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Abstract

We consider previously derived upper and lower bounds on the number of operators in
a window of scaling dimensions [A — 6, A + 6] at asymptotically large A in 2d unitary
modular invariant CFTs. These bounds depend on a choice of functions that majorize
and minorize the characteristic function of the interval [A — &, A + 6] and have Fourier
transforms of finite support. The optimization of the bounds over this choice turns out to
be exactly the Beurling-Selberg extremization problem, widely known in analytic number
theory. We review solutions of this problem and present the corresponding bounds on the
number of operators for any 6 > 0. When 26 € Z5, the bounds are saturated by known
partition functions with integer-spaced spectra. Similar results apply to operators of
fixed spin and Virasoro primaries in ¢ > 1 theories.
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1 Introduction

Crossing equations in Conformal Field Theories (CFT) form a system of infinite number of
equations on an infinite number of unknowns: the spectrum and OPE coefficients. Arguably,
the simplest way of extracting constraints on conformal data from crossing equations, is to
take an (euclidean) OPE limit in one of the channels, call it t-channel. In this limit t-channel
is typically dominated by the vacuum or another light state. Next, one finds a density of
high-energy states or OPE coefficients in another channel, call it s-channel, that reproduces
the vacuum contribution in the t-channel in the OPE limit. This density is sometimes called
a “crossing kernel”. Many examples of this type for various crossing equations have been
discussed in the literature [1-13].

This approximation, when we keep only the lightest state in the t-channel, is extremely
useful for obtaining certain coarse-grained features of the high-energy spectrum. Prominently,
thermodynamic behavior of high-energy states and aspects of classical geometry of a gravity
dual [14] can be understood in this way.

On the other hand, many interesting fine-grained features of the high-energy spectrum
are not captured in this approximation. One very basic and important example is discreteness
of energy eigenstates. The coarse-grained approximation discussed above typically predicts
a continuous spectrum. This is akin to a version of the information paradox in AdS [15]
and related to the late-time behavior of correlators [16-19] and the spectral form-factor [20,
21]. Another important example is the Random Matrix Theory (RMT) behavior of energy
eigenstates. Just like coarse-grained thermality, RMT is expected to possess a certain degree
of universality. One expects that it holds in a broad class of “chaotic” theories. A natural
conjecture is that in any CFT without conserved currents except for the stress tensor, the energy
eigenstates at asymptotically high energies obey RMT statistics.

In an attempt to derive universal fine-grained features of CFT spectra, such as RMT, one
might imagine a two-step strategy. First, we need to understand why the coarse-grained ap-
proximation is not enough and quantify its limitations. Second, we would like to make extra
assumptions (e.g. absence of conserved currents) that restrict us to chaotic theories. One
might expect that these assumptions lift the limitations of the coarse-grained approximation
and allow us to probe fine-grained features of the spectrum.

Partial progress on the step one has been made in [22-28]. The goal of the present work is
to report on further progress in this direction. We do not have anything to say about the step
two at this time.

In this paper we consider unitary 2d CFTs with a modular invariant partition function
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At high temperatures it has an asymptotic behavior
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From this one would like to derive the Cardy formula
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If we kept only the first term in parentheses, i.e. the vacuum contribution, we would indeed
get Cardy growth (4) !. However, the vacuum contribution dominates only for |[Im(8)| < 1,
while for |Im(f3)| Z 1 we lose control over the integrand. In the latter region contributions of
all operators in (6) become of O(1). Naively, one would like to argue that in the limit A — 0o
only the region |[Im(3)| S 1/A gives a significant contribution. Such intuition is usually based
on Riemann-Lebesgue lemma. In this case it is not applicable because the function Z(e + it)
is not integrable.?

In a theory with discrete spectrum the density of states p(A) is a sum of delta-functions
and, therefore, we expect the integral (5) to be very sensitive to the precise value of A even
at large A: it’s either zero or infinite. To compute this fine-grained density one would need to
know much more than just the vacuum operator.

Of course, what is really meant by (4) is the coarse-grained density, i.e. the density of
states averaged over a small window around A. One may consider different ways to average,

for example
A+ cA
J dA'p(A) ~ #exp| 2n\| — |, A—o00. @)
A-§ 3

The question then remains: how does one derive (7)? This was explained in [25], where a
formula analogous to (5) was derived for the averaged density of states, but with an insertion
of certain kernels ai(t). The role of ai(t) is to cutoff the troubling region t — oo, where
one loses control over the integrand. This effectively localizes the integral to the region of
sufficiently small t, where the integral is controlled by the vacuum contribution. The price to
pay for this modification is that instead of equality we get upper/lower bounds (hence “+” in
ai(t)) on the averaged density of states. This will be reviewed in section 2.

It was shown in [25] that a simple sufficient choice of a)\i(t) is to require that they have
finite support |t| < 27t. In this paper we find the optimal functions ai(t) of this type. The

1Up to a controllable divergence that gives a delta-function.

2This is clear, for example, from the fact that there are recurrences. In particular, in theories with integer-spaced
spectra, that we will discuss, the recurrences are perfect and Z(e + it) has an infinite number of peaks, where it
takes the same value as at t = 0.
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problem boils down to finding functions ¢, (x) that majorize/minorize a characteristic func-
tion of an interval 6_s 51(x) and minimize L' norm ||¢. — 6_5 51|| with a constraint that

Fourier transformations ai(t) have finite support |t| < 2m. This turns out to be a classic
Beurling-Selberg problem [29,30], widely known in analytic number theory.
In particular, this allows us to derive a simple bound

A+6
(26 —1)po(A) < f dA'p(A") < (26 +1)po(A), 6=20,A—>o00, €))
A-5
where p, is defined in (22). The bounds (8) need some clarification. By the limit A — oo
we mean that both upper and lower bounds have corrections that can be either positive or
negative, but suppressed in A. More rigorously, the bounds take the form?®

N A N A
25 —1 < liminf 2=02) i gy L()§25+1, 9)
A—oo po(A) T amee  po(A)
where we defined the number of states in the interval
A+S
Ns(A) = J dA'p(A) . (10)
A—S

In (9) we were also careful to write & +0, indicating whether we include on exclude the states
at the edges A £ 6. The origin of this will be discussed in section 2. One can think of N5(A)
as a “staircase” function oscillating around its average value. Therefore, the appearance of
lim sup and liminf instead of lim is natural in (9).

Throughout the paper we will mostly write the bounds in the form (8) for brevity, but one
should keep in mind that the rigorous form that is implied is given by (9).

It turns out that the bounds (8) are optimal, among those obtained from bandlimited
functions ¢.(x), only when 26 € Z. In this case they are also saturated by ¢ = 4k, k € Z-,
partition functions with integer spaced spectra, for example, Klein’s j-invariant. We derive
these results for 26 € Z in section (3). In section 4 we derive (8) for any 6 > 0. The optimal
bounds for 26 ¢ Z are derived in section 5.

Note the following two simple consequences of (8). The lower bound implies that:

1)In any window of size 26 > 1 at asymptotically high energies there is non-zero number of
operators.

This result was previously established in [25,26]. If we have Virasoro symmetry this is trivial

due to descendants.* But the whole analysis can be repeated almost verbatim for Virasoro

primaries (when ¢ > 1) and the result remains essentailly the same, as we show in section 7.
The upper bound in the limit 6 — 0 becomes py(A). Therefore:

2)The maximum degeneracy of an individual operator with dimension A is py(A) up to ad-
ditive corrections suppressed at asymptotically high energies.

