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1. Introduction

Let R2
+ := {z ∈ C, Im z > 0} be the upper half-plane on the complex plane, R̂2

+ :=
R2

+ ∪ {∞} and H(R2
+) be the set of all holomorphic functions in R2

+ with the usual 
compact open topology. For 0 < p < ∞ and α > −1, let Lp

α = Lp
α(R2

+) be the collection 
of measurable functions f in R2

+, for which the (quasi-) norm

‖f‖p,α :=

⎛⎜⎝∫
R2

+

|f(z)|pdAα(z)

⎞⎟⎠
1
p

(1.1)

is finite, where dAα(z) = 1
π (α + 1)(2Im z)αdA(z), dA(z) = dxdy, and z = x + iy.

The weighted Bergman space Ap
α on R2

+ is defined to be the space Lp
α ∩H(R2

+). It is 
well known that when 1 ≤ p < ∞, Ap

α is a Banach space with the norm (1.1); while for 
p ∈ (0, 1), it is a Fréchlet space with the translation invariant metric

d(f, g) := ‖f − g‖pp,α, f, g ∈ Ap
α.

We refer the interested reader to the books [7,20] for more information about weighted 
Bergman spaces on the unit disk and the unit ball.

Let u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a holomorphic self-mapping. The weighted 

composition operator is defined as

Wu,ϕ(f)(z) = u(z) · f ◦ ϕ(z), f ∈ H(R2
+), z ∈ R2

+.

If u(z) ≡ 1, then Wu,ϕ becomes the composition operator and is denoted by Cϕ, and if 
ϕ(z) = z, then Wu,ϕ becomes the multiplication operator and is denoted by Mu. See, 
for example, [5,14,18] for more information about composition operators and weighted 
composition operators on weighted Bergman spaces on the unit disk.

In the recent decade, the sparse domination technique was developed and studied by 
many mathematicians working in harmonic analysis. This technique dates back to Andrei 
Lerner from his alternative, simple proof of the A2 theorem [11,12], proved originally by 
Hytönen [9]. In Lerner’s work, he was able to bound all Calderón-Zygmund operators by 
a supremum of a special collection of dyadic, positive operators called sparse operators. 
This estimate led almost instantly to a proof of the sharp dependence of the constant in 
related weighted norm inequalities, the A2 theorem, a problem that had been actively 
worked on for over a decade.

Later, there have been many improvements to Lerner’s techniques, as well as extending 
his ideas to a wide range of spaces and operators, such as [3,6,10,13]. In general, sparse 
bounds have been recognized as a finer quantification of the boundedness of an operator, 
which roughly says that the behavior of an operator can be captured by a “sparse” 
collection of dyadic cubes.



B. Hu et al. / Journal of Functional Analysis 280 (2021) 108897 3
Sparse bounds of operators acting between complex function spaces is a recent research 
topic. As far as we know, this type of estimates first appears in the work of Aleman, 
Pott and Reguera [1], where they proved a pointwise sparse domination estimate of the 
Bergman projection to study the Sarason conjecture on the Bergman spaces. Later, by 
using similar ideas, Rahm, Tchoundja and the last author [16] were able to establish 
some weighted estimates for the Berezin transforms and Bergman projections acting 
between weighted Bergman spaces on the unit ball (see, also [8] for its analog in Hartogs 
domains).

The aim of this paper is to study the sparse domination estimate of the weighted 
composition operators acting on complex function spaces. The novelty are twofold.

(a) From the viewpoint of harmonic analysis, the weighted composition operators that 
we study, lack an integral structure and aren’t immediately amenable to study via 
a dyadic structure. This is very different from the case of studying sparse bounds 
of the Hardy-Littlewood maximal operators, Calderón-Zygumund operators, Haar 
shift operators or other operators that have been considered in harmonic analysis. 
We will overcome this difficulty by applying integral representations of holomorphic 
Bergman-class functions and introduce some proper positive sparse forms which are 
adapted to the Carleson measure induced by weighted composition operators (see, 
(4.8)). Moreover, we are also able to describe the compactness of weighted compo-
sition operators by using sparse domination. To the best of our knowledge, no prior 
results on describing the compactness of operators by using sparse domination exist 
in the literature.

(b) From the view of complex function theory and weight theory, we discover new criteria 
of describing the boundedness and compactness of weighted composition operators 
acting on weighted Bergman spaces. Moreover, we are able to establish some new 
weighted type estimates for a new class of weights, which is adapted to Sawyer–
testing conditions (see, Definition 4.7 and Remark 4.8). Again, to the best of our 
knowledge, these types of results appear to be new in the literature, and more im-
portantly, they seem not be covered by the classical Carleson measure technique.

The structure of this paper is as follows. Section 2 provides backgrounds, especially 
the dyadic system and sparse family in (R2

+, dAα), and Section 3 characterizes a standard 
Carleson embedding type theorem. In Section 4, we first give new necessary and sufficient 
conditions for weighted composition operators to be bounded and compact on weighted 
Bergman spaces. Moreover, we establish a new weighted type estimate, together with 
introducing a new class of weights that is adapted to Sawyer’s classical test conditions. 
In Section 5, we deal with the analog of our results in the unit ball B in Cn, and finally, 
in Section 6, we give some remarks for possible extensions of our main results to various 
domains and function spaces.
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Throughout this paper, for a, b ∈ R, a � b (a � b, respectively) means there exists 
a positive number C, which is independent of a and b, such that a ≤ Cb (a ≥ Cb, 
respectively). Moreover, if both a � b and a � b hold, then we say a � b.

2. Preliminary

In this section, we recall some basic facts from the dyadic calculus on (R2
+, dAα). For 

a = xa + iya ∈ R2
+, we denote

Ta :=
{
z = x + iy ∈ R2

+ : |x− xa| ≤
ya
2 , 0 < y < ya

}
to be the Carleson tent associated to a. While for an interval I ⊂ R, we denote

QI :=
{
z = x + iy ∈ R2

+ : x ∈ I, y < |I|
}

to be the Carleson box associated to I. We note that

QI = TcI+i|I|,

where cI is the center of I. For any E ⊆ R2
+, denote Aα(E) :=

∫
E
dAα(z). Then it is 

easy to see that

Aα(Ta) � yα+2
a � (yz + ya)α+2 � |z − ā|α+2, z ∈ Ta. (2.1)

The above estimates (2.1) will be used frequently in the sequel. It will be convenient for 
us to decompose QI into a disjoint union of small rectangles. To do this, we introduce 
the following definition.

Definition 2.1. Let I = [a, b) ⊂ R and QI be the Carleson box associated to I. For each 
i ≥ 1, i ∈ N, we define the i-th generation of the upper Whitney rectangles associated to 
I as

Wi,I :=
{[

a + (b− a)(j − 1)
2i−1 , a + (b− a)j

2i−1

)
×
[
b− a

2i ,
b− a

2i−1

)
, 1 ≤ j ≤ 2i−1

}
and the collection of upper Whitney rectangles associated to I as

WI :=
∞⋃
i≥1

Wi,I .

