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1 Introduction

Due to their theoretical and experimental importance, conformal field theories (CFTs) have
been extensively studied over the decades, through a broad range of techniques. One of
the most prominent is the conformal bootstrap [1-5] which, rather than using a specific
Lagrangian, works with general axiomatic parameters, such as the scaling dimensions of
local operators and their operator product expansion (OPE) coefficients. The focus of
this paper is inspired by the bootstrap program, but the CFT data is calculated using a
complementary method: the diagrammatic 1/N expansion in the context of critical vector
models [6, 7].

The 1/N expansion is particularly useful when the theory is strongly coupled and the
corresponding CFT cannot be studied perturbatively [8, 9]. Thus, for instance, it provides
an alternative to the classic e-expansion, originally formulated for the scalar field theory
with a quartic interaction in 4 — e dimensions [10].} Moreover, certain non-renormalizable
quantum field theories which are not tractable within a traditional perturbative expansion

!The Banks-Zaks fixed point is another example of a perturbatively tractable CFT [11, 12].



become analytically controllable in the large IV framework. These include the most well-
known vector models with a quartic interaction: the ¢* O(N) vector model for bosons [13],
and the Gross-Neveu model for fermions [14, 15]. Another interesting example in this class
of models is the cubic scalar vector model in 6 — e dimensions [16-18].2

A vector model which has been far less studied is the sextic ¢ O(N) model, in three
dimensions [26], for recent studies see [27, 28]. The model has the notable feature — which
motivated our study of it — of having a UV conformal fixed point, at large N, directly in
three dimensions. An e expansion, as for the Wilson-Fisher fixed point in the quartic model,
is not required. In this paper we compute various anomalous dimensions and conformal
three-point functions in the sextic O(V) vector model, up to next-to-leading order in 1/N.

In the process of this study we found that, while the anomalous dimensions in critical
vector models have been extensively studied, there has been much less study of the confor-
mal three-point functions (the OPE data). We find that our method of computation — in
particular, applying the background field method [29] in the context of large N conformal
perturbation theory — provides a simple and coherent framework. We apply this method
to the standard vector models, extending known results in the literature.

In section 2 we review the ¢ vector model, the location of the UV fixed point at
large N, and the anomalous dimensions of the field. Then in section 3 we compute several
conformal three-point functions at next-to-leading order in 1/N. In section 4 we review the
Gross-Neveu model, and in section 5 we compute several conformal three-point functions
at next-to-leading order in 1/N. In appendix A we perform similar computations in the
context of the quartic O(N) vector model. In appendix B we discuss the ¢ model, when
the field ¢ is integrated out.

2 Review of the ¢® model

Consider the following three-dimensional O(N') vector model with sextic interaction,
3 (1 2 96 .2\3
sz/dx<2(a¢)+6m(¢)). (2.1)

The beta function of gg vanishes identically in the large N limit, and the model exhibits
a line of fixed points, 0 < gg < (47)2, where the boundaries of the conformal window are
found by demanding stability of the effective potential [30], see also [31, 32]. The 1/N
corrections lift this degeneracy and only one isolated UV fixed point, which lies outside
the stability region, survives at finite N [26]. The instability effect is, however, non-
perturbative in 1/N. Moreover, it is not clear whether it will persist at any finite IV, see [33]
and references therein for a recent discussion. In this section we introduce our notation,
review the derivation of the UV fixed point, and calculate the anomalous dimensions of ¢
and ¢?.

The model (2.1) can equivalently be expressed in terms of the auxiliary fields o and p,
with the action,

1 1 96
S:/d3x<2(8¢)2+\/ﬁa¢2+6\/ﬁp3—op). (2.2)

2 Another class of models which have been of interest recently are the SYK/tensor models [19-25].




Figure 1. Feynman rules for the cubic interactions in (2.2).

The original action (2.1) is recovered from (2.2) by first integrating over the field o along
the purely imaginary direction, which results in the delta-functional 6(p — ¢?/v/N), and
then integrating over p. Note that the fields p and ¢ are the only dynamical degrees of
freedom in the large N limit, because the propagator of o is suppressed by 1/N.

The propagator of the field ¢ in position space is,

Co

(G(r)o0) = [ 2.3
where the large N amplitude and scaling dimension are given by,
Cas:ﬁa Aas:%- (2.4)
The corresponding Feynman rule for the normalized field is,?
24, — ;
¢ * |x|2A¢

Notice that the quadratic part of the action (2.2) is not diagonal, which leads to a non-
trivial merging relation between the fields p and o,

(p(x1)o(z)) = — 6@ (21a) = e (25)

Here the non-dynamical field ¢ is denoted by a dashed line.

The Feynman rules for the cubic interactions in (2.2), ¢%c and p3, are shown in figure 1.
They generate kinetic terms for o and p, respectively. However, the O(p?) term in the
effective action is suppressed by 1/N relative to the O(0?). Indeed, the 1/N factor from
the cubic vertices is cancelled by N fields ¢ running in the loop coming from o¢?,

—eff O C;/dgxl/dng(W = 0’(.%1)

T12 o(22)
Inverting the quadratic part of the effective action yields,
C
{p()p(0)) = |x|2pAp : (2.6)

3In our conventions, all propagators in the Feynman diagrams are normalized to unity, and therefore
each Feynman graph should be multiplied by the corresponding amplitudes.



where the large N amplitude and scaling dimension of the field p are given by,

c;:%%:§§, A,=1. (2.7)
The corresponding Feynman rule for the normalized field is,
24, 1
¢ ® - | x,zAp ’

In the next subsection, we are going to use the background field method to calculate the
effective cubic vertex in the effective action, at next-to-leading order in the 1/N expansion.
In preparation for this, here we establish an additional Feynman rule in the presence of
a background field p(z), i.e. we substitute p — p + p into (2.2) to get an action in the
presence of p(z). The relevant Feynman rule is based on the observation that the linear
coupling p o becomes (p + p)o. Hence, p is a source field for o. In particular, it induces a
background field o (x), which can be derived by carrying out the gaussian integral over ¢
and eliminating the term po by a field redefinition ¢ — o 4+ &, where

