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1. Introduction

Let RE_ := {2z € C,Imz > 0} be the upper half-plane on the complex plane, @_ =
R% U {oo} and H(R%) be the set of all holomorphic functions in R? with the usual
compact open topology. For 0 < p < oo and a > —1, let L? = LP, (Ri) be the collection
of measurable functions f in R%, for which the (quasi-) norm

£

po = / F()PdA(2) (1.1)

is finite, where dA,(z) = £ (a +1)(2Im 2)*dA(2), dA(z) = dady, and z = x + iy.

The weighted Bergman space A?, on RZ is defined to be the space LE N H(R3). It is
well known that when 1 < p < 0o, AP is a Banach space with the norm (1.1); while for
p € (0,1), it is a Fréchlet space with the translation invariant metric

d(f?.g) = ||f_g||g,a7 fvg € Ag

We refer the interested reader to the books [7,20] for more information about weighted
Bergman spaces on the unit disk and the unit ball.

Let v € H(Ri) and ¢ : Ra_ — ]R?|r be a holomorphic self-mapping. The weighted
composition operator is defined as

Wauo(f)(2) =u(z) - fop(z), feHRYL),zeR:.

If u(z) = 1, then W, , becomes the composition operator and is denoted by C,, and if
¢(z) = z, then W, , becomes the multiplication operator and is denoted by M,,. See,
for example, [5,14,18] for more information about composition operators and weighted
composition operators on weighted Bergman spaces on the unit disk.

In the recent decade, the sparse domination technique was developed and studied by
many mathematicians working in harmonic analysis. This technique dates back to Andrei
Lerner from his alternative, simple proof of the As theorem [11,12], proved originally by
Hytonen [9]. In Lerner’s work, he was able to bound all Calderén-Zygmund operators by
a supremum of a special collection of dyadic, positive operators called sparse operators.
This estimate led almost instantly to a proof of the sharp dependence of the constant in
related weighted norm inequalities, the Ay theorem, a problem that had been actively
worked on for over a decade.

Later, there have been many improvements to Lerner’s techniques, as well as extending
his ideas to a wide range of spaces and operators, such as [3,6,10,13]. In general, sparse
bounds have been recognized as a finer quantification of the boundedness of an operator,
which roughly says that the behavior of an operator can be captured by a “sparse”
collection of dyadic cubes.
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Sparse bounds of operators acting between complex function spaces is a recent research
topic. As far as we know, this type of estimates first appears in the work of Aleman,
Pott and Reguera [1], where they proved a pointwise sparse domination estimate of the
Bergman projection to study the Sarason conjecture on the Bergman spaces. Later, by
using similar ideas, Rahm, Tchoundja and the last author [16] were able to establish
some weighted estimates for the Berezin transforms and Bergman projections acting
between weighted Bergman spaces on the unit ball (see, also [8] for its analog in Hartogs
domains).

The aim of this paper is to study the sparse domination estimate of the weighted
composition operators acting on complex function spaces. The novelty are twofold.

(a) From the viewpoint of harmonic analysis, the weighted composition operators that
we study, lack an integral structure and aren’t immediately amenable to study via
a dyadic structure. This is very different from the case of studying sparse bounds
of the Hardy-Littlewood maximal operators, Calderén-Zygumund operators, Haar
shift operators or other operators that have been considered in harmonic analysis.
We will overcome this difficulty by applying integral representations of holomorphic
Bergman-class functions and introduce some proper positive sparse forms which are
adapted to the Carleson measure induced by weighted composition operators (see,
(4.8)). Moreover, we are also able to describe the compactness of weighted compo-
sition operators by using sparse domination. To the best of our knowledge, no prior
results on describing the compactness of operators by using sparse domination exist
in the literature.

(b) From the view of complex function theory and weight theory, we discover new criteria
of describing the boundedness and compactness of weighted composition operators
acting on weighted Bergman spaces. Moreover, we are able to establish some new
weighted type estimates for a new class of weights, which is adapted to Sawyer—
testing conditions (see, Definition 4.7 and Remark 4.8). Again, to the best of our
knowledge, these types of results appear to be new in the literature, and more im-
portantly, they seem not be covered by the classical Carleson measure technique.

The structure of this paper is as follows. Section 2 provides backgrounds, especially
the dyadic system and sparse family in (Rf_, dA,), and Section 3 characterizes a standard
Carleson embedding type theorem. In Section 4, we first give new necessary and sufficient
conditions for weighted composition operators to be bounded and compact on weighted
Bergman spaces. Moreover, we establish a new weighted type estimate, together with
introducing a new class of weights that is adapted to Sawyer’s classical test conditions.
In Section 5, we deal with the analog of our results in the unit ball B in C", and finally,
in Section 6, we give some remarks for possible extensions of our main results to various

domains and function spaces.
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Throughout this paper, for a,b € R, a < b (a 2 b, respectively) means there exists
a positive number C, which is independent of a and b, such that a < Cb (a > Cb,
respectively). Moreover, if both a < b and a 2 b hold, then we say a ~ b.