This is again saturated by partition functions with integer-spaced spectra for ¢ = 4k, k € Z~q,
as we will discuss in section 3.3.

We generalize our results to operators of fixed spin in section 6 and Virasoro primaries
with arbitrary or fixed spin in ¢ > 1 theories in section 7.

*Recall the definition limsup, _, o, f (x) = lim,_,, sup,.., f (x) and similarly for liminf.
“Note, however, that all we require for (8) to be true is (1). Therefore, we need only scaling symmetry and not
full conformal symmetry.
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The main results of this paper are the upper and lower bounds (8), (21), (83), (84), and
similar formulas for fixed spin operators (105), (110), (111), (112). These bounds are opti-
mal among those that can be obtained using bandlimited functions ¢ (x). We do not know
whether the bounds can be saturated for central charges ¢ # 4k, k € Z- o or for 26 ¢ Z. Similar
results apply to Virasoro primaries (127), (129).

2 Review

In this section we review the setup of [25] and make a few additional comments. We start
with defining two continuous integrable functions ¢, (A’) that bound the indicator function
ofaninterval A—6 < A’ <A+6

¢_(A) < Oa—s5,0+5)(A) < Oa—s a451(A) < 9 (A") . (11)

Here we have been careful with the ends of the interval. The function 655 r+s) vanishes at
the ends, while 6;5_5 r+5] at the ends is 1. Since the functions ¢, are continuous, we can
think of ¢, as a bound from above where we include the edges, while ¢_ is a bound from
below where we do not include the edges, see the figure® 1. This will be important later, when
we check optimality of our bounds. It will correspond to whether we include or not the states
at the edges. Until then we will not distinguish the two 6’s for the sake of brevity.

¢, (x)

———

$_(x)

]

X
-4 -3 <2 -1 1 2 3 4
Figure 1: Functions ¢, (x) majorising and minorising the indicator function of the
interval [—2, 2].

A/
6eA:|:5 A

Multiplying (11) by exponential factors and integrating with the density of states

>We are being somewhat cavalier about the argument of the functions ¢.. We use both ¢, (A’) and ¢, (x) with
x = A’ — A interchangeably.

6We can do this because for |A’ — A| < & we have e2 72" <1 < e2*52" and for |A’ — A| > & the inequality
(11) takes the form ¢_(A’) <0 < ¢, (A’), so we can multiply by positive factors e2+0-2",



Scil SciPost Phys. 8, 088 (2020)

p(A”) we find

oo
eﬁ(A—(S)J dA/ p(A/)e_ﬂA/(l)_(A/)

—0Q

A+6
< f dA'p(A") < (12)
A—6

eﬂ(A-ﬁ-é)J dA/ p(A/)e_ﬂA/¢+(A/) .

—0Q0

Taking the Fourier transform of ¢, one finds the bounds on the number of states [25]

co
e[o’(A—é—c/lZ)J dt Z(ﬁ+it)$_(t)e_itc/12

—0Q

A+6
< f dA'p(A) < (13)
A—6

oo
e/j(A+6—c/12)f dt Z(ﬂ _+_it)$+(t)e—itc/12 ,

—0Q

where q/b\i(t) is the Fourier transform of ¢, (A’)

P.(A) = J dt e (1) . (14)

The integrals in (13) are reminiscent of the inverse Laplace transform (5) in the sense that we
integrate the partition function over imaginary inverse temperatures. However, in comparison
wtih (5), here we have much more control over the integrand. In particular, we can choose
the functions ¢.(A’) in such a way that the region t 2 1, where we lose control over the
integrand, does not contribute. This leads us to consider ¢, (A”) such that their Fourier $i(t)
have finite support [t| < A. Functions of this type are called bandlimited functions.

We would like to bound the number of states in (13) at large A. In this case we imagine
f to be small. Later we will see that to optimize the bounds 8 should be related to A by the
standard thermodynamic relation.

The quantity |Z(B +it)|? is called the spectral form-factor [20,21]. Its typical behavior is
that it is large at t = 0 and decays exponentially at small times t due to oscillating phases.
Early times are controlled by the vacuum in the dual channel [21]. For a large enough t = ¢,
phases can come into sync again and a recurrence happens, when the form-factor is again
large. See figure 2. The recurrence time and the value of the form-factor at the recurrence
time depend on the particular theory we study. Therefore, we expect that the integrand in
(13) is controlled by the vacuum in the dual channel only for t < t,... This suggests that we
should take A < t,.-

For partition functions with integer-spaced spectra, such as Klein’s j-invariant, the recur-
rence time is t,,. = 27. In fact, as was shown in [25] and will be reviewed below, in any
2d CFT for A < 27 the integrals in (13) are dominated by the vacuum in the S-dual channel.
Therefore, t,.,. = 27 is the shortest recurrence time among modular invariant partition func-
tions.

Using modular invariance and splitting the partition function into light (below ¢/12) and
heavy (above c/12) operators, we find the upper bound in the limit A — oo, 8 — 0 (lower
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Figure 2: Spectral formfactor in 2d Ising (8 = 1). It represents a typical behavior:
it is large at early times and the initial decay is controlled by the vacuum in the S-
dual channel. After a certain time a recurrence, generically only partial, happens. In
chaotic theories the recurrence time is typically very long.

bound is similar)

A+0 A 47-[2 A
f dA’p(A/) < ebfA J dt Z; (_) ¢+(t)e—ltc/12 +J dt
A—6 —A ﬁ + 1t _A

where we defined

Zy(B)= D, ePETD L Zu(B)= D e PATND, (16)

A'<c/12 A>c/12

4n% \ ~
Zy (m) ()

|

(15)

Now we show that the first term in (15) is dominated by t = 0, while the second term is dom-
inated by t = A.

We estimate heavy operators by dropping the phases

42 4m2p
w(giw)| < (5ee)

In the last estimate we again used modular invariance and that the integral over t is dominated

[4

A a7

=T

2
by t ~ A ~ 1, while 3 — 0. Therefore, the effective inverse temperature is small gf—£ -0

and we can use the estimate by the dual vacuum. To justify the assumption t ~ A ~ 1 we
2

notice that the contribution of an individual operator in Z (gf—fz) is exp [— (A’ — ﬁ) gzn_jg]
with A’ > ¢/12. It is monotonically increasing with t. Therefore the integral is dominated by
t~A.

In [25] it was said that to derive (17) one can use the Hartman-Keller-Stoica (HKS) bound
[31]. In fact, as we just argued, only the high-temperature asymptotic of the partition function
is needed.

Since a)\i(t) is continuous and has support |t] < A, we can estimate near A that

$.(t) = O(A—t) and therefore

A 2 .
f dt ZH( il )¢+(r)
—A

p+it

s

A tz C
~J dt (A—1t)eFTZ ~ B2 F 12, (18)
0

7
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The first integral in the RHS of (15) gets contributions from a finite number of light operators
below ¢/12. It is dominated by the vacuum and gives

A 472 A 4 o~ .
f dtZL( )¢+()—"C/12 J dt e g, ()e 12 4

A B+ A

=\ 2T EGL O+ ... (19)

Here the integral is dominated by the saddle t = 0 and the prefactor $3/2 comes from inte-
grating over fluctuations. Putting together the estimates we get from (15)

Atd 3 4n2 ¢~ A ¢
f dA'p(A) <\ —/3~°>/2e/5A+Tﬁ¢>+(0)+o(/52efjA 7—2) . (20)
A—§ TtC

Now it is clear that A = 27 is the biggest value for which heavy operators are suppressed as
we take 8 — 0. From now on we will make this choice for A. Minimization of the first term
in (20) over f3 leads to the thermodynamic relation 3 = +/c/3A.