/d3 p(x1) _ i y p(1) 4 x
=2 Tz =zl 2 o (2.8)
A quick consistency check can be carried out by contracting both sides of this expression
with p(z2), and using (2.5), (2.6), (2.7), and the inverse propagator relation (d = 3, A = 2),

1 T(d—A)r(A) [a | )
A (a-p) | T s ~ e 20

There are simple diagrammatical rules for performing some of the integrals involved in
the conformal perturbation theory calculations we will encounter. For instance, a simple
loop diagram satisfies additivity (in position space),

24,

2A1 + 274

= ——

2A9

In addition, there is a propagator merging relation of the form,

1 U(A1, Az, d — A1 — Ag)
d _ ’ )
/d T2 212|281 |293] 282 - |213]2(A1+A2)—d ) (2.10)
where
T(2-A)T(4-Ay)T (415
U(A17A21A3) :77‘% (2 ) (2 ) (2 ) . (211)
I(AT(A2)I(As)
This relation can be represented diagrammatically as,*
24 279 2(A1 + Ag) -
o O o = o o X U(AI,AQ,d—Al—AQ)

4The middle vertex on the left-hand side is integrated over.
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Figure 2. Subleading correction to the cubic vertex of the effective action. p(z) is a fixed back-
ground field.

Finally, the star-triangle relation for the cubic scalar vertex is given by,

/ddx4 1 _ U(Al, AQ, Ag)
|$14|2A1 |$24|2A2 |$34|2A3 ’11712 ’d*QAg |x13|d72A2 |x23|d72A1 ’

Al +Ax+Ag=d. (2.12)
Diagrammatically it takes the form,
2A, d—2A3

241
=U(A1,As,A3z) % d—2A

2A3
d—2As

2.1 UV fixed point

The beta function of gg vanishes in the large N limit. However, the two diagrams shown
in figure 2 induce a non-trivial RG flow at the next-to-leading order. These diagrams
represent a 1/N correction to the cubic vertex of the effective action in the presence of the
background field p(z),”

YN _ 1620; < )2/Hd3xz/d3 plw1)p(r2)p(xs)

\3612\3!9614“3324\!9634!4

+C; <> /Hd3 p(z1)p(w2)pl(as) (2.13)

|212]2|213|?| 2322

SWhen calculating the first diagram in figure 2, we used expression (2.8) for the induced background
field &(z). The latter is coupled to 2 via a cubic vertex with amplitude —2/+/N. When writing down the
contributions of these diagrams to V3<1/ N), we accounted for the symmetry factors 1/2! and 1/3!, respectively.



The integral over x4 in the first line can be carried out through the use of the star-triangle
relation (2.12).5 We get,

2 —
(1N) _ _ —96 / P p(z1)p(z2)p(z3)
Vs 1676 N3/2 ( 192) H ' (2.14)

\1‘12\2!1’13\ |za3|?

Naively, this vertex is conformally invariant, regardless of the value of gg. However,
this is deceptive, since it exhibits a logarithmic UV divergence when the three fields p(x)
collide. This results in a non-trivial RG flow for gg. To derive the associated beta function,
it is sufficient to set all the fields to be at the same point x;. Using the propagator merging
relation (2.10) to integrate over x9, and introducing both a UV cut-off yp and an IR cut-off
© to regularize the integral over x3 yields,”

2
(1/N) _ _ 95(po) 96(ko) 3 3
Vs = —W(l T 192 log(po/p) | dx1p°(x1) + ..., (2.15)

where ellipsis encode finite terms.
Combining this result with the leading order cubic vertex, we deduce the following RG
flow equation for the coupling,

0o(12) = go(ju0) — 6H0) (- g6(110)

22N 192 ) log(po/n) - (2.16)

Equivalently, the beta function is,

d96_ 39% gde 2
Blon) = w2 = S (1= ) + o0/ (217)

In particular, the model exhibits a UV stable fixed point at g§ = 192, as originally found
n [26]. Note also that the 1/N correction, V( /N ) to the cubic vertex vanishes at the
UV fixed point. We will use this fact later in section 3.2, when we derive the conformal
three-point function (ppp).

2.2 Anomalous dimensions of ¢ and ¢?

In this section we apply the background field method [29] to derive the anomalous dimension
of ¢ and of p ~ ¢2.% These two operators are special because, unlike composite operators

5The integral actually suffers from a power law divergence. However, such divergences depend on the
choice of regularization scheme. For instance, they are absent within dimensional regularization. Therefore,
we ignore them in what follows. Indeed, a similar remark applies to the integral identities, such as the
propagator merging relation and the star-triangle relation. On the other hand, in general these relations
are singular if the integral has a logarithmic divergence.

"We use UV/IR terminology in the Wilsonian sense. More specifically, the coupling ge of the original
action (2.2) is defined at a certain (UV) scale po. It is denoted by gs(uo) in (2.15) and (2.16). We are
interested in finding the value of ge(1) at a lower (IR) scale p. If the theory is conformal, it looks the same
at all scales, and there is no difference between the couplings. Unless go = 192, this is not the case in the
#°® model.

Indeed, the ¢% ~ p® interaction in (2.2) accumulates correction (2.15) at a lower (IR) scale y. This
correction vanishes when p = po. Setting p to a constant value (zero mode) in (2.14) and evaluating the
integrals over a shell u5!' < |z| < ™t is an alternative way of deriving (2.15). This is enough to get the
RG flow of gg, because the sextic interaction contributes to the effective potential.