In particular, there is only one rectangle in W1,I , which is denoted as Qup
I . Moreover,

QI =
⋃

R

R∈WI



B. Hu et al. / Journal of Functional Analysis 280 (2021) 108897 5
We have the following lemma, which is an easy application of the mean value property 
of subharmonic function.

Lemma 2.2. Let I = [a, b) and QI be defined as above. Let further, R ∈ Wi,I for some 
i ≥ 1. Then for any f ∈ H(R2

+),

|f(z)| � 1
Aα(R)

∫
3R
2

|f(ω)|dAα(ω), z ∈ R,

where the implicit constant in the above inequality only depends on α, and 3R
2 is the 

dilation of R with same center but with side lengths 3/2 times of R.

We make a remark that the ratio 3/2 is not necessary in the above lemma. Indeed, 
any number in the range (1, 3) works.

Next, we would like to extend the above constructions to a collection of intervals, 
namely, on a dyadic grid on R.

Definition 2.3. A collection of intervals D in R is a dyadic grid if the following statements 
hold:

(i) If I ∈ D, then �(I) = 2k for some k ∈ Z, where �(I) refers to the sidelength of the 
interval I;

(ii) If I, J ∈ D, then I ∩ J ∈ {I, J, ∅};
(iii) For every k ∈ Z, the intervals Dk =

{
I ∈ D : �(I) = 2k

}
form a partition of R.

This allows us to consider the collection of Carleson boxes induced by the dyadic grid 
D, which we denote as QD.

Lemma 2.4. Let D and QD be defined as above. Then there exists 0 < σ < 1, such that 
for any Q ∈ QD,

Aα

⎛⎝ ⋃
P∈QD,P�Q

P

⎞⎠ ≤ σAα(Q).

Equivalently, if we define

E(Q) = Q\
⋃

P∈QD,P�Q

P,

then the sets E(Q) are pairwise disjoint and Aα(E(Q)) ≥ (1 − σ)Aα(Q).

Proof. This follows from an easy calculation and it suffices to take σ = 1
2α+1 . We leave 

the details to the reader. �
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Remark 2.5. Lemma 2.4 suggests that the Carleson boxes are closely related to the 
concept of sparse collection in harmonic analysis. Recall for any given λ ∈ (0, 1) and 
any dyadic grid DR2

+
in (R2

+, μ), where μ is any measure on R2
+, a sparse collection S of 

DR2
+

with sparseness λ is a collection of dyadic cubes for which there exists a collection 
of sets {E(Q) : Q ∈ S} such that the sets E(Q) are pairwise disjoint, E(Q) ⊂ Q and 
λμ(Q) ≤ μ(E(Q)).

Note that there is a natural way to embed QD into a dyadic grid in R2, and therefore, 
Lemma 2.4 asserts that QD is a sparse collection of some dyadic grid in (R2

+, dAα) with 
sparseness 1 − σ.

Lemma 2.6 ([4, Theorem 3.4]). There exist dyadic grids D1, D2 and D3, such that for any 
interval I, there exists J ∈ Dk for some k ∈ {1, 2, 3}, such that I ⊂ J and �(J) ≤ 3�(I).

A possible choice for these three dyadic grids in R is

Dk =
{
2j([0, 1) + m + t) : j ∈ Z,m ∈ Z

}
, t ∈ {0,±1/3}. (2.2)

From now on, we shall fix a choice of three dyadic grids D1, D2 and D3, which satisfies 
the conclusion in Lemma 2.6.

3. Carleson embedding

The results in this section are standard, and to be self-contained, we include their 
proofs here. Recall that for λ > 0, we say a measure μ defined on R2

+ is a λ-Carleson 
measure if

sup
a∈R2

+

μ(Ta)
(Aα(Ta))λ

< ∞,

and a vanishing λ-Carleson measure if

lim
a→∂(R̂2

+)

μ(Ta)
(Aα(Ta))λ

= 0.

Here lim
z→∂(R̂2

+)
g(z) = 0 means that sup

R2
+\K

|g| → 0 as the compact set K ⊂ R2
+ expands to 

all of R2
+, or equivalently that g(z) → 0 as Im z → 0+ and g(z) → 0 as |z| → ∞.

Given p ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ a holomorphic mapping, we 

define the measure μu,ϕ,p,α by μu,ϕ,p,α(E) := (|u|pAα)
(
ϕ−1(E)

)
. Namely, for any f

measurable, we have ∫
R2

+

fdμu,ϕ,p,α =
∫
R2

+

f ◦ ϕ(z)|u(z)|pdAα(z).

A simple, standard calculation yields the following lemma.
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Lemma 3.1. For any a ∈ R2
+ and t ≥ 1, let fa,t(z) := y

α+2
t

a

(z−ā)
2α+4

t

, z ∈ R2
+. Then fa,t ∈ At

α

and sup
a∈R2

+

‖fa,t‖t,α � 1.

We have the following Carleson type result.

Theorem 3.2. Let q ≥ p ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a holomorphic 

mapping. Then the following statements are equivalent.

(i) μu,ϕ,q,α is a qp -Carleson measure;
(ii) Wu,ϕ : Ap

α → Aq
α is bounded;

(iii) The following testing condition holds:

sup
a∈R2

+

∫
R2

+

|ya|
(α+2)q

p |u(z)|q

|ϕ(z) − ā|
(2α+4)q

p

dAα(z) < ∞. (3.1)

Proof. (i) =⇒ (ii). Take and fix any dyadic grid D on R. Note that

R2
+ =

⋃
I∈D

Qup
I .

Therefore, for any f ∈ Ap
α, by Lemma 2.2, (i) and the fact that q ≥ p, we have

‖Wu,ϕf‖qq,α =
∫
R2

+

|u(z)|q|f(ϕ(z))|qdAα(z) =
∫
R2

+

|f(z)|qdμu,ϕ,q,α(z)

≤
∑
I∈D

∫
Qup

I

|f(z)|qdμu,ϕ,q,α(z)

�
∑
I∈D

∫
Qup

I

1
Aα(Qup

I )

⎛⎜⎝ ∫
3
2Q

up
I

|f(w)|qdAα(w)

⎞⎟⎠ dμu,ϕ,q,α(z)

=
∑
I∈D

μu,ϕ,q,α(Qup
I )

Aα(Qup
I ) ·

∫
3
2Q

up
I

|f(w)|qdAα(w)

�
∑
I∈D

∫
3
2Q

up
I

Aα(Qup
I )

q−p
p |f(w)|q−p|f(w)|pdAα(w)

≤ ‖f‖q−p
p,α

∑
I∈D

∫
3
2Q

up
I

|f(w)|pdAα(w)

� ‖f‖qp,α,
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where in the last inequality, we use the fact that the set 
{3

2Q
up
I

}
I∈D has finite overlap.

