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neutral operators, and the other measuring the contribution of the bi-local intertwiners.
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QFT and lattice models, and discuss an extension of the algebra of QFT that leads to a
factorization of the charged modes.
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1 Introduction

The study of entanglement in many-body quantum systems has opened new windows to

understanding strongly coupled phenomena. Entanglement measures in lattice models have

helped identify phases of matter and universal dynamical processes. In Poincare-invariant

quantum field theory (QFT), entanglement measures have taught us about universal long-

range correlation patterns, and renormalization monotones [1-3]. In holographic QFT,



entanglement measures play an important role in the emergence of geometry out of quantum
states [4]. In this work, we study the entanglement theory in quantum systems with
conserved charges.

In the conventional quantum information theory, the Hilbert space of a bipartite system
Ao = A1 U Ay with Ay and As non-overlapping is the tensor product of the Hilbert spaces
of each: H1s = H1®Hs. There are local algebras of operators on Ay and As that we denote
by F1 and JFo, respectively. For instance, the algebra of operators of a d-level quantum
system (qudit) is the algebra of d x d complex matrices. The global algebra of the bipartite
system Ajo is F1o = F1 ® Fo. The local algebra Fi is a subalgebra of Fi2, and the reduced
state on this subalgebra is given by a partial trace on F»>. The entanglement measure we
are interested in captures the amount of information erased by partial trace. Entanglement
is a resource that can be distilled in the form of Einstein-Podolosky-Rosen (EPR) pairs
and can be used to teleport quantum states. For instance, for a bipartite qudit density
matrix p; ® py the amount of information erased by partial trace on As is log d — Syn(p2),
where S,n(p) = —tr(plogp) is the von Neumann entropy. The state p; ® I3/d is unique in
that it loses no information under partial trace. The distinguishability of an arbitrary state
p12 with respect to the invariant state of partial trace p; ® I3/d can be used to quantify
the amount of information lost in partial trace of As. In quantum information theory, the
distinguishability of a state p from ¢ is measured by the relative entropy

S(pllo) = tr(plog p) — tr(plog o) (L.1)

which is non-negative and vanishes if and only if p = . We choose the relative entropy
S(p12llp1 ® Ia/d) = logd — Syn(p12) + Sun(p1) as our measure of the information lost in
partial trace.!

In systems with symmetries and conserved charges, the degrees of freedom in A; and
Ay are not completely independent. Charge conservation requires that any physical process
that creates a charge particle in A; also creates the opposite charge in Ao. If we superpose
states of different charge, there is no information in their relative phase because they cannot
be detected in any physical process made out of charge conserving operations. The naive
relative entropy for a charged system cannot be used as a resource to distill entangled
pairs [6, 7]. In this work, we argue that the measure of entanglement with the correct
operational interpretation is the sum of two relative entropies. Omne term captures the
entanglement due to the charge-neutral degrees of freedom. These operators are invariant
under the symmetry transformation. The second term captures the contribution of charged
operators, and is a measure of the asymmetry of states in the resource theory of symmetry
[6, 7]. In section 2, we motivate a generalized entanglement entropy beyond the case
of tensor products, and connect it to the coarse-grained entropy defined by the Jaynes
maximum entropy principle [8]. For other definitions of generalized entanglement see [9, 10].

The charge-neutral operators in F form a sub-algebra that we denote by A; figure 1. In
the bipartite setup, the algebra of charge-neutral operators localized in A; is a subalgebra
of all charge-neutral operators of Ais: Ay C Ajs. However, it is not true that A; and

Tt has an operational interpretation in the language of the state merging protocol [5].
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Figure 1. (a) A charge neutral operator in region A: a € A4. (b) A charged operator in region
A: be Fyu.

As generate all the charge-neutral operators of Aj2. The operators that spontaneously
create a pair of charge particle in Ay and its anti-charge in As belong to A2, but not to
A1 ® As. In section 3, we call such operators bi-local intertwiners due to the role they
play in the representation theory of the symmetry group; see figure 2. Our goal is to
quantify the contribution of the local intertwiners to the entanglement. The key idea is to
associate to any state p an invariant state E*(p). The expectation value of all charge-neutral
operators A in E*(p) and p match, however the probability for the spontaneous creation
of a charge/anti-charge pair in the invariant state is zero. The relative entropy S(p|| E*(p))
measures the distinguishability of the two states. It is a measure of the asymmetry of p
and captures the information contained in the bi-local intertwiners. In section 2, we argue
that this relative entropy added to the mutual information between region A; and As due
to the charge-neutral algebra A; ® Ao captures the total amount of entanglement between
A; and Ay. This quantity is also discussed in previous work of [11, 12] and some of the
ideas here parallel those of [12].

In section 3, we review the representation theory of symmetry groups and the super-
selection sectors. A special role is played by the charge creation/annihilation operators
that take charge neutral operators from a superselection sector to another. They are called
intertwiners and together with the charge neutral sub-algebra they generate the algebra
of all charged particles. In section 3 we provide simple physical examples from qubits to
QFT to demonstrate the formalism. A reader who is already familiar with the formalism
can skip this section. In section 4, we make the distinction between global algebras and
local algebras. In the global case, we consider the algebra of charge neutral operators as
a sub-algebra of all charged operators A C F. In the local case, we consider the tensor
product of charge neutral operators in non-overlapping regions A; and As as a sub-algebra
of charge-neutral operators of A1 U Ag: A1 ® Ay C Ajs.

The study of entanglement in QFT is subtle due to absence of a tensor product H4 ®
‘H 4 that reflects itself as ultra-violet divergence in the entanglement entropy [11, 13, 14].
Modular theory is a mathematical framework that is well-suited for the study of entangle-
ment in any quantum system from qubits to QFT. In modular theory, instead of tensor
products and local density matrices, the algebra of operators localized in a region and
locality constraints among them are used to define entanglement measures. In section 5,
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Figure 2. (a) Charge neutral operators in region A; U As: a € A; ® A2. (b) A bi-local intertwiner
in Ay U As: T15 € Ajz. (c¢) Local intertwiners, or charged operators in A; U Ao that belongs to the
global algebra F; ® Fs.

we use modular theory to define both the relative entropies that measure the entanglement
between non-touching regions A; and As in a QFT with conserved charges. We highlight
the difference in the analysis of entanglement between QFTs and lattice models. Finally,
we discuss an extension of the QFT algebra that factors out charged excitations and brings
the QFT algebra closer to lattice models.

In this work, we focus on global symmetries, however, the formalism can be generalized
to many gauge theories [15, 16]. We postpone this to future work.

2 Generalizations of entanglement

2.1 Conditional expectation as generalization of partial trace

Consider the algebra of operators of two qudits Fio = F1 ® F2 and the subalgebra of
operators localized on the first system F; ® II5. The reduced density matrix on F is given
by the partial trace over Fo: p1 = tra(pi2). In the classical case, pi2 = Y0 Prkr |KK') (kK|
the reduced density matrix on the first qudit is p1 = >, g |k) (k| where g = >, pri are
the classical conditional expectations to obtain result k in a measurement on first qudit:
qr = tr ((|k) (k| ® [)p12). In a mathematical analogy, one can think of density matrices as
non-commutative probabilities and partial trace as non-commutative conditional expecta-
tion [17].

To compute how much information was erased during partial trace we have to pull py
back to the bipartite Hilbert space by a linear map that we denote by a*(p1) = ¢12 with
the following properties:

1. It is consistent with p;: tra(¢12) = p1.

2. The state ¢12 is invariant under partial trace and o*: a*(¢1) = ¢12 so that a* does
not add any information.

We call such o maps recovery maps or state extensions [17, 18]. In the partial trace case,
the recovery map with the properties above is a*(p1) = p1 ® Io/d.? Tt is convenient to
think of partial trace and recovery together as one linear map that sends density matrices

2 An example of a map that satisfies the first property but not the second is a*(p1) = p1 ® w2 for some wa.



on Fig to the density matrices on the subalgebra F; @ la: E*(p12) = p1 ® Ia/d. The dual
of the E* is a projection from Fio down to the subalgebra F; ® Is:

b
E(by ®by) = by @Iy tr <;> . (2.1)

Here, by the duality we mean going from the Schrodinger to the Heisenberg picture®

tr(E*(plg)(bl ® bg)) = tr(plgE(bl ® bg)) = tr(plbl) tr ([;2) . (2.2)

The map E has the property that it squares to itself, i.e. E? = E, so that E*(p12) is
invariant state of E:

tr(E" (p12) E(b1 @ b)) = tr (E™(p12) (b1 @ b2)) - (2.3)

The relative entropy of pj2 with respect to the invariant state E*(p12) = p1 ® Iy/d mea-
sures the asymmetry of the state or the amount of information erased in partial trace:
S(pr2]|E*(p12)) = 0; see figure 3.

A simple way to generalize partial trace is to consider a more general dual map E :
Fia = F1 ®Is:

E(b1 @ b2) = by ® D(b2)

D(b) = > by |k) (k| (2.4)
k

where {|k)} is some distinguished basis of the second qudit. In the Schrodinger picture,
the state transforms according to

E*(p12) = Zpkpgk) ® |k)y (kly
k

piot = (klypiz [K)y,  p = tr(p12(I @ [K)y (kl5)) (2.5)

that dephases the density matrix and erases the information in the off-diagonal operators
|k) (K'|. Similar to the E of partial trace we have the property that E(I) = I so that E*(p)
is properly normalized. Furthermore, E squares to itself which implies that E*(p12) is an
invariant state of F.

In systems with conserved charges, the subalgebra of charge-neutral operators corre-
sponds to matrices that are block-diagonal in some basis labelled by charge. For instance,
take a qubit and the symmetry transformation o,. The Abelian subalgebra D C F of 2 x 2
complex matrices diagonal in o, basis is the charge neutral algebra. The dephasing map
E(b) = D(b) projects operators from F to D. For a general quantum system with symmetry
we need to define a linear map E : F — A with A C F the subalgebra of charge-neutral

3 An alternative notation used in [12] is to denote E*(p) by po E.
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Figure 3. Our entanglement measure is the relative entropy of the state p with respect to its corre-
sponding invariant state E*(p): S(p||E*(p)). (a) The example where the map E* is a composition
of partial trace of system 2 and the recovery map o* which results in an invariant state E*(p12).

(b) The example where the map E* decoheres the density matrix p in a particular basis {|k)}.

operators as a generalization of partial trace. An example of one such maps is the Haar
average over the group G:

E(b) = |é,| / dtU iU, . (2.6)

The operator E(b) is charge-neutral for any charged operator b. In analogy to partial
trace, we require this map preserves the identity operator, and it leaves the charge-neutral
operators unchanged so that the state E*(p) defined by (E*(p))(b) = p(E(b)) for all b € F is
invariant under the map E: E(E*(p)) = E*(p). The generalization of partial trace is called
the non-commutative conditional expectation (or in short conditional expectation) that is
a linear map from F to an arbitrary subalgebra A such that E(I) =1 and E(ab) = aE(b)
for alla € Aand b € F [17, 19].* Since E(a) = a all invariant operators are in A and every
operator in A is invariant. As a result, E*(p) € A.

2.2 Generalized entanglement entropy and coarse-grained entropy

In conventional quantum information theory, the amount of entanglement between A; and
Ag is measured by the distinguishability of the pj2 with respect to the unentangled state
p1 & pa:

S(p1zllpr ® p2) = =Sun(p12) + Sun(p1) + Sun(p2) (2.7)

which is called the mutual information. Consider a multi-partite global state |€2) , ,, and
its reduced states p4 and p4 on region A and the complementary region A’, respectively.
The distinguishability of |2) from the tensor product state p4 ® pas is measured by the
relative entropy

S (U [[pa ® par) = 2Sun(pa) - (2.8)

“In this paper, the operator b is chosen to belong to the algebra of charged operators, whereas a denotes

a charge-neutral operator.



The tensor product state p4®p s has the same expectation values as |Q2) for all operators in
Far®1 and I® F 4/, however, all correlations between A and A’ are erased. The expectation
of all operators b® b’ with b € F4 and b’ € F 4 factors in the tensor product state p4 ® par.