8The identification p ~ ¢? follows from the equation of motion operator, i.e., vary (2.2) with respect to o.
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Figure 3. The O(1/N?) correction to the quadratic effective action of ¢, where ¢(z) is a given
background field.

with higher powers of ¢, their anomalous dimensions vanish at leading and next-to-leading
order in 1/N. One has to consider O(1/N?) diagrams to find the first non-trivial correction.

For instance, the anomalous dimension of ¢ (denoted by ) is entirely fixed by the
diagram in figure 3. It represents the leading order correction to the quadratic effective
action of the scalar field. Using the Feynman rules gives,

o 1/ gs \° 1) p(2)
— v _4<\/%>( >C¢C’2/d3 /d3 W (2.18)

This term is singular in the vicinity of x1 ~ x3. The logarithmic divergence is associated
with the anomalous dimension of ¢, and we isolate it by expanding the background field
o(z2) around 1,

1/N2 b a
VN 2N2C 02/d3x1 3(21)8,0, b (1 /d3 1212’152 ro, (2.19)

where ellipsis encode terms which do not contribute to «4. Introducing a spherical sharp
cut-off 1, and substituting the fixed point value g§ = 192, yields

2
VAN = S [ @ 0,60"5 togula) + (2:20)

The value of 74 can be obtained by comparing this expression with the full propagator

of ¢,
Cy(1+ Ayp)

(d(2)9(0)) = =2 i (2.21)
where Ay is associated with higher order corrections to the leading order amplitude Cj.
Hence,

LU O(1/N?) (2.22)
’)/¢ = 7'['4N2 . .

in full agreement with [26].
Next we consider the field p. Its full propagator can be written as,

(o@)o(0) = e St o), (223)

where 7, is the anomalous dimension, and A, is associated with 1/N corrections to the
leading order amplitude C,.
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Figure 4. The O(1/N) correction to the quadratic effective action of p, where p is the background
field. The solid dots represent the cubic vertex with one of the legs substituted by the background
p, i.e. —g—\/ﬁﬁﬁ, and 1/4 is the symmetry factor.

Figure 5. The O(1/N?) correction to the quadratic effective action of p. The background field
is ¢ ~ p, given by (2.8). All propagators on the outer circles of these diagrams correspond to the
field ¢ (the label 2A 4 on the lines is suppressed). Ellipsis represent O(1/N?) graphs which do not
contribute to the anomalous dimension 7,

The two-point effective vertex at order 1/N in the presence of the background field p(x)
is shown in figure 4. It is finite and contributes to A, only; we will calculate it in the next
section. Here our aim is to evaluate the anomalous dimension 7y,. We therefore proceed
to the O(1/N?) diagrams which contribute to the effective two-point vertex. They can be
obtained, for example, by dressing the vertices and propagators in figure 4. However, such
diagrams are either finite or vanish, because the p propagator has no divergences at order
1/N, whereas, as we argued in the previous subsection, the next-to-leading order correction
to the cubic vertex vanishes at the fixed point. Hence, the only divergent diagrams which
contribute to 7, are shown in figure 5.

Using the Feynman rules yields,

_V<1/N2>_N(—%)2(2)4C402 /ﬁdgx, o(21)3(w2)
o A\VN) \VN) 7277 \J 2277 Jaiallwrs]|wsalPlaol

n ;/i;ﬁldﬁ)x. o(21)0(22) >+ . (2.24)

" w1s||zos|w1a] |woa[z5a ]t

The integral over x4 in the first expression within the parenthesis is power law divergent in
the vicinity of x4 &~ z3. In principle, it could have a logarithmic divergence, but its coeffi-
cient vanishes; this can be seen by introducing a spherical sharp cut-off u, and expanding
|4 — 22| around z4 = z3.

The power law divergent terms do not contribute to 7y,, while the finite part of the
integral over x4 can be evaluated by analytic continuation in the scaling dimension of



the field p, or by dimensional regularization. In both regularization schemes, one can use
the propagator merging relation and remove the regulator at the end. This procedure is
sufficient to recover the contribution to v,. The result is,

1 27 1
Poj— =T 2.25
/ Harsalflzas)] 3 |asel? (2.25)

Similarly, the integral over x4 in the second expression within the parenthesis in (2.24) can
be calculated by using the star-triangle relation (2.12),

1 —27T’$12’
d3xy = . 2.26
/ |z14||z2a||2ga]*  |213|?]|223]2 (2.26)

Hence,

VA/N?) / o o(z1)o / P, o (21)0 (z2)|212] L
o N27T7 ZH \$12\|9613|!w23\3 2 H |13 |23]?
(2.27)
The remaining integrals over x3 are logarithmically divergent. Using a spherical sharp

cut-off p yields,

1 8w
3 = log(t|x1a]) + - .. 2.28
J s = o s (228)
Thus,
2) o(x1)o(ze)
VN N%G / Hd3 T os(ufral) £ (2.29)
Or, equivalently, substituting (2.8) and using the inverse propagator relation (2.9), we
obtain
2y _ —3072 p(x1)p(z2)
Vp(;/N NZ6 /Hd3 7‘4 log(plzia]) + ..., (2.30)

Comparing to (2.23), we get the anomalous dimension,

768

Yo = N O(1/N3) . (2.31)

This result does not match [26].

3 CFT data for the critical ¢® model

In this section we use large N techniques to derive the OPE coefficients and anomalous
dimensions of various primary operators in the critical ¢ model. Our calculations extend
known results in the literature [26].

3.1 Anomalous dimensions of (¢?)"

In the large N limit there are two dynamical fields, ¢ and p = ¢?/v/N, with scaling
dimensions Ay = 1/2 and A, = 1, respectively. Their propagators are given by (2.3)
and (2.6). In contrast, the dynamics of the field o ~ p?/v/N is suppressed by 1/N.



