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Abstract

We consider previously derived upper and lower bounds on the number of operators in
a window of scaling dimensions [∆ − δ,∆ + δ] at asymptotically large ∆ in 2d unitary
modular invariant CFTs. These bounds depend on a choice of functions that majorize
and minorize the characteristic function of the interval [∆− δ,∆+ δ] and have Fourier
transforms of finite support. The optimization of the bounds over this choice turns out to
be exactly the Beurling-Selberg extremization problem, widely known in analytic number
theory. We review solutions of this problem and present the corresponding bounds on the
number of operators for any δ ≥ 0. When 2δ ∈ Z≥0 the bounds are saturated by known
partition functions with integer-spaced spectra. Similar results apply to operators of
fixed spin and Virasoro primaries in c > 1 theories.

Copyright B. Mukhametzhanov and S. Pal.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 15-04-2020
Accepted 29-05-2020
Published 17-06-2020

Check for
updates

doi:10.21468/SciPostPhys.8.6.088

Contents

1 Introduction 1

2 Review 4
2.1 Beurling-Selberg problem and Paley-Wiener theorem 7

3 Extremal functions for 2δ ∈ Z 8
3.1 A bound from Poisson summation 9
3.2 Extremal functions 9
3.3 Saturation at c = 4, 8,12, . . . 11

4 A simple non-optimal bound for 2δ /∈ Z 12

5 Extremal functions for 2δ /∈ Z 13
5.1 Generalized Poisson summation 13
5.2 Extremal functions 14

6 Fixed spin 16

7 Virasoro primaries 21

A Majorization and Minorization by φ± 23

1



SciPost Phys. 8, 088 (2020)

B Degeneracy of states for integer spaced spectra 25

C Zero mode of Beurling-Selberg function 26

References 27

1 Introduction

Crossing equations in Conformal Field Theories (CFT) form a system of infinite number of
equations on an infinite number of unknowns: the spectrum and OPE coefficients. Arguably,
the simplest way of extracting constraints on conformal data from crossing equations, is to
take an (euclidean) OPE limit in one of the channels, call it t-channel. In this limit t-channel
is typically dominated by the vacuum or another light state. Next, one finds a density of
high-energy states or OPE coefficients in another channel, call it s-channel, that reproduces
the vacuum contribution in the t-channel in the OPE limit. This density is sometimes called
a “crossing kernel”. Many examples of this type for various crossing equations have been
discussed in the literature [1–13].

This approximation, when we keep only the lightest state in the t-channel, is extremely
useful for obtaining certain coarse-grained features of the high-energy spectrum. Prominently,
thermodynamic behavior of high-energy states and aspects of classical geometry of a gravity
dual [14] can be understood in this way.

On the other hand, many interesting fine-grained features of the high-energy spectrum
are not captured in this approximation. One very basic and important example is discreteness
of energy eigenstates. The coarse-grained approximation discussed above typically predicts
a continuous spectrum. This is akin to a version of the information paradox in AdS [15]
and related to the late-time behavior of correlators [16–19] and the spectral form-factor [20,
21]. Another important example is the Random Matrix Theory (RMT) behavior of energy
eigenstates. Just like coarse-grained thermality, RMT is expected to possess a certain degree
of universality. One expects that it holds in a broad class of “chaotic” theories. A natural
conjecture is that in any CFT without conserved currents except for the stress tensor, the energy
eigenstates at asymptotically high energies obey RMT statistics.

In an attempt to derive universal fine-grained features of CFT spectra, such as RMT, one
might imagine a two-step strategy. First, we need to understand why the coarse-grained ap-
proximation is not enough and quantify its limitations. Second, we would like to make extra
assumptions (e.g. absence of conserved currents) that restrict us to chaotic theories. One
might expect that these assumptions lift the limitations of the coarse-grained approximation
and allow us to probe fine-grained features of the spectrum.

Partial progress on the step one has been made in [22–28]. The goal of the present work is
to report on further progress in this direction. We do not have anything to say about the step
two at this time.

In this paper we consider unitary 2d CFTs with a modular invariant partition function

Z(β) =
∑

∆

e−β(∆−
c

12) =
∑

∆

e−
4π2
β (∆− c

12) . (1)
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At high temperatures it has an asymptotic behavior
∫ ∞

0

d∆ ρ(∆)e−β∆ ≈ e
4π2
β

c
12 + e

4π2
β ( c

12−∆1) + . . . , β → 0 , (2)

ρ(∆) =
∑

∆n

δ(∆−∆n) . (3)

From this one would like to derive the Cardy formula

ρ(∆) ?∼ exp

�

2π

√

√ c∆
3

�

, ∆→∞ . (4)

To do that one is tempted to take the inverse Laplace transform of the vacuum contribution
(2)

ρ(∆) =

∫ ∞

−∞

d t
2π

ei t(∆− c
12)Z(ε+ i t) (5)

=

∫ ε+i∞

ε−i∞

dβ
2πi

eβ(∆−
c

12)
�

e
4π2
β

c
12 + e

4π2
β ( c

12−∆1) + . . .
�

. (6)

If we kept only the first term in parentheses, i.e. the vacuum contribution, we would indeed
get Cardy growth (4) 1. However, the vacuum contribution dominates only for |Im(β)| � 1,
while for |Im(β)| ¦ 1 we lose control over the integrand. In the latter region contributions of
all operators in (6) become of O(1). Naively, one would like to argue that in the limit∆→∞
only the region |Im(β)|® 1/∆ gives a significant contribution. Such intuition is usually based
on Riemann-Lebesgue lemma. In this case it is not applicable because the function Z(ε+ i t)
is not integrable.2

In a theory with discrete spectrum the density of states ρ(∆) is a sum of delta-functions
and, therefore, we expect the integral (5) to be very sensitive to the precise value of ∆ even
at large ∆: it’s either zero or infinite. To compute this fine-grained density one would need to
know much more than just the vacuum operator.

Of course, what is really meant by (4) is the coarse-grained density, i.e. the density of
states averaged over a small window around ∆. One may consider different ways to average,
for example

∫ ∆+δ

∆−δ
d∆′ρ(∆′)∼ #exp

�

2π

√

√ c∆
3

�

, ∆→∞ . (7)

The question then remains: how does one derive (7)? This was explained in [25], where a
formula analogous to (5) was derived for the averaged density of states, but with an insertion
of certain kernels Òφ±(t). The role of Òφ±(t) is to cutoff the troubling region t →∞, where
one loses control over the integrand. This effectively localizes the integral to the region of
sufficiently small t, where the integral is controlled by the vacuum contribution. The price to
pay for this modification is that instead of equality we get upper/lower bounds (hence “±” in
Òφ±(t)) on the averaged density of states. This will be reviewed in section 2.

It was shown in [25] that a simple sufficient choice of Òφ±(t) is to require that they have
finite support |t| < 2π. In this paper we find the optimal functions Òφ±(t) of this type. The

1Up to a controllable divergence that gives a delta-function.
2This is clear, for example, from the fact that there are recurrences. In particular, in theories with integer-spaced

spectra, that we will discuss, the recurrences are perfect and Z(ε+ i t) has an infinite number of peaks, where it
takes the same value as at t = 0.
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problem boils down to finding functions φ±(x) that majorize/minorize a characteristic func-
tion of an interval θ[−δ,δ](x) and minimize L1 norm ||φ± − θ[−δ,δ]|| with a constraint that
Fourier transformations Òφ±(t) have finite support |t| < 2π. This turns out to be a classic
Beurling-Selberg problem [29,30], widely known in analytic number theory.

In particular, this allows us to derive a simple bound

(2δ− 1)ρ0(∆)≤
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ (2δ+ 1)ρ0(∆), δ ≥ 0 ,∆→∞ , (8)

where ρ0 is defined in (22). The bounds (8) need some clarification. By the limit ∆ →∞
we mean that both upper and lower bounds have corrections that can be either positive or
negative, but suppressed in ∆. More rigorously, the bounds take the form3

2δ− 1≤ lim inf
∆→∞

Nδ−0(∆)
ρ0(∆)

≤ limsup
∆→∞

Nδ+0(∆)
ρ0(∆)

≤ 2δ+ 1 , (9)

where we defined the number of states in the interval

Nδ(∆) =

∫ ∆+δ

∆−δ
d∆′ρ(∆′) . (10)

In (9) we were also careful to write δ±0, indicating whether we include on exclude the states
at the edges ∆± δ. The origin of this will be discussed in section 2. One can think of Nδ(∆)
as a “staircase” function oscillating around its average value. Therefore, the appearance of
lim sup and lim inf instead of lim is natural in (9).

Throughout the paper we will mostly write the bounds in the form (8) for brevity, but one
should keep in mind that the rigorous form that is implied is given by (9).