(ii) =⇒ (iii). This is straightforward by testing the functions {fa,p}a∈R2
+

in Lemma 3.1.
(iii) =⇒ (i). For each a ∈ R2

+, we have

1 � |ya|
(α+2)q

p ·
∫
R2

+

|u(z)|q

|ϕ(z) − ā|
(2α+4)q

p

dAα(z)

= |ya|
(α+2)q

p

∫
R2

+

dμu,ϕ,q,α(z)

|z − ā|
(2α+4)q

p

≥ |ya|
(α+2)q

p

∫
Ta

dμu,ϕ,q,α(z)

|z − ā|
(2α+4)q

p

� μu,ϕ,q,α(Ta)
Aα(Ta)

q
p

,

which implies the desired result. �
Corollary 3.3. Let q ≥ p ≥ 1, α > −1, u ∈ H(R2

+) and ϕ : R2
+ → R2

+ be a holomorphic 
mapping. If Wu,ϕ : Ap

α → Aq
α is bounded, then for any β ∈ [p, q], Wu,ϕ : Aβ

α → Aq
α is 

also bounded.

Proof. Let us first prove the result for those β ∈ [p, (α + 2)p). By the boundedness of 
Wu,ϕ : Ap

α → Aq
α, we have

μu,ϕ,q,α(Ta)

y
(α+2)· 2qβ
a

�
∫
Ta

1
|z − ā|(α+2)· 2qβ

dμu,ϕ,q,α(z)

≤
∫
R2

+

1
|z − ā|(α+2)· 2qβ

dμu,ϕ,q,α(z) =
∫
R2

+

|u(z)|q

|ϕ(z) − ā|(α+2)· 2qβ
dAα(z)

�

⎛⎜⎝∫
R2

+

1

|z − ā|
(2α+4)p

β

dAα(z)

⎞⎟⎠
q
p

.

Note that we can write (2α+4)p
β = 2α′ + 4, where α′ = (α+2)p

β − 2 > −1. Therefore,

μu,ϕ,q,α(Ta)

y
(α+2)· 2qβ
a

�

⎛⎜⎝∫
R2

+

1
|z − ā|2α′+4 dAα(z)

⎞⎟⎠
q
p

� 1

y
(α′+2)· qp
a

= 1

y
(α+2)· qβ
a

,

where in the last inequality above, we use Lemma 3.1. This implies that

μu,ϕ,q,α(Ta) � y
(α+2)· qβ
a � Aα(Ta)

q
β .
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The general case follows from iterating the above argument with a larger “p” each 
time. More precisely, from the above argument, we see that

Wu,ϕ : A(α+2−ε)p
α → Aq

α

is bounded, for some 0 < ε < α + 1 (in particular, the choice of ε only depends on α). 
Then we rename “(α + 2 − ε)p” as our new “p” and then iterate. Finally, we note that 
such iterations will stop when β = q, so that Theorem 3.2 (in particular, (i) ⇒ (ii)) 
applies. �

For the compactness of Wu,ϕ, we have the following result.

Theorem 3.4. Let q ≥ p ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a holomorphic 

mapping. Then the following statements are equivalent.

(i) μu,ϕ,q,α is a vanishing qp -Carleson measure;
(ii) Wu,ϕ : Ap

α → Aq
α is compact;

(iii) The following vanishing testing condition holds:

lim
a→R̂2

+

∫
R2

+

|ya|
(α+2)q

p |u(z)|q

|ϕ(z) − ā|
(2α+4)q

p

dAα(z) = 0.

Proof. The proof of this theorem is an easy modification of the proof of Theorem 3.2, 
and hence we omit it. �
4. Sparse domination of weighted composition operators

In this section, we study a sparse bound of a weighted composition operator Wu,ϕ

acting from Ap
α to Aq

α, for some q ≥ p ≥ 1. Namely, we want to understand how one can 
study the quantity ‖Wu,ϕ‖q,α via only a sparse collection of cubes in (R2

+, dAα) (see, 
Remark 2.5).

We need the following result on the integral representation of an Ap
α function.

Lemma 4.1 ([2, Theorem 1]). Let 1 ≤ p < ∞. Then any function f ∈ Ap
α is representable 

in the form

f(z) = Cα

∫
R2

+

f(ζ)(
i
(
ζ̄ − z

))α+2 dAα(ζ),

where Cα > 0 is an absolute constant.
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4.1. Boundedness

In the first part of this section, we study the boundedness of Wu,ϕ by using the sparse 
domination technique.

Given any function f ∈ Ap
α, we wish to understand the quantity ‖Wu,ϕf‖q,α. For any 

N ∈ N with 1 ≤ N ≤ p, using Lemma 4.1, we have

‖Wu,ϕf‖qq,α =
∫
R2

+

|u(z)|q|Cϕf(z)|qdAα(z)

=
∫
R2

+

|u(z)|q|f ◦ ϕ(z)|q−N
∣∣Cϕ(fN )(z)

∣∣ dAα(z)

�
∫
R2

+

|u(z)|q|f ◦ ϕ(z)|q−N

⎛⎜⎝∫
R2

+

|f(ζ)|N∣∣ζ̄ − ϕ(z)
∣∣α+2 dAα(ζ)

⎞⎟⎠ dAα(z)

=
∫
R2

+

|f(ζ)|N

⎛⎜⎝∫
R2

+

|f ◦ ϕ(z)|q−N |u(z)|qdAα(z)∣∣ζ̄ − ϕ(z)
∣∣α+2

⎞⎟⎠ dAα(ζ)

=
∫
R2

+

|f(ζ)|N

⎛⎜⎝∫
R2

+

|f(z)|q−N

|ζ̄ − z|α+2
dμu,ϕ,q,α(z)

⎞⎟⎠ dAα(ζ). (4.1)

To bound the term (4.1), we have the following lemma, which can be viewed as an 
upper half plane analog of [16, Lemma 5].

Lemma 4.2. Let q ≥ p ≥ 1, α > −1, N ∈ N with 1 ≤ N ≤ p and μ be a q
p -Carleson 

measure. Then for any γ ≥ 1 and ζ ∈ R2
+,

∫
R2

+

|f(z)|q−N∣∣ζ − z
∣∣α+2 dμ(z) �

3∑
i=1

∑
I∈Di

11QI
(ζ)

Aα(QI)
·A

(
q
p−1

)
1
γ

α (QI)

·μ(QI)
1
γ′

⎛⎝∫
QI

|f(z)|γ(q−N)dAα(z)

⎞⎠ 1
γ

.

Proof. For each z ∈ R2
+, we first consider the interval

Iz,ζ :=
[
xζ + xz

2 − |ζ̄ − z|, xζ + xz

2 + |ζ̄ − z|
)

⊂ R.

It is easy to see the following facts:
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(1) z, ζ ∈ QIz,ζ ;
(2) Aα(QIz,ζ ) � |ζ̄ − z|α+2.

Next, by Lemma 2.6, we are able to find an interval I ∈ Dk for some k ∈ {1, 2, 3}, such 
that Iz,ζ ⊂ I and �(I) ≤ 3�(Iz,ζ), which implies

(3) z, ζ ∈ QI ;
(4) Aα(QI) � |ζ̄ − z|α+2.