As we saw in the previous section, higher order corrections induce anomalous dimen-
sions to the leading order scalings of the fields. In this subsection, we calculate the anoma-
lous dimension of the composite operators (¢2)”. The subleading terms in the propagator,
both the anomalous dimension and the amplitude corrections, also contribute to various
next-to-leading order three-point functions, and will be needed for the computation of the
OPE coefficients, to be performed in the next subsection.

The full propagator of the field p is given by (2.23). The amplitude correction A, at
the next-to-leading order is entirely fixed by attaching two leading-order propagators (2.6)
to the one-loop diagram shown earlier in figure 4. As a result, the O(1/N) correction
to (2.6) is given by,

1 2 x1d3x2
6<p<x3>p<o>>=2( ) P e (3.1)

The integrals can be evaluated by using (2.9). At the critical point, g§ = 192, we obtain,

T ) [ 040N . (32)
P2 \yN/) ° 512r° N m2N' P N

While the anomalous dimension of p is highly suppressed, this is not the case for
"~ (¢2)™ with n > 2. To leading order in 1/N we have
p

C’Vl

’m|2n :

{p(2)"p(0)") = n! (3-3)

Or, diagrammatically, A

24,

21,

where the black squares stand for insertions of p"™, and dots represent additional lines (since
n is general). The full propagator, which includes subleading corrections to (3.3), will take
the form,

cy An
(e ol0)) = - SELE, 5.9

where A,, and ~,, are the 1/N corrections to the amplitude and the anomalous dimension,
respectively.

There are four diagrams which contribute to the full propagator at order 1/N. Two of
them are shown in figure 6. They are finite and contribute only to A,

_ nn! <—g6>2 CZ,“’?’ d3r1d3xy
2 \WN/ |z32=D J |1 |?|z12]*]z32]?
Cy = n(n —1)n! < g6>2 C"+3 / d3r1dxo ' (3.5)
2 !$3|2(" D) || wi2)?|ws2|

,10,
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Figure 6. Finite diagrams which contribute to the full correlator (p™(z3)p™(0)) at order 1/N. The
black squares denote insertions of the composite operator p™. All propagators are propagators of
p, (2.6).

2A

p

Figure 7. Divergent diagrams which contribute to the full correlator (p™(x3)p™(0)) at order 1/N.
The black squares denote insertions of the composite operator p™.

The one-loop subdiagrams of C1 and Cs can be evaluated using (2.9), to get,

n

Ch + Cy = n’nl A,, (3.6)

|x3‘2n

where A, is given by (3.2).
In addition, there are two divergent diagrams shown in figure 7. These diagrams are
responsible for the anomalous dimension. Applying the Feynman rules gives,

crm o ( ) () e
= —n\n — n!
’ VN \VN ) Jazn=3 |x2|3\x23|3

Cy = n(n—1) n!( 96)2 C”+3 / d3r1d3xy (37)
2 \953\2 |fL’1|2|952|2|$12|2|$13|2|51323|2 . '

These expressions can be combined after carrying out the integral over x3, through the use
of the star-triangle relation (2.12),

896 ( g6 ) ey A3

C Cy = —1 1 - = .
34 Ca=—n(n—1)nl 75 3 ) TPlamP

128 (38)

The integral over xo diverges logarithmically. This divergence is associated with the
anomalous dimension of p™. Using (2.28) yields,

ge 1
= — | n A
C3+Cy=—n(n—1)n! 2 =0 < 128> PNED log(p|zs|) + ... . (3.9)

— 11 —
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Figure 8. Leading order Feynman diagrams of the three-point function (ppp).

Combining (3.6) and (3.9) with the leading order propagator (3.3), and matching the
result with the general form (3.4), gives

=B (- oy = B L ouny. @)

The anomalous dimensions for n = 1,2 match [26],° while the anomalous dimensions +,, for

n > 3 are new. As an additional check of our result, we note that the anomalous dimension

of ¢% indeed satisfies v3 = % = —7?281%-

3.2 OPE coefficients

In this section we derive several OPE coefficients, up to the next-to-leading order in 1/N.

Evaluation of (¢? ¢? ¢2). There are two Feynman diagrams which contribute to the
leading order three-point function (ppp), as shown in figure 8. Using the star-triangle
relation (2.12) to integrate over the cubic vertex in U; yields,

gGCS 3 1 Jde 1

- z =— . 3.11
VN (| 1al[waal[w3a])? (87)3 VN [m12||z13]|723) (3.1)

U, =

The other diagram, Us, is trivial to compute, as all three integrals are taken over delta
functions (2.5), giving,

3
8C% 1 1 1

U, = = .
27 UN Jerellaisl[zas]  8m3VN [iz]jeis||zas)

(3.12)
Thus, at the fixed point g5 = 192, we get,

C 1
z )p(x)p(xs)) =U1+Upg= —£22____ O W =——F—
(pl@1)p(ez)p(@s)) ! 2 |z12||z13]|223] pop 473/ N

It is standard to define the OPE coefficients to be for the fields which are normalized
such that the amplitude of the two-point correlation function is unity. Based on (2.23), we

p—=1/Co(1+A4,)p, (3.14)

°In fact, 2 in [26] has the opposite sign.

(1+O(1/N)) . (3.13)

therefore rescale the field p,

— 12 —
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Figure 9. The O(1/N) correction to the three-point function (¢ ¢ p).

and get,

A

C
S/ — (3.15)
normalized ’1’12”.%’13”3323’

(p(x1)p(x2)p(23))

where the OPE coefficient is given by

Coopp = —4@(1 +O(1/N)) . (3.16)

The next-to-leading order correction to this OPE coefficient follows directly from our
previous results. In particular, it is entirely determined by the 1/N corrections to the
external propagators and to the cubic vertex. The former is encoded in the coefficient
A, given by (3.2), whereas the latter, as argued in section 2.1, vanishes. Hence, for p
normalized according to (3.14), we find that OPE coefficient up to order 1/N is,

A 2 3

Copp = _4‘/N (1 +54,+ O(l/N2)> : (3.17)
Evaluation of (¢ ¢ $2). We now consider the three-point function (¢ ¢ ¢?) ~ (p¢p). To
leading order in 1/N it is determined by a tree diagram of the form

I

— C ,
— - - - vV N ¢ |z13] |23
204

T2

where we used the Feynman rules of section 2 to get the expression on the right hand side.