It turns out that the bounds (8) are optimal, among those obtained from bandlimited
functions φ±(x), only when 2δ ∈ Z. In this case they are also saturated by c = 4k, k ∈ Z>0
partition functions with integer spaced spectra, for example, Klein’s j-invariant. We derive
these results for 2δ ∈ Z in section (3). In section 4 we derive (8) for any δ ≥ 0. The optimal
bounds for 2δ /∈ Z are derived in section 5.

Note the following two simple consequences of (8). The lower bound implies that:

1)In any window of size 2δ > 1 at asymptotically high energies there is non-zero number of
operators.

This result was previously established in [25,26]. If we have Virasoro symmetry this is trivial
due to descendants.4 But the whole analysis can be repeated almost verbatim for Virasoro
primaries (when c > 1) and the result remains essentailly the same, as we show in section 7.

The upper bound in the limit δ→ 0 becomes ρ0(∆). Therefore:

2)The maximum degeneracy of an individual operator with dimension ∆ is ρ0(∆) up to ad-
ditive corrections suppressed at asymptotically high energies.

This is again saturated by partition functions with integer-spaced spectra for c = 4k, k ∈ Z>0,
as we will discuss in section 3.3.

We generalize our results to operators of fixed spin in section 6 and Virasoro primaries
with arbitrary or fixed spin in c > 1 theories in section 7.

3Recall the definition lim supx→∞ f (x) = limy→∞ supx>y f (x) and similarly for lim inf.
4Note, however, that all we require for (8) to be true is (1). Therefore, we need only scaling symmetry and not

full conformal symmetry.
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The main results of this paper are the upper and lower bounds (8), (21), (83), (84), and
similar formulas for fixed spin operators (105), (110), (111), (112). These bounds are opti-
mal among those that can be obtained using bandlimited functions φ±(x). We do not know
whether the bounds can be saturated for central charges c 6= 4k, k ∈ Z>0 or for 2δ /∈ Z. Similar
results apply to Virasoro primaries (127), (129).

2 Review

In this section we review the setup of [25] and make a few additional comments. We start
with defining two continuous integrable functions φ±(∆′) that bound the indicator function
of an interval ∆−δ <∆′ <∆+δ

φ−(∆
′)≤ θ(∆−δ,∆+δ)(∆

′)≤ θ[∆−δ,∆+δ](∆
′)≤ φ+(∆′) . (11)

Here we have been careful with the ends of the interval. The function θ(∆−δ,∆+δ) vanishes at
the ends, while θ[∆−δ,∆+δ] at the ends is 1. Since the functions φ± are continuous, we can
think of φ+ as a bound from above where we include the edges, while φ− is a bound from
below where we do not include the edges, see the figure5 1. This will be important later, when
we check optimality of our bounds. It will correspond to whether we include or not the states
at the edges. Until then we will not distinguish the two θ ’s for the sake of brevity.

Figure 1: Functions φ±(x) majorising and minorising the indicator function of the
interval [−2,2].

Multiplying (11) by exponential factors6 e∆±δ−∆
′
and integrating with the density of states

5We are being somewhat cavalier about the argument of the functions φ±. We use both φ±(∆′) and φ±(x) with
x =∆′ −∆ interchangeably.

6We can do this because for |∆′ −∆| ≤ δ we have e∆−δ−∆
′ ≤ 1 ≤ e∆+δ−∆

′
and for |∆′ −∆| > δ the inequality

(11) takes the form φ−(∆′)≤ 0≤ φ+(∆′), so we can multiply by positive factors e∆±δ−∆
′
.
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ρ(∆′) we find

eβ(∆−δ)
∫ ∞

−∞
d∆′ ρ(∆′)e−β∆

′
φ−(∆

′)

≤
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ (12)

eβ(∆+δ)
∫ ∞

−∞
d∆′ ρ(∆′)e−β∆

′
φ+(∆

′) .

Taking the Fourier transform of φ±, one finds the bounds on the number of states [25]

eβ(∆−δ−c/12)

∫ ∞

−∞
d t Z(β + i t)Òφ−(t)e

−i tc/12

≤
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ (13)

eβ(∆+δ−c/12)

∫ ∞

−∞
d t Z(β + i t)Òφ+(t)e

−i tc/12 ,

where Òφ±(t) is the Fourier transform of φ±(∆′)

φ±(∆
′) =

∫

d t e−i t∆′
Òφ(t) . (14)

The integrals in (13) are reminiscent of the inverse Laplace transform (5) in the sense that we
integrate the partition function over imaginary inverse temperatures. However, in comparison
wtih (5), here we have much more control over the integrand. In particular, we can choose
the functions φ±(∆′) in such a way that the region t ¦ 1, where we lose control over the
integrand, does not contribute. This leads us to consider φ±(∆′) such that their Fourier Òφ±(t)
have finite support |t|< Λ. Functions of this type are called bandlimited functions.

We would like to bound the number of states in (13) at large ∆. In this case we imagine
β to be small. Later we will see that to optimize the bounds β should be related to ∆ by the
standard thermodynamic relation.

The quantity |Z(β + i t)|2 is called the spectral form-factor [20,21]. Its typical behavior is
that it is large at t = 0 and decays exponentially at small times t due to oscillating phases.
Early times are controlled by the vacuum in the dual channel [21]. For a large enough t = trec
phases can come into sync again and a recurrence happens, when the form-factor is again
large. See figure 2. The recurrence time and the value of the form-factor at the recurrence
time depend on the particular theory we study. Therefore, we expect that the integrand in
(13) is controlled by the vacuum in the dual channel only for t ® trec . This suggests that we
should take Λ ® trec .

For partition functions with integer-spaced spectra, such as Klein’s j-invariant, the recur-
rence time is trec = 2π. In fact, as was shown in [25] and will be reviewed below, in any
2d CFT for Λ ≤ 2π the integrals in (13) are dominated by the vacuum in the S-dual channel.
Therefore, trec = 2π is the shortest recurrence time among modular invariant partition func-
tions.

Using modular invariance and splitting the partition function into light (below c/12) and
heavy (above c/12) operators, we find the upper bound in the limit ∆ →∞,β → 0 (lower

6
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Figure 2: Spectral formfactor in 2d Ising (β = 1). It represents a typical behavior:
it is large at early times and the initial decay is controlled by the vacuum in the S-
dual channel. After a certain time a recurrence, generically only partial, happens. In
chaotic theories the recurrence time is typically very long.

bound is similar)
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ eβ∆

�

∫ Λ

−Λ
d t ZL

�

4π2

β + i t

�

Òφ+(t)e
−i tc/12 +

∫ Λ

−Λ
d t

�

�

�

�

ZH

�

4π2

β + i t

�

Òφ+(t)

�

�

�

�

�

,

(15)

where we defined

ZL(β) =
∑

∆′<c/12

e−β(∆
′−c/12) , ZH(β) =

∑

∆′≥c/12

e−β(∆
′−c/12) . (16)

Now we show that the first term in (15) is dominated by t = 0, while the second term is dom-
inated by t = Λ.

We estimate heavy operators by dropping the phases
�

�

�

�

ZH

�

4π2

β + i t

��

�

�

�

≤ ZH

�

4π2β

β2 + t2

�

∼ e
t2
β

c
12 . (17)

In the last estimate we again used modular invariance and that the integral over t is dominated

by t ∼ Λ ∼ 1, while β → 0. Therefore, the effective inverse temperature is small 4π2β
β2+t2 → 0

and we can use the estimate by the dual vacuum. To justify the assumption t ∼ Λ ∼ 1 we

notice that the contribution of an individual operator in ZH

�

4π2β
β2+t2

�

is exp
�

−
�

∆′ − c
12

� 4π2β
β2+t2

�

with ∆′ ≥ c/12. It is monotonically increasing with t. Therefore the integral is dominated by
t ∼ Λ.

In [25] it was said that to derive (17) one can use the Hartman-Keller-Stoica (HKS) bound
[31]. In fact, as we just argued, only the high-temperature asymptotic of the partition function
is needed.

Since Òφ±(t) is continuous and has support |t| < Λ, we can estimate near Λ that
Òφ±(t) = O(Λ− t) and therefore
∫ Λ

−Λ
d t

�

�

�

�

ZH

�

4π2

β + i t

�

Òφ+(t)

�

�

�

�

∼
∫ Λ

0

d t (Λ− t)e
t2
β

c
12 ∼ β2e

Λ2
β

c
12 . (18)
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The first integral in the RHS of (15) gets contributions from a finite number of light operators
below c/12. It is dominated by the vacuum and gives

∫ Λ

−Λ
d t ZL

�

4π2

β + i t

�

Òφ+(t)e
−i tc/12 =

∫ Λ

−Λ
d t e

4π2
β+i t

c
12 Òφ+(t)e

−i tc/12 + . . .