Lower bound is similar. Finally, we have bounds at asymptotically large A

A+6

21¢_(0)po(A) < J dA'p(A)) < 21¢,(0)po(A) (21)
A—6

1/4 A
po(A) = (48CA3) exp (27[ \ %) . (22)

2.1 Beurling-Selberg problem and Paley-Wiener theorem

At this point finding a bound on the density of states boils down to finding the functions ¢ (x)
with the desired properties. Namely, we would like to solve the following problem.

Beurling-Selberg problem: Suppose ¢ (x) are continuous integrable functions with the
following two properties:

D ¢_(x) <6 55(x) <P, (x), Vx €R.

2) Fourier qbi(t) has finite support |t| < A = 27.
Find the smallest value of q5+(0) and the biggest value of qb (0).

Equivalently, we would like to minimize the area between ¢, and 6 with the constraints
that ¢ are bandlimited and bound 6 from above/below.

This type of problem was first considered by Beurling [29] and Selberg [30] and has various
applications in analytic number theory [32,33] and signal processing [34].

The Beurling-Selberg problem formulated above was solved for 26 € Z in [30] and for
26 ¢ 7 1in [34,35]” Our task will be to simply use their results in the bounds (21). We describe
the construction of [30] in section 3 and [35] in section 5. The following classic result will be
very useful in solving the Beurling-Selberg problem.

Theorem (Paley-Wiener): Suppose ¢ € L?(R). Then ¢ can be extended to the complex
plane as an entire function with |¢(z)| < Be**! for some B > 0, if and only if Fourier ¢ (t) is
supported on |t| < A.

"The reference [34] solved the problem when 0 < 25 < 1. The reference [35] gave a complete solution for any
5.
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An entire function ¢ bounded by |¢(z)| < Be*?! in the complex plane is usually called a
function of exponential type A. Therefore, Paley-Wiener theorem can be stated as equivalence
between functions of exponential type A and functions whose Fourier transform has finite
support [—A, A]. The practical convenience of Paley-Wiener theorem is that one can determine
the support of $ (t) simply by looking at the growth of ¢ (z) and vice versa.

For the full proof we refer the reader to, for example, [36]. It’s easy to see that finite

support of a leads to the boundedness of ¢

A
f dt ¢(t)el

—A

A
() = < eMFl f dt |p(t)| = BeMF! . (23)

—A

The proof in the other direction proceeds in two steps. First, using Phragmén-Lindel6f princi-
ple one shows that boundedness condition of the theorem actually implies a stronger bound
lp(x+iy)| < Cer¥l. Second, one can deform the contour parallel to the real line and estimate
using the boundedness of ¢

d

|$(t)| — ’f Czi_ieixtd)(x) — 'f ﬁei(xﬁy)tqb(x_i_iy) < #e—y(t—A) . (24)

Taking y — oo we get a(t) = 0 for t > A. Similarly, shifting the contour to the lower
half-plane gives ¢(t) = 0 for t < —A. See [36] for details or [37] for a more pedagogical
discussion.

3 Extremal functions for 26 € Z

In this section we assume 26 € Z. The construction of [30] proceeds in two steps. First, one
derives bounds on ¢ (0) from Poisson summation formula. Second, one constructs functions
that saturate these bounds, thus showing their optimality.

3.1 A bound from Poisson summation

One easy way to get estimates on the allowed ¢..(0) is to use the Poisson resummation formula

ZNZe_Z”i”ra(Znn) = Z ¢(n+r), rel0,1). (25)

nez nez

Applying this to ¢, and taking into account that ai(t) have support |t| < 27, only one term
in the LHS survives

21$.(0)= D ps(n+7). (26)
nez
Since ¢.(x) bound 6/_5 51(x) from above and below, we can estimate the zero mode as
214, (0) > max 6r_ n+r), 27)
¢+(0) re[O,l)é [—5,51( )
27¢_(0) < min 6_ n+r), (28)
$-(0) remé oo (n+r)

where we also optimized over r € [0, 1) since ai(O) doesn’t depend on it. The RHS in (27) is
simply the maximum number of integer-spaced numbers n+r, that can be put into the interval
[—&, &]. Similarly, the RHS of (28) is the minimum number of integer-spaced numbers n + r,
that can be put into the interval (—&, 6).
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While the bounds (27), (28) are true for any &, they are not always optimal. Later in this
section we will construct functions ¢.. that saturate (27), (28) when 26 € Z. On the other
hand, if 26 ¢ Z the bounds (27), (28) are not optimal and functions ¢, saturating them do
not exist. We will discuss optimal bounds for 26 ¢ Z in section 5.

When 26 € Z the bounds (27), (28) are simply

21¢, (0)>25+1, 25€7Z, (29)
21 (0)<25—1, 25€7Z. (30)

To obtain these bounds we must choose r in (27), (28) as follows. In the bound for <75\+ it is
clear that to attain the maximum number of integer-spaced numbers n+r inside of the interval
[—&, 6], we need to put one of the numbers n+r at the edge of the interval, as should be clear
from the figure 1. Therefore, if 6 € Z, then n+r must be integers and r = 0. If 6 € Z+ %, then
n + r must be half-integers and r = % In the bound for a)\_ we need to attain the minimum
number of integer-spaced numbers inside of (—&,5). The choice of r is the same as for $+,
i.e. we need to put one of the numbers n + r at the edge of the interval, see figure 1. To
summarize, for 26 € Z we have two cases

1 1
60€zZ,r=0, or 5€Z+§,r=§. (31)

3.2 Extremal functions

Now let’s construct functions ¢ that saturate (29), (30). From the derivation of these bounds
it’s clear that saturation happens if

¢+(n+r):0) n+r¢[_5:6]> (33)
¢ (n+r)=0, n+r#+£5, (34)

where the last condition on the derivative comes from the fact that ¢ (x) = 6;_5 57(x) and
therefore ¢ should be touching 6 at the points n +r, see figure 1. Similarly, for ¢_ we have

¢_(n+r)=1, n+re(=94,9), (35)
¢_(n+r)=0, n+r¢(—56,06), (36)
¢’ (n+r)=0, n+r#=+5. 37)

The functions ¢, (x) are essentially fixed by these properties. For § € Z we consider

sin?(7x) 1 Ay Ay
9+(x) T2 ;ﬁ; (x—n)2 x+6 6—x (38)
nez

_sinz(rcx) 1 A A_
qb_(x)—T Z(x—n)2+x+5+5—x , O€Z. (39)

|n|<&
nez
One can think of these functions as follows. Let’s discuss ¢,. We start with sin?(7x), which
vanishes at all integer x. These are the second order zeros that we want outside of [—§,5].
Then the role of the terms in parentheses in (38) is to cancel zeroes of sin?(7tx) inside of the in-
terval [—6,6]. The residues of the 2nd order poles in parentheses are fixed by

¢.(n) = 1,|n| < 6. The first order poles are allowed only at the ends x = £6. This is

10
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because we want x = n,|n| < & to be minimums of ¢, in order for ¢, to bound 6 from
above. Finally, the residues of 1st order poles at x = +6 must be related in order to have
¢ (x)~ %, Xx — 090, so that ¢ is integrable. The constant term is not allowed for the same
reason. Similar comments apply to ¢_.