2. Preliminary

In this section, we recall some basic facts from the dyadic calculus on (Ri, dA,). For
a =Ty + 1Y, € Ri, we denote

T, := {z:x—kiyeRi dae =z, < %‘I,O<y<ya}
to be the Carleson tent associated to a. While for an interval I C R, we denote
Qri={z=z+iyeR} :zely<|I}
to be the Carleson box associated to I. We note that

Qr =T, vi1)s

where ¢; is the center of I. For any E C R2, denote Ay(E) := [, dAq(z). Then it is
easy to see that

Aa(To) = ye™ = (y: +9a)* 2 > [z —a|*™?, 2 €T (2.1)

The above estimates (2.1) will be used frequently in the sequel. It will be convenient for
us to decompose @Q; into a disjoint union of small rectangles. To do this, we introduce
the following definition.

Definition 2.1. Let I = [a,b) C R and Q; be the Carleson box associated to I. For each
1 > 1,7 € N, we define the i-th generation of the upper Whitney rectangles associated to
I as

(b—a)j—1) (b—a)j b—a b—a . i—1
Wu::{{a—l— 5i=1 ,a+ 51 X i 9T ,1<5<2

and the collection of upper Whitney rectangles associated to I as
o0
W[ = U Wl‘,I.
i>1

In particular, there is only one rectangle in W; 1, which is denoted as Q}". Moreover,

QI:UR

ReW;
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We have the following lemma, which is an easy application of the mean value property
of subharmonic function.

Lemma 2.2. Let I = [a,b) and Qr be defined as above. Let further, R € W; 1 for some
i > 1. Then for any f € H(R?),

FG S 5 [ M@lAa(e). 2 e R

3R
2

where the implicit constant in the above inequality only depends on o, and % is the
dilation of R with same center but with side lengths 3/2 times of R.

We make a remark that the ratio 3/2 is not necessary in the above lemma. Indeed,
any number in the range (1,3) works.

Next, we would like to extend the above constructions to a collection of intervals,
namely, on a dyadic grid on R.

Definition 2.3. A collection of intervals D in R is a dyadic grid if the following statements
hold:

(i) If I € D, then £(I) = 2" for some k € Z, where £(I) refers to the sidelength of the
interval I;
(ii) If I,J € D, then I N J € {1, J,0};
(iii) For every k € Z, the intervals Dy, = {I € D : £(I) = 2*} form a partition of R.

This allows us to consider the collection of Carleson boxes induced by the dyadic grid
D, which we denote as Qp.

Lemma 2.4. Let D and Qp be defined as above. Then there exists 0 < o < 1, such that
for any Q € Qp,

Aa U P|<04.Q).

PeQp,PCQ

Equivalently, if we define

EQ=\ U ~r

PeQp,PCQ

then the sets E(Q) are pairwise disjoint and Ay (E(Q)) > (1 — 0)A.(Q).

Proof. This follows from an easy calculation and it suffices to take o = za% We leave
the details to the reader. O
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Remark 2.5. Lemma 2.4 suggests that the Carleson boxes are closely related to the
concept of sparse collection in harmonic analysis. Recall for any given A € (0,1) and
any dyadic grid Dle+ in (Ri, 1), where p is any measure on Ri, a sparse collection S of
DRi with sparseness A is a collection of dyadic cubes for which there exists a collection
of sets {E(Q) : Q € S} such that the sets E(Q) are pairwise disjoint, F(Q) C @ and
Mi(Q) < u(E(Q)).

Note that there is a natural way to embed Qp into a dyadic grid in R2, and therefore,
Lemma 2.4 asserts that Qp is a sparse collection of some dyadic grid in (Ri, dA,) with
sparseness 1 — o.

Lemma 2.6 ([/, Theorem 3.4]). There exist dyadic grids D, D* and D3, such that for any
interval I, there exists J € D¥ for some k € {1,2,3}, such that I C J and £(J) < 3¢(I).

A possible choice for these three dyadic grids in R is
DY = {27([0,1) + m+t):j€Z,me L}t €{0,£1/3}. (2.2)

From now on, we shall fix a choice of three dyadic grids D', D? and D3, which satisfies
the conclusion in Lemma 2.6.

3. Carleson embedding

The results in this section are standard, and to be self-contained, we include their
proofs here. Recall that for A > 0, we say a measure p defined on ]R%r is a A-Carleson

measure if
T,
sup L))\ < 00,
a€R? (Aa(T,))
and a wvanishing A-Carleson measure if
T,
lim WTe) =0.

aﬁa(@) (Ao (Ta)))\

Here lim  g(z) = 0 means that sup |g| — 0 as the compact set K C R% expands to
2—0(R7) R2\K

all of R3, or equivalently that g(z) — 0 as Imz — 0T and g(z) — 0 as |z| — oc.

Given p > 1,a > —1, u € H(Rf_) and ¢ : Rf_ — R? a holomorphic mapping, we
define the measure fiy,upa by HuppalE) = ([u[PAy) (¢ (E)). Namely, for any f
measurable, we have

[ ftiniona= [ Foo@lu)PdAac).