=

√

√ 3
πc
β3/2e

4π2
β

c
12 Òφ+(0) + . . . . (19)

Here the integral is dominated by the saddle t = 0 and the prefactor β3/2 comes from inte-
grating over fluctuations. Putting together the estimates we get from (15)

∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤

√

√ 3
πc
β3/2eβ∆+

4π2
β

c
12 Òφ+(0) +O
�

β2eβ∆+
Λ2
β

c
12

�

. (20)

Now it is clear that Λ = 2π is the biggest value for which heavy operators are suppressed as
we take β → 0. From now on we will make this choice for Λ. Minimization of the first term
in (20) over β leads to the thermodynamic relation β = π

p

c/3∆.
Lower bound is similar. Finally, we have bounds at asymptotically large ∆

2πÒφ−(0)ρ0(∆)≤
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ 2πÒφ+(0)ρ0(∆) , (21)

ρ0(∆) =
� c

48∆3

�1/4
exp

�

2π

√

√ c∆
3

�

. (22)

2.1 Beurling-Selberg problem and Paley-Wiener theorem

At this point finding a bound on the density of states boils down to finding the functions φ±(x)
with the desired properties. Namely, we would like to solve the following problem.

Beurling-Selberg problem: Suppose φ±(x) are continuous integrable functions with the
following two properties:

1) φ−(x)≤ θ[−δ,δ](x)≤ φ+(x), ∀x ∈ R.
2) Fourier Òφ±(t) has finite support |t|< Λ= 2π.

Find the smallest value of Òφ+(0) and the biggest value of Òφ−(0).

Equivalently, we would like to minimize the area between φ± and θ with the constraints
that φ± are bandlimited and bound θ from above/below.

This type of problem was first considered by Beurling [29] and Selberg [30] and has various
applications in analytic number theory [32,33] and signal processing [34].

The Beurling-Selberg problem formulated above was solved for 2δ ∈ Z in [30] and for
2δ /∈ Z in [34,35]7 Our task will be to simply use their results in the bounds (21). We describe
the construction of [30] in section 3 and [35] in section 5. The following classic result will be
very useful in solving the Beurling-Selberg problem.

Theorem (Paley-Wiener): Suppose φ ∈ L2(R). Then φ can be extended to the complex
plane as an entire function with |φ(z)| ≤ BeΛ|z| for some B > 0, if and only if Fourier Òφ(t) is
supported on |t|< Λ.

7The reference [34] solved the problem when 0< 2δ < 1. The reference [35] gave a complete solution for any
δ.

8
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An entire function φ bounded by |φ(z)| < BeΛ|z| in the complex plane is usually called a
function of exponential type Λ. Therefore, Paley-Wiener theorem can be stated as equivalence
between functions of exponential type Λ and functions whose Fourier transform has finite
support [−Λ,Λ]. The practical convenience of Paley-Wiener theorem is that one can determine
the support of Òφ(t) simply by looking at the growth of φ(z) and vice versa.

For the full proof we refer the reader to, for example, [36]. It’s easy to see that finite
support of Òφ leads to the boundedness of φ

|φ(z)|=

�

�

�

�

�

∫ Λ

−Λ
d t Òφ(t)ei tz

�

�

�

�

�

≤ eΛ|z|
∫ Λ

−Λ
d t |Òφ(t)|= BeΛ|z| . (23)

The proof in the other direction proceeds in two steps. First, using Phragmén-Lindelöf princi-
ple one shows that boundedness condition of the theorem actually implies a stronger bound
|φ(x+ i y)| ≤ CeΛ|y|. Second, one can deform the contour parallel to the real line and estimate
using the boundedness of φ

|Òφ(t)|=
�

�

�

�

∫

d x
2π

ei x tφ(x)

�

�

�

�

=

�

�

�

�

∫

d x
2π

ei(x+i y)tφ(x + i y)

�

�

�

�

≤ #e−y(t−Λ) . (24)

Taking y → ∞ we get Òφ(t) = 0 for t > Λ. Similarly, shifting the contour to the lower
half-plane gives Òφ(t) = 0 for t < −Λ. See [36] for details or [37] for a more pedagogical
discussion.

3 Extremal functions for 2δ ∈ Z

In this section we assume 2δ ∈ Z. The construction of [30] proceeds in two steps. First, one
derives bounds on Òφ±(0) from Poisson summation formula. Second, one constructs functions
that saturate these bounds, thus showing their optimality.

3.1 A bound from Poisson summation

One easy way to get estimates on the allowed Òφ±(0) is to use the Poisson resummation formula

2π
∑

n∈Z
e−2πinr
Òφ(2πn) =
∑

n∈Z
φ(n+ r) , r ∈ [0,1) . (25)

Applying this to φ± and taking into account that Òφ±(t) have support |t| < 2π, only one term
in the LHS survives

2πÒφ±(0) =
∑

n∈Z
φ±(n+ r) . (26)

Since φ±(x) bound θ[−δ,δ](x) from above and below, we can estimate the zero mode as

2πÒφ+(0)≥ max
r∈[0,1)

∑

n∈Z
θ[−δ,δ](n+ r) , (27)

2πÒφ−(0)≤ min
r∈[0,1)

∑

n∈Z
θ(−δ,δ)(n+ r) , (28)

where we also optimized over r ∈ [0,1) since Òφ±(0) doesn’t depend on it. The RHS in (27) is
simply the maximum number of integer-spaced numbers n+ r, that can be put into the interval
[−δ,δ]. Similarly, the RHS of (28) is the minimum number of integer-spaced numbers n+ r,
that can be put into the interval (−δ,δ).

9
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While the bounds (27), (28) are true for any δ, they are not always optimal. Later in this
section we will construct functions φ± that saturate (27), (28) when 2δ ∈ Z. On the other
hand, if 2δ /∈ Z the bounds (27), (28) are not optimal and functions φ± saturating them do
not exist. We will discuss optimal bounds for 2δ /∈ Z in section 5.

When 2δ ∈ Z the bounds (27), (28) are simply

2πÒφ+(0)≥ 2δ+ 1 , 2δ ∈ Z , (29)

2πÒφ−(0)≤ 2δ− 1 , 2δ ∈ Z . (30)

To obtain these bounds we must choose r in (27), (28) as follows. In the bound for Òφ+ it is
clear that to attain the maximum number of integer-spaced numbers n+r inside of the interval
[−δ,δ], we need to put one of the numbers n+ r at the edge of the interval, as should be clear
from the figure 1. Therefore, if δ ∈ Z, then n+ r must be integers and r = 0. If δ ∈ Z+ 1

2 , then
n+ r must be half-integers and r = 1

2 . In the bound for Òφ− we need to attain the minimum
number of integer-spaced numbers inside of (−δ,δ). The choice of r is the same as for Òφ+,
i.e. we need to put one of the numbers n + r at the edge of the interval, see figure 1. To
summarize, for 2δ ∈ Z we have two cases

δ ∈ Z , r = 0 , or δ ∈ Z+
1
2

, r =
1
2

. (31)

3.2 Extremal functions

Now let’s construct functions φ± that saturate (29), (30). From the derivation of these bounds
it’s clear that saturation happens if

φ+(n+ r) = 1 , n+ r ∈ [−δ,δ] , (32)

φ+(n+ r) = 0 , n+ r /∈ [−δ,δ] , (33)

φ′+(n+ r) = 0 , n+ r 6= ±δ , (34)

where the last condition on the derivative comes from the fact that φ+(x) ≥ θ[−δ,δ](x) and
therefore φ+ should be touching θ at the points n+ r, see figure 1. Similarly, for φ− we have

φ−(n+ r) = 1 , n+ r ∈ (−δ,δ) , (35)

φ−(n+ r) = 0 , n+ r /∈ (−δ,δ) , (36)

φ′−(n+ r) = 0 , n+ r 6= ±δ . (37)

The functions φ±(x) are essentially fixed by these properties. For δ ∈ Z we consider

φ+(x) =
sin2(πx)
π2





∑

|n|≤δ
n∈Z

1
(x − n)2

+
λ+

x +δ
+
λ+
δ− x



 , δ ∈ Z , (38)

φ−(x) =
sin2(πx)
π2





∑

|n|<δ
n∈Z

1
(x − n)2

+
λ−

x +δ
+
λ−
δ− x



 , δ ∈ Z . (39)

One can think of these functions as follows. Let’s discuss φ+. We start with sin2(πx), which
vanishes at all integer x . These are the second order zeros that we want outside of [−δ,δ].
Then the role of the terms in parentheses in (38) is to cancel zeroes of sin2(πx) inside of the in-
terval [−δ,δ]. The residues of the 2nd order poles in parentheses are fixed by
φ+(n) = 1, |n| ≤ δ. The first order poles are allowed only at the ends x = ±δ. This is

10
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because we want x = n, |n| < δ to be minimums of φ+ in order for φ+ to bound θ from
above. Finally, the residues of 1st order poles at x = ±δ must be related in order to have
φ+(x)∼

1
x2 , x →∞, so that φ+ is integrable. The constant term is not allowed for the same

reason. Similar comments apply to φ−.
Note that the growth of (38), (39) in the complex plane is bounded by |φ±(z)| ≤ Be2π|z|.