Note that the growth of (38), (39) in the complex plane is bounded by |¢.(z)| < Be2™#l.
By Paley-Wiener theorem the Fourier transforms ai(t) have finite support |t| < 27, just what
we wanted our functions to satisfy.

Finally, we need to check that functions (38), (39) indeed bound the indicator function
0—5,51(x). This imposes constraints on A, A_. In appendix A we show that these constraints
are given by

1
Lt o224, 26915 +1),

1 (40)
1-—<A_<oy4(8),
o5 <A <591 (8)
where ¢(2) = ;—; logI'(z) is the trigamma function.
Analogously, when 6 € Z + % we consider
¢ (x)= cos™(mx) [ Z LI Ay + Ay \ Sez+ 1 (41)
T 2 o (x—n)P x+6 &-—x ’ 2’
nEZ+% }
b () = L) ( LA, A \ ezt (42)
2 = (x—n)2 x+96 5—x} ’ 2

1
nezZ+ 7

In this case r = % (see (31)) and the zeros are at half-integers. These functions are fixed
similarly to (38), (39). In particular, the constraints on A, are the same (40).

By construction, the functions (38)-(42) saturate the bounds (29), (30). One can also
check this directly by integrating. For both 6 € Z and 6 € Z + %

21¢.,(0) = f dx ¢, (x)=25+1, (43)
21 (0) = f dx ¢_(x)=25—1. (44)

Note that A, - dependent terms integrate to zero. Inserting the constructed functions in (21),
we find bounds on the number of states

A+0

(26 —D)py(A) < f dA'p(A) < (26 + Dpo(A), 25€Z. (45)
A—0

3.3 Saturation atc =4,8,12,...

Selberg’s functions (38)-(42) indeed give the best possible bounds for 26 € Z that can be
obtained from (21). However, we are not guaranteed that there is a fully S-invariant partition
function Z() that saturates (45), since using bandlimited functions in (13) could be too
crude in the first place. Here, we show that there is a zoo of S-invaraint partition functions for
¢ =4k, k € Z- that saturate the bounds (45).

11
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Let us consider two nice examples of S-invariant partition functions at ¢ = 4,12. They are
given by (q = 2™ = ¢ P)

Z,(B)=j(1)'P =g 1P(1+248q +...), (46)

Z1p(B)=j(r)—744=q '(1+196884¢* +...), (47)

where j(7) is Klein’s j-function. We consider (46), (47) as non-holomorphic partition functions
withT=—7 = izﬂ—n. The condition T = —7 explicitly breaks T-invariance T - 7+1,7 —» T+1.
Therefore, our discussion here concerns only S-invariant partition functions. They do not
necessarily possess an extension to SL(2,7Z) invariant functions of 7,7. SL(2,Z) invariant
partition functions, constructed by combining holomorphic and anti-holomorphic parts, will
be considered in section 6.

The dimensions of operators in both partition functions are given by non-negative integers
Ay =k € Zs. The degeneracy dj. of an operator A at large k is®

d = po(k) + ... , (48)

where p is defined in (22) and corrections are suppressed at k — 0.

Now it is easy to check that the bounds (45) are saturated. First, recall that the upper
bound always bounds the number of operators in the window [A—§&, A+ 6] where we include
the “edge states” at A = 6. While the lower bound holds for the number of operators in
(A—06,A+ 6) where we do not include the edge states. See the discussion below (11).

For the upper bound, we are counting the number of states in the interval [A — &, A + §]
of size 26 € Z. There can be at most 26 + 1 integers in this interval, each corresponding to an
operator with degeneracy py(A). Thus we have (26 + 1)py(A) operators.

For the lower bound we are counting states in the interval (A — &, A + 6). There are at
least 26 — 1 integers in this interval, each corresponding to a state with degeneracy py(A),
thus giving (26 —1)py(A) states in total.

More generally, the bounds (13) would be saturated® if the functions ¢ take the following
values on the physical spectrum A,

b.(A) = 0, Ap¢[A—6,A+5],
BT, A elA-6,A+6],
(49)
0, Ap¢(A—5,A+5),
1

¢_(Aph)={ , A €(A—5,A+5).

This is indeed the case for ¢ = 4,12 partition functions (46), (47) and Selberg’s functions
(38)-(42). The Selberg’s functions vanish at the physical spectrum A, =k € Z outside and
are one inside of the corresponding interval.

With the understanding of (49) it is clear that any partition function with an integer-spaced
spectrum saturates the bounds (45), because Selberg’s functions (38)-(42) satisfy (49) in this
case. A large class of such partition functions is given by

Zaar12c(B) = J(D)V3P(i(7)),  a=0,1,2;k € Zs,, (50)

where P.(x) = x¥ + ... is a monic (to ensure that the vacuum is unique) polynomial such
that g-expansion coefficients of the partition function are non-negative. These partition func-
tions correspond to the central charges ¢ = 4a + 12k = 4,8,12,16,... and were previously
considered in [42].

8This follows from the classic results of Rademacher and Zuckerman [38-40]. One can also derive this using
Ingham’s theorem [41], which we explain in the appendix B.

9We also lose precision when we multiply (11) by eP(®~2"*0)  However, this factor is unimportant at large A,
where we take § = m4/55x = 0and A’ ~ A.

12
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The functions ¢, (A) are reminiscent of the conformal bootstrap extremal functionals (e.g.
[43-49]): outside of a certain interval they are non-negative/non-positive and vanish at the
dimensions of physical operators.

4 A simple non-optimal bound for 26 ¢ Z

In this section we will show that the bounds (45) in fact hold for any 6 > 0. They turn out to
be sub-optimal when 26 ¢ Z in the sense that they do not minimize/maximize 55;(0) with the
constraints described in section 2.1. We will discuss the optimal functions for 26 ¢ Z in the
next section. However, the optimal functions in the general case are more complicated and
we would like to start with a simpler sub-optimal bound.