The next-to-leading order correction is obtained by accounting for the 1/N corrections
to the external propagators and the pg? vertex. The correction to the cubic vertex is
represented by the one-loop diagram in figure 9. It vanishes, because the integrals over the
delta functions (2.5) result in (¢?) = 0.

Furthermore, as argued in section 3.1, only the amplitude of the p propagator is modi-
fied at the next-to-leading order, whereas the anomalous dimension and the 1/N correction
to the ¢ propagator are absent at this order. As a result, the three-point function (¢¢p)
up to order 1/N is given by,

02
(Oa0)(a2)p(as)) = e (144, +00/3%) (3.18)
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To get the OPE coefficient, we want to first properly normalize the fields: we rescale
p, as was done in (3.14), and similarly rescale ¢ — /Cy(1+ Ay)¢, see (2.21). Since
Ag ~ O(1/N?) and A, is given by (3.2), we get

(¢(z1)p(x2)p(x3))

é¢¢p A 2 ( 36 2 )
— e G =212 L o(1/N?)) . (3.19
normalized ’1'13H33‘23| o9p N 7T2N+ ( / ) ( )
Notice that (3.19) is conformally covariant, because 2A4 — A, = 0 and, as argued in
section 2.2, v4 ~ v, ~ O(1/N?).

4 Review of the Gross-Neveu model

In this section we review some aspects of the Gross-Neveu model [14] which will be needed
for section 5. Those who are familiar with the subject may proceed directly to the next sec-
tion.

Consider the U(n)-invariant Gross-Neveu model in d-dimensional Euclidean space,
_ d i 9 ()2
5= [ s (Sr o+ % (30)%)) (4.1)

where 9 collectively denotes n Dirac fermions, and 1) = 1T denotes the standard Hermitian
conjugation. We choose conventions with Hermitian y-matrices, (y*)" = 4#, and, as is
standard in large- N fermionic models, take N = ntrI where I is the identity matrix in the
space of 2[%2-dimensional Dirac spinors [15].

The standard trick for solving the Gross-Neveu model is to rewrite the model (4.1)
using the Hubbard-Stratonovich field s,

S = /ddac (1;7“8“/1 — 419 s2+ \/1N 31/_17#) . (4.2)

The coupling g is irrelevant at the Gaussian fixed point, and the model is therefore IR free
in dimensions d > 2. However, the e-expansion suggests that it has a non-trivial UV fixed
point, and the corresponding CFT has been extensively studied [15, 34-42]. In strictly
two dimensions, the model (4.2) is a renowned example of an asymptotically free field
theory [14].10 As we will review in the next subsection, the large-N scaling dimension of s
at the UV fixed point is equal to one, and so the corresponding CFT is unitary provided
that d < 4.

4.1 Feynman rules and useful identities
In momentum space the bare propagators of the fields in (4.2) are given by,!!

(s(p)s(@))bare = (2m) 6D (p +q) (—29),  (W(P)¥(q)) = 2m)* 6D (p + q) _”;ZW , (43)

10See [43] and references therein for four-loop renormalization of the two-dimensional Gross-Neveu model.
"'We will generally not keep track of the U(n) indices.
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Figure 10. Feynman rules in the presence of Dirac field.

Since we are interested in the large-N limit of the model, we have to resum the so-called
bubble diagrams to get the leading order propagator of the auxiliary field s [14],

—2g 1

((p)s(2)) N0 = —2g Z (—29B(p =TT380) o “Bo) (4.4)

In the last step we took the limit of large momentum, to ensure that the model is sitting
at the UV fixed point. The fermionic bubble B(p) appearing above is given by,

/ —W“qu(—l)v P—a) _ P (45)
¢*(p— q)? 44-17%5 gin (%d) r (%)
Using the standard Fourier transform relation,
L A T L(g—A
/ L N LA = rf-a) . (46)
(2m) [kld=28  pd2 A(A) |22 I'(A)

we get the conformal propagator of the auxiliary field s in position space [15] (see
also [41, 42]),

2dgin () 1 (41
(s(x)5(0)) = %7 Cy=—— 2> ( 2 ) . Ay =1 (4.7)
|z |25 w2l (% — 1)
Similarly, the propagator of the fermion field v is,
d
- xhry (3 d—1
(@(@)P(0)) = Cyp —55 77, Cuw= (d) y Ay = (4.8)
|z [*5v 272 2

We will use position space Feynman rules, as we did in the previous sections for the
scalar field theory. Since we now have fermions, a Dirac propagator will have an arrow, and
there is no symmetry factor of 2 in the ¥1)s vertex, see figure 10. The amplitudes of the
propagators are normalized to unity, and therefore one needs to multiply each Feynman
diagram by an appropriate power of Cy .

The integral identities that were used in scalar conformal perturbation theory can be
generalized to accommodate fermions [34] (see also [44] for a recent review), e.g.,

2A1 2A1

2A1 + 27y 2A1 + 27y » ( H)
- o——0 = e

2A2 2A2
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Moreover, the propagator merging relations with fermions take the form,

2A, 2A, 2(A14+Ag) —d d

—> @ —e = e— > o X T2 A(AQ)V(Al,d—Al—AQ)
o B g e o [ PEERITD () A(d = Ar - Ag)V(ArL A) x T

where the insertion point of the middle vertex on the left-hand side is integrated over,
A(A) is defined in (4.6), and

F(g—Al—F%)F(g—AQ—F%)

V(Ay, Ag) =
S YV-NE R i /vy

(4.9)

In the case of a Yukawa vertex, the star-triangle relation (2.12) becomes (A;+As+A3 = d),

‘x14‘2A1+1‘$24‘2A2+1‘$34‘2A3 - |x12|d—2A3’x13’d—2A2+1‘x23‘d—2A1+17

d v
/ddx4 'Yuxﬁfl%/xgzl w2 A(A3)V (A1, Ag) 'Yungqul‘zg (4.10)

or diagrammatically,

279 d—2Aq
2A3 d
= d—2A; | X m2A(A3)V (A1, Ag)
271
d— 20y

4.2 Propagators at the next-to-leading order

We now review the formalism to reproduce the leading order anomalous dimensions of the
fields s and 1, as well as the 1/N corrections to the amplitudes of their propagators [34, 42].
These results will be used extensively in the next section.