To generalize the notion of entanglement to a general subalgebra A C F we invoke the
Jaynes maximum entropy principle. Consider the set of all density matrices o that have the
same expectation values as p for operators in A: tr((o — p)a) = 0 for all a € A. According
to Jaynes the entropy of a state p with respect to a subalgebra A is the supremum of the
von Neumann entropy S,y (o) over the set of all consistent states o [8]:

Sy (p7 A) = SuN (Gmax) (29)

where oy is consistent with p and has the maximum entropy. Hereafter, we suppress the
vN index of the von Neumann entropy.

The Jaynes maximum entropy consistent state is precisely our invariant state E*(p).
Given a general conditional expectation FE and a state ¢ consistent with p on A we have

tr((E*(0) — E*(p))b) = tr((0 — p) E(b)) = 0, (2.10)

therefore E*(0) = E*(p). At the end of section 2.1 we showed that the invariant state is
in A, therefore the logarithm of an invariant states is also in A:

tr(olog B*(p)) = tr(cE(log E*(p))) = tr(E*(c) log E*(p))
— tr(E*(p) log E*(p)) = —S(E*(p)) . (2.11)

In the above, we have assumed that the conditional expectation preserves the trace:
tr(E(b) — b) = 0 [12].5 From the definition (1.1) it follows that the relative entropy of
any consistent state o consistent with p on A with respect to the invariant state E*(p) is

S(allE*(p)) = =S(o) + S(E™(p)) = 0 . (2.12)

From the positivity of relative entropy we conclude that the invariant state of a conditional
expectation F is the maximum entropy state appearing in the Jaynes formula:

E*(p) = Omax (2.13)

and the non-degeneracy of relative entropy tells us that this state is unique.® Therefore,
our proposed measure of the information lost in F is the entanglement deficit from the

maximum value:
S(plE*(p)) = S(omax) — S(p) - (2.14)

As an example, consider the subalgebra of matrices A = F; ® Dy and the set of all o
that are consistent with p on A and maximize the entropy among them. The consistent

SWe thank Horacio Casini for pointing this out to us.
STf Gumax and ol.y are both maximum entropy then S(Gmax||0hax) = 0, therefore omax = Thax-



states are all 019 that satisfy tr((o12 — p12)(a1 ® |k) (k])) = 0 for all basis vectors |k). The
relative entropy of 012 with respect to the invariant state in (2.5) is

S<012|| S et @ k) <k|> —S(012) + H(p) + Zka (2.15)
k

where H(p) = — >, prlog(py) is the Shannon entropy of p; [20]. The maximum entropy
state is the invariant state, and the Jaynes entropy is

Sy(p12, F1 ® Da) = S(E*(p12)) )+ Zka (2.16)

(k)

The reduced state on system A; is p1 =), prp; - The von Neumann entropy of p; is less

than the Jaynes entropy because of the inequality [20]

S(Cnal?) < 1)+ S msh) (2.17)
k k

The definition of Jaynes entropy can be generalized beyond subalgebras to any subspace
of observables P:

Sy(p, P) = Sél]}__) {Sun(o)|tr((o — p)a) = 0,Va € P} (2.18)
e

where F* denotes the set of all states of the global algebra F. For instance, consider the
subspace of observables built out of linear sums of a1 ® I and I ® as and a bipartite density
matrix pj2. The relative entropy S(o12]|p1 ® p2) = S(p1) + S(p2) — S(o12) = I(1:2) >0,
where I(1 : 2) is the mutual information between site one and two. Therefore, the maximum
entropy state in the Jaynes formula that reduces to both p; and ps is p1 ® ps and as a
result Sy(pi2, P) = S(p1 @ p2) = S(p1) + S(p2) [18]. Our relative entropy measure

S(pr2llomax) = S(p12llp1 @ p2) = I(1:2) (2.19)

equals the mutual information that well captures the amount of correlations between Aj
and As. In the absence of a subalgebra and a conditional expectation oy,ax replaces E*(p)
and we propose S(p||omax) as a measure of the information lost under restriction to the
subspace of observables P [18]. To find the maximum entropy state consider the Lagrange
multipliers A; and the function

—tr(ologo) Z Aitr(( 0;) (2.20)

where O; is a basis for the subspace of observables P. Setting the variation of the expression
above with respect to ¢ and )\; establishes that the maximum entropy state logomax =
> 11i0; € P for some constants ;. Similar to the case of conditional expectation the
maximum entropy state belongs to the subspace P, i.e. omax € P, and the expectation
value of every operator that is not in P is zero. As a result

S(pllomax) = —=S(p) — tr(plog omax) = S(omax) — S(p) - (2.21)



In QFT the von Neumann entropy of a region is divergent” and we can only compute
the relative entropy of states. This motivates us to replace Jayne’s maximum entropy
principle with the supremum of S(p||o) over all o consistent with p on P:

Ip(p) = sup {S(pllo)ltr((c — p)a) = 0,Va € P} (2.22)
oEF*
that is the measure of information entropy produced under the restriction to a subspace
of observables P and has the advantage of being well-defined in QFT like in systems with
density matrices. We postpone further discussion of the generalized entanglement to future
work and in the remainder of this work focus on the case of charge-neutral subalgebras.
In a system with an internal symmetry group G, the symmetry transformation acts
on the local algebra of region A as a unitary transformation: b; — Ug b;U, for all b; € F;
and U, some unitary representation of G. The operators in J; that are invariant under the
action of the symmetry form a subalgebra of uncharged operators that we denote by A;:

U;aiUg =a;,Va; € A; . (2.23)
On a lattice, there is a unitary operator localized in F; that acts the same way as U, on F;:
TebiTd = UgbiUS, Vb € F; (2.24)

we call this operator the twist and it generates another representation of the group that we
call the twist group G;: 747, = Tgp. The commutator of the twist with the group action is

UgthU} = Tyng—1 - (2.25)

For instance, in a bipartite system with symmetry transformation U, = ¢9(@Q1+Q2) where
Q1 + Q2 is the total charge of Aqy the twist is 74, = e9Q1: gee figure 2. It belongs to Fi
and acts the same way as U, on Fi. We postpone the subtleties in defining 7, in QFT to
section 5. The algebra Ajs of charge-neutral operators in Ajo is larger than the algebra
generated by locally charge-neutral operators of A; and As, namely A; ® As. This is
because there are operators that correspond to the creation of a pair of charged particles
of opposite charge one in region A; and the other in As. We call these operators the bi-
local intertwiners Z12. We will see in section 4 that there exists a conditional expectation
constructed from the twist group E; : A2 — A; ® Ay that washes out the information
content of the bi-local intertwiners: E.(Zj2) = 0.8 The amplitude for the invariant state
EZ*(p12) to spontaneously create an entangled pair of charge/anti-charge particles is zero.
The relative entropy S(pi2| EZ(pi2)) measures the amount of correlations due to the bi-
local intertwiners. Note that the reduced state on A; ® A, still contains lots of correlations
in between region one and two. It is only the correlations due to intertwiners that are
washed out. In the presence of charges, the naive mutual information S712(p1a]/p1 ® p2)
contains unphysical correlations that cannot be accessed in any charge-conserving process.
We would like to discard all operators that create charge on Ais. First, we restrict the

It is a property of the algebra and not the states.
8The map F; is from Fi2 to A1 ® As. However, we will be mostly concerned with its action on Ajs.
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Figure 4. A pictorial description of the relative entropy property in equation (2.27) written in
terms of states of F. The relative entropy of blue states S(p||E*(w)) is the relative entropy the red
ellipse S(p||E*(p)) plus the relative entropy of the green ellipse S(E*(p)||E*(w)). Note that since
both E*(p) and E*(w) are invariant under E, the green relative entropy is the same as S (p|| E*(w)).

relative entropy to the invariant algebra Ajs. In general, the relative entropy S*(pllw) is a
measure of distinguishability of the two states using only the operators in A. Alternatively,
one can think of this relative entropy as

5712 (pllw) = 872 (E* ()| B*(w)) (2.26)

where F : F13 — Ajs. The expression above implies that the distinguishability of invariant
states of E' does not change under the restriction to the invariant subalgebra Ao [17].
Second, we replace p; with E*(p1) to make sure that EZ(p;)®p2 has no bi-local intertwiners.
Therefore, we consider the measure S*12(pyo|| EX(p1 @ p2)).

A useful property of relative entropy is that it satisfies the following equality (Theorem
9.3 of [17]); see figure 4:

ST(pl E*(w)) = SA(PIIE*(w)) + 57 (ol E*(p)) (2.27)

where E : F — A. Applying the identity above to the twist conditional expectation F;

implies that our measure splits into two terms®

SA2(p1o|| B (p1) @ pa)) = S92 (12| Ex(p1) ® pa) + 5712 (pral| B (p12)) - (2:28)

The first term is the relative entropy with respect to the charge-neutral operators of A; and
Ao, and the second term is the contribution due to the bi-local intertwiners. We can use
the conditional expectation F : Fio — Ajo to rewrite both terms in terms of the charged
algebras:

S712(E* (p12) | B* (E7(p12))) + S712(B* (B (p12)) | B* (Bf (p1) @ p2)) . (2:29)

In section 3, we will see that the conditional expectations E and FE, are Haar averages
over the group and the twist group, respectively. If pi2 is invariant under U, we get the
following simplification

S72(p1a|| Ex(p12)) + ST2(EZ(p12)l|p1 ® p2) - (2.30)

9This identity was also used in [21] to compute relative entropies in QFT.

~10 -



From the conditional expectation in (2.6) it is clear that our relative entropies have
the general form S(>", peprll Dk qxwr). Relative entropy satisfies the inequality

S(Coonl S ) < Hiplo) + Y (ol (231)
k k k

where H(pl|q) is the classical Kullback—Leibler divergence of the probability distributions
pr and qr. To see this, consider the block-diagonal density matrices p = @Sprpr and
w = Prqrwy the relative entropy

S(pllw) = H(plla) + Y peS(orllwr) - (2.32)
k

With respect to the subalgebra of operators I®a the density matrix is ), prpr and >, qrws
and since relative entropy is monotonic under restriction to the subalgebra we find that
relative entropy satisfies (2.31). In section 5, we generalize this inequality to QFT and use
it to bound the relative entropies in (2.30) from above and below.

3 Symmetry and intertwiners

3.1 Superselection sectors and intertwiners

We start by reviewing some definitions and set the notations for our discussion of quantum
systems with symmetries. Consider a quantum system and its Hilbert space H. The set
of all bounded linear operators acting on this Hilbert space forms an algebra, B(#), that
acts irreducibly on ‘H. We call this algebra the field algebra and denote it by F. All proper
subalgebras of F act reducibly on H. A symmetry is a linear transformation of operators in
the algebra b — a4(b) € F that respects operator multiplication: ag(b1b2) = ay(b1)ay(b2)
and is invertible.! The set of all symmetry transformations of the algebra forms the
symmetry group G. By Wigner’s theorem, any symmetry is represented by either a unitary
or anti-unitary transformation of the Hilbert space, i.e. |¥) — U, |¥), and acts on the
algebra as ay(b) = Ug bU,. The set of operators a that commute with U, form a subalgebra
A C F that we refer to either as the invariant subalgebra, or the subalgebra of charge-
neutral operators. On a lattice if the group G is Abelian U, is itself charge neutral and
belongs to A.!
If there exist vectors in the Hilbert space such that

(®[U,¥) = 0 (3.1)

for all U, € G we say that |®) and |¥) belong to different selection sectors.'? The Hilbert
space splits into a direct sum of selection sectors H = ®,K, @ H,- where K, is the irreducible
representation r of G and H, is the Hilbert space corresponding to the charge neutral

1%Tn mathematical language, such a transformation is called an automorphism of the algebra. If we relax
the invertibility assumption we have an endomorphism of the algebra.

"When U, is not in A we say the symmetry transformation is an outer automorphism of the algebra A.