First, note that it is not completely trivial to generalize (38),(39),(41),(42) to non-integer
26 because of the sum in parenthesis. However, one can use the following trick due to Selberg
[30]. Let’s consider the upper bound. We would like to bound

1 1
O—s,51(x) = Esgn(é’ +x)+ Esgn(5 —x) (51)

from above. Therefore, we can first take the function (38) and construct a function that bounds
sgn(x) as

B,(x) = lim (244 (x—6)-1) (52)
5€Z
_ 2sin?(7x) | — 1 11
= [kz:(:) AT + x] 1> sgn(x) . (53)

Note that the only admissible choice (40) as 6 — oo is A, = 1. Now we consider a new
function ¢ that bounds 6 for any 6 >0

1 1
¢ (x)= §B+(5 +x) + §B+(5 —Xx) = 0_5,51(x). (54)
Similarly, for the lower bound
B_(x) = lim (2¢-(x—6)-1) (55)
5€Z
_ 2sin®(nx) [ 1 1
_T[; (X_k)2+;]—1ﬁsgn(x), (56)
1 1
¢_(X) = 53_(5 + X) + EB_(5 —X) < 9(_5’5)()() . (57)

The functions B.(x) were first considered by Beurling [29]. One _can show that the func-
tions (54), (57) give the same result (43), (44) for the zero mode ¢.(0) and also reduce to
(38),(39),(41),(42) for 26 € Z. See appendix C for details. Thus, we have a bound for any &

A+S
(26 —1)py(A) < f dA'p(A) < (26 +1)py(A), 5§=>0. (58)

A-§
Two comments are in order. First, the lower bound shows that in any window of size 26 > 1
there is a non-zero number of operators, the result previously established in [25,26]. Sec-
ond, as we take &6 — 0 the upper bound becomes p,y(A). This implies that the maximum
degeneracy of an individual operator is at most p,(A) up to additive error terms suppressed
at asymptotically large A. In fact, partition functions ¢ = 4,12,16,... considered in section

3.3 saturate this bound on degeneracy, see section 3.3.
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5 Extremal functions for 26 ¢ Z

When the size of the window is not integer 26 ¢ Z the functions (54), (57) we constructed
previously turn out not to be optimal. The optimal functions in non-integer case were found by
Littmann in [35]. In this section we describe his results and their implications for our bounds.

5.1 Generalized Poisson summation

In the integer case it was very useful, for both deriving functions ¢, and proving their op-
timality, to use Poisson summation formula (26) for functions with finite Fourier support. A
generalization that is useful in non-integer case was found by Littman [35]. Suppose a con-
tinuous integrable function ¢ (x) has Fourier of support'’ || < 27. Then

- n(x2+7y?)
2 0)= —r 59
7$(0) qub(xn)Hn(xgﬂz) (59)
where y > 0,7 € R and x,,,n € Z are the roots B(x,,) = 0 of
B(x)=xsinm(x+r)—ycosm(x+r). (60)

In particular, if we take y — oo in (59), the roots become integer spaced x,, = n+ 7 and we
recover the Poisson formula (26). But (59) is true for any y > 0,r € R

To bound 6;_5 57(x) we would like +6 to be among the nodes x,, similarly to the integer
case. This determines y,r that we take. The analytic expressions for y,r depend on the
fractional part {6} =6 —[6]

B(+£5)=0, 61)
1
= O<{5}<§: y=06tan(n6)>0, r=0, (62)
%<{5}<1: y=—6cot(n5)>0,r=%. (63)
The function B(x) then takes the form
B(x) = x sin(7tx) — 6 tan(7td) Cf)s(rtx) , ? <{6} < % 64)
x cos(mx)— & cot(nd)sin(nx), 5 <{6}<1.
Similarly to (27, 28), applying (59) to ¢, we find
— (x2 +7y?)
2n¢, (0) > —_—r (65)
¢+ |x,,z|s:5 v+ m(x2+7v2)
—~ n(x2 +y?
)< S ot ) (66)

wores ¥R+ r2)

These bounds can be saturated and we construct the corresponding functions ¢, next.

10Both (26) and (59) can be easily generalized to functions of support |t| < A by a rescaling of variables.

HLittmann’s formula (59) has a beautiful interpretation in terms of de Branges reproducing kernel Hilbert spaces
of entire function [50]. Roughly speaking, if ¢(z) = f (z)]@, where ¢ is of exponential type 27 (i.e. Fourier of
support 27) and f is of exponential type 7, then the LHS of the formula (59) can be interpreted as the norm of
f in a certain Hilbert space. And the RHS is the same norm written as an expansion over an orthonormal basis in
this Hilbert space. We prefer not to delve into details about this interpretation, as this would take us too far from
our goals. We refer the interested reader to [35].

14



Scil SciPost Phys. 8, 088 (2020)

5.2 Extremal functions

The idea of the construction is analogous to section 3. We start with ¢, . To saturate (65) we
must have

¢’+(xn) = 0: |xn| > 5 > (67)
¢+(xn) = 1: |xn| S 6 > (68)
¢, (x) =0, x,#+£5. (69)

The last condition on the derivative comes from the fact that ¢, (x) = 6;_5 51(x), so the nodes
X, # £6 must be local minimums. We take the following ansatz

() =B(x? > ( alXn) b(X”)) : (70)

— 2 —
2\ =2 T x—x,

Note that by Paley-Wiener theorem the Fourier transform (7; (t) has support |t| < 27t. The factor
B(x)? ensures that (67, 69) are satisfied for |x,| > &, i.e.we have 2nd order zeros outside of
the interval. A simple calculation shows that the conditions (68, 69) for |x,| < & determine
almost all a(x,), b(x,)

__r Gt 71
W)= e~ Ty 2 4 P 70
17 2 2 2
b(xn) — _B (Xn) _ nxn(xn + Y ) xn # :|:5 ) (72)

B(x)? [y +r(x2+72)P
Now the only undetermined coefficients are b(£6). We fix them by requiring that ¢ is inte-
grable

1
¢+(X ~ ﬁ’ X — 0Q. (73)

The cancellation of order x, 1, % terms in x — o0 expansion leads to

D bx) =0, (74)
Ix,|<6

D7 (xublx,) +a(x,)) =0, (75)
|x,|<6

Z (xﬁb(xn) + 2xna(xn)) =0. (76)
|x,|<6

To solve these constraints, note that if x,, is a root of B(x), then —x,, is also a root, see (64).
Then (71, 72) imply a(x,,) = a(—x,) and b(x,) = —b(—x,),x,, # £5. Now the constraint
(74) requires that the same symmetry is true for x,, = £9, i.e. b(6) = —b(—06). Due to
these symmetries of a(x,,), b(x,) the constraint (76) is automatically satisfied. The remaining
constraint (75) determines b(5)

52 472 1 O+ 72y — (ot —12)]
b(5)=— L= (77)
Sly+m(@+yIP 26 A4 [y+ G+ 2P
The function ¢_(x) is constructed in a similar manner. We require
¢_(x,)=0, I|x,|=6, (78)
¢ (x)=1, I|x,| <6, (79)
¢ (x,)=0, x,#+5, (80)
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and we find

¢_(X):B(X)2 Z ( a(xn) + b(xn) )+ C(5) + C(_5) . (81)

Tos (x—x,)%2 x—x, x—06 x+0

The analysis at x,, # 6 is the same and therefore the coefficients a(x,), b(x,) are given by
(71, 72). Requiring ¢_(x) ~ %,x — o0 leads to

B ! (x2 + 7))y —n(x2 —v?)]
(O)=—c=0)="55 [y + 72 +12)F

|xa|<6

(82)

Finally, one needs to check that ¢.(x) in (70, 81) indeed bound 6;_s 57(x) from above and
below. This was proved in [35].12
To summarize, we constructed optimal functions (70, 81) that saturate (65,66)

— TE(X,% +72)

O 2 e ®
— n(x,% +72)

2n¢p_(0) = |XHZ|<:5 Y‘"T,%"‘Yz) ) (84)

where x,, are roots of B(x) defined in (60) and y,r are given by (62, 63). In general, the
nodes x,, are some transcendental numbers that we can’t write down explicitly. However, the
difference ¢, (0) — ¢_(0) gets a contribution only from x,, = 6 and takes a simple form

. . 2
271(¢.(0)— ¢_(0)) = @ =

(85)

This already demonstrates that (83, 84) give better bounds than (58), where the difference
was 2.