By Paley-Wiener theorem the Fourier transforms Òφ±(t) have finite support |t|< 2π, just what
we wanted our functions to satisfy.

Finally, we need to check that functions (38), (39) indeed bound the indicator function
θ[−δ,δ](x). This imposes constraints on λ+,λ−. In appendix A we show that these constraints
are given by

1+
1

2δ
≥ λ+ ≥ δψ1(δ+ 1) ,

1−
1

2δ
≤ λ− ≤ δψ1(δ) ,

(40)

where ψ1(z) =
d2

dz2 log Γ (z) is the trigamma function.
Analogously, when δ ∈ Z+ 1

2 we consider

φ+(x) =
cos2(πx)
π2







∑

|n|≤δ
n∈Z+ 1

2

1
(x − n)2

+
λ+

x +δ
+
λ+
δ− x






, δ ∈ Z+

1
2

, (41)

φ−(x) =
cos2(πx)
π2







∑

|n|<δ
n∈Z+ 1

2

1
(x − n)2

+
λ−

x +δ
+
λ−
δ− x






, δ ∈ Z+

1
2

. (42)

In this case r = 1
2 (see (31)) and the zeros are at half-integers. These functions are fixed

similarly to (38), (39). In particular, the constraints on λ± are the same (40).
By construction, the functions (38)-(42) saturate the bounds (29), (30). One can also

check this directly by integrating. For both δ ∈ Z and δ ∈ Z+ 1
2

2πÒφ+(0) =

∫ ∞

−∞
d x φ+(x) = 2δ+ 1 , (43)

2πÒφ−(0) =

∫ ∞

−∞
d x φ−(x) = 2δ− 1 . (44)

Note that λ± - dependent terms integrate to zero. Inserting the constructed functions in (21),
we find bounds on the number of states

(2δ− 1)ρ0(∆)≤
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ (2δ+ 1)ρ0(∆), 2δ ∈ Z . (45)

3.3 Saturation at c = 4, 8,12, . . .

Selberg’s functions (38)-(42) indeed give the best possible bounds for 2δ ∈ Z that can be
obtained from (21). However, we are not guaranteed that there is a fully S-invariant partition
function Z(β) that saturates (45), since using bandlimited functions in (13) could be too
crude in the first place. Here, we show that there is a zoo of S-invaraint partition functions for
c = 4k, k ∈ Z>0 that saturate the bounds (45).

11
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Let us consider two nice examples of S-invariant partition functions at c = 4, 12. They are
given by (q = e2πiτ = e−β)

Z4(β) = j(τ)1/3 = q−1/3(1+ 248q+ . . . ) , (46)

Z12(β) = j(τ)− 744= q−1(1+ 196884q2 + . . . ) , (47)

where j(τ) is Klein’s j-function. We consider (46), (47) as non-holomorphic partition functions
with τ= −τ̄= i β2π . The condition τ= −τ̄ explicitly breaks T-invariance τ→ τ+1, τ̄→ τ̄+1.
Therefore, our discussion here concerns only S-invariant partition functions. They do not
necessarily possess an extension to SL(2,Z) invariant functions of τ, τ̄. SL(2,Z) invariant
partition functions, constructed by combining holomorphic and anti-holomorphic parts, will
be considered in section 6.

The dimensions of operators in both partition functions are given by non-negative integers
∆k = k ∈ Z≥0. The degeneracy dk of an operator ∆k at large k is8

dk = ρ0(k) + . . . , (48)

where ρ0 is defined in (22) and corrections are suppressed at k→∞.
Now it is easy to check that the bounds (45) are saturated. First, recall that the upper

bound always bounds the number of operators in the window [∆−δ,∆+δ] where we include
the “edge states” at ∆ ± δ. While the lower bound holds for the number of operators in
(∆−δ,∆+δ) where we do not include the edge states. See the discussion below (11).

For the upper bound, we are counting the number of states in the interval [∆− δ,∆+ δ]
of size 2δ ∈ Z. There can be at most 2δ+1 integers in this interval, each corresponding to an
operator with degeneracy ρ0(∆). Thus we have (2δ+ 1)ρ0(∆) operators.

For the lower bound we are counting states in the interval (∆ − δ,∆ + δ). There are at
least 2δ − 1 integers in this interval, each corresponding to a state with degeneracy ρ0(∆),
thus giving (2δ− 1)ρ0(∆) states in total.

More generally, the bounds (13) would be saturated9 if the functionsφ± take the following
values on the physical spectrum ∆ph

φ+(∆ph) =

¨

0 , ∆ph /∈ [∆−δ,∆+δ] ,

1 , ∆ph ∈ [∆−δ,∆+δ] ,

φ−(∆ph) =

¨

0 , ∆ph /∈ (∆−δ,∆+δ) ,

1 , ∆ph ∈ (∆−δ,∆+δ) .

(49)

This is indeed the case for c = 4, 12 partition functions (46), (47) and Selberg’s functions
(38)-(42). The Selberg’s functions vanish at the physical spectrum ∆ph = k ∈ Z outside and
are one inside of the corresponding interval.

With the understanding of (49) it is clear that any partition function with an integer-spaced
spectrum saturates the bounds (45), because Selberg’s functions (38)-(42) satisfy (49) in this
case. A large class of such partition functions is given by

Z4a+12k(β) = j(τ)a/3Pk( j(τ)), a = 0,1, 2 ; k ∈ Z≥0 , (50)

where Pk(x) = xk + . . . is a monic (to ensure that the vacuum is unique) polynomial such
that q-expansion coefficients of the partition function are non-negative. These partition func-
tions correspond to the central charges c = 4a + 12k = 4, 8,12, 16, . . . and were previously
considered in [42].

8This follows from the classic results of Rademacher and Zuckerman [38–40]. One can also derive this using
Ingham’s theorem [41], which we explain in the appendix B.

9We also lose precision when we multiply (11) by eβ(∆−∆
′±δ). However, this factor is unimportant at large ∆,

where we take β = π
Æ

c
3∆ → 0 and ∆′ ≈∆.

12



SciPost Phys. 8, 088 (2020)

The functionsφ±(∆) are reminiscent of the conformal bootstrap extremal functionals (e.g.
[43–49]): outside of a certain interval they are non-negative/non-positive and vanish at the
dimensions of physical operators.

4 A simple non-optimal bound for 2δ /∈ Z

In this section we will show that the bounds (45) in fact hold for any δ ≥ 0. They turn out to
be sub-optimal when 2δ /∈ Z in the sense that they do not minimize/maximize Òφ±(0) with the
constraints described in section 2.1. We will discuss the optimal functions for 2δ /∈ Z in the
next section. However, the optimal functions in the general case are more complicated and
we would like to start with a simpler sub-optimal bound.

First, note that it is not completely trivial to generalize (38),(39),(41),(42) to non-integer
2δ because of the sum in parenthesis. However, one can use the following trick due to Selberg
[30]. Let’s consider the upper bound. We would like to bound

θ[−δ,δ](x) =
1
2

sgn(δ+ x) +
1
2

sgn(δ− x) (51)

from above. Therefore, we can first take the function (38) and construct a function that bounds
sgn(x) as

B+(x) = lim
δ→∞
δ∈Z

�

2φ+(x −δ)− 1
�

(52)

=
2 sin2(πx)

π2

�∞
∑

k=0

1
(x − k)2

+
1
x

�

− 1≥ sgn(x) . (53)

Note that the only admissible choice (40) as δ → ∞ is λ± = 1. Now we consider a new
function φ+ that bounds θ for any δ ≥ 0

φ+(x) =
1
2

B+(δ+ x) +
1
2

B+(δ− x)≥ θ[−δ,δ](x) . (54)

Similarly, for the lower bound

B−(x) = lim
δ→∞
δ∈Z

�

2φ−(x −δ)− 1
�

(55)

=
2sin2(πx)

π2

�∞
∑

k=1

1
(x − k)2

+
1
x

�

− 1≤ sgn(x) , (56)

φ−(x) =
1
2

B−(δ+ x) +
1
2

B−(δ− x)≤ θ(−δ,δ)(x) . (57)

The functions B±(x) were first considered by Beurling [29]. One can show that the func-
tions (54), (57) give the same result (43), (44) for the zero mode Òφ±(0) and also reduce to
(38),(39),(41),(42) for 2δ ∈ Z. See appendix C for details. Thus, we have a bound for any δ

(2δ− 1)ρ0(∆)≤
∫ ∆+δ

∆−δ
d∆′ρ(∆′)≤ (2δ+ 1)ρ0(∆), δ ≥ 0 . (58)

Two comments are in order. First, the lower bound shows that in any window of size 2δ > 1
there is a non-zero number of operators, the result previously established in [25, 26]. Sec-
ond, as we take δ → 0 the upper bound becomes ρ0(∆). This implies that the maximum
degeneracy of an individual operator is at most ρ0(∆) up to additive error terms suppressed
at asymptotically large ∆. In fact, partition functions c = 4, 12,16, . . . considered in section
3.3 saturate this bound on degeneracy, see section 3.3.
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5 Extremal functions for 2δ /∈ Z

When the size of the window is not integer 2δ /∈ Z the functions (54), (57) we constructed
previously turn out not to be optimal. The optimal functions in non-integer case were found by
Littmann in [35]. In this section we describe his results and their implications for our bounds.