121f there exists no selection sectors; that is to say the only subspace of H invariant under the symmetry
transformation is the whole H we say the action of the symmetry is ergodic. For instance, the action of
modular flow on local algebras of QFT is ergodic.

- 11 -



degrees of freedom. The basis of the Hilbert space is |r, i) ® |a) where i = 1,--- | d, with d,
the dimension of the irreducible representation . The group acts as U = @rUgr) ® 1,, and
by Schur’s lemma the invariant operators of each irreducible representation are I, ®a, where
I, = Zf-l;l |7, 4) (r, 4| is the identity operator in the Hilbert space K, of representation r. The
subalgebra of invariant operators is @,I,, ® a which has the non-trivial center &, A\ I, ® 1,.
If the group G is Abelian all its irreducible representations are one-dimensional and we can
label them by charge ¢: H = @& |q) (q| ® H4 or simply H = G H,.

Consider the Abelian group Z; and its irreducible representations labelled by charge
g Ug = e2m199/d with ¢ = 0,---d —1 and ¢ = 0,---d — 1. The regular representation of G
is the vector space K of a qudit:

Uy = _I(g+h) mod d) (h] (3.2)
h

where g + h is the group multiplication and the identity element is zero charge. The
irreducible representations are all one-dimensional and correspond to basis where all U,
are diagonal

Uy = e*™91q) (g

jq) =Y e 99/ g) (3.3)
g

The dual group G is the Fourier space generated by

Ug = e ™9 g) (g] = |(q + k) mod d) (k| . (3.4)
g k

The elements of the dual group take us in between irreducible representations and commute
with the action of the invariant subalgebra

Uy k) (k| = |k +q) (k+q| U, . (3.5)

The operators that satisfy the equation above are called the intertwiners, and physically
they are charge creation/annihilation operators. Take the infinite Abelian group G =
U(1) of rotations around a circle. The irreducible representations are constant momentum
modes and the intertwiners are the operators that add momentum U, = >_qla+ k) (k| and
generate the dual group G = 7 with the multiplication operation that adds charges k + q.

Consider a finite non-Abelian group G represented in its regular representation by a
qudit of dimension |G|:

Uy=_lgh) (h| (3.6)
h

where gh is the group multiplication. The Hilbert space splits into K = @,;K,.; where the
irreducible representation r with the index ¢ running from zero to the dimension d,.. The
irreducible representation r appears d, times in the decomposition of the regular represen-
tation, therefore 3" d? = |G|. An operator in K, can be written as i bij |ry 1) (r, j| but by
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Schur’s lemma the invariant operators are proportional to I.. The intertwiners are linear
maps that take us in between different irreducible representations and commute with the
action of the invariant operators in the algebra:

Vil = [0) (0] Vs . (3.7)

The partial isometry V,; = \/% |0) (r, 7| satisfies this equation, and is the non-Abelian
analog of |0) (g|. The map p, maps operators from the charged sectors to the vacuum sector:

pr(lya) =Y ViilaV), (3.8)

where a € C is a complex number here. In the Abelian case, we constructed a unitary
U, by adding |g + k) (q| that generates the dual group G. For an arbitrary charge-neutral
operator a =} aq|q) (q| we have

pi(a) = Ulaly,

Ok = > la+k)d (3.9)

which is a generalization of (3.4) to an arbitrary Abelian group. However, in the non-
Abelian case, adding a charge r to another charge 7’ corresponds to the tensor multiplica-
tion of two irreducible representations that is not irreducible. The dual G to a non-Abelian
group G is not a group. The elements of the dual to a non-Abelian group are different rep-
resentations (not necessarily irreducible), and their multiplication is tensor multiplication
but there is no inverse operation. As we will see in the next section, when the representa-
tion is infinite dimensional the operators V;.; can be thought of as isometries that take us
between the irreducible representations.

If the symmetry group G is compact there is a normalizable Haar measure dg and we
can integrate over the group to project to the zero charge sector Py = |0) (0| ® 1:

i [ dav,w =Ry (3.10)
’G| geG

where |G| is the volume of the group. The resulting subspace is called the vacuum sector
which is spanned by all the invariant states of G. For an Abelian group G the other
irreducible representations are found using a Fourier transform with ¢ € G with the group
multiplication being the addition of charges:

1
‘G’ geG
The non-Abelian analog of this projector is

d, .
P = / dg X (9) Ug (3.12)
‘G geG

27
dge 161 U, | W) = P, |W) . (3.11)

where x,(g) is the character of the irreducible representation 7.
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We say two vectors |¥) and |®) belong to different superselection sectors of algebra
A if (U|a®) = 0 for all a € A. For instance, states |¥,) and |®,) that were in different
selection sectors of F, belong to different superselection sectors of the neutral subalgebra
A. Given an algebra F and a compact symmetry group G the linear map F : F — A
that computes the group average of an operator b € F is a conditional expectation to the
charge-neutral subalgebra

1
E(b) = — dg UTbU, . 3.13
=g [ Ui (313)

because it satisfies E(ab) = aE(b) for all a € A and b € F. This is the conditional
expectation that we advocated in section 2.

We can reconstruct the field algebra F from the charge-neutral subalgebra algebra A,
by adding the intertwiners back. In the Abelian case, the intertwiners Uq => " lg £ 1) (g
are unitaries of the dual group. They create or annihilate charges. Enlarging the algebra of
charge-neutral operators by added to it [L and taking the closure generates the full algebra
of charged operators. In the non-Abelian case, G the dual group is mathematically not a
group. However, we can still enlarge the charge-neutral algebra by adding the intertwiners
to obtain the full algebra F. In representation theory language, enlarging the algebra A
by including intertwiners corresponds to the crossed product of A by the dual group G:
A x G, see appendix A for the definition of the dual group and crossed product.

In the remainder of this section, we provide several examples of quantum systems
with symmetry and highlight the role of the intertwiners. The first four examples have an
Abelian symmetry group and the last two have a non-Abelian symmetry. We postpone the
discussion of intertwiners for local algebras until the next section.

3.2 Example 1: qudit

Consider the Hilbert space of a qubit Hs and the algebra of 2x2 complex matrices. Take the
symmetry transformation to be the group Zs generated by the transformations: aq(a) = a
and ay(a) = 0.a0..'3 Here, Uy = 0, = (—1)% where Q = (1 —0..) is the charge operator.
The algebra of charge neutral operators Dy is the algebra of matrices diagonal in the o,
basis. The Hilbert space splits into two sectors Ho @ H; with P, = |q) (g| projecting to the
sector of charge ¢. The intertwiner V' = |0) (1] solves the equation (3.5) and relates the
two charged sectors. The dual group is the Zs that is generated by o, = V + V. If we
add the intertwiner (or the generator of the dual group o,) to the invariant algebra Dy we
obtain the full algebra of the qubit.

For a qudit the Hilbert space is spanned by |k) with £ = 1,---d, and we take the sym-
metry group to be Zy generated by the diagonal matrices ), e?m19k/d |} (k|. The invariant
sub-algebras are one-dimensional Ay = a |k) (k| and the projections to the superselection
sectors are Py, = |k) (k|. Each |k) (k| is a unitary intertwiner from Hj to Hy. The dual
group is the Fourier transform Zg generated by the unitary ), |(k+ 1) mod d) (k|.

The generalization to infinite dimension is immediate. Take the Hilbert space of a
free particle on a circle and the rotation group around the circle: G = U(1). The Hilbert

BWe use the notation Z,, = Z/nZ.
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space splits into one dimensional irreducible representations of the rotation group H =
®rez |k) (k| where |k) is a momentum eigenstate. The invariant algebras are Ay = a |k) (k|,
and the intertwiners are |k’) (k|. The dual group is Z generated by the momentum addi-
tion/subtraction operator ), |k £ 1) (k|. Adding the intertwiners to the invariant algebra
gives all operators in the Hilbert space of free quantum particle on a circle.

3.3 Example 2: non-relativistic quantum fields

Consider a non-relativistic bosonic or fermionic field on a circle and assume that the total
number of particles is conserved. The particle number operator is N = [ dx af(z)a(z) and
the symmetry transformations are e?*V. The Fock space is a direct sum of sectors with fixed
particle number n: ‘H = ®,ecnH, With vectors in each H,, represented by totally symmetric
(anti-symmetric) wave-functions of n-variable: win) (1, --x,). The intertwiners that take
us in between sectors are the creation/annihilation operators al( f)/ax(f) that map H,
to Hn41 and back according to

(@l (™) (@1, 2ns1)

1 n+1

\/m Z(il)k_lf(xk’)w(n) (wla X —1y L4150 " axn—l-l)
k=1

(ai(f)w(n+l))($1a T ,xn)
= Vn+ 1/dyf(y)¢(”“)(yvm1,---  Tn) (3.14)

and f is a bounded complex function on the circle [22]. There are many intertwiners
corresponding to different functions f, however adding one of them to the invariant algebra
suffices to generate the full algebra. We choose [ dz|f(x)|?> = 1 so that the intertwiner is
an isometry: (a(f)at(f)v™) = (af(f)a(f)v™) = (™. The full algbera F is generated
by operators a4 (f) and al( f) satistying

[as(f), ax(9)]= = 0, las(f), al ()] = (f.9)1

[a,b]— = ab + ba, [a,bl4 = ab—ba, (f,g)= /da:f(x)g(x) . (3.15)
The dual group is generated by the field operator ®(f) = a(f) + a'(f).

3.4 Example 3: free relativistic fermions

In a general relativistic theory particle number is not conserved. However, in the case
of free fermions the transformation (—1)% with Q = [ 7°%(z) remains a symmetry, where
§%(x) =: Ut(x)V(z) : is the charge density operator. The full algebra F is generated by
U(f) = [d?zf(z)V(z) where f is a function of spacetime that solves the classical equations
of motion [11]. The Hilbert space splits into two sectors H = H4 @& H_ that correpond
to the even and odd number of fermions. The invariant algebra A is generated by all

the operators with an even number of fermions, e.g. X = U(y)¥(z) or Y = U(y)¥(z)".14

The commutators are [Q, X] = —2X and [Q,Y] = 0.
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The operator ¥(f) adds a unit of charge and intertwines the two sectors. The unitary
U(f) = W(f) + UT(f) with [dz|f(z)]> =1 generates the Zy dual group: (1,U(f)). It has
the following properties:

U)X = XU(f) - f(2)¥(y) + f(y)T(2)

U)Y =YU(f) — f(2)(y) + f(y)¥'(2) . (3.16)

Each choice of f leads to a particular choice of Zs. If we add any U( f) to the algebra of
invariant operators all other charged operators U (g) are created by closing the algebra, be-
cause U(f)1U(g) is charge-neutral. Representations with different values of f are unitarily
equivalent by the inner automorphism U (f)1U(g).