RZ R2

A simple, standard calculation yields the following lemma.
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a+2
Lemma 3.1. For any a € R and t > 1, let f,,(2) := %;,z € R%. Then f,, € AL,
t

z—a)
and sup ||faillte S1.
aERi

We have the following Carleson type result.

Theorem 3.2. Let g >p>1, a> -1, u € H(Ri) and ¢ : R — R2 be a holomorphic
mapping. Then the following statements are equivalent.

(1) Pup.gae isa %—Carleson measure;
(if) Wy, + A2 — A2 is bounded;
(iii) The following testing condition holds:

(a+2)q

el "I

sup atd)
A

00. (3.1)

Proof. (i) = (ii). Take and fix any dyadic grid D on R. Note that

= J o

1D

Therefore, for any f € AP, by Lemma 2.2, (i) and the fact that ¢ > p, we have

Wooflo = [ a7 (oD A / JCIZTNE
R:

=SSN QYOG

IE'DQI
<3 / / () 1A (w) | g gn(2)
I€'D 3Qup
=3 teael BB [ pptaan )
IeD 2Q;\p
<3 / P)IEE | £ (w) || (w) P dAg (w)
I€D; Hup
[ lwpdaaw)
IG'D%Q}W
< Ifle.,
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where in the last inequality, we use the fact that the set {%Q}l has finite overlap.

°}
IeD
(ii) == (iii). This is straightforward by testing the functions {fap}acr2 in Lemma 3.1.

(iii) => (i). For each a € R%, we have

(a+2)q lu(2)|?
12 |yal 7 -/Wd/la(z)

-a
& le(z) —a
(a+2)q Ay, (2) (a+2)q dty, (=)
=l S5 [ o e
R: |z —al 7 |zfa|

~ Nu,w,q,a(Ta)
Ao(T,)7

)

which implies the desired result. O

Corollary 3.3. Let ¢ > p > 1, a > —1, u € H(R2) and ¢ : R2 — R% be a holomorphic
mapping. If Wy, + AP — A% is bounded, then for any B € [p,q), Wy, + A8 — A% is
also bounded.

Proof. Let us first prove the result for those 8 € [p, (o + 2)p). By the boundedness of
Wiy o A — AL, we have

Fup,q,0(Ta) </
y(a+2)~%‘ ~ |Z &|(a+2)-% H »‘/’aQ:a(Z)
a
u(z)
< / fup,0,0(2) = dAu ()
(a+2) 2q 3P4, _ (a+2) 2q o
R2 |z —al R? lp(z) —al

Note that we can write W

= 2a’ + 4, where o = % — 2 > —1. Therefore,

P

Hug.g.0(Ta) Au(2) < 1 _ 1
e |z_a|2o/+4 S @ T @
Ya Ya

a

where in the last inequality above, we use Lemma 3.1. This implies that

(a+2)-4 Y
tup.g,0(Ta) S Ya P~ An(T,)5.
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Woa??

The general case follows from iterating the above argument with a larger “p” each
time. More precisely, from the above argument, we see that

Wi+ AlLT279P 5 A1

is bounded, for some 0 < ¢ < o+ 1 (in particular, the choice of £ only depends on «).
Then we rename “(a + 2 — €)p” as our new “p” and then iterate. Finally, we note that
such iterations will stop when 8 = ¢, so that Theorem 3.2 (in particular, (i) = (ii))

applies. O
For the compactness of W, ., we have the following result.

Theorem 3.4. Let g >p>1, a> —1,u € H(]Rf_) and ¢ : Ri — ]R{?|r be a holomorphic
mapping. Then the following statements are equivalent.

(1) Hup,qa s a vanishing I-Carleson measure;
(i) Wi, : AR — AZ is compact;
(iii) The following vanishing testing condition holds:

(a+2)q
N O
= ~ (2at4)q
RIY Jp(z)—al T
1

dA.(z) = 0.

Proof. The proof of this theorem is an easy modification of the proof of Theorem 3.2,
and hence we omit it. O

4. Sparse domination of weighted composition operators

In this section, we study a sparse bound of a weighted composition operator W, ,
acting from AP to A2, for some ¢ > p > 1. Namely, we want to understand how one can
study the quantity |Wy ,|lg,« via only a sparse collection of cubes in (R%,dA,) (see,
Remark 2.5).

We need the following result on the integral representation of an AP function.

Lemma 4.1 (/2, Theorem 1]). Let 1 < p < oo. Then any function f € AP is representable
in the form

where Cy, > 0 is an absolute constant.
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4.1. Boundedness

In the first part of this section, we study the boundedness of W, ,, by using the sparse
domination technique.

Given any function f € AP, we wish to understand the quantity ||W, o f||q,«. For any
N € N with 1 < N < p, using Lemma 4.1, we have

[We,e f]

o= [ WEFIC ) dA()
R2

- / u(2)|21f 0 ()TN |Co (V) (2)] dAa(2)

/\u 15 o )l /’C_ a+2dA (© | d4a()

LG / St LG

&
q—N
= [ | [ el | 4a(0) (4.)
C— 2ot
B2 \&2

To bound the term (4.1), we have the following lemma, which can be viewed as an
upper half plane analog of [16, Lemma 5].