5.1 Generalized Poisson summation

In the integer case it was very useful, for both deriving functions φ± and proving their op-
timality, to use Poisson summation formula (26) for functions with finite Fourier support. A
generalization that is useful in non-integer case was found by Littman [35]. Suppose a con-
tinuous integrable function φ(x) has Fourier of support10 |t|< 2π. Then

2πÒφ(0) =
∑

xn

φ (xn)
π(x2

n + γ
2)

γ+π(x2
n + γ2)

, (59)

where γ > 0, r ∈ R and xn, n ∈ Z are the roots B(xn) = 0 of

B(x) = x sinπ(x + r)− γ cosπ(x + r) . (60)

In particular, if we take γ→∞ in (59), the roots become integer spaced xn = n+ r̃ and we
recover the Poisson formula (26). But (59) is true for any γ > 0, r ∈ R.11

To bound θ[−δ,δ](x) we would like ±δ to be among the nodes xn, similarly to the integer
case. This determines γ, r that we take. The analytic expressions for γ, r depend on the
fractional part {δ}= δ− [δ]

B(±δ) = 0 , (61)

⇒ 0< {δ}<
1
2

: γ= δ tan(πδ)> 0 , r = 0 , (62)

1
2
< {δ}< 1 : γ= −δ cot(πδ)> 0 , r =

1
2

. (63)

The function B(x) then takes the form

B(x) =

¨

x sin(πx)−δ tan(πδ) cos(πx) , 0< {δ}< 1
2

x cos(πx)−δ cot(πδ) sin(πx) , 1
2 < {δ}< 1 .

(64)

Similarly to (27, 28), applying (59) to φ± we find

2πÒφ+(0)≥
∑

|xn|≤δ

π(x2
n + γ

2)

γ+π(x2
n + γ2)

, (65)

2πÒφ−(0)≤
∑

|xn|<δ

π(x2
n + γ

2)

γ+π(x2
n + γ2)

. (66)

These bounds can be saturated and we construct the corresponding functions φ± next.

10Both (26) and (59) can be easily generalized to functions of support |t|< Λ by a rescaling of variables.
11Littmann’s formula (59) has a beautiful interpretation in terms of de Branges reproducing kernel Hilbert spaces

of entire function [50]. Roughly speaking, if φ(z) = f (z) f (z̄), where φ is of exponential type 2π (i.e. Fourier of
support 2π) and f is of exponential type π, then the LHS of the formula (59) can be interpreted as the norm of
f in a certain Hilbert space. And the RHS is the same norm written as an expansion over an orthonormal basis in
this Hilbert space. We prefer not to delve into details about this interpretation, as this would take us too far from
our goals. We refer the interested reader to [35].

14



SciPost Phys. 8, 088 (2020)

5.2 Extremal functions

The idea of the construction is analogous to section 3. We start with φ+. To saturate (65) we
must have

φ+(xn) = 0, |xn|> δ , (67)

φ+(xn) = 1, |xn| ≤ δ , (68)

φ′+(xn) = 0, xn 6= ±δ . (69)

The last condition on the derivative comes from the fact that φ+(x)≥ θ[−δ,δ](x), so the nodes
xn 6= ±δ must be local minimums. We take the following ansatz

φ+(x) = B(x)2
∑

|xn|≤δ

�

a(xn)
(x − xn)2

+
b(xn)
x − xn

�

. (70)

Note that by Paley-Wiener theorem the Fourier transform Òφ(t) has support |t|< 2π. The factor
B(x)2 ensures that (67, 69) are satisfied for |xn| > δ, i.e.we have 2nd order zeros outside of
the interval. A simple calculation shows that the conditions (68, 69) for |xn| ≤ δ determine
almost all a(xn), b(xn)

a(xn) =
1

B′(xn)2
=

x2
n + γ

2

[γ+π(x2
n + γ2)]2

, (71)

b(xn) = −
B′′(xn)
B′(xn)3

= −
2πxn(x2

n + γ
2)

[γ+π(x2
n + γ2)]3

, xn 6= ±δ . (72)

Now the only undetermined coefficients are b(±δ). We fix them by requiring that φ+ is inte-
grable

φ+(x)∼
1
x2

, x →∞ . (73)

The cancellation of order x , 1, 1
x terms in x →∞ expansion leads to
∑

|xn|≤δ

b(xn) = 0 , (74)

∑

|xn|≤δ

(xn b(xn) + a(xn)) = 0 , (75)

∑

|xn|≤δ

�

x2
n b(xn) + 2xna(xn)

�

= 0 . (76)

To solve these constraints, note that if xn is a root of B(x), then −xn is also a root, see (64).
Then (71, 72) imply a(xn) = a(−xn) and b(xn) = −b(−xn), xn 6= ±δ. Now the constraint
(74) requires that the same symmetry is true for xn = ±δ, i.e. b(δ) = −b(−δ). Due to
these symmetries of a(xn), b(xn) the constraint (76) is automatically satisfied. The remaining
constraint (75) determines b(δ)

b(δ) = −
δ2 + γ2

δ[γ+π(δ2 + γ2)]2
−

1
2δ

∑

|xn|<δ

(x2
n + γ

2)[γ−π(x2
n − γ

2)]

[γ+π(x2
n + γ2)]3

. (77)

The function φ−(x) is constructed in a similar manner. We require

φ−(xn) = 0, |xn| ≥ δ , (78)

φ−(xn) = 1, |xn|< δ , (79)

φ′−(xn) = 0, xn 6= ±δ , (80)
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and we find

φ−(x) = B(x)2





∑

|xn|<δ

�

a(xn)
(x − xn)2

+
b(xn)
x − xn

�

+
c(δ)
x −δ

+
c(−δ)
x +δ



 . (81)

The analysis at xn 6= ±δ is the same and therefore the coefficients a(xn), b(xn) are given by
(71, 72). Requiring φ−(x)∼

1
x2 , x →∞ leads to

c(δ) = −c(−δ) = −
1

2δ

∑

|xn|<δ

(x2
n + γ

2)[γ−π(x2
n − γ

2)]

[γ+π(x2
n + γ2)]3

. (82)

Finally, one needs to check that φ±(x) in (70, 81) indeed bound θ[−δ,δ](x) from above and
below. This was proved in [35].12

To summarize, we constructed optimal functions (70, 81) that saturate (65,66)

2πÒφ+(0) =
∑

|xn|≤δ

π(x2
n + γ

2)

γ+π(x2
n + γ2)

, (83)

2πÒφ−(0) =
∑

|xn|<δ

π(x2
n + γ

2)

γ+π(x2
n + γ2)

, (84)

where xn are roots of B(x) defined in (60) and γ, r are given by (62, 63). In general, the
nodes xn are some transcendental numbers that we can’t write down explicitly. However, the
difference Òφ+(0)− Òφ−(0) gets a contribution only from xn = ±δ and takes a simple form

2π(Òφ+(0)− Òφ−(0)) =
2

1+
�

�

�

sin(2πδ)
2πδ

�

�

�

≤ 2 . (85)

This already demonstrates that (83, 84) give better bounds than (58), where the difference
was 2.

When δ is sufficiently small, the only roots in the range |xn| ≤ δ are xn = 0,±δ and the
expressions (83, 84) take a simple form. Namely

0< 2δ < 1 : 2πÒφ+(0) =
2

1+ sin(2πδ)
2πδ

, Òφ−(0) = 0 , (86)

1< 2δ < 2 : 2πÒφ+(0) =
2

1− sin(2πδ)
2πδ

+
1

1− tan(πδ)
πδ

, (87)

2πÒφ−(0) =
1

1− tan(πδ)
πδ

. (88)

For larger δ one can find roots of (60) numerically. We plot (83,84) as functions of δ in the
figure 3.

6 Fixed spin

Now we generalize the discussion of previous sections to operators of fixed spin J . We turn on
an angular potential Ω and consider the grand canonical partition function

Z(β ,Ω) =
∑

h,h̄

e−β(h+h̄− c
12)e−iΩ(h−h̄) . (89)

12The proof of this fact in [35] was given for a much more general choice of the functions φ±(x). We expect
that it can be considerably simplified for the particular functions we study and one should be able to avoid the
subtleties of the general case, though we haven’t done it.
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Figure 3: The solid blue lines are the optimal values (83,84) of 2πÒφ±(0) as func-
tions of δ. The number of operators in a window of size 2δ is bounded by

2πÒφ−(0)ρ0(∆)≤
∫∆+δ
∆−δ d∆′ρ(∆′)≤ 2πÒφ+(0)ρ0(∆). The dashed red lines are from

the bounds (58), which are optimal only for 2δ ∈ Z. The blue and red lines touch
when 2δ ∈ Z.

