |Θω(I⊗ a) |Θω〉 = (I⊗ a†) |Θψ〉 . (5.61)
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The domain of SF is |q0〉 ⊗ H0, however, this operator is zero except for the subspace

|00〉 ⊗ H0 that is the domain of SA. On the common domain the two relative modular

operators agree. Since the zero vector is not in the domain of (SF )† the relative modular

operators ∆F and ∆A are the same map from |00〉⊗H0 → |00〉⊗H0. In fact, the purification

of any state that is invariant under the conditional expectation E has this property. The

distinguishability of invariant states does not change as the restriction map E. Consider

two invariant states:

ω =
∑
q

pq |q〉 〈q| ⊗ ωq

ψ =
∑
q

p′q |q〉 〈q| ⊗ ψq (5.62)

and their corresponding purifications

|Θω〉 =
∑
q

√
pq |q,−q〉 ⊗ |Ωq〉

|Θψ〉 =
∑
q

√
p′q |q,−q〉 ⊗ |Ψq〉 (5.63)

Their relative modular operator is

∆FΘψ |Θω = ∆AΘψ |Θω =
∑
l,m

p′l
pm
|l,−m〉 〈l,−m| ⊗∆Ψl|Ωm (5.64)

and their relative entropy is

S(Θω‖Θψ) = −〈Θω| log ∆Θψ |ΘωΘω〉 = H(p‖p′) +
∑
l

plS(Ψl‖Ωl) (5.65)

as expected from the equation (2.31).

The algebra of QFT does not admit a tensor factorization when the regions A1 and

A2 touch, however, as we saw in the presence of a symmetry the extended algebra factors

the charged excitations. The local algebra of any quantum field has a symmetry group R
associated with the modular flow. The modular flow is an outer automorphism similar to

the twist group. Similar to the case of twist that was not part of the algebra due to the

infinities near the entangling surface, the modular Hamiltonian, i.e. log ∆Ω restricted to A

is not part of the algebra because of its discontinuous action at the entangling surface. For

instance, in the vacuum QFT and for the Rindler region |x1| > |t| the modular Hamiltonian

is the boost operator
∫∞
−∞ du uTuu where Tuu is the null-null component of the stress

tensor. The half-sided modular Hamiltonian
∫∞

0 duuTuu is ill-defined because of its singular

behavior at u = 0. If we enlarge the local algebra of QFT by the modular group by adding

the half-sided modular Hamiltonian to the algebra, every mode that is charged under

modular flow factors. The Hilbert space splits into sectors Hq with projections Pq that

project to the subspace with modular frequency q.

The modular group is R so its dual group is also R which is non-compact. In the case

of vacuum QFT in Rindler space, the centralizer is trivial since there are no local operators
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that are invariant under boost. This implies that every mode is charged under the modular

flow [37]. Enlarging the algebra of QFT by the modular group factors the local algebra

of QFT completely: H = ⊕qKAq ⊗ KA
′

q where q is the modular frequency. The enlarged

algebra is type II∞ and has a trace [38]. Entanglement entropy in the extended Hilbert

space is divergent, however the factorization of the Hilbert space resembles the structure

of boundary quantum field theory, and the insertion of a resolution of identity that is the

center ⊕q |q〉 〈q| in the algebra.28

6 Conclusions

In this work, we generalized the definition of entropy to the cases with no tensor product

structure, and used the new definition to define an entanglement measure that captures

the contribution of charges to entanglement in quantum systems with symmetries in equa-

tion (2.29). The proposed measure is comprised of two relative entropies. One is the

relative entropy with respect to the charge neutral operators and the other is the relative

entropy due to the charge creation operators. We used representation theory to introduce

the charge creation operators called intertwiners and bi-local intertwiners, and wrote down

relative entropy that capture their contributions to entanglement. We set up the formal-

ism to compute these measures in QFT using the Tomita-Takesaki modular theory. We

highlighted the differences between QFT and lattice models, and discuss an extension of

the algebra of QFT that leads to a factorization of the charged modes.