Lemma 4.2. Let ¢ > p > 1,a > -1, N e N with 1 < N < p and u be a %—Carleson
measure. Then for anyv>1 and € Ri,

f ()N . 1g,(Q)  ,(3-1)3
J ‘C— ’a+2 (Z)SJ;I;I Aa(QI) Aa (QI)

2=

WQ)> / FEPMNdAL(z)

Proof. For each z € Rf_, we first consider the interval

Te+x, = T+ X, =
Lgim |35 - ol B 0 —al ) R

It is easy to see the following facts:
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(1) ZvC € QIzyd B
(2) Aa(Qr..) ~ ¢ — 2|2

Next, by Lemma 2.6, we are able to find an interval I € D¥ for some k € {1,

that I, . C I and ¢(I) < 3((1, ), which implies

(3> Z7C S QI; _
(4) Aa(Qr) = ¢ — 2|**2.

Therefore,

P o3 3 125 [ Nauco).

€ — 2o+
+

Next, we claim that

/|f )TN du(2) S p(@n)

2=

[F()[ N dAG(2)

éQjﬁRi

Indeed, by using Holder’s inequality, it suffices to bound the term

[5G duce)
Qr

11

2,3}, such

(4.2)

We further decompose the cube @ into its upper Whitney rectangles. More precisely,
using Lemma 2.2, the fact that | f(z)[7@~") is a subharmonic function and Theorem 3.2,

we have

(1y=3 / FEPT N dy(z)

< > A0 [irere M)

N
N
Qe
L
=
\
=
=
2
I
N

< (s 4i ) > 15 Naa. )

ol
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< AL(Q) / ()N dA,(2),

3QINRE

where in the last inequality, we use the fact that the set {%} REW; has finite overlap.
The desired claim follows from by pluging the above estimate to (4.4).
Combining (4.2) and (4.3), we get

O : 10,©) g%
|C* Z|a+2 ; 6D1 (0D -M(QI)w

2=

A@)EE L [ @ Maane) | )

QQIORi

We wish to change the integral domain in the above integration from %Q N ].R?F to a
dyadic cube belonging to Qp: for some i € {1 2 ,3}. To see this, we apply Lemma 2.6
again. More precisely, since ( QrnR2 ) NR = 31 using Lemma 2.6, we can take J € D"
for some i € {1,2,3}, such that

Ic % C J and £(J) < 3¢ (3;) < 60(I). (4.6)

This suggests that we have the pointwise bound

2=

LadOROIT 4 o | [ p@reasa)

Aa(Qr) s
Lo, (Qu(@s)” 4 ) - ’
R T / NOIE Y NE) RN

where we use the fact that A,(Qr) ~ An(QJ). Finally, we need to check that each
J € D'i € {1,2,3}, only appears finitely many times when we apply the inequality
(4.7). Indeed, this is clear from (4.6) and the dyadic structure on R. The desired result
then follows from (4.5) and (4.7). O

For any set £ C R2, vy >1and g > 0 on R2, we set

2=

(95 = %(E) / 19(2)[dAa(2)
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From (4.1), Lemma 4.2 and Theorem 3.2, we have the following result.

Proposition 4.3. Let ¢ > p > 1, > —1, u € H(R?%) and ¢ : R2 — R% be a holomorphic
mapping. Let further, W, , : A, +— A% be bounded. Then for any v > 1 and f € AP,

W fllga S inf (Z Z Hup.g.0(Qr) 7 L’ Aa (@07 (1M g, - <|f|qN>Q1,'v> :

NeN,1<N<p
i=1 JeDi

(4.8)
In particular, when p = ¢, we have the following result.

Theorem 4.4. Let ¢ > 1,a0 > —1, u € H(]Ri) and ¢ : ]Ri — R%r be a holomorphic
mapping. Then the following statements are equivalent.

(1) Way,e : AL — AZ is bounded;
(ii) For any f € AL,

3
W f I S it (Z > 4@, - <|fq-N>QI> .

i=1 JeD

Proof. The assertion (i) implies (ii) follows from Proposition 4.3 with v = 1, and there-
fore we only need to show that (ii) implies (i). Without loss of generality, we fix a N € N
with 1 < N < ¢ (the case ¢ = N follows from a similar argument, and we leave the detail
to the interested reader), then we can find some ig € {1,2,3}, such that

3
D0 > Aal@DUM)ar (1" e, <3 37 Aa@{S1Mer (1" e,

i=1 JeDi IeDio

Therefore,

W flga S D A@D UM - (1117 Ve,

IeDio

S D AN ar - (A1 Ve,

IeDio

< / MIFINY M (1f177N) dAa(2)
RZ

I
|
2

/ MM dAL () |- / MU 15N 75 d A ()

2
T
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q—N

Q
Q

N

/IfIN HdA,( /Ifl(“ NN A, (2)

IIfIIq,w

where in the above estimates, M is the usual uncentered Hardy-Littlewood maximal
operator with respect to the measure A,, and in the last inequality, we use a classical
fact that M is a bounded operator from L, to itself, for 1 <r <oco. O

We can also establish such an equivalence for the case when p < ¢ with some extra
assumptions.