The dimension∆ and spin J are given by h+ h̄ and |h− h̄| ∈ Z respectively. The main technical
difference with the previous discussion will be the double sum over h, h̄ instead of a single sum
over ∆. This will lead to a different splitting to light and heavy operators and to a different
value Λ of the support of Òφ±(t).

First, we project onto operators of fixed spin J

ZJ (β) =

∫ π

−π

dΩ
2π

�

eiΩJ + e−iΩJ

1+δJ ,0

�

Z(β ,Ω) =

∫ ∞

0

d∆ ρJ (∆)e
−β(∆−c/12) . (90)

Our goal is to derive bounds for the density of states ρJ (∆) at large ∆ and fixed spin J . The
analog of (13) is

eβ(∆−δ−c/12)

∫ ∞

−∞
d t ZJ (β + i t)bf−(t)e

−i tc/12 ≤
∫ ∆+δ

∆−δ
d∆′ρJ (∆

′) (91)

≤ eβ(∆+δ−c/12)

∫ ∞

−∞
d t ZJ (β + i t)bf+(t)e

−i tc/12 ,

where f±(x) are functions that bound θ[−δ,δ](x) from above/below and have Fourier bf±(t)
of support |t| < Λ. We changed notation for these functions to distinguish from the previous
sections. To use (91) we would like to estimate the integrals

∫ Λ

−Λ
d t

∫ π

−π

dΩ
2π

cos(ΩJ)Z(β + i t,Ω)bf±(t)e
−i tc/12 . (92)
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To do that we go to the dual channel τ→−1/τ, τ̄→−1/τ̄

τ=
1

2π
(i(β + i t) +Ω) , τ̄=

1
2π
(−i(β + i t) +Ω) , (93)

−
1
τ
=

1
2π

�

i
4π2β

β2 + (Ω− t)2
−

4π2(Ω− t)
β2 + (Ω− t)2

�

, (94)

−
1
τ̄
=

1
2π

�

−i
4π2β

β2 + (Ω+ t)2
−

4π2(Ω+ t)
β2 + (Ω+ t)2

�

. (95)

and split into light and heavy operators
∫ Λ

−Λ
d t

∫ π

−π

dΩ
2π

cos(ΩJ)
�

Z ′L(β + i t,Ω) + Z ′H(β + i t,Ω)
�

bf±(t)e
−i tc/12 , (96)

where primes denote the dual channel (94), (95). Light (L) and heavy (H) operators are
defined by13

Light: h<
c

24
and h̄<

c
24

, (97)

Heavy: h≥
c

24
or h̄≥

c
24

. (98)

The convenience of this splitting is that there are only finite number of light operators and
thus the first term in (96) will be dominated by the vacuum in the limit β → 0.

In the light sector the integral is dominated by t = 0 and Ω = 0. Using saddle-point
approximation we have
∫ Λ

−Λ
d t

∫ π

−π

dΩ
2π

cos(ΩJ)Z ′L (β + i t,Ω) bf±(t)e
−i tc/12

'
∫ Λ

−Λ
d t

∫ π

−π

dΩ
2π

cos(ΩJ)exp

�

4π2(β + i t)
(β + i t)2 +Ω2

c
12

�

bf±(t)e
−i tc/12

'
3

2π2c
bf±(0) β

3e
4π2
β

c
12 + . . . .

(99)

For the heavy part, dropping the phases, i.e. retaining only the first term in each of (94),
(95), we can estimate

�

�

�Z ′H(β + i t,Ω)
�

�

�≤
∑

h,h̄
max(h,h̄)≥c/24

exp

�

−
4π2β

β2 + (Ω− t)2
(h− c/24)−

4π2β

β2 + (Ω+ t)2
(h̄− c/24)

�

.

(100)

First, we estimate as follows

�

�

�Z ′H(β + i t,Ω)
�

�

�≤ e
4π2
β

c
24

∑

h≥h̄
h≥c/24

exp

�

−
4π2β

β2 + (Ω− t)2
(h− c/24)−

4π2β

β2 + (Ω+ t)2
h̄

�

+ e
4π2
β

c
24

∑

h<h̄
h̄≥c/24

exp

�

−
4π2β

β2 + (Ω− t)2
h−

4π2β

β2 + (Ω+ t)2
(h̄− c/24)

�

. (101)

Here the expressions in the exponentials under the sums are always positive. Therefore, the
integrals over t,Ω are dominated by the regions, where the effective inverse temperatures

13Note that our definition of heavy/light operators is different from [31].
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β± =
4π2β

β2+(Ω±t)2 are the smallest. In particular, as we will verify below, there are such Ω, t, that
β±→ 0. In this case we estimate (101) by the vacuum in the S-dual channel

�

�

�Z ′H(β + i t,Ω)
�

�

�® exp

�

4π2

β

c
24
+
(Ω− t)2

β

c
24
+
(Ω+ t)2

β

c
24

�

. (102)

Using this estimate we have

�

�

�

�

∫ Λ

−Λ
d t

∫ π

−π

dΩ
2π

cos(ΩJ)Z ′H(β + i t,Ω)bf±(t)e
−i tc/12

�

�

�

�

® e
4π2
β

c
24

∫ Λ

−Λ
d t

∫ π

−π

dΩ
2π

exp

�

Ω2 + t2

β

c
12

�

bf±(t)

∼ β3 exp

�

4π2

β

c
24
+
π2 +Λ2

β

c
12

�

,

(103)

where we also used that bf±(t) ∼ Λ ∓ t is vanishing near the end of the support ±Λ. The
integrals were computed by expanding near t = ±Λ,Ω= ±π.

Collecting the results we have, for example, for the upper bound

∫ ∆+δ

∆−δ
d∆′ρJ (∆

′)≤
1

1+δJ ,0

3
π2c
bf+(0) β

3eβ∆+
4π2
β

c
12 +O
�

β3eβ∆+
3π2+Λ2
β

c
12

�

. (104)

For heavy operators to be suppressed in β → 0 limit, we set Λ = π− β1/4. Note, that for this
Λ and Ω = π, t = Λ the effective inverse temperatures in (101) are small β± → 0. Namely,

4π2β
β2+(π−Λ)2 ∼
p

β → 0. So that the approximation (102) is justified.14 Similar comments apply
to the lower bound.

As before, we set β = π
p

c/3∆. In the ∆→∞ limit, we obtain bounds

πbf−(0)ρ
0
J (∆)≤
∫ ∆+δ

∆−δ
d∆′ρJ (∆

′)≤ πbf+(0)ρ0
J (∆) , (105)

where ρ0
J (∆) is given by

ρ0
J (∆)≡

2
1+δJ ,0

s

c
12∆3

exp

�

2π

√

√ c∆
3

�

. (106)

Now we turn our attention to finding optimal bf±(0). The results obtained in the previous
sections are almost readily applicable upon proper scaling. We go through the generalized
version of the salient equations appearing in § 3, 4, 5 below. The only difference is that
we need functions with Fourier of support Λ = π − β1/4 instead of 2π. This is achieved by
considering

f±(x) = φ±

�

Λ

2π
x
�

�

�

�

�

δ→ Λ
2πδ

, (107)

bf±(t) =
2π
Λ
Òφ±

�

2π
Λ

t
�

�

�

�

�

δ→ Λ
2πδ

, (108)

14More generally, we could takeΛ= π−βα, 0< α < 1/2. Heavy operators are suppressed and the approximation
(102) is justified for this choice.
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where φ±(x) are functions with Fourier of support 2π considered in § 3, 4, 5. The rescaling
of δ is needed so that f±(x) bound θ[−δ,δ](x) from above/below.

• Beurling-Selberg § 3, 4 : Taking functions (54),(57) that satisfy (43),(44) and setting
Λ= π in (108) we obtain

πbf±(0) = δ± 1 . (109)

Therefore, the bounds (105) become

(δ− 1)ρ0
J (∆)≤
∫ ∆+δ

∆−δ
d∆′ρJ (∆

′)≤ (δ+ 1)ρ0
J (∆) . (110)

When 2δ · Λ2π = δ ∈ Z, these bounds are optimal among those that can be obtained with
bandlimited functions f±. They are saturated if the spacing between operators of spin J is
∆n+1 −∆n = 2. We can construct such examples from the partition functions considered in §
3.3. We consider the partition functions (50) as cL = 8k chiral partition functions. We tensor
each of them with their anti-chiral copies to obtain a partition function with cL = cR = 8k.
These have integer spaced spectrum h, h̄ ∈ Z. For a fixed J = |h − h̄|, the spacing between
operators ∆ = J + 2min(h, h̄) is 2 and the asymptotic degeneracy is exactly given by ρ0

J (∆),
hence these partition functions saturate the bound. The factors δ±1 come from counting how
many numbers spaced by 2 can be fit in the interval of length 2δ ∈ 2Z.