When 6 is sufficiently small, the only roots in the range |x,| < 6 are x,, = 0,£6 and the
expressions (83, 84) take a simple form. Namely

2 —~

0<25<1: 2m¢,(0)= —a e ¢-(0)=0, (86)
1 216
1<25<2: 21¢,(0)= 2 ! 8
< <a TE¢+( )_ __sin(2n6) + 1— tan(ns) ’ (87)
21 o
—~ 1
27‘E¢—(O) = m . (88)
o

For larger & one can find roots of (60) numerically. We plot (83,84) as functions of & in the
figure 3.

6 Fixed spin

Now we generalize the discussion of previous sections to operators of fixed spin J. We turn on
an angular potential 2 and consider the grand canonical partition function

Z(/j, Q) — Z e—ﬂ(h+f_'l—lc—2)e—iﬂ(h—f_l) . (89)
h,h

2The proof of this fact in [35] was given for a much more general choice of the functions ¢_(x). We expect
that it can be considerably simplified for the particular functions we study and one should be able to avoid the
subtleties of the general case, though we haven’t done it.
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Allowed
Region

Figure 3: The solid blue lines are the optimal values (83,84) of 2n$i(0) as func-

tions of 6. The number of operators in a window of size 26 is bounded by

2n$_(0)p0(A) < fAA_Jr; dA'p(A) < 27‘C<7>\+(O)p0(A). The dashed red lines are from

the bounds (58), which are optimal only for 26 € Z. The blue and red lines touch
when 26 € Z.

The dimension A and spin J are given by h+h and |h—h| € Z respectively. The main technical
difference with the previous discussion will be the double sum over h, h instead of a single sum
over A. This will lead to a different splitting to light and heavy operators and to a different
value A of the support of $i(t).

First, we project onto operators of fixed spin J

T : ; o
dQ IQJ+ —iQJ B B
ZJ(ﬁ):f o (—e ¢ )Z(ﬁ,ﬂ)=J dA p;(A)e PAa—</12) (90)
- TT 1+6J)0 0

Our goal is to derive bounds for the density of states p;(A) at large A and fixed spin J. The
analog of (13) is

oo A+S
ePlamome12) f de Z,(B +it)f_(0)e /1 < f dAp,(A") CI¥
—o0 A—b
(o]
< eﬂ(A+5—c/12)f dt ZJ(ﬂ +it)ﬁ_(t)e_itc/12 ,
—00

where f.(x) are functions that bound 6;_s 51(x) from above/below and have Fourier ]‘;(r)
of support |t| < A. We changed notation for these functions to distinguish from the previous
sections. To use (91) we would like to estimate the integrals

A s do N
f dtf —— cos(QUZ(B +it, Q)fa(t)e /12 (92)
—A —T 2n
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To do that we go to the dual channel T —» —1/7,7 —» —1/7

Tzi(i(ﬁ+it)+ﬂ), %zi(—i(/&+it)+ﬂ), (93)
21 27
1 1 (. 4n*B 4m%(Q2—1t)
_?__(lﬂ2+(n—t)2_/52+(a—t)2 : )
11 . 4n%p 4m2(Q+t) )
7 ( "B2r(QteR? B+ (2+0)? 93)
and split into light and heavy operators
A T
d§ / . / . ) —itc/12
f dtJ o cos()(Z (B +it,Q) + Z;,(B +it,Q))fult)e , (96)
—A —T

where primes denote the dual channel (94), (95). Light (L) and heavy (H) operators are
defined by'?

c - C
Light: h<— d h<—
8 24 " 24 ©7)
c - C
H : h>— h>—. 8
eavy = or Z o2 (98)
The convenience of this splitting is that there are only finite number of light operators and
thus the first term in (96) will be dominated by the vacuum in the limit 3 — 0.
In the light sector the integral is dominated by t = 0 and Q = 0. Using saddle-point

approximation we have
S [
J dtf —cos(QJ)Z£ (B +it, Q) fu(t)eite/12

asi 4r*(B+it) c - —itc/12 (99)
f dtf cos(QJ) exp ((/5+ PERY: 12)fi(t)e

fi(O) plet P

2 2

For the heavy part, dropping the phases, i.e.retaining only the first term in each of (94),
(95), we can estimate

/ . 471'2[3 47‘[2[3 —
ZH(ﬁ-Flt,Q)’ < %: exp[—m(h—c/24)—m(h—c/24):| .

max(h,h)>c/24

(100)

First, we estimate as follows

Zyp+i @ <eTH 3 exp[_m B2+ @+ 02

h=h
h>c/24

ﬁzﬁ 4m2p 4m2f3 -
te b Z exp[—ﬁ2+(g_t)2h—ﬂ2+(ﬂ+t)2(h—c/24)] .oy

AP jagy— AP h}

_h<h
h>c/24

Here the expressions in the exponentials under the sums are always positive. Therefore, the
integrals over t,Q are dominated by the regions, where the effective inverse temperatures

13Note that our definition of heavy/light operators is different from [31].
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Bi= IJTQQUZ are the smallest. In particular, as we will verify below, there are such Q, t, that

B+ — 0. In this case we estimate (101) by the vacuum in the S-dual channel

) 42 ¢ (-t ¢ (Q+t) ¢
Z] +t,§2‘5 —+ —+ — 1. 102
(P +it ) eXp( B 24 B 24 B 24 (102)
Using this estimate we have
‘J dtJ —cos(QJ) (ﬁ+it,ﬂ)fi(t)e_i“/12
an? o Q Q2+ ¢2 ~
<o dt d—exp(Li)fi(t) (103)
Y B 12

where we also used that fi(t) ~ A F t is vanishing near the end of the support £A. The
integrals were computed by expanding near t = +A,Q = %7.
Collecting the results we have, for example, for the upper bound

oo ’ / 1 3 = 3 parit e 3 A+ 212 ¢
dA A) < — f4(0 P24 2. 104
| axnan s -2 R g o(pe ). a0

For heavy operators to be suppressed in 8 — 0 limit, we set A = = — /4. Note, that for this
A and Q = 7, t = A the effective inverse temperatures in (101) are small f, — 0. Namely,
ﬁzf(ﬂ—jf’/\)z ~ +/B — 0. So that the approximation (102) is justified.'* Similar comments apply
to the lower bound.