Therefore, ∫
R2

+

|f(z)|q−N

|ζ̄ − z|α+2
dμ(z) �

3∑
i=1

∑
I∈Di

11QI
(ζ)

Aα(QI)

∫
QI

|f(z)|q−Ndμ(z). (4.2)

Next, we claim that∫
QI

|f(z)|q−Ndμ(z) � μ(QI)
1
γ′ ·A

(
q
p−1

)
1
γ

α (QI)

·

⎛⎜⎝ ∫
3
2QI∩R2

+

|f(z)|γ(q−N)dAα(z)

⎞⎟⎠
1
γ

. (4.3)

Indeed, by using Hölder’s inequality, it suffices to bound the term∫
QI

|f(z)|γ(q−N)dμ(z). (4.4)

We further decompose the cube QI into its upper Whitney rectangles. More precisely, 
using Lemma 2.2, the fact that |f(z)|γ(q−N) is a subharmonic function and Theorem 3.2, 
we have

(4.4) =
∑

R∈WI

∫
R

|f(z)|γ(q−N)dμ(z)

≤
∑

R∈WI

μ(R)
Aα(R)

∫
3R
2

|f(z)|γ(q−N)dAα(z)

�
∑

R∈WI

A
q
p−1
α (R)

∫
3R
2

|f(z)|γ(q−N)dAα(z)

≤
(

sup
R∈WI

A
q
p−1
α (R)

)
·
∑

R∈WI

∫
3R

|f(z)|γ(q−N)dAα(z)
2
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� A
q
p−1
α (QI)

∫
3
2QI∩R2

+

|f(z)|γ(q−N)dAα(z),

where in the last inequality, we use the fact that the set 
{3R

2
}
R∈WI

has finite overlap. 
The desired claim follows from by pluging the above estimate to (4.4).

Combining (4.2) and (4.3), we get

∫
R2

+

|f(z)|q−N

|ζ̄ − z|α+2
dμ(z) �

3∑
i=1

∑
I∈Di

11QI
(ζ)

Aα(QI)
· μ(QI)

1
γ′

·Aα(QI)
(

q
p−1

)
1
γ

⎛⎜⎝ ∫
3
2QI∩R2

+

|f(z)|γ(q−N)dAα(z)

⎞⎟⎠
1
γ

. (4.5)

We wish to change the integral domain in the above integration from 3
2QI ∩ R2

+ to a 
dyadic cube belonging to QDi for some i ∈ {1, 2, 3}. To see this, we apply Lemma 2.6
again. More precisely, since 

( 3
2QI ∩R2

+
)⋂

R = 3I
2 , using Lemma 2.6, we can take J ∈ Di

for some i ∈ {1, 2, 3}, such that

I ⊂ 3I
2 ⊂ J and �(J) ≤ 3�

(
3I
2

)
≤ 6�(I). (4.6)

This suggests that we have the pointwise bound

11QI
(ζ)μ(QI)

1
γ′

Aα(QI)
Aα(QI)

(
q
p−1

)
1
γ

⎛⎜⎝ ∫
3
2QI∩R2

+

|f(z)|γ(q−N)dAα(z)

⎞⎟⎠
1
γ

� 11QJ
(ζ)μ(QJ )

1
γ′

Aα(QJ ) Aα(QJ)
(

q
p−1

)
1
γ

⎛⎝∫
QJ

|f(z)|γ(q−N)dAα(z)

⎞⎠ 1
γ

, (4.7)

where we use the fact that Aα(QI) � Aα(QJ ). Finally, we need to check that each 
J ∈ Di, i ∈ {1, 2, 3}, only appears finitely many times when we apply the inequality 
(4.7). Indeed, this is clear from (4.6) and the dyadic structure on R. The desired result 
then follows from (4.5) and (4.7). �

For any set E ⊂ R2
+, γ ≥ 1 and g ≥ 0 on R2

+, we set

〈g〉E,γ :=

⎛⎝ 1
Aα(E)

∫
|g(z)|γdAα(z)

⎞⎠ 1
γ

.

E
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From (4.1), Lemma 4.2 and Theorem 3.2, we have the following result.

Proposition 4.3. Let q ≥ p ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a holomorphic 

mapping. Let further, Wu,ϕ : Ap
α �→ Aq

α be bounded. Then for any γ ≥ 1 and f ∈ Ap
α,

‖Wu,ϕf‖qq,α � inf
N∈N,1≤N≤p

( 3∑
i=1

∑
I∈Di

μu,ϕ,q,α(QI)
1
γ′ Aα(QI)

q
pγ 〈|f |N 〉QI

· 〈|f |q−N 〉QI ,γ

)
.

(4.8)

In particular, when p = q, we have the following result.

Theorem 4.4. Let q ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a holomorphic 

mapping. Then the following statements are equivalent.

(i) Wu,ϕ : Aq
α �→ Aq

α is bounded;
(ii) For any f ∈ Aq

α,

‖Wu,ϕf‖qq,α � inf
N∈N,1≤N≤q

( 3∑
i=1

∑
I∈Di

Aα(QI)〈|f |N 〉QI
· 〈|f |q−N 〉QI

)
.

Proof. The assertion (i) implies (ii) follows from Proposition 4.3 with γ = 1, and there-
fore we only need to show that (ii) implies (i). Without loss of generality, we fix a N ∈ N

with 1 ≤ N < q (the case q = N follows from a similar argument, and we leave the detail 
to the interested reader), then we can find some i0 ∈ {1, 2, 3}, such that

3∑
i=1

∑
I∈Di

Aα(QI)〈|f |N 〉QI
· 〈|f |q−N 〉QI

≤ 3
∑

I∈Di0

Aα(QI)〈|f |N 〉QI
· 〈|f |q−N 〉QI

.

Therefore,

‖Wu,ϕf‖qq,α �
∑

I∈Di0

Aα(QI)〈|f |N 〉QI
· 〈|f |q−N 〉QI

�
∑

I∈Di0

Aα(Qup
I )〈|f |N 〉QI

· 〈|f |q−N 〉QI

≤
∫
R2

+

M
(
|f |N

)
M
(
|f |q−N

)
dAα(z)

≤

⎛⎜⎝∫
R2

M(|f |N )
q
N dAα(z)

⎞⎟⎠
N
q

·

⎛⎜⎝∫
R2

M(|f |q−N )
q

q−N dAα(z)

⎞⎟⎠
q−N

q

+ +
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�

⎛⎜⎝∫
R2

+

|f |N · q
N dAα(z)

⎞⎟⎠
N
q

·

⎛⎜⎝∫
R2

+

|f |(q−N)· q
q−N dAα(z)

⎞⎟⎠
q−N

q

= ‖f‖qq,α,

where in the above estimates, M is the usual uncentered Hardy-Littlewood maximal 
operator with respect to the measure Aα, and in the last inequality, we use a classical 
fact that M is a bounded operator from Lr

α to itself, for 1 < r ≤ ∞. �
We can also establish such an equivalence for the case when p < q with some extra 

assumptions.

Theorem 4.5. Let 2p > q > p ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a 

holomorphic mapping. Suppose

Zp,q := {N ∈ N : N ≥ 1, N < p < q < p + N} �= ∅.