A few simple consequences of (110) are:

1. The lower bound implies that in any window of size 2δ > 2 there is a non-zero number
of operators of given spin J . This is again not impressive if the theory has Virasoro sym-
metry. However, the analysis can be easily generalized to counting Virasoro primaries
for c > 1 with the same result.

2. The upper bound, in the δ → 0 limit, implies that the maximum degeneracy of an
individual operator with dimension ∆ and spin J is ρ0

J (∆).

3. In any unitary 2d CFT operators of all spins J ∈ Z must be present. Again, this is
trivial if Virasoro symmetry is present. However, the analysis can be easily generalized
to counting Virasoro primaries for c > 1 with the same result.

• Littmann § 5: When δ /∈ Z the bounds (110) are not optimal. The optimal bounds are
obtained from the functions (70), (81). Taking the equations (83), (84) and setting Λ = π in
(108), we get for the zero modes

πbf+(0) =
∑

|xn|≤δ

π(
x2

n
4 + γ̂

2)

γ̂+π(
x2

n
4 + γ̂2)

, (111)

πbf−(0) =
∑

|xn|<δ

π(
x2

n
4 + γ̂

2)

γ̂+π(
x2

n
4 + γ̂2)

, (112)

where xn are solutions of the equation

x
2

sinπ
� x

2
+ r
�

− γ̂ cosπ
� x

2
+ r
�

= 0 , (113)
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and γ̂, r are defined by

0< {δ/2}<
1
2

: γ̂=
δ

2
tan
�

πδ

2

�

> 0 , r = 0 , (114)

1
2
< {δ/2}< 1 : γ̂= −

δ

2
cot
�

πδ

2

�

> 0 , r =
1
2

. (115)

7 Virasoro primaries

Now we generalize to counting Virasoro primaries in c > 1 theories. The discussion here is
essentially a refinement of the section 6 in [25] and similar to the section 2 of the present
work, so we just highlight some key equations that have new features.

First, we consider bounds on the number of Virasoro primaries of all spins. The reduced
partition function with zero angular potential (τ= i β2π)

z(β) = |η(τ)|2Z(β) = eβ
c−1
12

�

(1− e−β )2 +
∑

∆>0

e−β∆
�

(116)

is S-covariant

z(β) =
2π
β

z

�

4π2

β

�

. (117)

There are two new features here in comparison with section 2. First, there is a negative term
in the RHS of (116) originating from the null states in the Virasoro vacuum module. Second,
there is a power prefactor 2π

β in (117). We will show that these changes do not significantly
alter the results. The negative term in (116) is not important because we are interested only
in the tails of the sum. The role of the extra prefactor in (117) will be to change the definition
of ρ0(∆).

It is convenient to make the following definitions

z(β) = zvac(β) + zexci ted(β) , (118)

zvac(β) = eβ
C
12 (1− e−β )2 , (119)

zexci ted(β) =

∫ ∞

0

d∆′ ρVir(∆′)e−β(∆
′−C/12) , (120)

where C = c−1 and ρVir(∆′) is the density of Virasoro primaries excluding the vacuum. Since
ρVir is positive definite, we can use it in the arguments of the section 2 that led to bounds (13)
and obtain

eβ(∆−δ−C/12)

∫ Λ

−Λ
d t zexci ted(β + i t)Òφ−(t)e

−i tC/12 ≤
∫ ∆+δ

∆−δ
d∆′ρVir(∆′) (121)

≤ eβ(∆+δ−C/12)

∫ Λ

−Λ
d t zexci ted(β + i t)Òφ+(t)e

−i tC/12 .

Now we take the limit ∆→∞,β → 0. The integrals in the LHS and RHS of (121) get large

contributions of order e
4π
β

C
12 from the region near t = 0. Therefore, we can add zvac(β + i t),

that never becomes exponentially large in the integration region |t|< Λ, under the t-integrals
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without changing the asymptotic behavior of the bounds. The net effect is to substitute
zexci ted(β + i t) by z(β + i t) in (121)

eβ(∆−δ−C/12)

∫ Λ

−Λ
d t z(β + i t)Òφ−(t)e

−i tC/12 ≤
∫ ∆+δ

∆−δ
d∆′ρVir(∆′) (122)

≤ eβ(∆+δ−C/12)

∫ Λ

−Λ
d t z(β + i t)Òφ+(t)e

−i tC/12 .

Then, following the argument in section 2, we S-dualize and split into light and heavy operators

z(β + i t) =
2π
β + i t

zL

�

4π2

β + i t

�

+
2π
β + i t

zH

�

4π2

β + i t

�

, (123)

where

zL(β) = zvac(β) +
∑

0<∆<C/12

e−β(∆−C/12) , zH(β) =
∑

∆≥C/12

e−β(∆−C/12) . (124)

For light operators zL the t-integral is dominated by t = 0 and, in comparison with (19), the
first term in the RHS of (123) contirubutes an extra factor 2π

β+i t →
2π
β . For heavy operators the

t-integral is dominated by t = Λ and we have an estimate
�

�

�

�

zH

�

4π2

β + i t

��

�

�

�

≤ zH

�

4π2β

β2 + t2

�

∼
t2

β
e

t2
β

C
12 . (125)

Near t ∼ Λ this leads to an extra factor of 1
β . Therefore, we have for the upper bound

∫ ∆+δ

∆−δ
d∆′ρVir(∆′)≤

2π
β
×

√

√ 3
πc
β3/2eβ∆+

4π2
β

c
12 Òφ+(0) +O
�

1
β
× β2eβ∆+

Λ2
β

c
12

�

. (126)

Both terms in the RHS get extra factors proportional to 1
β in comparison with (20). This shows

that we can again choose Λ= 2π and drop the second term in the RHS of (126) corresponding
to heavy operators. Similar statements apply to the lower bound.

Finally, also optimizing over β , we have a generalization of (21) to Virasoro primaries at
asymptotically large ∆

2πÒφ−(0)ρ
Vir
0 (∆)≤
∫ ∆+δ

∆−δ
d∆′ρVir(∆′)≤ 2πÒφ+(0)ρ

Vir
0 (∆) , (127)

ρ0(∆) =
�

3
(c − 1)∆

�1/4

exp

�

2π

√

√ (c − 1)∆
3

�

. (128)

The functions Òφ±(t) with support |t| < Λ = 2π are chosen as described in sections 3 - 5 and
summarized in the figure 3. The net change in comparison with (21) is to shift c→ c − 1 and

multiply ρ0(∆) by 2π
β with β = π
q

c−1
3∆ .

Similarly, one can repeat the arguments for fixed spin operators in section 6. The change

is again to shift c → c − 1 and multiply ρ0
J (∆) by 2π

β with β = π
q

c−1
3∆ . Therefore, instead of

(105), for Virasoro primaries of fixed spin J we have

πbf−(0)ρ
0,Vir
J (∆)≤
∫ ∆+δ

∆−δ
d∆′ρVir

J (∆
′)≤ πbf+(0)ρ

0,Vir
J (∆) , (129)

ρ
0,Vir
J (∆) =

�

2
1+δJ ,0

�

1
∆

exp

�

2π

√

√ (c − 1)∆
3

�

. (130)

The functions bf±(t) supported on |t| < π can be chosen as described in section 6 with zero
modes given either by (109) or (111), (112).
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A Majorization and Minorization by φ±

In this appendix, we show that φ±(x) majorize and minorize the indicator function of the
interval [−δ,δ] for 2δ ∈ Z+, given the inequality (40) is satisfied.
In order to treatδ ∈ Z andδ ∈ Z+1

2 cases simultaneously, we define functions F±(y) = φ±(y−δ)

F+(y) =
sin2(πy)
π2

� 2δ
∑

n=0

1
(y − n)2

+
λ+
y
+

λ+
2δ− y

�

,

F−(y) =
sin2(πy)
π2

�2δ−1
∑

n=1

1
(y − n)2

+
λ−
y
+

λ−
2δ− y

�

.

(131)

We want to show that if the inequalities (40) are satisfied, we have

F−(y)≤ θ[0,2δ] ≤ F+(y) .

We will be explicitly doing the analysis for F−(y) below. The analysis for F+(y) is similar.
There are two regions of interest. For y ∈ (0, 2δ), we want F−(y)−1≤ 0 and for y /∈ (0,2δ),
we want F−(y)≤ 0. We will see that requiring the former gives the upper bound on λ−, while
requiring the latter provides us with the lower bound on λ−.