For the Dirac fermion the relevant conformal graph is,

240

r3 d-—1 1 :pryux% 1 '
|z12]% (|z12|10)

d—1

This diagram diverges; we regularized it by introducing a slight shift § in the scaling
dimension of s and an arbitrary scale y, to maintain correct dimensionality [1, 45]. The
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integrals over internal vertices x34 can be done by using the propagator merging relations

reviewed above. Expanding around ¢ = 0 yields,

L2
pP= g“’ + Ay, (4.11)
where [34, 42],
d wd d—1
VTN mgr (4-1)
2
Similarly, one can derive the regularized s field propagator [42]
11 275
(5(2)5(0)) = Cy—— (1 + +As> , (4.14)
|#[? (|[p)° 6
with
1 4sin %) I'(d) d—1
T= ey = AW (4.15)
wdl’ (%)
2 d
Ay =— <Hd_2 + 5 oot (g)) Vs (4.16)

where H,, is the n’th harmonic number.
To remove the 1/ poles in the above propagators, one has to renormalize the fields,

2
Y — 1+%w, s — (4.17)
As a result, the physical correlators take the form,
— _ :L'NIY
(G} O) = Co (Lt Ag) ™ Tt (4.18)
om, 1
(s5(2)5(0)) = C (1 + Ag) p=27° FEeE=A (4.19)

Notice that the field strength renormalization (4.17) induces a counterterm, which at
the next-to-leading order in 1/N is given by,

T 2’71/1 + s 0
—— YPs = —— ?ﬂw + — YYs . 4.20
vN VN 0 vN ( )
Or, equivalently,
29y t+s 1 / d. 7
ct. - 2 1 15— . 4.21
Smt 5 /*N d®z ¢¢8 ( )

2In order to avoid cluttering the notation, we do not distinguish between physical and bare fields.
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4.3 Gross-Neveu-Yukawa model

Before closing this section, we briefly review the relation between the Gross-Neveu and
Gross-Neveu-Yukawa (GNY) models. The results reviewed here are used to check our
calculations in the next section.

The GNY model is defined by the action,

_ _ 1

S = /ddm (1117“8#111 + g1YPs + 3 (9s)% + g—i s4> . (4.22)
This model is manifestly renormalizable in d < 4, because the couplings g; and go are
relevant at the Gaussian fixed point in d < 4 and marginally irrelevant in d = 4. Below four
dimensions they flow to an interacting fixed point in the IR limit. The critical values of the
couplings can be calculated by using the standard e-expansion in d = 4 — e dimensions [15],

g{:47r,/]\7€%+0(e)=4w\/§ (1—]?\)[+(9(1/N2)> +O(e), (4.23)

. 384712 N
g5 = . . (4.24)
(N +6)(N — 6+ VN2 + 132N + 36)

Furthermore, the scaling dimensions of the fields at the fixed point were calculated in [15]
(see [46] for a comprehensive review),

N +4 3

_ 3
Al _ 2 O(e2 Al—e _ 1 _ O(€?). 4.25
v T3 e o) . Nt o) (4.25)
This formula shows that in the large N limit AT =14 O(1/N), up to linear order in

e. In fact, a general argument based on the 1/N expansion shows that this relation is true
for any 2 < d < 4, see, e.g., [46]. In particular, the operators (0s)? and s* are irrelevant in
the large N limit below four dimensions, because their scaling dimension approaches 4 in
this limit. Therefore, the effective action of the GNY model in the deep IR matches that
of the GN model in the deep UV, and the two models are described by the same CFT at
their respective fixed points [15, 17, 47, 48].

As was pointed out in [15], the equivalence between the GN and the GNY models is
analogous to the equivalence between the critical ¢* vector model and the non-linear sigma
model. A similar equivalence, albeit one that is slightly less exhaustive, also holds between
the critical ¢* vector model in 4 < d < 6 and the model of N + 1 massless scalars with
cubic interaction [17, 18, 49].13

As an illustration of the equivalence between the critical GN and GNY models, let
us consider the 1PI vertices for the field s. To leading order in the 1/N expansion, they
are represented diagrammatically by a single fermionic loop with a given number of s legs
attached to it. Because of the equivalence, vertices with the same number and type of legs

131t was argued in these works that the equivalence between the models in d = 6 — ¢ dimensions holds up
to O(e*) order.

,18,



in both models should match,™ i.e. for n external fields s, we have
1 n n n
- — CSQC"/ dz; s; To(x1, ..., Tn
(- %) ca 1l (@152 2n)

= (—g})" ~§C$ /H d%z; s; To(x1, ..., x), (4.26)
i=1

where the two sides of this equation represent the same vertex in the GN and GNY models
respectively, Z,,(z1, ..., x,) corresponds to the internal 1)-loop, and the external fields s are
normalized such that the amplitude of their propagators equals unity. In particular, Cy =
r (% - 1) / (477%), because the field s in the GNY action (4.22) is canonically normalized.
Using (4.7) and (4.23), one can verify that the above identity indeed holds to leading order
in the e and 1/N expansion.