Theorem 4.5. Let 2p > ¢ > p > 1,a > —1, u € H(Ri) and ¢ : Ri — Ri be a
holomorphic mapping. Suppose

Zpge={NeN: N>1,N<p<qg<p+N}#0.
Then the following statements are equivalent:

(i). Wy : AR — AZ is bounded;
(ii). For any f € AP,

W fllga < i (ZZAE @M, <f|q-N>Q,>.

=1 I1eD?

We make a remark that in general Z, , is not trivial, one typical example for Z,, 4 to
be non-empty is that both p, g are large but ¢ — p is small.

Proof. The idea of proof of this result follows from the proof of Theorem 4.4, and the new
ingredient in this proof is that instead of using the Hardy-Littlewood maximal function,
we use its fractional version. Again, we only need to show that (ii) implies (i). First we
note that our assumption p < ¢ < 2p implies 0 < % — 2 < 2. Write

p ’ p
l=——-——— and [I'= .
p+N—q q—N
Fix any N € Z, 4. Then a simple calculation yields
N 1
X9y (4.9)
p Lop

Also note that 1 < £ < . Let 4o € {1,2,3} be the index such that
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>3 Ad@ONMar - 171, <3 30 ALQUIN e, (/1" Na,

i=1 JeD IeDio

Therefore,

W flia < D ALQOUMa, - (1F17 g,

IeDio

S 3 4@ Gl [ 1M dAn(e) -5 Mg,
Q1

]
b

up AF(QI) N 2) . q—N
) S Q/ VA NORT T

< [ Maay (1) M(FY) dia(2)

Y=

< | [ Muala™aau@) | | [ ma )
< /If\NNdA /\fl”quA()

=/

Ip,a-

Here in the above estimates, M 24 _, is the fractional Hardy-Littlewood maximal operator
P
with respect to the measure A,, and in the last inequality, we use the fact that

Moy : LY I
is bounded, which is guaranteed by (4.9). O
4.2. Compactness
In the second part of this section, we establish a new characterization of the compact-
ness of W, , via sparse domination.

Recall in the previous part, we are able to capture the boundedness of W, ,, : AP — AY
by using the sparse form

S ALQOU)as - 1A ), (4.10)

1D
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for some N € N,0 < N < ¢ and some dyadic grid D. Note that this sparse form corre-
sponds to the case v = 1 in Lemma 4.2. The interesting feature for this quantity is that
it is independent of the terms u and . This suggests us that (4.10) may not be enough
to describe the compactness of W, ., which is clearly stronger than the boundedness.
The idea is to consider those sparse forms in Lemma 4.2 with v > 1.

The following is our main result for the compactness of W, , : AL — A4.

Theorem 4.6. Let ¢ > 1, > —1, u € H(R%) and ¢ : Rf_ — Rf_ be a holomorphic
mapping. If Wy o+ AL — A% is bounded, then the following statements are equivalent.

(1) Wi, : AL — A2 is compact;
(ii) Let 1 < N<gNeNandl <~v < —qu, orq=N €N and v > 1. Let further,
{Kn}n>1 be a sequence of sets exhausting ]Ri, that is, {Kn,}n>0 is a collection of
(o]
compact sets in Ri, satisfying K1 C Ko C ... K, € --- C Rﬁ_, and | K, = ]R%_.
n=1

Then for any bounded set {fm}m>1 C AL with f,, — 0 as m — oo, uniformly on
compact subsets of Ri,

1
~7

3
Jim_sup Yo D Hugaa(@n)

=1 1eD*, Q¥ NK,=0

AZ@D Ul ar (] M)ar 4 | =0,

Proof. (i)=(ii). Suppose W, , is compact, and hence by Theorem 3.4, fiy ppa is a
vanishing Carleson measure. Write

M := sup ||fm||g7a.
m>1
Then for any € > 0, there exists a Ny € N, such that for n > Ny, we have

P < ()

where T, is the Carleson tent associated to a € R% satisfying T2P N K, = 0.
Fix such an n. Then for any ¢ € {1,2,3} and m > 1,

Z Nu,sa,q,a(QI)$

I1eD QP NK,,=0

S Y AQ)UEaMe (1l Ve

1eD, QP NK =0

S a7 2 Aa@DUfalMar 1 Fnlars

IeD?

AT QD™ (" V)

g
S =l <e
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Here in the last inequality, we use the proof of Theorem 4.4. The desired result follows

by taking the supremem in m first and then letting ¢ converges to 0.
(ii) =(i). Without loss of generality, we may consider the case 1 < N < ¢ and

1<y« q_LN, while the proof of the case when ¢ = N and v > 1 is much easier and we
leave the detail to the interested reader.
Let {fm}m>0 C AP be a bounded set satisfying f,, — 0 as m — oo, uniformly on

compact subsets on Ri. It is well known that to prove W, , is compact, it suffices to

show
lgo >0 as m — oco.

W fm

Let € > 0. By Lemma 4.2 and without loss of generality, we may assume
a1 _
7A@l ™M) @i {1 fml T V@ -

5

”Wu,sofm”g,a S Z Hop,q,0 (Qr)

IeD?