• y ∈ (0,2δ): Using the identity

1=
sin2(πy)
π2

∞
∑

n=−∞

�

1
y − n

�2

,

we have

F−(y)− 1=
sin2(πy)
π2

�

−
∞
∑

n=0

�

1
(y + n)2

+
1

(2δ+ n− y)2

�

+
λ−
y
+

λ−
2δ− y

�

. (132)

Thus, we require

λ− ≤
y(2δ− y)

2δ

∞
∑

n=0

�

1
(y + n)2

+
1

(2δ+ n− y)2

�

for y ∈ (0,2δ) ,

⇔ λ− ≤ Min
y∈(0,2δ)

�

y(2δ− y)
2δ

∞
∑

n=0

�

1
(y + n)2

+
1

(2δ+ n− y)2

�

�

.

(133)

The quantity in the brackets is minimized for y = δ, as we will show below. Therefore

λ− ≤ δ
∞
∑

n=0

1
(δ+ n)2

= δψ1(δ) . (134)

Finally, to show that the RHS of (133) is indeed minimized for y = δ, following [30], we
argue as follows. We wish to show that for y ∈ (0, 2δ)
�

y(2δ− y)
2δ

∞
∑

n=0

�

1
(y + n)2

+
1

(2δ+ n− y)2

�

�

−δ
∞
∑

n=0

1
(δ+ n)2

≥ 0 .
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We multiply the L.H.S by 2δ and write it as

L ≡ y(2δ− y)
∞
∑

n=0

g(n)

︸ ︷︷ ︸

Term I

−2(y −δ)2
∞
∑

n=0

1
(δ+ n)2

︸ ︷︷ ︸

Term I I

,

where

g(n)≡
�

1
(y + n)2

+
1

(2δ+ n− y)2
−

2
(δ+ n)2

�

.

Now the idea is to put a lower bound on term I and an upper bound on term I I , such that
the lower bound on term I is still bigger than the upper bound on term I I , resulting in L ≥ 0,
which we want to prove.

? Term I : Since the function g has positive second derivative, the trapezoidal rule always
overestimates the integral below and we have

g(n) + g(n+ 1)
2

≥
∫ n+1

n
dx g(x) , (135)

which, upon summing over n, gives us

∞
∑

n=0

g(n)≥
1
2

g(0) +

∫ ∞

0

dx g(x) . (136)

? Term I I : We note that
∞
∑

n=0

1
(δ+ n)2

=
1
δ2
+
∞
∑

n=1

1
(δ+ n)2

≤
1
δ2
+

∫ ∞

1/2

dx g(x) =
1
δ2
+

2
2δ+ 1

, (137)

where we have used the Jensen’s inequality g(k)≤
∫ k+1/2

k−1/2 dn g(n) as g is a positive, decreas-
ing function of n with positive second derivative.

? Term I+ Term I I : Combining eq. (136) and eq. (137), we have for y ∈ (0, 2δ)

L ≥
y(2δ− y)

2
g(0)−

2(y −δ)2

δ2
+ y(2δ− y)

∫ ∞

0

dx g(x)−
4(y −δ)2

2δ+ 1

=
(y −δ)2
�

δ2 + (y −δ)2
�

δ2 y(2δ− y)
+

2(y −δ)2

δ(2δ+ 1)
≥ 0 .

(138)

• y /∈ (0, 2δ): By construction we have F−(0) = F−(2δ) = 0. Thus we need to consider
y /∈ [0, 2δ]. Since F−(y) is symmetric around δ, considering the function for y < 0 suffices.
By symmetry, it is related to y > 2δ. Let us focus on y < 0 and use the variable w = −y . We
want to show that

λ− ≥ 1−
1

2δ
⇒

2δ−1
∑

n=1

1
(n+w)2

−
2δλ−

w(2δ+w)
≤ 0 for w> 0 .

To prove this, we first note that

1
(n+w)2

≤
n

w(n+ 1+w)
−

n− 1
w(n+w)

for w> 0, n≥ 1

⇒
2δ−1
∑

n=1

1
(n+w)2

≤
2δ− 1

w(2δ+w)
.

(139)
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Thus, we have

2δ−1
∑

n=1

1
(n+w)2

−
2δλ−

w(2δ+w)
≤

2δ−1
∑

n=1

1
(n+w)2

−
2δ− 1

w(2δ+w)
≤ 0 . (140)

We also remark that if F−(y) ≤ 0 for y /∈ [0,2δ], we can consider y2F−(y) and take
y →∞ limit to deduce λ− ≥ 1− 1

2δ . Thus the inequality implies and is implied by F−(y)≤ 0
for y /∈ [0, 2δ].

B Degeneracy of states for integer spaced spectra

In this section we use Ingham’s theorem [3, 25, 41] to derive an asymptotic formula for the
degeneracy of states dk in CFTs with integer spectra∆k = k ∈ Z. We assume that degeneracies
of operators are non-decreasing dk+1 ≥ dk and consider a modular invariant partition function

Z(β) = e
β c
12

∞
∑

k=0

dke−βk . (141)

Let us introduce an auxiliary function [41]

F(β) = (1− e−β )Z(β) = e
β c
12

∞
∑

k=0

(dk − dk−1) e
−βk ,

where by definition d−1 = 0. In the β → 0 limit we have

F(β) '
β→0

βe
π2c
3β .

The Ingham’s theorem [3,25,41] implies that

dN =
N
∑

k=0

(dk − dk−1) 'N→∞
ρ0(N) , (142)

where ρ0 is defined in eq. (22).
To apply (142) to partition functions considered in § 3.3 we need to check that dk+1 ≥ dk

is satisfied. First, it’s easy to check the following statement. Consider two series expansions,
one with non-decreasing and one with non-negative degeneracies

A(q) =
∞
∑

n=0

anqn, an+1 ≥ an ≥ 0 , (143)

B(q) =
∞
∑

n=0

bnqn, bn ≥ 0 . (144)

Then the product AB gives rise to non-decreasing degeneracies cN

A(q)B(q) =
∞
∑

N=0

cN qN , (145)

cN =
N
∑

n=0

aN−n bn . (146)
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Indeed, one simply compares term by term

cN+1 =
N+1
∑

n=0

aN+1−n bn ≥
N
∑

n=0

aN−n bn = cN . (147)

Now let’s show that j(τ)1/3 has non-decreasing expansion coefficients. We recall that

j(τ)1/3 =
1+ 240
∑

nσ3(n)qn

η(τ)8
, q = e2πiτ .

Since 1
η(τ) has non-decreasing expansion coefficients, by the general statement above j(τ)1/3

gives rise to non-decreasing degeneracies dk+1 ≥ dk. Similarly, any integer power of j(τ)1/3

satisfies dk+1 ≥ dk.

C Zero mode of Beurling-Selberg function

The computation in this section is from [30]. We recall

B±(x) =
sin2(πx)
π2

�

2
x
±

1
x2
+
∞
∑

k=1

�

1
(x − k)2

−
1

(x + k)2

�

�

. (148)

We wish to show that
∫ ∞

−∞
dx
�

1
2

B±(δ+ x) +
1
2

B±(δ− x)
�

= (2δ± 1) . (149)

Equivalently

1
2

∫ ∞

−∞
dx
�

B±(δ+ x)− sign(δ+ x) + B±(δ− x)− sign(δ− x)
�

= ±1 . (150)

First note that
∫ ∞

−∞
dx
�

B±(x)− sign(x)
�

is finite .

This follows from

1=
sin2(πx)
π2

∑

k∈Z

1
(x − k)2

(151)

and

B+(x)− sgn(x) =
sin2(πx)
π2

�

2
x
− 2ψ1(1+ x)
�

∼
|x |→∞

sin2(πx)
π2 x2

,

B−(x)− sgn(x) =
sin2(πx)
π2

�

2
x
− 2ψ1(x)
�

∼
|x |→∞

−
sin2(πx)
π2 x2

.

(152)

Now, by shifting x , we have

1
2

∫ ∞

−∞
dx
�

B±(δ+ x)− sign(δ+ x) + B±(δ− x)− sign(δ− x)
�

(153)

=
1
2

∫ ∞

−∞
dx
�

B±(x)− sign(x) + B±(−x)− sign(−x)
�

(154)

=
1
2

∫ ∞

−∞
dx
�

B±(x) + B±(−x)
�

= ±
∫ ∞

−∞
dx

sin2(πx)
(πx)2

= ±1 . (155)
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[46] T. Hartman, D. Mazáč and L. Rastelli, Sphere packing and quantum gravity, J. High Energ.
Phys. 12, 048 (2019), doi:10.1007/JHEP12(2019)048.

[47] M. F. Paulos, Analytic functional bootstrap for CFTs in d > 1, J. High Energ. Phys. 04, 093
(2020), doi:10.1007/JHEP04(2020)093.

[48] D. Carmi and S. Caron-Huot, A conformal dispersion relation: Correlations from absorption
(2019), arXiv:1910.12123.
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