Moreover, the symmetry pattern of the models match. The actions (4.2) and (4.22)
are invariant under the discrete symmetry [14, 15, 46]

(b, ..., t kT ,:Ud) — (zt, .t gttt ,CL‘d) , (4.27)

s — —s, 7/1—>%ﬂﬁ7 @Z%_J}’Yﬂ

Notice that such a transformation leaves the fermionic kinetic term invariant while it trans-
forms v1) — —1), in analogy with the chiral transformation in even dimensions and parity
in odd dimensions. Thus, for instance, any correlator with an odd number of fields s must
vanish. The three point function (sss) is the simplest instance where one can directly see
that the correlator vanishes. To leading order in the large-N expansion, it is given by,

I

& xlfzfﬂggx?ﬁ tr(%%%) =0,

T2 3
where the last equality is true in any integer dimension d = 2, 3,4, whereas in general
2 < d < 4 it holds by analytic continuation [41].1°
In contrast, the three-point function (¢%s) is nontrivial. To leading order in € it can
be derived using the tree level cubic interaction and the star-triangle relation (4.10),

(Y(@1)v(22)s(x3)) = C ity (4.28)
xr1 xro)s(xg)) = C; R .
Yis | 212|428 | 113280 F] | goq |d-28 +1

14 A similar correspondence holds between the critical ¢* vector model and the model of N + 1 massless
scalars with cubic interaction [50].
5The trace of the gamma matrices vanishes identically in even dimensions. In d = 3, tr(y,7,7x) o< €.
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where the OPE coefficient is given by

~ . Lg d—1 d-1 € 3 9
Ciys = =91 CpCim2 A(1)V (2,2> =\ (1—N+O(1/N )) . (4.29)

Note that, by definition of the OPE coefficient, all the fields are normalized so that their
two-point functions have unit amplitude.

5 CFT data for the critical Gross-NNeveu model

In this section we use the background field method [29] to derive some CFT data
for the critical Gross-Neveu model. Specifically, we calculate the three-point function
(¢(21)1p(x2)s(23)) and the associated conformal effective vertex, up to next-to-leading or-
der in the 1/N expansion. In addition, we calculate the leading order OPE coefficient
determined by the correlation function (¢(z;)1(x2)s?(x3)). Our calculations hold in gen-
eral 2 < d < 4, and the final results agree with their counterparts obtained through the
e-expansion of the critical Gross-Neveu-Yukawa model in the vicinity of d = 4. The latter

serves as a check of our calculations, since the two critical models are equivalent [15].

Evaluation of (1(x1)1(z2)s(x3)). In what follows, the amplitudes of the two-point
functions are normalized to unity, i.e. we rescale the fields,

= /Cy(l+ Ay) Y, s —1/Cs(1+ Ag) s. (5.1)

The leading order three-point function for the normalized fields, which can be derived by
using the tree level cubic vertex and the star-triangle relation, reviewed in section 4.1, is,

(Bl (ea)s(es) = C; Ty T (5.2)
T1)WPA\T2)5\X3)) = Cgys ’xm‘d—QAS‘x13‘d72Aw+1‘x23‘d72A¢+1’ )

where the leading order OPE coefficient is given by,

1 1oy
szzbs — *ﬁ C¢CS2W2A(1)V <

VN(d - 2)ri r(4-1)

d—1 d—1>_ 93 sin (51) 0 (45
2 72 ) '

(5.3)

Loops are associated with higher order terms in 1/N, which modify (5.2). However,

conformal invariance together with the discrete symmetry (4.27) fixes the structure of the

full three-point function. In our case, it takes the form,'

_ —27p—"7s K v
_ _ H VYuT13 YvT32
(D) iaa)aten) = gy, (W) sk I o (5

18 Conformal symmetry uniquely determines the three point function of two fermion and one scalar field
in terms of two possible structures [51, 52]. However, in our case the discrete symmetry (4.27) eliminates
one of them, and the end result is (5.4). More generally, (s***14¢)) and <s2<k+1>1/)2/;> for Kk =0,1,2,...
have the same form as (4.27) and (5.24) respectively, see also [53] where (s?i1)) was calculated at the
next-to-leading order in 1/N.
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where the anomalous dimensions and Wiyps encompass loop corrections to the three-point
function (5.2).

The anomalous dimensions 7, and 7, were evaluated in the previous section; in this
section our goal is to determine Wy, . To this end, we need to dress the tree level diagram
with 1/N corrections. As we will see below, W,  receives contributions from the 1/N
corrections to the amplitudes of external propagators, as well as from the 1/N corrections
to the cubic vertex itself. The former corrections were evaluated in the previous section
(As and Ay), so we only need to evaluate the latter terms.

The full cubic vertex of the effective action is non-local. By conformal invariance its
form is fixed up to an overall constant prefactor, and can be represented diagrammatically
as a conformal triangle [54],

s(z3)
Z,LLZ’W) +s

Z P alyy ey -
X -
/N 2a 2a \/N /// |.’L'13|2a+1|$32|2a+1|3)12‘25 w(xl)w(-TZ)S(xB)v

Y(z1) 28 P(x2)

(5.5)

where the unknown constant Z is closely related to WM) s> while @ and 3 are determined by
noticing that each vertex, denoted by a solid dot in the above graph, should be conformal
after attaching to it an appropriate full propagator (4.18) or (4.19). Hence,

a=2,-"L, 5:AS—W+%. (5.6)

We now focus on calculating the only remaining unknown, Z. By definition, it is
determined by the following diagrammatic equation, which represents the perturbative

expansion of the three-point function (¢(x1)1(z2)s(x3)),

2%11 + Vs «

C’iC’S,u_‘S

where the external legs are not amputated; they correspond to the full propagators (4.18)
and (4.19).