Then the following statements are equivalent:

(i). Wu,ϕ : Ap
α �→ Aq

α is bounded;
(ii). For any f ∈ Ap

α,

‖Wu,ϕf‖qq,α � inf
N∈Zp,q

( 3∑
i=1

∑
I∈Di

A
q
p
α (QI)〈|f |N 〉QI

· 〈|f |q−N 〉QI

)
.

We make a remark that in general Zp,q is not trivial, one typical example for Zp,q to 
be non-empty is that both p, q are large but q − p is small.

Proof. The idea of proof of this result follows from the proof of Theorem 4.4, and the new 
ingredient in this proof is that instead of using the Hardy-Littlewood maximal function, 
we use its fractional version. Again, we only need to show that (ii) implies (i). First we 
note that our assumption p < q < 2p implies 0 < 2q

p − 2 < 2. Write

l = p

p + N − q
and l′ = p

q −N
.

Fix any N ∈ Zp,q. Then a simple calculation yields

N

p
− 1

l
= q

p
− 1. (4.9)

Also note that 1 < p < p . Let i0 ∈ {1, 2, 3} be the index such that
N q−p
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3∑
i=1

∑
I∈Di

A
q
p
α (QI)〈|f |N 〉QI

· 〈|f |q−N 〉QI
≤ 3

∑
I∈Di0

A
q
p
α (QI)〈|f |N 〉QI

· 〈|f |q−N 〉QI
.

Therefore,

‖Wu,ϕf‖qq,α �
∑

I∈Di0

A
q
p
α (QI)〈|f |N 〉QI

· 〈|f |q−N 〉QI

�
∑

I∈Di0

Aα(Qup
I ) · A

q
p−1
α (QI)
Aα(QI)

∫
QI

|f |NdAα(z) · 〈|f |q−N 〉QI

=
∑

I∈Di0

Aα(Qup
I ) · A

2q
p

−2
2

α (QI)
Aα(QI)

∫
QI

|f |NdAα(z) · 〈|f |q−N 〉QI

≤
∫
R2

+

M 2q
p −2

(
|f |N

)
M
(
|f |q−N

)
dAα(z)

≤

⎛⎜⎝∫
R2

+

M 2q
p −2(|f |N )ldAα(z)

⎞⎟⎠
1
l

·

⎛⎜⎝∫
R2

+

M(|f |q−N )l
′
dAα(z)

⎞⎟⎠
1
l′

�

⎛⎜⎝∫
R2

+

|f |N · p
N dAα(z)

⎞⎟⎠
N
p

·

⎛⎜⎝∫
R2

+

|f |l′(q−N)dAα(z)

⎞⎟⎠
1
l′

= ‖f‖qp,α.

Here in the above estimates, M 2q
p −2 is the fractional Hardy-Littlewood maximal operator 

with respect to the measure Aα, and in the last inequality, we use the fact that

M 2q
p −2 : L

p
N
α �→ Ll

α

is bounded, which is guaranteed by (4.9). �
4.2. Compactness

In the second part of this section, we establish a new characterization of the compact-
ness of Wu,ϕ via sparse domination.

Recall in the previous part, we are able to capture the boundedness of Wu,ϕ : Ap
α �→ Aq

α

by using the sparse form

∑
A

q
p
α (QI)〈|f |N 〉QI

· 〈|f |q−N 〉QI
, (4.10)
I∈D
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for some N ∈ N, 0 < N < q and some dyadic grid D. Note that this sparse form corre-
sponds to the case γ = 1 in Lemma 4.2. The interesting feature for this quantity is that 
it is independent of the terms u and ϕ. This suggests us that (4.10) may not be enough 
to describe the compactness of Wu,ϕ, which is clearly stronger than the boundedness. 
The idea is to consider those sparse forms in Lemma 4.2 with γ > 1.

The following is our main result for the compactness of Wu,ϕ : Aq
α �→ Aq

α.

Theorem 4.6. Let q ≥ 1, α > −1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+ be a holomorphic 

mapping. If Wu,ϕ : Aq
α �→ Aq

α is bounded, then the following statements are equivalent.

(i) Wu,ϕ : Aq
α �→ Aq

α is compact;
(ii) Let 1 ≤ N < q, N ∈ N and 1 < γ < q

q−N , or q = N ∈ N and γ > 1. Let further, 
{Kn}n≥1 be a sequence of sets exhausting R2

+, that is, {Kn}n≥0 is a collection of 

compact sets in R2
+, satisfying K1 � K2 � . . .Kn � · · · � R2

+, and 
∞⋃

n=1
Kn = R2

+. 

Then for any bounded set {fm}m≥1 ⊂ Ap
α with fm → 0 as m → ∞, uniformly on 

compact subsets of R2
+,

lim
n→∞

sup
m≥1

⎛⎝ 3∑
i=1

∑
I∈Di,Qup

I ∩Kn=∅
μu,ϕ,q,α(QI)

1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

⎞⎠ = 0.

Proof. (i)⇒(ii). Suppose Wu,ϕ is compact, and hence by Theorem 3.4, μu,ϕ,p,α is a 
vanishing Carleson measure. Write

M := sup
m≥1

‖fm‖qq,α.

Then for any ε > 0, there exists a N0 ∈ N, such that for n > N0, we have

μu,ϕ,q,α(Ta)
Aα(Ta)

<
( ε

M

)γ′

,

where Ta is the Carleson tent associated to a ∈ R2
+ satisfying T up

a ∩Kn = ∅.
Fix such an n. Then for any i ∈ {1, 2, 3} and m ≥ 1,

∑
I∈Di,Qup

I ∩Kn=∅
μu,ϕ,q,α(QI)

1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

� ε

M
·

∑
I∈Di,Qup

I ∩Kn=∅
Aα(QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

� ε

M
·
∑
I∈Di

Aα(QI)〈|fm|N 〉QI
〈|fm|q−N 〉QI ,γ

� ε · ‖fm‖qq,α ≤ ε.

M
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Here in the last inequality, we use the proof of Theorem 4.4. The desired result follows 
by taking the supremem in m first and then letting ε converges to 0.

(ii) ⇒(i). Without loss of generality, we may consider the case 1 ≤ N < q and 
1 < γ < q

q−N , while the proof of the case when q = N and γ > 1 is much easier and we 
leave the detail to the interested reader.

Let {fm}m≥0 ⊂ Ap
α be a bounded set satisfying fm → 0 as m → ∞, uniformly on 

compact subsets on R2
+. It is well known that to prove Wu,ϕ is compact, it suffices to 

show

‖Wu,ϕfm‖q,α → 0 as m → ∞.

Let ε > 0. By Lemma 4.2 and without loss of generality, we may assume

‖Wu,ϕfm‖qq,α �
∑
I∈D1

μu,ϕ,q,α(QI)
1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ .

Therefore, for each m ≥ 1 and n ≥ 1,

‖Wu,ϕfm‖qq,α �
∑

I∈D1,Qup
I ∩Kn=∅

μu,ϕ,q,α(QI)
1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

+
∑

I∈D1,Qup
I ∩Kn 
=∅

μu,ϕ,q,α(QI)
1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

=: A1,m + A2,m.