The maps pf(a) = U(f)aU(f)" are outer automorphisms of the invariant algebra
ac A

prla) € A
pslaraz) = prlar)ps(az) . (3.17)

For instance, for the total charge we have

pr(Q) =Q+T(NHUI(f) — T (HT(S) . (3.18)

The operator U (f) has charge one:

pr((=1)%) = —(-1)% (3.19)

which implies that an average over the dual group kills the symmetry transformation
(12 4 ps((-1)?) =0 . (3.20)

3.5 Example 4: U(1) current algebra

As the next example, consider the algebra of a free compact relativistic boson in two
dimensions on a circle. The shift of the scalar field ¢ — ¢ + a is a U(1) global symmetry.
In the radial quantization frame, we consider the algebra of W(u) = /() with J(u) =

4z J(z)u(z) with u(z) a smooth function on the circle. It is generated by the U(1)-

invariant current J(z) = (0¢)(z) = >_,cz 2 " 'jn. The scalar field expanded in terms of
Jn modes is

_ 1 _
$(2,7) = do —i(jolnz+joInz) +i Y - (nz™ + Juz ™) (3.21)
0#n€Z

The operator ¢y and jp are canonical conjugates of each other: [¢pg,jo] = i. The U(1)
symmetry group is generated by U, = ‘0. The vertex operator Vi(z,2) =: ethd(22)
acting on the vacuum creates eigenstates of the conjugate momenta jy|k) = k|k) with
|k) = Vi (0) |©2) and (k|k') = dgrr. In fact, the vertex operator satisfies [jo, Vi] = &V} which

implies that it is a unitary intertwiner.
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We can consider a(z) functions on the circle and the unitary vertex operator V(«) =:
(@) with ¢(a) = [dza(2)¢(z). Under the transformation ¢ — ¢ + 27 the vertex
operator should be invariant therefore the charge ¢, = [dza(z) is quantized. When
¢a = 0 the vertex operator V(a) is charge-neutral but when ¢, = [dz a(z) # 0 it is an
intertwiner of charge ¢. The dual group is Z and is generated by charged vertex operators
V(ka) for k € Z. As in the case of fermions, adding one intertwiner of unit charge adds all
of them because V(a)VT(B) with g, = gs is a charge-neutral operator. The action of the
dual group on the invariant algebra at point is

pa(J(2)) = V(a)J(2)Vi(a) = J(2) + a(z) (3.22)

which does not leave the neutral operators invariant. Instead it shifts it by an element of
the center of the algebra [23]. The action of the dual group on the symmetry generator is

pa(Us) = V() U, V(@) = €991, . (3.23)

The dual group is not compact, but we can formally define an average over the charged
sector as a distribution

S pra(Us) = é;am) . (3.24)

k=—00
3.6 Example 5: permutation group

The simplest example of a non-Abelian group is the permutation group S3. Consider three
qubits and the symmetry group S3 that swaps the qubits. The elements of the group are the
identity, the two-cycles and the three cycles. The two-cycles are represented by U(19) = S12,
Uz)y = Siz and Usy = So3 where S5 is the swap operator of site i and j: S9) =
> aplab) (ba|. The three-cycles are U1g3) = ). |abe) (bea| and Ugizg) = >, labe) (cabl.
The invariant algebra A is the set of 4 x 4 dimensional matrices |a;) (oj| where |o;) are
invariant vectors of S3: |ag) = [000), o) = [111), |a2) = 3(|001) + |010) + |100)) and
lag) = 1(|011) + |101) + [110)).

The Hilbert space has two sectors H = (K1 ® H1) ® (K2 ® Hz). The vacuum repre-
sentation K; is the trivial one-dimensional representation, and H; = .A|000) is the Hilbert

space of states invariant under Ss that is four dimensional and spanned by |a;). The
Hilbert space K9 is the two-dimensional irreducible representation of S3 corresponding to
the Young tableaux . The vectors |vg) = [100) —]001), and |v1) = 2]010) — (]100) 4 |001))
provide a basis for this representation. It is straightforward to see that the action of S3
leaves the two-dimensional subspace spanned by these vectors invariant. Acting with the
invariant algebra, in particular |ag) («az| on these vectors generates two perpendicular vec-
tors |vg) =]011) — [110) and |vsz) = 2]101) — (|011) 4 |110)), and the new two-dimensional
subspace is also preserved under the action of S3. The sector Ko®%Hs is the four dimensional

subspace A|v1). There is no totally anti-symmetric representation for qubits.

3.7 Example 6: the O(n) model

Consider a real vector field ®(f) with N components of form ¢U)(f;) and f a collec-
tion of functions fi,---, fy. The algebra F is generated by the Weyl operators W (f) =
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2P0 The symmetry group O(N) acts on the vector fields which is equivalent to
rotating f;: UgW(f)Ug = W(g.f) and (g.f); = Zj gijfj. The invariant algebra A is the
algebra of O(N) singlets generated by operators like ®(f)-®(f) = 3=, 0@ (i)™ (f:). The
vacuum sector is A [|2). The other sectors correspond to other irreducible representations
of O(N). Take the operator ®(T") = SN Ttk () (f1) - U (fi) where the ten-

i1, =1

sor T' has symmetries under the permutation of indices that is characterized by a young
tableaux A = (A1,---,As) with the total number of boxes k = > %_; A;. Such operators
acting on the vacuum sector take us to the charged sector with the irreducible represen-
tation characterized by the Young tableaux A and dimension dim(A). One can find an
orthonormal basis of such operators ®(7};) with j =1,--- ,dim(\) [23].

4 Bi-local intertwiners

Consider a multi-partite quantum system on a lattice with a symmetry U, = €9 and
local algebras F4 associated with each region A (collection of sites on a lattice or a region
of space).!> We say a symmetry of the global algebra F = F 44/ is internal if it preserves
local algebras:

UgaUJ € Fa  Va € Fa . (4.1)

There is a unitary group 7, = €994 Jocalized in A that generates the group action in (4.1)
for operators in F4; see figure 5. In section 2 we called the operator 7, the twist and its
corresponding group the twist group G;. When the group is Abelian 7, is charge-neutral
UthUg = U, and provides a center for the algebra of neutral operators. When the group
G is non-Abelian the operator P, in (3.12) is in the center of the algebra: Z = @, A, P;.

Locality implies that F4 commutes with the algebra of the complementary region F /.
Define the commutant of algebra F4 to be F/;: the set of all operators in the global algebra
F 4 that commute with F4. From locality it follows that Fa C F’y. We say the region A
has the duality property if F, = F4:. The full algebra of all charged operators satisfy the
duality property, however the algebra of charge-neutral operators A violate it. For instance,
on a lattice the total charge is Q = Q4 + Q4 and Haa = Ha ® Ha the action of the
symmetry transformation on Ay is captured by the twist operator 7, = €994, The local
algebra A 4 has a non-trivial center Z4 = @, I, with r irreducible representations of 7, and
A complex numbers. The duality relation for charge-neutral algebras is: Ay = Z4 @ Ay:.
Note that here the commutant A’; is defined to be the algebra of operators in A4 4/ that
commute with A4. On a lattice, the failure of duality is due to a non-trivial center for
the algebra of charge-neutral operators. However, in QFT the duality property can fail
even though the local charge-neutral algebra has a trivial center. The reason is that the
operator P, defined in (3.12) is not part of the local algebra of region A because it acts
singularly on the boundary of A.

More generally, consider the region A5 = A1 U Ao with two disconnected pieces A1 and
As. On a lattice the algebra of all charged particles is additive that is to say Fio = F1 Q@ Fa.

15For the sake of the argument we have assumed G is a Lie group. However, the discussion applies to
any group G.
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Figure 5. Consider the operator e Jees ©®)i(®) where j (z) is the charge density and the region
B is the blue region. (a) On a lattice we pick c(z) = 1 that is the twist operator 7, = €991, It
generates the action of the symmetry group on the local algebra of A;. Averaging over 74 is a
conditional expectation that projects F; to A;j. (b) The action of the symmetry on the region A9
is given by €?9(@1+Q2)  Averaging over this unitary projects from Fis to Ajs ¢) In a QFT choosing
c¢(z) =1 in A; and ¢(x) = 0 outside of A; leads to an operator that has a violent behavior at the
boundary of A; due to the discontinuity in ¢(x). If there is a gap between A; and Az we can choose
a c¢(z) = 1 inside 4; and make it smoothly fall out to zero without entering region A,. This is
the analog of the twist operator in a QFT. Averaging over this twist projects from A5 down to

A ® As.

In QFT, the additivity property holds when A; and As are not touching.'® Both on a lattice
or in QFT when we restrict to the subalgebra of locally charge-neutral operators additivity
fails: A1 ® As # Aja. Of course, A1 ® As is a subalgebra of Ay but there exist operators
in Ajo, namely the bi-local intertwiners, that are not generated in A; ® As. The bi-local
intertwiner adds a charge ¢ to region A; and the opposite charge —q to the region A, so
that the total charge Q1 + Q2 is conserved. The action of the symmetry group on F; can
be captured by a local transformation €%t on a lattice. In QFT, the operator ¢¥%! has a
singular behavior at the boundary of A;. However, as long as there is a gap between region
Aq and Aj there is a unitary transformation 7, that matches €991 on A; and has a smooth
tail that leaks outside of A; but does not enter As; see figure 5. In analogy with the lattice
systems, we call this operator the twist and the symmetry it generates the twist group:

b1 — €991e 9 = 11y 7, Vb1 € Fy
[, a2] =0, Vag € Az . (4.2)

In QFT, the local neutral-algebra has a trivial center. When G is compact one has the
conditional expectation E : A;93 — A; ® Ag that is an average over the twist group:

E(b) dg Tngg . (4.3)

B |G| geG
By construction, the conditional expectation above sets any operators charged under @
including bi-local intertwiners to zero. The conditional expectation projects down to the
invariant algebra. To go in the opposite direction, we need to enlarge the algebra A; ®.45 by
adding the bi-local intertwiners to obtain A12. Enlarging an algebra A by the intertwiners

16We have assumed that QFT has the split property [16].
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of symmetry G is mathematically described by the crossed-product of the algebra with its
dual group, Aj2 = (A1 ® Az) x G; see appendix A for details.

In QFT, there is no local Hilbert space H, and we only have the global Hilbert space
H and local algebras A;. In a QFT with charges, analogously, we have the global Hilbert
space of type @/, ® H,. The intertwiner |r,7) (0| ® 1 takes us from the global vacuum to
the global charged sector |r,) but it might not be localized in region A. We come back to
this issue in section 5.3. Similar to the Abelian case where we added |g) (¢ + 1| to get the
unitary Uy, we would like to extend the domain of |r, ) (0] to an operator that adds charge
r to any state. The tensor product of two irreducible representations r and r’ is a direct
sum of irreducible representation with Clebsch-Gordon coefficients. A charged operator
that is localized in A commutes with all @’ € A" and removes a charge r [24-26]:

Vei(lr, i) @ al)) = a )
VeialQ) = |r7,i) ® a|Q), (4.4)

where 7* is the conjugate representation of r. The action of V;; on a vector |/, j) ® |Q) is
decided by the Clebsch-Gordon coefficients in the tensor product of representations r and
r’. The dual transformation maps the algebra of charge-neutral operators I, ® a back to

the vacuum sector
pr(a) = ViV, . (4.5)
i

The map p,(a) maps the charge-neutral operators A to itself and since it is the represen-
tation of the local algebra it respects the multiplication rule!”

pr(araz) = pr(a1)p(az) . (4.6)
The condition above together with (4.5) imply that V. ; should satisfy the algebra
VIViy =6

SoViaVli=1. (47)

The algebra above is called the Cuntz algebra [27]. The Cuntz algebra has no finite dimen-
sional representations; however, it is easy to build representations of the Cuntz algebra in
infinite dimensions. For instance, take the Hilbert space of a particle on a circle and split
it into two sectors defined by projections to the even and odd momenta Py =", |2k) (2k|
and P_ = )", |2k + 1) (2k + 1|. The isometries V; = ", |2k + 1) (k| and Vo = >, |2k) (k|
satisfy the Cuntz algebra with ¢ =1, 2.

The particle number is not conserved in relativistic QFT. Acting with le creates one
charged particle but applying it again we can have several charged particles. There is a
subalgebra of the Cuntz algebra that corresponds to a sector with one charged particle

17Such a map is called an endormophism of the algebra.
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Zm’ aij V},iV:’j, where a;; are invariant operators. These operators can be represented by
a d, X d, matrix algebra.
The operators V;.; satisfies the non-Abelian intertwiner equation

Viia = pr(a)V,i,Va € A (4.8)

and V:i acting on the vacuum sector creates charged states in representation r: |r,i) =

\/d,,VTTi |2). The factor v/d, is needed to make sure (r,i|r,i) = 1. There are also the states
in the conjugate representation that are created by |r*,i) = V;,|Q).!® The conjugate
representation is

1
prela) = =D ViV . (4.9)

In a charged sector the expectation value of a charge neutral operator satisfies

> (ryilalr,i) = (Qlpr(a)|©) (4.10)
i
If py(a) = a, one cannot distinguish charged sectors. However, if p.(a) # a, this is no
longer true. An example of this is the compact boson example:

pa(J(2)) = J(2) + az) . (4.11)
The group transformation U, = @, U, acts on the intertwiner according to the equation
UiVii = Dr(9)ij Vi U} (4.12)

where D,(g)i; are the matrix elements of the representation matrix D,(g) with the orthog-

onality relations'?

dy .
€] > " De(9)ikDrr(9)51 = Oy Bii0h - (4.13)
g

In QFT, in analogy with lattice systems, it is tempting to take the local algebra of
A to be all charged operators |r,i) (r,i'| ® a, however as we discussed above, in QFT
|r,4) (0] ® 1 is not localized in A, and the charge neutral algebra has no non-trivial center.
Local charges on A are created by the intertwiners VTTZ, instead of |r,) (0| ® 1. Therefore,
we define the local algebra of charge operators to be the algebra generated by charge
neutral operators a and the isometries V:l Consider charged operators ), a;V; ;. Bi-local
intertwiners create/annihilate a charge in A; and create/annihilate the opposite charge in
Ag so that the net charge is preserved:
AR UAD A (4.14)

)

with Vr(zl) and Vr(f) supported on Ay and As, respectively. This is a unitary map in the
global algebra that is charge-neural. However, from the point of view of algebra A; it is
an intertwiner.