As before, we set § = 4/c/3A. In the A — oo limit, we obtain bounds

A+0

nf_(0)p) (A)<J dA'p,(A) < mf, (0)p9(A), (105)
A5

where p J(A) is given by

2 c cA
0 —
A)= N om\[ 2. 106
PIB= 105 12A3€Xp[ T 3} (106)

Now we turn our attention to finding optimal ]/‘;(0). The results obtained in the previous
sections are almost readily applicable upon proper scaling. We go through the generalized
version of the salient equations appearing in § 3, 4, 5 below. The only difference is that
we need functions with Fourier of support A = 7w — /% instead of 27t. This is achieved by
considering

A
fa(x) =+ (ﬂx) , (107)
5oaS
27
EO=Z5 (2| (108)
T

4More generally, we could take A = m1—3%,0 < a < 1/2. Heavy operators are suppressed and the approximation
(102) is justified for this choice.
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where ¢ (x) are functions with Fourier of support 27t considered in § 3, 4, 5. The rescaling
of 6 is needed so that f.(x) bound 6;_s 51(x) from above/below.

e Beurling-Selberg § 3, 4 : Taking functions (54),(57) that satisfy (43),(44) and setting
A = 1 in (108) we obtain

nfi(0)=56+1. (109)
Therefore, the bounds (105) become
A+6
(6—1)pj(A) < f dA'p;(A) (8 +1)pJ(A). (110)
A5

When 26 - % = 6 € Z, these bounds are optimal among those that can be obtained with
bandlimited functions f.. They are saturated if the spacing between operators of spin J is
A1 — A, =2. We can construct such examples from the partition functions considered in §
3.3. We consider the partition functions (50) as ¢; = 8k chiral partition functions. We tensor
each of them with their anti-chiral copies to obtain a partition function with ¢; = ¢z = 8k.
These have integer spaced spectrum h,h € Z. For a fixed J = |h — h|, the spacing between
operators A = J + 2min(h, h) is 2 and the asymptotic degeneracy is exactly given by p?(A),
hence these partition functions saturate the bound. The factors § =1 come from counting how
many numbers spaced by 2 can be fit in the interval of length 26 € 2Z.

A few simple consequences of (110) are:

1. The lower bound implies that in any window of size 26 > 2 there is a non-zero number
of operators of given spin J. This is again not impressive if the theory has Virasoro sym-
metry. However, the analysis can be easily generalized to counting Virasoro primaries
for ¢ > 1 with the same result.

2. The upper bound, in the 6 — 0 limit, implies that the maximum degeneracy of an
individual operator with dimension A and spin J is p?(A).

3. In any unitary 2d CFT operators of all spins J € Z must be present. Again, this is
trivial if Virasoro symmetry is present. However, the analysis can be easily generalized
to counting Virasoro primaries for ¢ > 1 with the same result.

e Littmann § 5: When & ¢ Z the bounds (110) are not optimal. The optimal bounds are
obtained from the functions (70), (81). Taking the equations (83), (84) and setting A = 7 in
(108), we get for the zero modes

2
(2 +1?)

ﬂﬁ(0)= Z — = (111)
o< ¥+ (3 +72)
x2 A
~ (3 +71°)
RfO)= > i (112)
al<s 7+ m(F +72)
where x,, are solutions of the equation
X . x . x
Esmn(§+r)—ycosn(§+r)=0, (113)
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and 7, r are defined by

1 5 5
0<{8/2}<;: 7 Etan(%)>o,r=o, (114)

%<{5/2}<1: 7 —gcot(%é)>0,r= (115)

7 Virasoro primaries

Now we generalize to counting Virasoro primaries in ¢ > 1 theories. The discussion here is
essentially a refinement of the section 6 in [25] and similar to the section 2 of the present
work, so we just highlight some key equations that have new features.

First, we consider bounds on the number of Virasoro primaries of all spins. The reduced
partition function with zero angular potential (T = izﬁ—n)

#(B) = In(1)PZ(B) =P [(1 —e PR+ e—“] (116)
A>0
is S-covariant
z(ﬂ):zﬁ—nz(%nz) . 117

There are two new features here in comparison with section 2. First, there is a negative term
in the RHS of (116) originating from the null states in the Virasoro vacuum module. Second,
there is a power prefactor 2ﬁ—” in (117). We will show that these changes do not significantly
alter the results. The negative term in (116) is not important because we are interested only
in the tails of the sum. The role of the extra prefactor in (117) will be to change the definition
of po(A).

It is convenient to make the following definitions

Z(ﬁ) = Zvac(ﬁ) + Zexcited(ﬂ) 5 (118)

Zvac(/j):eﬁ%(l_e_ﬁ)z ) (119)

Zexcited (B) = J da’ pVir(an)e PN (120)
0

where C = c—1and p""(A’) is the density of Virasoro primaries excluding the vacuum. Since
oV is positive definite, we can use it in the arguments of the section 2 that led to bounds (13)

and obtain

A+6

A
e[a’(A—B—C/lZ)J dt zexcited(ﬂ + it)a_(t)e—itC/IZ < f dA/pVir(A/) (121)
—A A—0

A

< eflaro=c/ ”)f At Zexeirea(B +it) g, ()e™ /12
—A

Now we take the limit A — 0o, 8 — 0. The integrals in the LHS and RHS of (121) get large

4n C . .
contributions of order e ® 22 from the region near t = 0. Therefore, we can add z,..(f + it),
that never becomes exponentially large in the integration region |t| < A, under the t-integrals
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without changing the asymptotic behavior of the bounds. The net effect is to substitute
Zexcited(ﬂ + it) by Z(ﬂ + it) in (121)

A A+6
eﬁ(A—5—C/12)f dt z(B +it)p_(t)e /12 < J dA'pVir (A (122)
—A A—0
A
< e[j(A+5—C/12)J dt Z(ﬁ + it)¢+(t)e—itC/12 )
-A
Then, following the argument in section 2, we S-dualize and split into light and heavy operators
2 42 2n 42
z(p +it)= b4 + Z s 123
(B +it) [5+itL(/3+it) /3+itH([3+it) (123)
where
2 (B)=z(B)+ D, e PO g g)= D P (129
0<A<C/12 A>C/12

For light operators z; the t-integral is dominated by t = 0 and, in comparison with (19), the
first term in the RHS of (123) contirubutes an extra factor ﬂzﬁt — 2/3—” For heavy operators the
t-integral is dominated by t = A and we have an estimate

472 4m2p t2 2c
PO B DR = 125
ZH(/HM) ‘ZH(/szﬂz) 5 (129

Near t ~ A this leads to an extra factor of % Therefore, we have for the upper bound

A+o . 27‘[ 3 4n2 ¢~ 1 A2 ¢
J dA/pVir(A)) < 5 \| =p32ePA 24, (0)+0 (ﬁ x ﬁzeﬁ“Fﬁ) . (126)
TtC

A—6

Both terms in the RHS get extra factors proportional to % in comparison with (20). This shows
that we can again choose A = 27 and drop the second term in the RHS of (126) corresponding
to heavy operators. Similar statements apply to the lower bound.

Finally, also optimizing over 3, we have a generalization of (21) to Virasoro primaries at
asymptotically large A

A+6
21$_(0)pg " (A) < J dA'p"i"(A") <21, (0)pg " (A), (127)
A—6
B 3 1/4 (c—1A
pO(A) = (m) €xp (271 T) . (128)

The functions $i(t) with support |t| < A = 27 are chosen as described in sections 3 - 5 and
summarized in the figure 3. The net change in comparison with (21) is to shift c —» c¢—1 and
c—1

multiply po(A) by 2/3—“ with f = 74/ 3%

Similarly, one can repeat the arguments for fixed spin operators in section 6. The change
is again to shift ¢ —» ¢ — 1 and multiply p?(A) by 2/5—" with 3 = 1/ %_—Al. Therefore, instead of
(105), for Virasoro primaries of fixed spin J we have

A+6
nf_(0)pg""(A) < f dA'p)"(A) < mf, (0)p; V" (A), (129)
A—6

oviray= [ —2 |1 \ ez ba
ey (A)= (1 " 5J,o) X exp [271 3 :| . (130)

The functions ]?i(t) supported on |t| < 7 can be chosen as described in section 6 with zero
modes given either by (109) or (111), (112).
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A Majorization and Minorization by ¢
In this appendix, we show that ¢, (x) majorize and minorize the indicator function of the

interval [—6, 6] for 26 € Z,, given the inequality (40) is satisfied.
Inordertotreat § € Zand 6 € Z+% cases simultaneously, we define functions F.(y) = ¢.(y—56)

sin?(my) 20 1 Ay Ay
F,(y)= s
L0)=——3 Z(y_n)2+ Tty |
A

n=0
sin?(my) [25—1 1 LA A_ :|

2 | & y-n? y 20-y]|
We want to show that if the inequalities (40) are satisfied, we have

F_(y) < 60251 < Fi(y)-

We will be explicitly doing the analysis for F_(y) below. The analysis for F,(y) is similar.
There are two regions of interest. For y € (0,26), we want F_(y)—1 < 0 and for y ¢ (0,25),
we want F_(y) < 0. We will see that requiring the former gives the upper bound on A_, while
requiring the latter provides us with the lower bound on A_.