Take any ε > 0. We estimate A2,m first, which is the main part. Put

K ′
n :=

{
(x, y) ∈ R2

+ : (x, y) ∈ Qup
I , Qup

I ∩Kn �= ∅, for some I ∈ D
}
.

It is clear that K ′
n is a compact set and the collection {K ′

n}n≥1 is also a sequence of 
exhausting sets of R2

+. Thus, for any n ∈ N,

A2,m =
∑

I∈D1,Qup
I ∩Kn 
=∅

μu,ϕ,q,α(QI)
1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

�
∑

I∈D1,Qup
I ∩Kn 
=∅

Aα(QI)〈|fm|N 〉QI
〈|fm|q−N 〉QI ,γ

(Since μu,ϕ,q,α is a Carleson measure)

�
∑

I∈D1,Qup
I ∩Kn 
=∅

Aα (Qup
I ) 〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ

≤
∫
′

M
(
|fm|N

) (
M
(
|fm|(q−N)γ

)) 1
γ

dAα(z)

Kn
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≤

⎛⎜⎝∫
K′

n

M
(
|fm|N

) q
N dAα(z)

⎞⎟⎠
N
q
⎛⎜⎝∫
K′

n

(
M
(
|fm|(q−N)γ

)) q
γ(q−N)

dAα(z)

⎞⎟⎠
q−N

q

.

By Hölder’s inequality, we get

A2,m �

⎛⎜⎝∫
K′

n

|fm|N · q
N dAα(z)

⎞⎟⎠
N
q
⎛⎜⎝∫
K′

n

|fm|(q−N)γ· q
γ(q−N) dAα(z)

⎞⎟⎠
q−N

q

=
∫
K′

n

|fm|qdAα,

where in the last estimate, we used the fact that 1 < γ < q
q−N and the measure 11K′

n
dAα

is doubling. This implies that for any n ≥ 0, we can take m large enough, such that

A2,m <
ε

2 . (4.11)

Fix such a m. Then by the assumption, there exists an N0 ∈ N, such that for any n > N0,

∑
I∈D1,Qup

I ∩Kn=∅
μu,ϕ,q,α(QI)

1
γ′ A

1
γ
α (QI)〈|fm|N 〉QI

〈|fm|q−N 〉QI ,γ <
ε

2 ,

which implies

A1,m <
ε

2 .

The desired result then follows from the above estimate and (4.11). �
4.3. New weighted estimates

In the third part of this section, we apply the idea of sparse domination to obtain 
some new weighted estimates.

To start with, we recall that by a weight we will mean a function ω that is non-negative 
on a set of positive measure.

Let us introduce a new class of weights, which we denote as Bα,q
u,ϕ (Here, B refers to a 

“Bergman projection”–like transformation and this would be clear from the Definition 4.7
below).

Definition 4.7. Given α > −1, q > 1, u ∈ H(R2
+) and ϕ : R2

+ → R2
+, the weight class 

Bα,q
u,ϕ is defined to be the collection of all weights ω on R2

+ satisfying
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[ω]Bα,q
u,ϕ

:= sup
ζ∈R2

+

∫
R2

+

|u(z)|qω(z)∣∣ζ̄ − ϕ(z)
∣∣α+2 dAα(z) < ∞.

Remark 4.8. Note that the measure ωdAα itself may not be a Carleson measure. For 
example, let u(z) = 1, ϕ(z) = z + i, α = 0, q > 1 be any real number and

ω(z) =
{

0, |z| ≥ 1, Im z > 0;
1/|z|, |z| < 1, Im z > 0.

Claim 1: Cϕ is a bounded operator on Aq (that is, Aq
0).

By Theorem 3.2, it suffices to show

sup
a∈R2

+

∫
R2

+

|ya|2
|z + i− ā|4 dA(z) < ∞.

This is clear as for each a ∈ R2
+, we have

∫
R2

+

|ya|2
|z + i− ā|4 dA(z) =

∫
R

∞∫
0

|ya|2(
|x− xa|2 + (y + 1 + ya)2

)2 dydx

=
∫
R

∞∫
0

|ya|2(
x2 + (y + 1 + ya)2

)2 dxdy

� 1.

In particular, this implies the Carleson measure induced by the operator Cϕ is a 1-
Carleson measure.

Claim 2: ω ∈ B0,q
1,z+i.

Indeed, for any ζ ∈ R2
+, we have∫

R2
+

|u(z)|qω(z)∣∣ζ̄ − ϕ(z)
∣∣α+2 dAα(z) =

∫
|z|<1,Im z>0

1
|z||ζ̄ − z − i|2

dA(z) � 1,

where in the last inequality, we first use the fact that 1
|ζ̄−z−i|2 ≤ 1 for z, ξ ∈ R2

+ and 
then integrate in polar coordinate.

Claim 3: the measure ωdA is not 1-Carleson.

Indeed

ω(Ta) =
∫

ω(z)dA(z) � 1
|ya|

A(Ta),

Ta
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where a = yai with ya > 0 sufficiently small. This implies that ω(Ta)
A(Ta) → ∞ as ya → 0, 

which implies the desired claim.
Moreover, we would also like to make a comment that this new class of weights is 

indeed “natural”, in the sense that it can be interpreted as a version of Sawyer–testing 
conditions (one may compare it with (3.1)). This type of condition was first introduced 
by Sawyer [17] in 1982 in studying the behavior of Hardy-Littlewood maximal operators 
acting on weighted Lp spaces, and later, the same idea has been applied by many authors 
to study other function spaces and operators, such as [1,15].

The following is our main result in this subsection.

Theorem 4.9. Let q > 1, 1 < s < q′, α > −1, u ∈ H(R2
+), ϕ : R2

+ �→ R2
+ be a 

holomorphic self-mapping and ωs′ ∈ Bα,q
u,ϕ, where q′ (respectively, s′) is the conjugate of 

q (respectively, s). Let further, Wu,ϕ : Aq
α �→ Aq

α be bounded. Then the following weighted 
estimate holds ∫

R2
+

|u(z)|q|f(ϕ(z))|qω(z)dAα(z) �
[
ωs′
] 1

s′

Bα,q
u,ϕ

‖f‖qq,α, (4.12)

where the implicit constant in the above estimate is independent of the choice of f and the 
weight ω. In particular, the measure μu,ϕ,q,ω,α is a 1-Carleson measure. Here μu,ϕ,q,ω,α

is defined by∫
R2

+

fdμu,ϕ,q,ω,α =
∫
R2

+

|u(z)|q|f(ϕ(z))|qω(z)dAα(z), f is measurable.

Proof. It suffices for us to prove the estimate (4.12), while the proof that the measure 
μu,ϕ,q,ω,α is 1-Carleson measure is standard and follows from a simply modification of 
its unit ball analog (see, e.g., [20, Theorem 2.25]). Therefore, we omit the proof here.