In the remainder of this section, we provide several examples of bi-local intertwiners
in finite quantum systems and QFTs.

8Note that in this case there is no need for a factor v/d, to normalize the state.

_ 2migq
1n the case of an Abelian group this is U;Vq =e [61 V,U,.
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4.1 Example 1: qubits

Consider two qubits in H; ® Ho and the symmetry group Zs corresponding to the action
of (~1)? = 0, ® 0, where the total charge Q = Q1 @I +1® Q2 and Q; = %(]I — 0,) counts
the number of excitations “|1)”. The action of the symmetry group on the local algebra F;
is captured by the twist group 71 = (—1)@ that is localized in A;. The algebra of global
charge-neutral operators Aj9 is the set of all operators that commute with Q. The charge
neutral sub-algebras A; ® I and I; ® As commute with ), however, Ao includes more
operators. In particular, the operator that creates a charge on site one and annihilates it
on site two commutes with Q:

Q,0F ®0F] =0, ot = %(U(I) FioY) . (4.15)

The algebra A2 also includes operators that increase ) by two units, |00) (11| € A;2 and
its T. The subspace H} = A;2|00) that is spanned by |00) and [11) is the zero charge sector
and the charged sector is H5 = A2 |01) which is spanned by [01) and |10).

The subalgebra of Ao invariant under the twist group (—1)9 is A; ® Ay. Each
sector H) and H/, further splits into two sectors depending on the eigenvalue of agl). The
operator |11) (00| is an internal intertwiner for the twist group that is a unitary in H}, and
o~ ®ot = |10) (01] is an internal intertwiner for the twist group in H5. Local intertwiners
create a pair of charge/anti-charge excitations. The group average over the twist is a
conditional expectation E; : A12 — A1 ® Ay that washes out local intertwiners:

1
E.(b) = 5 (+0Db0D). (4.16)

This can be easily extended to n qubits with the global symmetry Zo, that is measured
by the total charge (—1)% = ®?:10§i) and the local charge associated with the region A
that is the first m qubits 7 = (—1)Q/ = ®’i110£i). The global Hilbert space splits into two
sectors H = H4 @ H_ where Hy is spanned by all |sq,---s,) with s1s9---s, = 1. The
+1. The

/
m

twist symmetry 7 = (—l)Q/ further splits each sector into two: s182--- S

/

m» and

operator |81 -+ Smytma1 - tn) (S Sy, thpyq - ty| With s+ 8 = =1 = =5} -5
tmgt1 -ty = F1 = F(t), 1 ---1;,) is an example of a local intertwiner.

As an example of a region with two non-overlapping pieces consider the local algebras
A1z and A; ® Ay where there are a total of three qubits. We first check the duality property.
Once we include the centers of local algebra the duality property holds: A}y = Z1o ® As
and A5 = Z3 ® Ajz. Note that the operator 713 = (—1)@1+Qs — aﬁ” ® US’) is in A% but
not in Ajs. In fact, if we only add 713 to A2 we generate the full Zs ® Aq2. The operator
T13 18 a twist operator similar to the ones in QFT because it acts on A; like (—1)Q1, it is
supported outside of A; but its support does not enter As. We learn that another way to
express the duality relation for charge-neutral algebras is by enlarging Ao with the twist
713. In mathematical language, we write the crossed product A5 = A2 x G13 where G13 is
the symmetry group generated by 713. We could replace 713 with 93 or 73 and the result

remains the same. However, for the opposite region we have to enlarge A3z by 712 to obtain

- 29 —



f9: Aly = A3z x Gpa. If we have four qubits, then the equations become more symmetric:

A/12 = .A34 X G12
Ay = Aja x Gsy . (4.17)

A much simpler way to write the duality equation for charge-neutral algebras is A’y =
Ax G where G = (—1)? is the generator of the symmetry in the global algebra.

The interplay between duality and additivity of local algebras plays an important role
in the study of quantum systems with symmetries [12]. The action of a symmetry on a
local region A; is captured by the twist group G generated by 7 with Ay some region
outside of A;. On a lattice, one can take the twist to be ;. Denote the local intertwiner
that creates a charge on A; and annihilates it in A; by Z;;. It generates a group dual to
the twist group G;; or Gy, for k # j in QFT. When the algebra is Abelian this duality
transformation is a Fourier transform and indeed we find [Z;;, 7;] # 0. In the qubit example,
we have [Iij,n] = 2Iz]

4.2 Example 2: free relativistic fermions

Consider free fermions in (1 + 1)-dimensions. As we discussed in section 3.4 the symmetry
of the global algebra is (—1)" where N is the total number of fermions, and the invariant
global algebra is all operators with an even number of fermions. The local algebra of a
region is generated by W(f4) with f4 any bounded complex function supported only a
region A.20 The symmetry acts on the local algebra as 7 = (—1)¥4 where N4 is the total
number of fermions in a region A. This operator is discontinuous at the boundary of A and
we can smooth it outside of A. The Hilbert space splits into four sectors corresponding
to two charges (N mod 2) = 0,1 and (N4 mod 2) = 0,1. The operator ¥(f4)¥T(ga)
creates a pair of charge/anti-charge particles in A and A’. Tt is a bi-local intertwiner for A 4.

If we take two regions of space A; and As that are non-overlapping and non-touching
the complementary region also has two disconnected pieces. This is analogous to the case
of four qubits we discussed above.?! In addition to A; ® As the algebra of Ay includes the
intertwiners from region A; to Ao that are WT(f)¥(f2) with f; supported in A;. The twist
operator 7 = (—1)@1 needs to be smoothed out outside of A; without leaking inside As.
We call the smooth twist operator T3 because it is supported on A3 and acts like (—l)N 1
on A;. The group average over 713 is a conditional expectation E, : Ajs — A1 ® As:

Er(b) = = (b+73'bm13) - (4.18)

N |

It kills the local intertwiners: E(W(f1)¥T(f2)) = 0. In QFT, there are no local density
matrices, instead the local state is a restriction of the global pure state to the local algebra:

w(a1 ® ag) = <Q|a1 & a2’Q> . (4.19)

20We thank Edward Witten for pointing this out to us.
2In higher than (1 + 1)-dimensions the complement of A1z is connected and the three qubit example is
a better analogy.
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A g A
(a) (b)

Figure 6. (a) The bi-local intertwiners in A;UA5 conserve the total charge, fA1UA2 dza(z) =q=0.
(b) The subalgebra N7 C A; does not have any operators that create and annihilate charges inside
A; (the red excitations). Such an algebra is generated by J(f) with functions localized in A;.

The invariant state is

(B3 @))(ar © a2) = 3 (wlar @ a2) + (o5 (@1 @ a2)mis) (4.20)

which can be thought of as the restriction of the global density matrix

(19) (Q] + 713 |92) (Q] 745") (4.21)

N

to the local algebra A1s.

4.3 Example 3: U(1) current algebra

In the free (1 + 1)-dimensional compact boson model, the symmetry group is €“° and
the Hilbert space has many sectors |o) with the vertex operators V(a) =: €'®(® : with «
some function on the circle intertwining them. If we consider the local algebra generated
by €/(fa) with f4 some smooth function supported only on A then the total charge on
Ais jo(A) = 5= ¢, J(2) where A is some angle on the unit circle in radial quantization.
The bi-local intertwiners between two non-touching, non overlapping regions A; and As
are V' (a) with fAl dza(z) = g4 and fAluAg dz a(z) = ¢ = 0 so that they do not change the

global sector; see figure 6.

5 Intertwiners and modular theory

In a Poincare-invariant QFT in (d+1)-dimensions, the global algebra of spacetime F is gen-
erated by the bounded functions of the field operator ®(f) with ®(f) = [d¢Tlaf(z)®(x)
and f(x) a solution to the classical equations of motion that respects the boundary condi-
tions at infinity?? [11, 16, 26]. This algebra is represented irreducibly on a global Hilbert
space H. The local algebra F4 C F is the subalgebra generated by ®(f) where f is only
supported in A. The local algebra of QFT does not have an irreducible representation and
there is no local Hilbert space [14]. The local algebra F,4 and that of the complementary
region F 4/ both act on the global Hilbert space. The local states are the restriction of the
global state to the local algebra:

wab) = (QQ),  Vbe Fy. (5.1)

22 Assumptions about the smoothness of the function f are implicit in what is meant by a solution to the
classical equations of motion.
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Since there are no local Hilbert spaces there are no density matrices either. Modular theory
is a mathematical formulation that allows us to define information theoretic quantities
using only global states and local algebras, with no need for the existence of local density
matrices; see [11]. It applies to any quantum system from qubits to QFT. In QFT the
algebras F4 and F 4 are isomorphic and the global vectors of QFT are analogous to the
canonical purification of ps a density matrix of A in terms of |Q2) a pure state of a double
copy Hilbert space Ha ® Har:

w=> plk)(k
k
k

If A} and Ag are two non-overlapping and non-touching regions of space, and F; and
Fo are their corresponding local algebras in QFT, the additive algebra of the union Ais is
the algebraic tensor product of local algebras Fia = Fi @ F2.2 There is no tensor product
when the regions A; and As touch. The algebra of invariant local operators A has a trivial
center because the twist operator %! does not belong to A;, however, when A; and A,
are not touching the smoothed out twist commutes with both A; and As; see figure 5.

In section 2, we argued that the correct entanglement measure in the presence of
charges is the relative entropy in (2.29):

ST (B (wi2) | E* (B (wi2))) + 8712 (B (B} (w12) )| E* (Ef (w1) ® w2)) (5.3)

with the conditional expectations

E
(w12) |G\ gGZéU w12U

E w12 Z Tgw127’ (5'4)
geG

where U, = €99 and T4 is the smoothed out €991 By a unitary rotation of local states
we mean

(UwUN)(b) = w(UTU) . (5.5)

We have structured this section in the following way: in section 5.1, we start by
a discussion of the local charged states and a lower and an upper bound on (5.3). In
section 5.2, we review the Tomita-Takesaki modular theory (see [28] for a more detailed
review) and compute the modular operators for charged states |r,4), and comment on the
mirror operators in the presence of charges. Section 5.3 discusses the relation between the
cocycle operator in modular theory and local charges. Finally, in section 5.4 we introduce
a canonical enlarging of the algebra of QFT that decouples charged modes across the
entangling surface.