1
7

Therefore, for each m > 1 and n > 1,
3

Z Hu,p,q,0(Qr)

IeD', Q" NKL,=0

AZ QD™ Ul a1 4

W finllga S
1
o7

Z Mu,tp,q,a(QI)'y

I1eDY, QTP NKn#0D

+ AZ@QD (™ ar U fmlT ) s 4
= Al,m + A2,m~

Take any € > 0. We estimate As ,,, first, which is the main part. Put
for some I € D}.

K = {(z,y) € R : (z,y) € Q'", Q7" N K, # 0,

It is clear that K, is a compact set and the collection {K] },>1 is also a sequence of

exhausting sets of R3. Thus, for any n € N,

A2m: Z i

, Huyp,q,0(Qr) 7" A
1D, QP NK, #0

< > A @Dl ™) s (™M1

IeD, QP NK,#0
(Since phy, e .o is a Carleson measure)

< > Ao Q7)) (FmlM @ Ul 1

IeDL, QP NK,#0
< [ M) (M (7)) (o)
Ky,

(TN PR (AU Y
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<| [ar@nmF s || [ (v (500)) T da)

K’

n

Q
Q

By Holder’s inequality, we get

N a—N
q

Q

Ao < / N E dAL(2) / il NG 44, (2)
K/’ K/

= / |fm‘quaa

!
K/,

9
q—N
is doubling. This implies that for any n > 0, we can take m large enough, such that

where in the last estimate, we used the fact that 1 < v < and the measure 1 K dAq

Agn < % (4.11)

Fix such a m. Then by the assumption, there exists an Ny € N, such that for any n > Ny,

Yo tupaal@0)

IeD, QP NK =0

€
a9

AZ Q™) ar (™) ar < 5

which implies

3

Arm < 5

The desired result then follows from the above estimate and (4.11). O
4.8. New weighted estimates

In the third part of this section, we apply the idea of sparse domination to obtain
some new weighted estimates.

To start with, we recall that by a weight we will mean a function w that is non-negative
on a set of positive measure.

a,q
¢

“Bergman projection”like transformation and this would be clear from the Definition 4.7
below).

Let us introduce a new class of weights, which we denote as B (Here, B refers to a

Definition 4.7. Given o > —1, ¢ > 1, u € H(Rf_) and ¢ : Rf_ — ]R?,_, the weight class
B¢ is defined to be the collection of all weights w on R? satisfying
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|u(2)|w(z)
[W]gaw = su ——————=5dA(z) < 00,
" cems @

q
e CeRiRi ¢ — w(z

Remark 4.8. Note that the measure wdA, itself may not be a Carleson measure. For
example, let u(z) = 1,p(2) = 2+, a =0, ¢ > 1 be any real number and

(2) = 0, |z| > 1, Imz > 0;
1/, |z| <1, Imz > 0.

Claim 1: C,, is a bounded operator on A? (that is, A{).
By Theorem 3.2, it suffices to show

1Ya|?

su —2 7 __dA(2) < 0.
28 ) Eri—ar?
K3
This is clear as for each a € Ri, we have
2 3 2
|ya| // |ya| Qdyd.'l/'
|z +1i— a|4 9 2
RZ 0 Ix—xa\ + (¥ +1+va)
// [val* s drdy
0 (y+1+9a) )

A
= =

In particular, this implies the Carleson measure induced by the operator Cy, is a 1-
Carleson measure.

0.9
Claim 2: w € By ;.

Indeed, for any ¢ € R2, we have

L= [ et e s

- z||I¢ — 2z — i|?
R2 |C (‘0(2) |z|]<1,Im 2>0 | HC ‘

where in the last inequality, we first use the fact that I Zl e <1 for 2, € Ri and
then integrate in polar coordinate.

Claim 3: the measure wdA is not 1-Carleson.

Indeed
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where a = y,i with y, > 0 sufficiently small. This implies that :g‘l; — 00 as Yq — 0,

which implies the desired claim.

Moreover, we would also like to make a comment that this new class of weights is
indeed “natural”; in the sense that it can be interpreted as a version of Sawyer—testing
conditions (one may compare it with (3.1)). This type of condition was first introduced
by Sawyer [17] in 1982 in studying the behavior of Hardy-Littlewood maximal operators
acting on weighted LP spaces, and later, the same idea has been applied by many authors
to study other function spaces and operators, such as [1,15].

The following is our main result in this subsection.

Theorem 4.9. Let ¢ > 1,1 < s < ¢, o > -1, u € HR?%), ¢ : RZ — R2 be a
holomorphic self-mapping and w*® € By'%, where q' (respectively, s') is the conjugate of
q (respectively, s). Let further, W, , : AL +— A% be bounded. Then the following weighted

estimate holds

‘ (4.12)

q,a?

[ e ()da () $ o] B £
J 2

where the implicit constant in the above estimate is independent of the choice of f and the
weight w. In particular, the measure fiy ey qw,o @5 a 1-Carleson measure. Here iy p,q.0,a
is defined by

/fdﬂu#,,qyw,a:/|u(z)|q|f(cp(z))|qw(z)dAa(z), f is measurable.
R? R

Proof. It suffices for us to prove the estimate (4.12), while the proof that the measure
Hu,p,q.w,a 1S 1-Carleson measure is standard and follows from a simply modification of
its unit ball analog (see, e.g., [20, Theorem 2.25]). Therefore, we omit the proof here.