The proof of the estimate (4.12) follows from the spirit of Proposition 4.3 and Theo-
rem 4.4. First, following the argument in the estimate (4.1), we have∫

R2
+

|u(z)|q|Cϕf(z)|qω(z)dAα(z)

�
∫
R2

+

|f(ζ)|

⎛⎜⎝∫
R2

+

|f ◦ ϕ(z)|q−1|u(z)|qω(z)dAα(z)
|ζ̄ − ϕ(z)|α+2

⎞⎟⎠Aα(ζ)

=
∫
R2

|f(ζ)|

⎛⎜⎝∫
R2

|f ◦ ϕ(z)|q−1|u(z)| qs
|ζ̄ − ϕ(z)|α+2

s

· |u(z)| q
s′ ω(z)

|ζ̄ − ϕ(z)|α+2
s′

dAα(z)

⎞⎟⎠ dAα(ζ)
+ +
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≤
∫
R2

+

|f(ζ)|

⎛⎜⎝∫
R2

+

|f ◦ ϕ(z)|s(q−1)|u(z)|q
|ζ̄ − ϕ(z)|α+2

dAα(z)

⎞⎟⎠
1
s

·

⎛⎜⎝∫
R2

+

|u(z)|qωs′(z)
|ζ̄ − ϕ(z)|α+2

dAα(z)

⎞⎟⎠
1
s′

dAα(ζ)

≤
[
ωs′
] 1

s′

Bα,q
u,ϕ

∫
R2

+

|f(ζ)|

⎛⎜⎝∫
R2

+

|f(z)|s(q−1)

|ζ̄ − z|α+2
dμu,ϕ,q,α(z)

⎞⎟⎠
1
s

dAα(ξ).

Moreover, using Lemma 4.2, we have

∫
R2

+

|f(ζ)|

⎛⎜⎝∫
R2

+

|f(z)|s(q−1)

|ζ̄ − z|α+2
dμu,ϕ,q,α(z)

⎞⎟⎠
1
s

dAα(ξ)

�
∫
R2

+

|f(ζ)|

⎛⎝ 3∑
i=1

∑
I∈Di

11QI
(ζ)

Aα(QI)

∫
QI

|f(z)|s(q−1)dAα(z)

⎞⎠ 1
s

dAα(ζ)

�
∫
R2

+

|f(ζ)|
3∑

i=1

∑
I∈Di

11QI
(ζ)

Aα(QI)
1
s

⎛⎝∫
QI

|f(z)|s(q−1)dAα(z)

⎞⎠ 1
s

dAα(z)

=
3∑

i=1

∑
I∈Di

1
Aα(QI)

1
s

⎛⎝∫
QI

|f(z)|dAα(z)

⎞⎠ ·

⎛⎝∫
QI

|f(z)|s(q−1)dAα(z)

⎞⎠ 1
s

=
3∑

i=1

∑
I∈Di

Aα(QI)〈|f |〉QI
〈|f |q−1〉QI ,s

�
3∑

i=1

∑
I∈Di

Aα(Qup
I )〈|f |〉QI

〈|f |q−1〉QI ,s

�
∫
R2

+

M(|f |)
(
M(|f |(q−1)s)

) 1
s

dAα(z)

≤

⎛⎜⎝∫
R2

+

|M(|f |)|q dAα(z)

⎞⎟⎠
1
q

·

⎛⎜⎝∫
R2

+

(
M(|f |(q−1)s)

) q′
s

dAα(z)

⎞⎟⎠
1
q′

� ‖f‖q · ‖f‖q−1
q = ‖f‖qq,
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where in the last inequality, we use the fact that s < q′ and the Hardy-Littlewood 

maximal operator is bounded on L
q′
s
α . The desired result follows from combining these 

estimates. �
5. Unit ball analog

In this section, we extend our main results to the unit ball case, whose proof follows 
closely from the upper half plane case, and therefore, we would like to leave the details 
to the interested reader. Let us first recall some basic definitions.

Let B be the unit ball in Cn and S be its boundary. For α > −1 and p ≥ 1, the 
weighted Bergman space Ap

α(B) is defined to be the space of holomorphic functions on 
B satisfying

‖f‖p
Ap

α(B) := cα

∫
B

|f(z)|p(1 − |z|2)αdV (z) < ∞,

where dV (z) is the standard Lebesgue measure on B and cα is chosen so that the measure 
dVα(z) = cα(1 − |z|2)αdV (z) is a probability measure on B.

Next we recall some geometric facts on the unit ball B. For a ∈ B, let Φa be the 
involutive automorphism of B that interchanges a and 0, that is,

Φa ◦ Φa = id, Φa(0) = a and Φa(a) = 0.

This allows us to define the Bergman metric β on B, by

β(z, w) = 1
2 log 1 + |Φz(w)|

1 − |Φz(w)| , z, w ∈ B.

For any a ∈ B and C > 0, Bβ(a, C) := {z ∈ B : β(a, z) < C}. We are ready to construct 
the sparse collections on B. To start with, we recall that, as in Definition 2.3, there exists 
a dyadic grid on S, and we denote it as D := {Qk

i }i,k∈Z as usual (see, e.g., [16]).
The following result can be understood as a version of the Whitney decomposition 

of the unit ball (in particular, this decomposition is parallel to the decomposition in 
Lemma 2.4).

Proposition 5.1 ([16]). Let α > −1, λ, θ > 0 and D := {Qk
i }i,k∈Z be a dyadic grid on 

S. Then there exists a collection of points in B, which is denoted as T , satisfying the 
following properties:

(1) The set T has a one-to-one correspondence with D. Moreover,

T =
∞⋃ JN⋃ {

cNj
}
,

N=1 j=1
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where cNj ∈ S(N+ 1
2
)
θ, the sphere of radius 

(
N + 1

2
)
θ in the Bergman metric, cNj

|cNj | ∈
QN

j , and JN ≥ 0 is the number of cubes in N -th generation in D, which only depends 
on N, n, θ and λ;

(2) T has a tree structure, that is, cN+1
i is a child of cNj for some i, j > 0, if cN+1

i

|cN+1
i | ∈ QN

j .

Moreover, for each a ∈ T , there exists a Borel set Ka, such that the following properties 
hold:

(a) B =
⋃

a∈T
Ka and the sets Ka are pairwise disjoint. Furthermore, there are constants 

C1 and C2 depending on λ and θ such that for all a ∈ T there holds:

Bβ(a,C1) ⊂ Ka ⊂ Bβ(a,C2);

(b) Vα(K̂a) � Vα(Ka) � (1 −|a|2)n+1+α � e−2Nθ(n+1+α), for a ∈ T with Nθ ≤ β(0, a) <
(N + 1)θ, where

K̂a :=
⋃

a′∈T :a′ is a dyadic descendant of a

Ka′ ;

(c) Every element of T has at most e2nθ children.

Definition 5.2.