ZIn infinite dimensions, one has to be careful when tensoring von Neumann algebras since the weak
closure of operators depends on the Hilbert space on which it is acting [14]. This is the so-called split
property of QFT that we have assumed to hold in any reasonable model.
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5.1 Charged states
Consider the global invariant vector |2) and its local state w on region A. Since |Q) =

U, |€2), the expectation value of all charged operators of the form b — E(b) vanishes in w:

w(b) = Z (QUIbU,Q) = (QUE(D)Q) . (5.6)

|Gl poere

All the charged states |r,i) are perpendicular to the vacuum since they belong to different
superselection sectors. We denote by |r,i, A) = \/@(V;(?))T |©2) a state with a charge
localized in region A. A vector |®) = %(KD + |r,4, A)) that superposes the vacuum with
a charged state appears mixed to the local charge-neutral subalgebra of A:

(B]a®) = £ ((a) + wri(a) (57)

where wy;(a) = (r,i|a|r, i) is the local charged state, which turns out to be independent of
i; see (5.11). The same holds for the local state of the vector |x) = %(M i, A1) +|r, J, A2)).
With respect to any charge neutral operator a € Ajs the state seems mixed

(Xlax) = ¢ (wri(a) +tr5(a)) 53)

This is because

(i, Aulalr, j, Az) = d; (V[ a(V)T10) = ,G|Z QUVYa(V U 19) . (5.9)

Using the transformation rule of the intertwiner in (4.12) we find

(i, Aulalr, . Az) = (& ‘ZD 9iDr(g)s @V a(v )
glk
=0 Y@V avite) = dJZ (r,k, Avlalr, k, As)  (5.10)
k k

where we have used (4.13). We learn that (r,i, Aq|r,j, A2) ~ &;; and when i = j the
expectation value of a is independent of j:

wrj(a) = (r,j, Alalr,j, A = > (QV,xaV Q) = w(pr(a)) - (5.11)
k

Therefore, wy.(a) = w(p,(a)) = w, j(a) which implies that one cannot distinguish |r,7) and
|r, j) using charge-neutral operators. For a general vector [¥) =3 ¢, |r,i, A) we have

P(a), (5.12)

(E*(@))(@) = Y lenil® (i, Alalr,i, A) = Y~ wi(a)¢

X

where ¢, = >, |cil*
Now, consider non-touching regions A; and A, and a global invariant state U, |Q2) =
|2). The local states wis and w; ® wy both have zero total charge @1 + Q2 = 0 and
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we only need to consider the charge neutral subalgebra A; ® As and the bi-local unitary
intertwiners Zi2, = Zz(VT(ll))TVT(?) The bi-local intertwiner is a unitary operator that
creates an entangled pair of charge/anti-charge particles Zy2, |Q?) = |Zi2,). These states
are orthonormal: (Z.|Z./) = 0, and (Z4|Zs|Z,) = 6,75 (Q|Z,). They have an overlap with
the vacuum state

1 ) )
Q1) = 2 @viHvD0) = o 2 (r,i, Aglr,i, Ay) . (5.13)

The vacuum state has a non-zero amplitude to fluctuate to a state with multiple entan-
gled pairs (QZi2,, ---T12,,) # 0. If the symmetry group is Abelian Zyo,, - - Zi2,, =
L1274 -

The average E* projects the algebra A;2 to A; ® Ay by discarding the bi-local inter-
twiner Z19. The averaged state Ef(wi2) has zero amplitude for the creation of an entangled
pair of charged particles between region A; and As. Adding any bi-local intertwiner Z;
to A1 ® Ay immediately enlarges it to Ajo. If we want to isolate the contribution of any
particular Z1o = VT(2)V(y) with 2 € A; and y € Ay to the relative entropy we need to
find a subalgebra of Ay that only includes this particular bi-local intertwiner, and none of
the others.

There is a subalgebra of global charged neutral operators that has no bi-local inter-
twiners in it; that is to say we have discarded Z;5 for any non-touching A; and A,. This
is the algebra of QFT with no charge creation or annihilation operators. For instance, in
the example of the U(1) current model, the algebra generated by J(z) without any vertex
operators is such a subalgebra. We denote such a subalgebra by N. The restriction of
N to a region A; gives a subalgebra N7 C A; and a conditional expectation that washes
out any bi-local intertwiners within A;. The subalgebra N7 ® N C Ajs has no bi-local
intertwiners within Ay, As or in between A; and Ay. Enlarging N7 ® A, by adding any Z;9
gives a subalgebra of Ajs, rather than immediately generating the whole A15. For instance,
in regions A; and Ay we can choose to add a bi-local intertwiner V1 (x)V (y) with x € A;
and y € Asg; see figure 6. The relative entropy

SNBN D12 (5 | 7 (wr2)) < 512 (wns| B (w12)) (5.14)

measures the contribution of this particular bi-local intertwiner, and we have used the
monotonicity of relative entropy to get a lower bound on our entanglement measure due
to bi-local intertwiners. The authors of [12] argued that the bi-local intertwiners with the
minimal distance |z —y| in between A; and Ag give the tightest lower bound for the relative
entropy S(wiz||Ef(wi2)). In the literature, such bi-local intertwiners are also known as the
edge modes.

To find an upper bound on this entanglement measure we use the definition of E* and
the inequality in (2.31):

ST (wig|| B (w12)) < log |G| (5.15)

In section 5.2, we demonstrate a generalization of the inequality (2.31) that applies to QFT.
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5.2 Modular theory in the presence of charges
Consider two global vectors of a QFT, |2) and |¥) and a local algebra F4. The relative
Tomita operator is defined using the equation

Syibl) =0b'|¥),  VbeFa. (5.16)

This operator is labelled by the choice of two vectors and an algebra. To simplify the
notation, when it is clear from the context we suppress the algebra label. The equation
above defines the action of S\I]fr;z and its 1 everywhere in H if the action of operators in

Fa and Fy on |Q) is dense in the Hilbert space: Fa |Q) = H [14]. Such a vector |§2)
is called a Reeh-Schlieder vector (cyclic and separating). In a Reeh-Schlieder state, the
action of local algebra F4 on [{) can approximate any excitation in the global Hilbert
space, even those supported outside of A.2* The vector |Q) is called Reeh-Schlieder if and

only if it is cyclic with respect to both F4 and F4. The squared norm of the relative

T
T|0

the anti-linear operator Jyjo = S\Ij‘QA‘;'lé2. When both vectors are the same we call

Tomita operator is called the relative modular operator Ay = Sy,S¢|o and we define

Sa = Sqjo the Tomita operator and Ag = Agq|q the modular operator. The anti-linear
operator Jq = ASI)/ ?Sq is called the modular conjugation of |Q2) and has the property that

by=JbJ € Fu Vb € Fa, (5.17)

where we have suppressed the 2 index of J. If ) is Reeh-Schlieder the modular conju-
gation is an anti-unitary J = J~' = JT [22]. An important result of the modular theory
is that the (relative) modular operator generates a flow called the (relative) modular flow
that is an outer automorphism of the algebra F4. This flow is independent of the second
vector (for a proof see [29, 30]); see figure 7:

(A]:A )itb(A}'A )—it _ (AgA)itb(AgA)—it c Fa Vbe F4 and VieR

Qv Qv
(Agﬁp)”b’(Agﬁp)‘” (AT (AT e Fa W0 € Fa and VteR (5.18)

The above relations imply that the operator Agl\l,Ag_zit is in the commutes with all
operators in F4. This operator is called the cocycle. Similarly for the modular conjugation
we have

ijqu,m = JobJg (5.19)

which implies that Jy|oJy commutes with all 4. The correlation functions of the oper-
ators b,c € F4 in the state |Q2) have the KMS property which can be interpreted as an
analytic continuation of the modular flow to complex values of t: (Q[bAqc|Q) = (Q]cb|Q).2°

The set of operators h € F4 with the property that (Q|[h,b]|Q2) = 0 for all b € F4 forms a

241n finite quantum systems, the canonical purification of a density matrix p is a Reeh-Schlieder vector

if and only if all the eigenvectors of p are non-zero. That is to say pa is entirely entangled with A’.
%5To show this we note that (QbAc|Q) = (Q[bSTSc|Q) = (ScQ|SbTQ) = (Q|cb|Q), where we have used
the anti-linearity of S.
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it

Figure 7. If the region A is the Rindler wedge and the state is a QFT in the vacuum, the modular
flow is the boost that evolves operators geometrically according to the arrows in (a) [14]. The
modular conjugation map Jq is the CRT (charge conjugation/reflection/time reversal) that sends
operators from A to A" and vice versa. (b) The relative modular flow generated by Ag‘q, acts as the
modular flow of € on the operators in A and the modular flow of state ¥ on the operators in A’.

subalgebra of F,4 that we call the centralizer of w and denote it by F4 [31, 32]. The KMS
property implies that

QA —1)hQ) =0  VheFy. (5.20)

Since b |Q?) is dense in the Hilbert space the vector h |2) is an invariant state of the modular
operator. The operators in the centralizer have the important property that h and A
commute [31]

A*hA™* =h  VzeC. (5.21)

In fact, an operator h € F4 that is in the centralizer of {2 commutes with Agqg for any
U.26 Since h € F4 are invariant under the modular flow, we sometimes refer to them as
the modular zero modes. The modular zero mode satisfies the equation

(hT —hy)|Q)=0. (5.22)

Note that hy € Far is also in the centralizer of (2. If the algebra has a center Z, the center
is inside the centralizer of all states. The operators in the center z € Z satisfy 2f = 2 [33]:

210 ]Q) = b2T Q) = S(201) Q) = TAY220T Q) = 2, AV Q) = 250(Q) . (5.23)

The relative Tomita operator for an excited state h |2) and h an invertible element of
the centeralizer is

Same = 119 [|Sa(hs) ™!
Agina = [ |Q) [?Aqlhy| (5.24)

26To see this, we first rewrite b as lim,_, o b, in (5.43) that is entire meaning that b, (2) defined in (5.44)
is in F; for all complex z. Then, from (5.18) it follows that for all h in the centralizer of 2 we have
AGhAG™ = AG1ebAgS, =h
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where we have used (5.22). The relative entropy of two vectors with respect to an algebra
Fa is given by [34]
SFA(W||Q) = — (¥|log Agﬁy\m . (5.25)

When |Q2) and |¥) are the canonical purifications of density matrices o and p in (5.2) the
formula above matches the definition:

S(pllo) = tr(plog p) — tr(plogo) . (5.26)

The elements of the centralizer are the operators that commute with the density matrix.
The local state associated with the excited state h|Q2) with h in the centralizer is pp =
hph' Jtr(p|h|?) that commutes with p the local state of [2). The relative entropy of these
states with respect to the vacuum defined by (5.25) is

S(hQ2) = —2log || Q) || + 2 (k| log |hs||R€2) (5.27)

where |h(2) is the normalized state h|Q2). If v is an isometry in the centralizer of Q then
v |Q) has the same local state as |Q):

(Q[ubv'|Q) = (QvTvb|Q) = (Q|b|Q) . (5.28)

That is why the equation (5.27) implies S(vfQ||©2) = 0 for v in the centralizer. Since p and
pr are simultaneously block diagonalizable their relative entropy can be understood as a
classical relative entropy. For instance, take p = >, qi |k) (k| and h =), Z—’; |k) (k| with

Pk a probability distribution that is in the centralizer of p. The state pp, =), pr |k) (k| is
simultaneously diagonalized with p. The relative entropy above is

s(zpk B LS g IR <k\) =Y pellogpi —logay) = Hpllg)  (5.29)
k k k

which is a special case of (2.32). More generally, for an operator h that in the centralizer
of |©2) we have

Suine = 11 1Q) [|Syia(hsg) "
Ayjo = [|P]Q) [*PAgjalh,] (5.30)

where we have used the fact that [Ay|q, hy,] = 0 because h, € Fa and in the centralizer
of Q. Then, the relative entropy is

S(hQ| V) = —2log||h|Q2) || + 2 (| log [h[|h2) — (hQ2|log Agn|h2) . (5.31)

This is a QFT generalization of the equation (2.32). To see this, plug in the equation
above the block diagonal density matrices p = ®pqrpr, ¥ = Prpror and the operator
h =& %Hk that is the centralizer of both states:

SO (pllo) = H(plla) + > preS(prllor) - (5.32)
k
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In the presence of an internal symmetry UgbUg € Fa for all b € Fy. From (5.16) we
can solve for the modular operator of Uy |V):

St = UgSgU]
Afl g = UAGUJ (5.33)

If |Q) is the invariant vacuum, i.e. Uy |2) = |€2), the modular operator and U, commute:
AU, = UsAq. As a result, the modular flow A of charge-neutral operators remains
charge-neutral if |2) is an invariant vector, and the charge of an operator V,.; does not
change under the modular flow by Ag. Now, consider the twist unitary 7,. On a lattice,
the twist operator is in the center of the local charge-neutral algebra. In QFT the twist
operator is not in the center of the local algebra, but we still have