The proof of the estimate (4.12) follows from the spirit of Proposition 4.3 and Theo-
rem 4.4. First, following the argument in the estimate (4.1), we have

/ [u(2)]9|Cp £ (2)[e0(2) dAa(2)
B2

1 0 o7 u(2)e(2)dAa (2)
s [170) \RZ s 44(0)

[fop(@) " Hu(z)|*  |u(2)]; JA dA
= at2 — at2 al? (€
2 \RZ+ 1€ — o(2)| = IC— (2 ) ©
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S(q 1) q
o[
R}

| @@, )

s(g—1) ’
/ Q) Q R duu,w,q,a(@) 044 (E).

Moreover, using Lemma 4.2, we have

1
s

1

s(g—1)
S| [ a) | d4a©
2 \RQ |C—Z| +
R} 2
3 :
M P s(q—l) 5
§R[+|f(©| ;Iebi " QI)/|f( )| dAq( )) dAa(0)
3
]1Q
~ Ve I FOFTDdA) | dAa(2)
e ()

3
=35 4@ UM a1 N s

i=1 JeD?

SZ A @) Dar (1 s

1

<(R M(f)qua(Z)) Q/ (M(f@l”))idAa(z))

SUFla - 101G = 1115,

[f(z)]dAa( ()P VAL (
i=11eD Aa (Q ) (Q )

21
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where in the last inequality, we use the fact that s < ¢ and the Hardy-Littlewood

q_
maximal operator is bounded on Lg . The desired result follows from combining these
estimates. O

5. Unit ball analog

In this section, we extend our main results to the unit ball case, whose proof follows
closely from the upper half plane case, and therefore, we would like to leave the details
to the interested reader. Let us first recall some basic definitions.

Let B be the unit ball in C™ and S be its boundary. For « > —1 and p > 1, the
weighted Bergman space AP (B) is defined to be the space of holomorphic functions on
B satisfying

Iy = o [ 1FIP( = 2PV () < o
B

where dV (z) is the standard Lebesgue measure on B and ¢, is chosen so that the measure
dVa(2) = co(1 — |2|2)*dV (2) is a probability measure on B.

Next we recall some geometric facts on the unit ball B. For a € B, let ®, be the
involutive automorphism of B that interchanges a and 0, that is,

D,0P, =1id, P,(0)=a and D,(a)=0.
This allows us to define the Bergman metric 5 on B, by

Bzw) = Flog 110

—_— B.
5 o) 1—|<I>Z(w)|’ Z,w €

For any a € B and C' > 0, Bg(a,C) :={z € B : §(a, z) < C'}. We are ready to construct
the sparse collections on B. To start with, we recall that, as in Definition 2.3, there exists
a dyadic grid on S, and we denote it as D := {QF}; rez as usual (see, e.g., [16]).

The following result can be understood as a version of the Whitney decomposition

of the unit ball (in particular, this decomposition is parallel to the decomposition in
Lemma 2.4).

Proposition 5.1 ([16]). Let « > —1,1,0 > 0 and D = {QF}i rez be a dyadic grid on
S. Then there exists a collection of points in B, which is denoted as T, satisfying the
following properties:

(1) The set T has a one-to-one correspondence with D. Moreover,

SN

7=U Ui}

N=1j=1
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N
where cév € S(N_,_%)(,, the sphere of radius (N + %) 0 in the Bergman metric, \?_Nl €
j
é\’, and Jy > 0 is the number of cubes in N -th generation in D, which only depends
on N,n,0 and X;

(2) T has a tree structure, that is, ¢¥ 1

%

. . N . . . CN+1 N
is a child of ¢j* for some i, j > 0, zflc}_\,—+1| €Q; -

Moreover, for each a € T, there exists a Borel set K, such that the following properties
hold:

(a) B= U K, and the sets K, are pairwise disjoint. Furthermore, there are constants

a€T
C1 and Cs depending on A and 6 such that for all a € T there holds:
Bﬁ(a701) - Ka C BB(G,CQ);

() V(o) = Va(K,) ~ (1—|af?)nti+e ~ e=2N6(+1+0) forq ¢ T with NO < B(0,a) <
(N + 1)0, where

[/(TI = U Kal;

a’€T:a’ is a dyadic descendant of a

2n6

(c) Every element of T has at most e*™" children.

Definition 5.2.

(1) We refer to T as a Bergman tree associated to the dyadic grid D, a € T the center

of K., B= |J K, the Whitney decomposition of B with respect to D and I/(\a the
a€T
dyadic tent under K;

(2) For any cap Q;-V € D, we define its upper Whitney box to be chv, and its dyadic

tent to be I?C\N;
(3) For any D, a dyadic grid on S, we define Qp := | {I?;v} = U {@} to
QVep * QeD
be the collection of all its dyadic tents, where we use ¢ to denote the one-to-one
correspondence between D and T .