(131)

F_(y)=

e y €(0,26): Using the identity

1= Slnz(ﬂy) Z ( )

n=—oo

we have

_sinz(ny) > 1 1 A A
F0=1="07 _;((wn)z+(26+n—y>2)+7+26—y' (152

Thus, we require

Y(25 ) 1
;)((yﬂl)z (26+n—y)2)f°r3’€(0:25),

[ y(26—y) !
‘:”‘—Sy%‘,é‘a( Z((y+n)2 (26+n—y)2))'

n=0

(133)

The quantity in the brackets is minimized for y = 9, as we will show below. Therefore

Finally, to show that the RHS of (133) is indeed minimized for y = &, following [30], we
argue as follows. We wish to show that for y € (0,26)

}’(25 y) 1 ) 1
( Z((y+n)2 (25+n—y)2))_5;)m20
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We multiply the L.H.S by 26 and write it as

o oo 1
L=y(25— —2(y —&)?
¥(26-5) 8 —2y=6)° ), sy
n=0 n=0
Te?; 1 Tel?n: II

where

o=( 12 )
“\(y+n)2 (26+n—y)2 (6+n)2)’

Now the idea is to put a lower bound on term I and an upper bound on term II, such that
the lower bound on term I is still bigger than the upper bound on term I1, resulting in L > 0,
which we want to prove.

x Term I: Since the function g has positive second derivative, the trapezoidal rule always
overestimates the integral below and we have

n+1
w > J dx g(x), (135)

which, upon summing over n, gives us

oo 1 (o]
§}m025d®+J dx g(x). (136)
n=0 0
x Term II: We note that
o0 o (e ]
1 1 1 1 1 2
> =—+> s—+f dx g(x) = = + , (137)
~(6+n)32 62 H(G6+n2 82 [, 62 20+1
where we have used the Jensen’s inequality g(k) < f:jll// 22 dn g(n) as g is a positive, decreas-

ing function of n with positive second derivative.

* Term I+ Term II: Combining eq. (136) and eq. (137), we have for y € (0,26)

y(26—y) 2(y — 8)? = 4y —8)
LZTg(O)_T+y(25_y)L dx g(x)—m .
_ =P (B4 —6))  2y-5)
B 52y(26 —y) 5(26+1)

e y ¢ (0,26): By construction we have F_(0) = F_(26) = 0. Thus we need to consider
y ¢[0,256]. Since F_(y) is symmetric around &, considering the function for y < 0 suffices.
By symmetry, it is related to y > 26. Let us focus on y < 0 and use the variable w = —y. We
want to show that

1 1 26 _
A>21——> — <0 forw>0.
26 Z (n+w)2  w26+w)
To prove this, we first note that
1 < n __n-l forw>0,n>1
(n+w)2 " wh+1+w) wh+w)

26—1 (139)

1 26 —1
< .
= Z (n+w)2 ~ w26 +w)

n=1
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Thus, we have

24 260 X1 26 —1
Z _ < Z - <0. (140)
(n+w)2  w26+w) —~ (n+w)2 w26 +w)

n=1

We also remark that if F_(y) < 0 for y ¢ [0,25], we can consider y2F_(y) and take
y — 00 limit to deduce A_>1— %. Thus the inequality implies and is implied by F_(y) <0
for y ¢[0,26].

B Degeneracy of states for integer spaced spectra

In this section we use Ingham’s theorem [3, 25,41] to derive an asymptotic formula for the
degeneracy of states d;, in CFTs with integer spectra A, = k € Z. We assume that degeneracies
of operators are non-decreasing d;,; = d; and consider a modular invariant partition function

Z(B)=e > dye Pk . (141)

k=0
Let us introduce an auxiliary function [41]

F(B)=(1—eP)Z(B)=e% > (de—di1)e P,

k=0

where by definition d_; = 0. In the § — 0 limit we have
T[ZC
F o 3.
(B) 2 be

The Ingham’s theorem [3,25,41] implies that

N
dy =, (de=dia) = po(N), (142)
k=0

where p is defined in eq. (22).

To apply (142) to partition functions considered in § 3.3 we need to check that d;.,; > d
is satisfied. First, it’s easy to check the following statement. Consider two series expansions,
one with non-decreasing and one with non-negative degeneracies

o

AQ)=a,0", @y 20,20, (143)
n=0
oo

B(q)= Y .b.g",  b,20. (144)
n=0

Then the product AB gives rise to non-decreasing degeneracies cy

AQB@) =Y, eng" (145)
N=0
N
v = ay by (146)
n=0
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Indeed, one simply compares term by term

N+1 N
CN+1 :ZaN+1—nanZaN—nbn:CN . (147)
n=0 n=0

Now let’s show that j(7)/ has non-decreasing expansion coefficients. We recall that

ey = 1+240%; o3(n)q" ¢ = 2

n(7)8 ’

Since ﬁ has non-decreasing expansion coefficients, by the general statement above j(7)'/3

gives rise to non-decreasing degeneracies dy,; > di. Similarly, any integer power of j(7)'/3
satisfies dj 1 = dj.

C Zero mode of Beurling-Selberg function

The computation in this section is from [30]. We recall

sinf(mx) (2 1 <= 1 1
Bi(x)=—— |2+ =+ - : 148
=(x) 2 x  x? ;((x—k)z (x+k)2) (148)
We wish to show that
* 1 1
dx | =By (6+x)+ =B .(6—x)|=(26£1). (149)
o \2 2
Equivalently
1 o0
EJ dx (Bi(5 + x)—sign(é + x) + B.(6 —x) —sign(6 —x)) ==+1. (150)
—00

First note that

J dx (Bi(x)—sign(x)) is finite .

This follows from

. sin?(7x) 1
1=—3; keZZ Py (151)
and L .
B0 —sen) = T 2 gy )|~ SR
T X |x]200  TT4X
sin?(mx) [ 2 sin?(7x) (152)
B0 —sgnt) = 2 gy )|~ SED
T X |x|— o0 mT4X
Now, by shifting x, we have
% [ dx (Bi(S + x)—sign(d + x) + By (6 —x) —sign(6 — x)) (153)
J—oo
1 (% , .
=3 ) dx (Bi(x) —sign(x) + By(—x)— mgn(—x)) (154)
21 [ dx (Bi(x) +Bi(—x)) =+ dx M ==1. (155)
2 ) o oo (1tx)2
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