A1 QA A1 ®A
S‘I/|1’T§)QQ = S\IJ|1Q® g
SO (7 Q|| 0) = A QD) . (5.34)

This is expected because 74 |§2) has the same local state as |2) with respect to the algebra
A1 ® As.
The relative Tomita operator of the charged states |r,i) = / dTVTT’i |©2) is

Sy Iryi, A) = b |1, 7', A) Vb € Fa (5.35)

which can be solved by setting S i) = \/%Viisﬂw’,i’ in the equation above. Below,
we suppress the algebra label in the relative modular operator and relative entropies if the
algebra is F4. Note that Sq is the Tomita operator for all charged operators, and we have
used VTTZVm = ;5. The relative Tomita operator kills the vectors b|s,j, A) for s # r, and

4
Seine) =\ g VradeVers

di ot ot t
Awrilri) = g VoS VriVesSaVeri (5.36)

on its domain it satisfies

In particular, we find that Y, Aqriy ) = iA(T/i/)‘Q. For an Abelian symmetry, the
intertwiner V; is a unitary operator and

Ay = ViAoV . (5.37)
Therefore, the relative entropy states of sectors of charge ¢ and ¢’ is
S lg) = = (d'|V] log AaVyld') = — (¢ — qllog Aald’ — q) - (5.38)
For bi-local intertwiners Zy2, and the algebra Fi2 we have

Sfu — IrSg];u

Q|Z,
Sy = S5

S712(Z,|1Q) = - (Z:|log Aa|Z,)

S712(Q|Z.) = — (Zf|log AalZf) . (5.39)
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where for F;

Fi_ ]—' (2)\t
Sﬂ\llr_dz TJTSIV)’
S]:l — V(Z) S]'—l V() 5.40
T = SV (5.40)

J

The relative Tomita equation defines the relative modular operator unambiguously
if the vector |€2) is Reeh-Schlieder. The Poincare-invariant vacuum of QFT is a Reeh-
Schlieder vector for local algebras F4. In a Reeh-Schlieder vector the excitations inside the
region A can approximate an arbitrary excitations outside. We are interested in studying
the relative modular operator with respect to the local charge-neutral subalgebras A 4, and
below we show that the vacuum vector is Reeh-Schlieder with respect to A 4. That is to say
in QFT an arbitrary uncharged operator in A can be approximated using local uncharged
operators Ay: Ay |Q) = A|Q).

First, let us take a look at the Reeh-Schlieder property for the full algebra F of QFT.
In a Reeh-Schlieder state an arbitrary excitation in F; ® Fys can be approximated using
operators in F;. We want to find b, € F; such that for some & € Fy; we have b’ |Q) ~
b |©2). We call such an operator by, the mirror operator of b'. To construct the mirror

operator, we use the following strategy
V' [Q) = Sp(t)1 Q) = (A)2I@)T Q) = AV a2 |0) (5.41)

with (b’)T] = J(b’)TJ € F1 where we have suppressed the  index of Ag and Jo. For a
Reeh-Schlieder vector in finite quantum systems, it is straightforward to check that the
operator (w/2bTw =12 @ 1) is the mirror of (1 ® b) where T is the transpose in the basis
picked by the density matrix w:

> VR w 2 @ 1) |kk) = Z\ﬁbk,uk > Vol @b) i) . (5.42)
k l

where we have used the canonical purification of w in (5.2). Note that in the example
above, the modular conjugation operator J is the anti-linear swap operator in the Schmidt
basis of the state: Jc|kl) = ¢* |lk) where ¢ is a complex number. In a Reeh-Schlieder state
since all p; > 0, w2 is well-defined. Furthermore, the operator A1/2(bT ® 1)A_1/2 =
Ww2Tw=12 91 € Fy ® 1. In a QFT, for a general b € Fy, the modular flow b(t) =
A"pA~ is inside the algebra F; for all t € R, but the operator A/26A~1/2 need not be
in 1. Luckily, as we demonstrate below, in QFT there are always operators in JF; that
approximate AY2bA~1/2 arbitrarily well.

Consider the operator

00 . .
by, = \/Z / dt e ATHAT € Fy (5.43)
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b’ © A

J

(a)

(b)

Figure 8. Consider the case where region A is the Rindler wedge and we have the vacuum of QFT
(a) If b’ is localized in the small red circle inside A’ the operator (b;)' is also localized in the red
circle in A, however the mirror operator in (5.44) requires boosting that spreads its support in the
blue region (b) The operators in A’ that are approximately-invariant under modular flow (boost)
are localized in a small proper distance from the entangling surface. Their mirror operators are
also localized near the entangling surface in A.

In the limit v — oo this operator approximates b,?” and for any v the modular flow of this
operator can be analytically continued to the whole complex plane [31]

by(z) = APb, AT = \/Z / dt e VR AT ¢ (5.44)

Therefore, we find that mirror operator of ¥ in the algebra F; that satisfies

V|Q) ~ by, |Q)
b = lim ((1))5(1/2) - (5.45)

If the operator b’ is an isometry, the equation
Qo] Q) =1 (5.46)

implies that the probability for the spontaneous creation of the excitation o’ bIn |©2) is almost
one. In general, if b is localized in a small region of Ay its mirror is highly delocalized in
Ay If [/, A] = 0 from the mirror equation (5.45) we find that b, = (¥ )T], see figure 8.
Consider the symmetry group G acting on the global algebra F. If ' € Ay is a
charge-neutral operator from (5.44) it is evident that the mirror operator a,, is also charge-
neutral, and is therefore in A;. This implies that we can generate Ay |(2) using A; |2). The
only other operators in A are the bi-local intertwiners between A and A’: I, =", VrTer/z

Denote the mirror of Vr'l by (V;i)m- It has the same charge as V,,’z Therefore, the operator

*"Note that in the limit v — 0 the operator by is the modular zero mode, and for finite values of -y
(log pj, —log p; /)2
this operator sends off-diagonal elements |k) (k'| — e~ = |k) (k'|. Tt suppresses the off-diagonal

terms exponentially with parameter % The modular zero mode has the property that its modular flow is
trivial: (bo)~ = bo for all .
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> le(‘/}l)m is charge-neutral with respect to the local algebra and therefore belongs to
Aa. Moreover, the mirror of all operators in Ay, also belong to Aj, therefore in QFT
A Q) = AQ).

Since A1 |Q) = A12|Q), it follows that for non-overlapping and non-touching A; and
A we have A1 @ A2 () = A12|Q) = A|Q). All intertwiners between region A; and the
complement A} can be prepared locally by acting with A; which includes the intertwiners
between regions A; and As. As a result, the algebra (A; ® As) |Q2) = A|Q), and the Tomita

operator for the algebra A; ® Ao is densely defined.

5.3 Cocycle and intertwiners

In this section, we show that the intertwiner V;.; can be understood as an analytic contin-
uation of the unitary cocycle. Consider two vectors |Q2) and |V) in different superselection
sectors of a QFT and the isometry defined by

T(a|¥)) = aAY?

e ) (5.47)

that maps vectors from the |Q) to the |¥) sector. This is an intertwiner that takes us
from one charged sector to another and commutes with the action of F4 [14]. When the
superselection sectors are due to symmetries, the intertwiner need not be localized in A.
We say the intertwiner is localized in A if TV |Q) = VT |Q) for all ¥’ charged operators
in A’. We would like to understand when the intertwiner 7" is localized in A. In the last
subsection, we saw that the cocycle operator

ugla(t) = AGnAL" (5.48)

belongs to the algebra. In fact, if both 2 and ¥ are Reeh-Schlieder it is a unitary operator.
For real values of ¢ the cocycle is an operator in A and commutes with o' [32, 35]. The
isometry in (5.47) can be created by an analytic continuation of the cocycle to imaginary
values $(t) = —i/2:

TV W) = VAY ALY 1) = Vugja(—i/2) Q) - (5.49)

The isometry in (5.47) commutes with all ¥’ € F 4 if the analytic continuation of the cocycle
uy|o(—1i/2) exists and belongs to Fa.

On a lattice the cocycle is u\pm(t) = Y™ ® 1’ with ¢ and w the reduced density
matrices on A of |¥) and |Q2), respectively. The analytic continuation of the cocycle to
() = —i/2 corresponds to ¥/2w=/2 ® 1 which is well-defined if all the density matrix
w has no zero eigenvalues. In fact, it suffices to assume that every zero eigenvalue of w is
also a zero eigenvalue of v, because if w[€) = 1 |¢) = 0 we can define ¥/2w=1/2|¢) = 0.
In other words, the cocycle has an analytic continuation if there exists a A > 0 such that
w — A\ is a non-negative operator. This is the necessary condition for the relative entropy
S([|w) to be finite. Similarly, in modular theory, the cocycle ugq(t) can be analytically
continued to the 0 > (t) > —1/2 if w — Ay > 0. That is to say there exists a A > 0 such
that for all b € F4:

w(bh) — Mp(bTb) >0 . (5.50)

~ 34—



If |¥) and |2) are vectors corresponding to states ¢ and w with w > A\ for some
positive A, the cocycle uy,, has an analytic continuation to the strip 0 > J(¢) > —1/2 that
remains inside the algebra [36]. This implies that there is a map w(¢) analytic in the strip
and strongly continuous in ¢ with the property that

u(t) = uy(t)
w(tY Q) = VAL 1) (5.51)
In particular at u(—i/2) we have the map
w(—i/2)V W) = bu(—i/2) |¥), (5.52)

which is the local intertwiners V;.; we discussed in the case of charges in section 4. In our
examples of QFT with charges we have Ef(wi2) > ﬁwlg, therefore the cocycle uy,,|zx (wys)

takes us from the sector |Q2) to the sector corresponding to EX(w).

5.4 Enlarging the QFT algebra

In section 4, we saw that one main difference between QFT and systems on a lattice is
that in QFT the twist operator 7, = €994 is not part of the local algebra, and as a result
the local invariant algebra has no center. It is natural to ask whether one can enlarge
the QFT algebra by including 7, to make QFT more similar to the lattice models. The
local algebra of charged operators in QFT has charge neutral operators I, ® a € A4 and
) supported on A that belong to the dual group G: Fa= A X G.
If we further enlarge the QFT algebra by adding 7, that belongs to G to it, we obtain
FaxG. If the group G is Abelian this is (A4 x G) x G = Ay ® B(L*(G)). Physically, this
corresponds to adding a qudit of dimension |G| to the local algebra of QFT exactly as we

charged operators VT,(?

do on a lattice [31]. There will be an analogous degree of freedom on the complementary
region A’ and the global Hilbert space factors as H = @, (IC(’;,4 ® /C;;V) ® H4. The enlarged
local algebra is the tensor product of the algebra of charge neutral operators with a qudit
of dimension |G| that carries the charge: A; ® GL(|G|, C) where GL(|G|,C) is the algebra
of a qudit. In this enlarged algebra, the charge neutral operators have a non-trivial center:
BgAq |9) (g| ® 1 similar to systems on a lattice. When the algebra is non-commutative, it is
still convenient to consider the algebra represented on the Hilbert space @, (K2@KA ) @H,.

It is desirable to construct a conditional expectation that maps the enlarged algebra
Fa G back down to the QFT algebra F4. In the Abelian case, this is simply an average
over the dual group

E(d) (¢"| ®a) =

,é,' SO 0(d) (d" @ @)D, - (5.53)

The QFT local algebra Fy4 is generated by |0) (0] ® a and U, which transform under this
map to

1
EO 0 - = q
(10) (0] ® a) |G’2q:p()
EU,) =T, (5.54)
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where in the second line we have used the fact that the group is Abelian. Under E any
new non-identity elements of the twist group 7, =, e'91|q, A) {q, A| are washed out

E(7,) = 6,01 . (5.55)

In the example of the free boson in section 3.5, the dual group is Z that is not compact
but we can still write

dz

2mi

pal () = J(u) + f u(z)a(z) (5.56)

and the sum over charges in the range (—¢, ¢) vanishes

L ST () = () (5.57)

as one expects from a conditional expectation.