Note that an easy consequence of Proposition 5.1, (b), is that for each dyadic grid D
on S, the collection Qp is a sparse collection.

The following proposition can be understood as the replacement for a collection of
dyadic grids that can approximate any cube appropriately in the setting of B.

Proposition 5.3 ([16, Lemma 3]). There is a finite collection of Bergman trees {T*}},
such that for all z € B, there is a tree T from the finite collection and an a € T
such that the dyadic tent K, contains the tent T, and Vo (K,) ~ Vo (T.), where T, :=

{we[B%:‘l—wi

2|

<1l- |z\} is the Carleson tent over z.
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Remark 5.4. The above proposition allows us to extend the definition of upper Whitney
box in the following way: let E C S (here, F is not necessarily a cap in any dyadic grid
D on S) satisfying E = S N 9T, for some z € B. Then by Proposition 5.3, we can find
some a = a, € B, such that T, C Ka and V,( a) ~ Vo (T.). In this case, we define the
upper Whitney box of E as K.

Therefore, combining Propositions 5.1 and 5.3, we see that there exist dyadic grids
D',..., DM on S, which corresponds to 77,..., 7™M, respectively, playing the same roles
as D1,..., D3 defined in (2.2) for the upper half plane case.

We are ready to state our main results for the boundedness and compactness of
weighted composition operators acting on weighted Bergman spaces on B.

Theorem 5.5. Let ¢ > 1, > —1, u € H(B) and ¢ : B — B be a holomorphic mapping.
Then the following statements are equivalent.

(i) Wa,p o AL(B) — AZL(B) is bounded;
(ii) For any f € AL(B),

W gy S gy Z S Ve (Faa) (UM - (1517

=1 QeD?

Theorem 5.6. Let 2p > g >p > 1,a > —1, u € HB) and ¢ : B — B be a holomorphic
mapping. Suppose

Zps={NeN: N>1,N<p<qg<p+N}#0.
Then the following statements are equivalent:

(i) Wap o A2(B) — AL(B) is bounded;
(ii) For any f € AP (B),

IWaiof % ) S i Sy v (Ko@) (1) s - U017 e

TNez, \ S 55

Theorem 5.7. Let ¢ > 1,a > —1, u € H(B) and ¢ : B — B be a holomorphic mapping.
If Wy, : AL(B) — AL(B) is bounded, then the following statements are equivalent.

(i) Wa,p s AL(B) — AL(B) is compact;
(ii) Let1<N<q,N€N and 1 <y < Hg, orq=N €N andy > 1. Let further,
{K;}j>1 be a sequence of exhausting sets of B, that is, {K;};>0 is a collection of
oo
compact sets in B, satisfying K1 C Ko C ... K; € --- C B, and |J K; =B. Then

Jj=1
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for any bounded set {fm}m>1 C AL(B) with f, — 0 as m — oo, uniformly on
compact subsets of B,

1
7

M
lim sup (Z Z Hu,p,q,a (@) k

J—00 ;> ° )
m21 i=1 QED, K o(gyNK,;=0

Vi (Fa@) Ul Ul ) =0

Next, we extend the weighted estimates (4.12) to the unit ball. We first need the
following B¢ weights, which is a unit ball analog of the B;'{ weights.

Definition 5.8. Given a > —1, ¢ > 1, u € H(B) and ¢ : B — B, the weight class B'? is
defined to be the collection of all weights w on B satisfying

W] pgag = SU [u(2)l%w(z) dVe(z 0.
[ ]Bu,‘w iEIIB?B/ |1 . <C,<P(Z)>‘a+n+l a( )<

Theorem 5.9. Let g > 1,1 < s < ¢, a> -1, u e HMB), ¢ : B — B be a holomorphic
self-mapping and w' e B4, where q (respectively, s') is the conjugate of q (respectively,

s). Let further, Wy, , : AL(B) — AL(B) be bounded. Then the following weighted estimate
holds.

JECLEERONACE [ gy 1720 (5.1)

B

where the implicit constant in the above estimate is independent of the choice of f and the

weight w. In particular, the measure [ly e g.w,o @5 a 1-Carleson measure. Here iy, p,q.0,0
is defined by

/fdﬂu,%q,w,a :/|U(Z)|q|f(%0(z))\qw(z)dVa(2), f is measurable.
B

B

6. Further remarks

We conclude the article with several remarks. Our main results, and the proofs, are a
model case for a wider range of results in studying complex function theory and weighted
estimates via sparse domination. Some possible extensions to the main results of this
paper are as follows.

(a) Establish the results for more general domains. That is, find the sparse bounds
for weighted composition operators acting between weighted Bergman spaces on
polydics, Hartogs domains, Thullen domain and etc.
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(b) Study the sparse bounds and corresponding weighted estimates of weighted compo-
sition operators acting on some Mobius invariant function spaces. Typical examples
of these spaces include the Bloch space B, Q, and Qy spaces (see, e.g., [19]).

(¢) Introduce more general weighted estimates, for example, weighted estimates with
matrix weights. This would encounter extra difficulties, for example, one needs to
figure out a correct notion of convex body domination in the setting of complex
function spaces.
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