(1) We refer to T as a Bergman tree associated to the dyadic grid D, a ∈ T the center
of Ka, B =

⋃
a∈T

Ka the Whitney decomposition of B with respect to D and K̂a the 

dyadic tent under Ka;
(2) For any cap QN

j ∈ D, we define its upper Whitney box to be KcNj
, and its dyadic 

tent to be K̂cNj
;

(3) For any D, a dyadic grid on S, we define QD :=
⋃

QN
j ∈D

{
K̂cNj

}
=

⋃
Q∈D

{
K̂c(Q)

}
to 

be the collection of all its dyadic tents, where we use c to denote the one-to-one 
correspondence between D and T .

Note that an easy consequence of Proposition 5.1, (b), is that for each dyadic grid D
on S, the collection QD is a sparse collection.

The following proposition can be understood as the replacement for a collection of 
dyadic grids that can approximate any cube appropriately in the setting of B.

Proposition 5.3 ([16, Lemma 3]). There is a finite collection of Bergman trees {T 
}M
=1
such that for all z ∈ B, there is a tree T from the finite collection and an a ∈ T
such that the dyadic tent K̂a contains the tent Tz and Vα(K̂a) � Vα(Tz), where Tz :={
w ∈ B :

∣∣∣1 − w̄ z
∣∣∣ < 1 − |z|

}
is the Carleson tent over z.
|z|
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Remark 5.4. The above proposition allows us to extend the definition of upper Whitney 
box in the following way: let E ⊂ S (here, E is not necessarily a cap in any dyadic grid 
D on S) satisfying E = S ∩ ∂Tz for some z ∈ B. Then by Proposition 5.3, we can find 
some a = az ∈ B, such that Tz ⊆ K̂a and Vα(K̂a) � Vα(Tz). In this case, we define the 
upper Whitney box of E as Ka.

Therefore, combining Propositions 5.1 and 5.3, we see that there exist dyadic grids 
D1, . . . , DM on S, which corresponds to T 1, . . . , T M , respectively, playing the same roles 
as D1, . . . , D3 defined in (2.2) for the upper half plane case.

We are ready to state our main results for the boundedness and compactness of 
weighted composition operators acting on weighted Bergman spaces on B.

Theorem 5.5. Let q ≥ 1, α > −1, u ∈ H(B) and ϕ : B → B be a holomorphic mapping. 
Then the following statements are equivalent.

(i) Wu,ϕ : Aq
α(B) �→ Aq

α(B) is bounded;
(ii) For any f ∈ Aq

α(B),

‖Wu,ϕf‖qAq
α(B) � inf

N∈N,1≤N≤q

⎛⎝ M∑
i=1

∑
Q∈Di

Vα

(
K̂c(Q)

) 〈
|f |N

〉
K̂c(Q)

·
〈
|f |q−N

〉
K̂c(Q)

⎞⎠ .

Theorem 5.6. Let 2p > q > p ≥ 1, α > −1, u ∈ H(B) and ϕ : B → B be a holomorphic 
mapping. Suppose

Zp,q := {N ∈ N : N ≥ 1, N < p < q < p + N} �= ∅.

Then the following statements are equivalent:

(i) Wu,ϕ : Ap
α(B) �→ Aq

α(B) is bounded;
(ii) For any f ∈ Ap

α(B),

‖Wu,ϕf‖qAq
α(B) � inf

N∈Zp,q

⎛⎝ M∑
i=1

∑
Q∈Di

V
q
p
α

(
K̂c(Q)

) 〈
|f |N

〉
K̂c(Q)

·
〈
|f |q−N

〉
K̂c(Q)

⎞⎠ .

Theorem 5.7. Let q ≥ 1, α > −1, u ∈ H(B) and ϕ : B → B be a holomorphic mapping. 
If Wu,ϕ : Aq

α(B) �→ Aq
α(B) is bounded, then the following statements are equivalent.

(i) Wu,ϕ : Aq
α(B) �→ Aq

α(B) is compact;
(ii) Let 1 ≤ N ≤ q, N ∈ N and 1 < γ < q

q−N , or q = N ∈ N and γ > 1. Let further, 
{Kj}j≥1 be a sequence of exhausting sets of B, that is, {Kj}j≥0 is a collection of 

compact sets in B, satisfying K1 � K2 � . . .Kj � · · · � B, and 
∞⋃

Kj = B. Then 

j=1
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for any bounded set {fm}m≥1 ⊂ Ap
α(B) with fm → 0 as m → ∞, uniformly on 

compact subsets of B,

lim
j→∞

sup
m≥1

( M∑
i=1

∑
Q∈Di,Kc(Q)∩Kj=∅

μu,ϕ,q,α

(
K̂c(Q)

) 1
γ′

·V
1
γ
α

(
K̂c(Q)

)
〈|fm|N 〉

K̂c(Q)
〈|fm|q−N 〉

K̂c(Q),γ

)
= 0.

Next, we extend the weighted estimates (4.12) to the unit ball. We first need the 
following Bα,q

u,ϕ weights, which is a unit ball analog of the Bα,q
u,ϕ weights.

Definition 5.8. Given α > −1, q > 1, u ∈ H(B) and ϕ : B → B, the weight class Bα,q
u,ϕ is 

defined to be the collection of all weights ω on B satisfying

[ω]Bα,q
u,ϕ

:= sup
ζ∈B

∫
B

|u(z)|qω(z)
|1 − 〈ζ, ϕ(z)〉|α+n+1 dVα(z) < ∞.

Theorem 5.9. Let q > 1, 1 < s < q′, α > −1, u ∈ H(B), ϕ : B �→ B be a holomorphic 
self-mapping and ωs′ ∈ Bα,q

u,ϕ, where q′ (respectively, s′) is the conjugate of q (respectively, 
s). Let further, Wu,ϕ : Aq

α(B) �→ Aq
α(B) be bounded. Then the following weighted estimate 

holds. ∫
B

|u(z)|q|f(ϕ(z))|qω(z)dVα(z) �
[
ωs′
] 1

s′

Bα,q
u,ϕ

‖f‖q
Aq

α(B), (5.1)

where the implicit constant in the above estimate is independent of the choice of f and the 
weight ω. In particular, the measure μu,ϕ,q,ω,α is a 1-Carleson measure. Here μu,ϕ,q,ω,α

is defined by∫
B

fdμu,ϕ,q,ω,α =
∫
B

|u(z)|q|f(ϕ(z))|qω(z)dVα(z), f is measurable.

6. Further remarks

We conclude the article with several remarks. Our main results, and the proofs, are a 
model case for a wider range of results in studying complex function theory and weighted 
estimates via sparse domination. Some possible extensions to the main results of this 
paper are as follows.

(a) Establish the results for more general domains. That is, find the sparse bounds 
for weighted composition operators acting between weighted Bergman spaces on 
polydics, Hartogs domains, Thullen domain and etc.
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(b) Study the sparse bounds and corresponding weighted estimates of weighted compo-
sition operators acting on some Möbius invariant function spaces. Typical examples 
of these spaces include the Bloch space B, Qp and QK spaces (see, e.g., [19]).

(c) Introduce more general weighted estimates, for example, weighted estimates with 
matrix weights. This would encounter extra difficulties, for example, one needs to 
figure out a correct notion of convex body domination in the setting of complex 
function spaces.
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