Our enlarged algebra has a representation in a Hilbert space that factors the charge
modes EBq(/Cj? ® IC(‘;V) ® Hq. We would like to find the vectors in this Hilbert space that
correspond to the states of the QFT algebra. We can extend our QFT states using the
conditional expectation F so that the relative entropy of states evaluated in the enlarged
algebra remains the same as that of the QFT algebra. For instance, the purification of the
state E*(¢) in (5.12) in this enlarged Hilbert space is

‘@w = Z \/CT“|ET> ® [Ur)

|E,) = \/1(72 |r, i) @ |r*, ) (5.58)

where 7* is the dual representation of r. The expectation values in this vector are

Z <@¢|(17’ ® a)|®w> = Z Crpr(a)

T

(©4]Viil0y) = 0 (5.59)
and

(O,]U7 ©1]0,) = dlrtr(U;") — 5(g) (5.60)

as expected from an invariant state of E. This vector is also Reeh-Schlieder with respect to
the QFT algebra because the action of V;; and I, ®a take us everywhere in the Hilbert space.

For simplicity, we assume that the symmerty group is Abelian for the remainder of
this section. The relative Tomita equation for the vectors |©,) = |00) ® |Q) and |©y) =
100) ® |W) is

St 10,9 (¢ ®a)[0u) = (1) (gl ® a) [Oy)
So,0,I®a)|0,) = (I a')|0y) . (5.61)
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The domain of S7 is |¢0) ® Ho, however, this operator is zero except for the subspace
|00) ® Ho that is the domain of SA. On the common domain the two relative modular
operators agree. Since the zero vector is not in the domain of (S7)' the relative modular
operators A7 and A are the same map from [00)@Ho — [00)®@H,. In fact, the purification
of any state that is invariant under the conditional expectation F has this property. The
distinguishability of invariant states does not change as the restriction map E. Consider
two invariant states:

W= pqla) (al @ w,

q

Y= pyle) (al @1y (5.62)

and their corresponding purifications

10w) =D \/Pq 2, ) © Q)

q

0) =" \/pla. —a) @ 19) (5.63)

Their relative modular operator is
/
F A Dy
Ag, e, = Db, e, = Z o 1, =m) (I, =m| ® Ay, 0, (5.64)
l,m

and their relative entropy is

S(0,]0y) = = (Bu|log Ag, 6, O0u) = H(plp) + > piS(¥;|) (5.65)
l

as expected from the equation (2.31).

The algebra of QFT does not admit a tensor factorization when the regions A; and
Ao touch, however, as we saw in the presence of a symmetry the extended algebra factors
the charged excitations. The local algebra of any quantum field has a symmetry group R
associated with the modular flow. The modular flow is an outer automorphism similar to
the twist group. Similar to the case of twist that was not part of the algebra due to the
infinities near the entangling surface, the modular Hamiltonian, i.e. log Aq restricted to A
is not part of the algebra because of its discontinuous action at the entangling surface. For
instance, in the vacuum QFT and for the Rindler region |z!| > |t| the modular Hamiltonian
is the boost operator fix;o du uTy, where T, is the null-null component of the stress
tensor. The half-sided modular Hamiltonian fooo duuTy,, is ill-defined because of its singular
behavior at u = 0. If we enlarge the local algebra of QFT by the modular group by adding
the half-sided modular Hamiltonian to the algebra, every mode that is charged under
modular flow factors. The Hilbert space splits into sectors H, with projections F;, that
project to the subspace with modular frequency gq.

The modular group is R so its dual group is also R which is non-compact. In the case
of vacuum QFT in Rindler space, the centralizer is trivial since there are no local operators
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that are invariant under boost. This implies that every mode is charged under the modular
flow [37]. Enlarging the algebra of QFT by the modular group factors the local algebra
of QFT completely: H = €9qu ® IC;;V where ¢ is the modular frequency. The enlarged
algebra is type 11, and has a trace [38]. Entanglement entropy in the extended Hilbert
space is divergent, however the factorization of the Hilbert space resembles the structure
of boundary quantum field theory, and the insertion of a resolution of identity that is the
center @, |q) (¢| in the algebra.?®

6 Conclusions

In this work, we generalized the definition of entropy to the cases with no tensor product
structure, and used the new definition to define an entanglement measure that captures
the contribution of charges to entanglement in quantum systems with symmetries in equa-
tion (2.29). The proposed measure is comprised of two relative entropies. One is the
relative entropy with respect to the charge neutral operators and the other is the relative
entropy due to the charge creation operators. We used representation theory to introduce
the charge creation operators called intertwiners and bi-local intertwiners, and wrote down
relative entropy that capture their contributions to entanglement. We set up the formal-
ism to compute these measures in QFT using the Tomita-Takesaki modular theory. We
highlighted the differences between QFT and lattice models, and discuss an extension of
the algebra of QFT that leads to a factorization of the charged modes.

We would like to thank Horacio Casini, Roberto Longo, Thomas Sinclair, James Sully
and Edward Witten for many valuable discussions. NL would also like to thank the Institute
for Advanced Study for their hospitality during his visit. Funding for this visit was provided
by the NSF grant PHY-1911298.

A Group and algebra extensions

A.1 Group extension: semi-direct product

Given two groups N and H consider the trivial extension that is the Cartesian product
group N x H where elements of group are (n, h) and the multiplication is (n1, h1).(n2, he) =
(ning, hihs). If H acts on N by an outer automorphism ¢, : n — hnh~! with the com-
position rule (¢n, 0 ¢p,)(n) = P n,(n) We can consider a subgroup of G = N x4 H C
N x H called the semi-direct product and has the multiplication rule (ni,h1).(ng, ha) =
(n1¢n, (n2), h1hs). The inverse of (n,h) is (¢-1(n~1),h~1). All we need for the construc-
tion of the semi-direct product is the homomorphism ¢ : H — Aut(V).

In the semi-direct product extension G, N is a normal subgroup and H = G/N is
the quotient group. An important example is the Poincare group that is the semi-direct
product of translations and the Lorentz group: R“¥~1 x O(1,d —1). If N is the center
of G the semi-direct product is called a central extension. A trivial example of central
extension is the direct product group N x H where N is Abelian. Non-trivial examples

28We thanks James Sully for pointing out this connection to us.
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comes from the study of the projective representations of a group. Consider a group H, the
Abelian group of complex numbers C and the map ¢p(a) = ac(a, h) with ¢(a, h) a complex
number. If ¢(a, h)e(B, h) = c(af, h) and c(a*, h) = c¢(a, h)*, this map is an outer automor-
phism of C, and we can construct C x4 H with the multiplication rule (o, h1).(8, h2) =
(aBe(B, hi), hih2). We need to further check that ¢, (a)dn, () = ¢p,n, () which imposes
c(a, h)e(a, he) = c(a, hihg).

A.2 Lie algebra extension: semi-direct sum

Consider the groups H and N are Lie groups and their corresponding Lie algebras § and n.
The map ¢ : H — Aut(V) induces a map ¢ : h — Aut(n) defined by the Lie correspondence

o d p

vy () = - (%a(e "))tzo (A1)

where 7 and h are elements of the Lie algebra n and h, respectively. We obtain the notion
of a semi-direct sum of Lie algebras with the Lie bracket defined using the equation

[(m, h1), (ﬁ2;7b2)] = ([A1, Pa] + 4y, (P2) — 1 (An), [, ha]) . (A.2)

There is another method to centrally extend Lie algebras. Every linear map x : hxh —
C that is anti-symmetric, i.e. X(le, Bg) = —x(ha, ill), and satisfies the Jacobi identity leads
to an extension defined by the Lie bracket

[(a,ﬁl),(ﬁ, ilz)} = (x(h1,ha), [h1, ha]) . (A.3)

A finite-dimensional simple Lie algebra has no non-trivial central extensions. To find
examples of non-trivial central extension we have to consider infinite-dimensional Lie al-
gebras. As an example, we work out the central extension of the polynomial loop algebra:
Kac-Moody algebra. The loop group is defined to be the algebra of smooth G-valued
functions on a circle with group multiplication rule. These are loops C' on the group G,
C : S' = G with (C1C2)(0) = (C1)(0)(Cs)(6). A loop Lie algebra is the vector space of
smooth functions from S* to g of G.

Consider the tensor product space g ® C*(S'), where g is a finite dimensional simple
Lie algebra and C*°(S1) is the algebra of smooth functions on S*. This vector space is a
Lie algebra with the bracket defined by

(01 @ f1,02 ® fo] = [91,G2] @ fifa, (91,92 € 9). (A.4)

Importantly, this space is not a direct product of the two spaces g and C*°(S*') due to
the smoothness condition of functions. Instead, it should be thought of as the Lie algebra
of smooth g-valued functions of S'. The Fourier transform on S' gives the basis § ® e
where @ is the angle on S' and n € Z. The Lie algebra generated by such generators is
the polynomial loop algebra. Another way to think about this algebra is in terms of the
algebra of Laurent polynomials ) . f,2" with only finitely many non-zero f, and the
standard multiplication and addition. Then, the algebra of G-valued functions on S* is the

Lie algebra of formal sums ), ., 2" ® g, with the Lie bracket

[2" ® g1, 2™ @ o] = 2" @ (g1, G2 - (A.5)
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The generators of the Lie algebra J, satisfy

(" ® Jo, 2" @ Sy =Y Cop" M@ o . (A.6)

where C, denotes the structure constants of the Lie algebra g. The central extension of
this algebra is g @ C*°(S1) @ C

(0, 2" ® Ja), (8, 2" @ Jy)] = (kn K (Ja, Jo)dnsmo, »_ CoHz™ ™ @ Je) . (A7)
k

where K (J,, Jp) is the Killing form on g and k is the central charge. This is an affine
Lie algebra.

A.3 von Neumann algebra extension: crossed product

Groups can act on von Neumann algebras and one can extend an algebra A by a group G
that acts on it as outer automorphisms to obtain a larger algebra called the crossed product
A xg G [39, 40]. If the action of the G on A is ¢g(a) = ay = ugauy’ with ugup = ugy,
we add u4 to the set of operators in our algebra and consider the algebra of formal sums
> gec Aglg With ag € A. If A acts on the Hilbert space H and L?(@) is the Hilbert space
of square-integrable functions of the group the crossed product algebra acts on H ® L?(G);
that is the space of square-integrable H-valued functions of G. Vectors of this Hilbert space
are |¥) =3 ;¢ |¥;g) and the inner product is

(@) =) by (W59|Psg) . (A.8)
geG

The multiplication rules are uy, |¥; g) = |¥; hg) and a4 |V;g) = |a¥; g).

A.4 Dual group and non-Abelian Fourier transform

Consider a locally compact Abelian group GG. The characters of G are linear maps from G to
complex numbers. For instance, for the group U(1) of rotations on a circle the characters are
x(Ug) = €% with @ € [0,27). The point-wise multiplication (x1x2)(Us) = x1(Up)x2(Us)
gives the characters the structure of a group called the dual group of G that we denote by
G. The dual group allows us to define a Fourier transform for functions on the group G:

F0)=>Y_x"9)1() - (A.9)
geG
If the group is finite the dual Fourier transform is
1 A
19 =1 > x(@9)fx) - (A.10)
xeG

To generalize Fourier transform to non-Abelian finite groups G we replace the character of
group with its irreducible representations p;(g):

Flor) =" pe(9)f(g) - (A11)

geG

40 —



If pr(g) is represented by a d, x d, matrix then f (g) is also a matrix of same dimensions.
The inverse Fourier transform is

1 A _
o) = g ot (F(r)ora™) (A.12)

where the sum is over irreducible representations p, of group G and we have used the
fact that ﬁ Y. detr (pr(g)) = 6g1 [41]. The analog of the multiplication of characters
in the non-commutative case is the tensor product of irreducible representations which
does not form a group, because the tensor product of irreducible representations is not in
general irreducible.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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