We would like to thank Horacio Casini, Roberto Longo, Thomas Sinclair, James Sully

and Edward Witten for many valuable discussions. NL would also like to thank the Institute

for Advanced Study for their hospitality during his visit. Funding for this visit was provided

by the NSF grant PHY-1911298.

A Group and algebra extensions

A.1 Group extension: semi-direct product

Given two groups N and H consider the trivial extension that is the Cartesian product

group N×H where elements of group are (n, h) and the multiplication is (n1, h1).(n2, h2) =

(n1n2, h1h2). If H acts on N by an outer automorphism φh : n → hnh−1 with the com-

position rule (φh1 ◦ φh2)(n) = φh1h2(n) we can consider a subgroup of G = N oφ H ⊂
N × H called the semi-direct product and has the multiplication rule (n1, h1).(n2, h2) =

(n1φh1(n2), h1h2). The inverse of (n, h) is (φh−1(n−1), h−1). All we need for the construc-

tion of the semi-direct product is the homomorphism φ : H → Aut(N).

In the semi-direct product extension G, N is a normal subgroup and H = G/N is

the quotient group. An important example is the Poincare group that is the semi-direct

product of translations and the Lorentz group: R1,d−1 o O(1, d − 1). If N is the center

of G the semi-direct product is called a central extension. A trivial example of central

extension is the direct product group N × H where N is Abelian. Non-trivial examples

28We thanks James Sully for pointing out this connection to us.
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comes from the study of the projective representations of a group. Consider a group H, the

Abelian group of complex numbers C and the map φh(α) = αc(α, h) with c(α, h) a complex

number. If c(α, h)c(β, h) = c(αβ, h) and c(α∗, h) = c(α, h)∗, this map is an outer automor-

phism of C, and we can construct C oφ H with the multiplication rule (α, h1).(β, h2) =

(αβc(β, h1), h1h2). We need to further check that φh1(α)φh2(α) = φh1h2(α) which imposes

c(α, h1)c(α, h2) = c(α, h1h2).

A.2 Lie algebra extension: semi-direct sum

Consider the groups H and N are Lie groups and their corresponding Lie algebras h and n.

The map φ : H → Aut(N) induces a map ψ : h→ Aut(n) defined by the Lie correspondence

ψĥ(n̂) =
d

dt

(
φ
etĥ

(etn̂)
)
t=0

(A.1)

where n̂ and ĥ are elements of the Lie algebra n and h, respectively. We obtain the notion

of a semi-direct sum of Lie algebras with the Lie bracket defined using the equation[
(n̂1, ĥ1), (n̂2, ĥ2)

]
= ([n̂1, n̂2] + ψĥ1

(n̂2)− ψĥ2
(n̂1), [ĥ1, ĥ2]) . (A.2)

There is another method to centrally extend Lie algebras. Every linear map χ : h×h→
C that is anti-symmetric, i.e. χ(ĥ1, ĥ2) = −χ(ĥ2, ĥ1), and satisfies the Jacobi identity leads

to an extension defined by the Lie bracket[
(α, ĥ1), (β, ĥ2)

]
= (χ(ĥ1, ĥ2), [ĥ1, ĥ2]) . (A.3)

A finite-dimensional simple Lie algebra has no non-trivial central extensions. To find

examples of non-trivial central extension we have to consider infinite-dimensional Lie al-

gebras. As an example, we work out the central extension of the polynomial loop algebra:

Kac-Moody algebra. The loop group is defined to be the algebra of smooth G-valued

functions on a circle with group multiplication rule. These are loops C on the group G,

C : S1 → G with (C1C2)(θ) = (C1)(θ)(C2)(θ). A loop Lie algebra is the vector space of

smooth functions from S1 to g of G.

Consider the tensor product space g⊗C∞(S1), where g is a finite dimensional simple

Lie algebra and C∞(S1) is the algebra of smooth functions on S1. This vector space is a

Lie algebra with the bracket defined by

[ĝ1 ⊗ f1, ĝ2 ⊗ f2] = [ĝ1, ĝ2]⊗ f1f2 , (ĝ1, ĝ2 ∈ g). (A.4)

Importantly, this space is not a direct product of the two spaces g and C∞(S1) due to

the smoothness condition of functions. Instead, it should be thought of as the Lie algebra

of smooth g-valued functions of S1. The Fourier transform on S1 gives the basis ĝ ⊗ einθ

where θ is the angle on S1 and n ∈ Z. The Lie algebra generated by such generators is

the polynomial loop algebra. Another way to think about this algebra is in terms of the

algebra of Laurent polynomials
∑

n∈Z fnz
n with only finitely many non-zero fn and the

standard multiplication and addition. Then, the algebra of G-valued functions on S1 is the

Lie algebra of formal sums
∑

n∈Z z
n ⊗ ĝn with the Lie bracket

[zn ⊗ ĝ1, z
m ⊗ ĝ2] = zn+m ⊗ [ĝ1, ĝ2] . (A.5)
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The generators of the Lie algebra Ja satisfy

[zn ⊗ Ĵa, zm ⊗ Ĵb] =
∑
c

Ccabz
n+m ⊗ Ĵc . (A.6)

where Ccab denotes the structure constants of the Lie algebra g. The central extension of

this algebra is g⊗ C∞(S1)⊕ C

[(α, zn ⊗ Ĵa), (β, zm ⊗ Ĵb)] = (k nK(Ĵa, Ĵb)δn+m,0,
∑
k

Ccabz
n+m ⊗ Ĵc) . (A.7)

where K(Ja, Jb) is the Killing form on g and k is the central charge. This is an affine

Lie algebra.

A.3 von Neumann algebra extension: crossed product

Groups can act on von Neumann algebras and one can extend an algebra A by a group G

that acts on it as outer automorphisms to obtain a larger algebra called the crossed product

A oφ G [39, 40]. If the action of the G on A is φg(a) = ag = ugau
−1
g with uguh = ugh

we add ug to the set of operators in our algebra and consider the algebra of formal sums∑
g∈G agug with ag ∈ A. If A acts on the Hilbert space H and L2(G) is the Hilbert space

of square-integrable functions of the group the crossed product algebra acts on H⊗L2(G);

that is the space of square-integrable H-valued functions of G. Vectors of this Hilbert space

are |Ψ〉 =
∑

g∈G cg |Ψ; g〉 and the inner product is

〈Ψ|Φ〉 =
∑
g∈G

c∗gbg 〈Ψ; g|Φ; g〉 . (A.8)

The multiplication rules are uh |Ψ; g〉 = |Ψ;hg〉 and ag |Ψ; g〉 = |aΨ; g〉.

A.4 Dual group and non-Abelian Fourier transform

Consider a locally compact Abelian group G. The characters of G are linear maps from G to

complex numbers. For instance, for the group U(1) of rotations on a circle the characters are

χ(Uθ) = eiθχ with θ ∈ [0, 2π). The point-wise multiplication (χ1χ2)(Uθ) = χ1(Uθ)χ2(Uθ)

gives the characters the structure of a group called the dual group of G that we denote by

Ĝ. The dual group allows us to define a Fourier transform for functions on the group G:

f̂(χ) =
∑
g∈G

χ−1(g)f(g) . (A.9)

If the group is finite the dual Fourier transform is

f(g) =
1

|G|
∑
χ∈Ĝ

χ(g)f̂(χ) . (A.10)

To generalize Fourier transform to non-Abelian finite groups G we replace the character of

group with its irreducible representations ρr(g):

f̂(ρr) =
∑
g∈G

ρr(g)f(g) . (A.11)
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If ρr(g) is represented by a dr × dr matrix then f̂(g) is also a matrix of same dimensions.

The inverse Fourier transform is

f(g) =
1

|G|
∑
r

drtr
(
f̂(ρr)ρr(g

−1)
)

(A.12)

where the sum is over irreducible representations ρr of group G and we have used the

fact that 1
|G|
∑

r drtr (ρr(g)) = δgI [41]. The analog of the multiplication of characters

in the non-commutative case is the tensor product of irreducible representations which

does not form a group, because the tensor product of irreducible representations is not in

general irreducible.
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