The first graph on the right-hand side represents the cubic interaction of (4.2). The
rest of the terms reveal the 1/N terms. Specifically, the two diagrams on the second line
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of (5.7) account for the loop corrections to the leading order cubic vertex. In fact, the last
diagram is trivial, because it contains a vanishing (sss) sub-graph, discussed in section 4.3.
On the other hand, the first diagram on the second line of (5.7) results in a non-trivial
next-to-leading order contribution to the cubic vertex.!” This diagram diverges and can
be regularized by a small shift § in the scaling dimension of s. This is the same regulator
d used in section 4.2 to calculate the 1/N corrections to the propagators of the fields v
and s.

While the couplings are not renormalized at the fixed point, there is still renormal-
ization of the fields. In particular, the second diagram on the right-hand side of (5.7) is
associated with the counterterm (4.21) induced by wave function renormalization. In the
limit § — 0, this counterterm cancels the divergences of the loop diagrams.

The diagrammatic equation (5.7) simplifies if the external propagator of the auxiliary
field s is replaced with a constant background 5. At the level of the path integral, this is
tantamount to decomposing the Hubbard-Stratonovich field into a fluctuating component
s and a constant background s, i.e. s — 5+ s. The resulting diagrammatic equation
represents a linear (in 5) correction to the two-point function (¢(z1)1(x2))s in the presence
of a constant background,

s
~ 2a : 2’71& + Vs
Zu‘QWJ“"fS — #—4%, X + 5 X
: 2(Ay + ) 2(Ay + ) 28y
2oy + %) 2By + %) 28,
s

®|

Note that the amplitudes of the external fermionic propagators (4.18) cancel on both sides
of this equation, and we ignore them in what follows.

Each diagram in (5.8) can be calculated by repeatedly applying the fermion-fermion
and fermion-scalar propagator merging relations reviewed in section 4.1. The calculation
of each diagram starts by integrating over the insertion point of the vertex with a constant
background s. In particular, the left-hand side of (5.8) takes the form,

A —1—7vs d—1—r;4
l.h.s.0f(5.8):7732dZA(1+’ys)V<d 5 7,d 5 7)

d— s d—1 14,
A _ o -
X ( 5 W;)V( 5 T )

Vs d—1—7, d—1 ) pPetes
xA(l1l-— — |V , .
< Ty + 2 ) ( 9 9 + Ty ‘x12|d—2+2%¢;_73

(5.9)

"The two last graphs of (5.7) are analogous to the corresponding vertex diagrams in the O(N) vector
model. However, unlike the case studied here, in the critical O(N) vector model both diagrams give rise to
a non-trivial contribution, see, e.g., [50] for a recent discussion. In appendix A we recover Z in the vector
model using the background field method.
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Substituting
7 =2701+62), (5.10)

where 67 ~ O(1/N), and expanding in the small parameters vs, vy ~ O(1/N), yields
87‘('% Zo S
(d—2)20 (4 ) (vs + 27vy) 12|72

3vs — 2
< (14024 T8 — 23y — 4) log(enal))

Lh.s. of (5.8) =

(5.11)

d—2

On the other hand, this expression is equal to the sum of the three diagrams on the
right-hand side of (5.8), which we denote by,'®

r.h.s. of (5.8) = Vgree + Veut. + Vioop(6) - (5.12)

The tree level term is given by,

d d—1 d—1 pes
Vtree = —72 A(1 — 29y)V (2 ty, 5t ’Yw) 1o 20 (5.13)

It contributes to the leading and subleading orders in 1/N,

od/2 1 4sin (ﬂzd) I'd-1) (lessli)
Utree = — —— |1+ = - 4’)@[, log(|z12|p
d 2
@-2r(s) \ N xar(4)
S
—— +O(1/N?) . 5.14
o T O/N?) (514)

The counterterm satisfies

o/ 27y + Vs S

Ve, = — — (5.15)
‘ (d—2)r (g) AP
Finally, the loop diagram takes the form
C?0; 5 d+o
oop(6) = —2 AV : A
onl8) = = (e A (S5 ) 4 ()
d—11-96 0 —1+6 d—1
_— 1—= . 1
XV( 2 ' 2 ) < 2) < > (5.16)
Expanding around ¢ = 0 yields,
2m/2 s
Vloop () = — - (5.17)
oop (d— Z)F (%) |:L‘12|d 2
d—1 d d—1
2y + s 1 247 sin (%) T (43
X ( S + (27% +7s) log(|z12|p) + N 7r3/2(d —o)r (%) .

'8Recall that the last diagram in (5.8) vanishes, because it has a subdiagram (sss) which does not respect
s — —s symmetry.
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As expected, the sum of the three terms (5.14), (5.15) and (5.17) is finite in the limit 6 — 0

h.s. of (5.8) + Ve, + Vioop(6) — 2> s (5.18)
r.h.s. .8) = Vtree + Vct. + Vioo — .
t t pR%) T (d—2)T (%) 21292
1 2(3d —4)sin (%) I'(d — 1)
x(1+5 ( ) 5 — (27p — 7s) log(|z12|p)
w(d—2)dr (4)
Comparing (5.11) to (5.18), we get Z (5.10),
d—2)T(4)?
Zy = *( 472.d(2) (277/1 +’Ys)’ (519)
_ 8T'(d) sin (52) _ 2 ., (5.20)

The same result was recently obtained in [42], using a different method.

Finally, calculating the three-point function (1(x1)v(z2)s(x3)) simply involves attach-
ing the full propagators (4.18), (4.19) to the effective cubic vertex (5.5), and integrating over
the internal vertices through the use of the star-triangle relation (4.10). After normalizing

the external fields as in (5.1), the final result reads,

(W (1) (w2)s(z3)) = — C¢(1+Aw\)/NCS(1+AS)

o
ZUp~ 2007 vy ahs @y

X |z13| st sHL | ggg | BstrsHL |5 2B =Bt 275—7s 7 (5.21)
where
2 9 9
4 — All-— RER T V4
x(2,2+’}’w)( ’Y¢+2 5 72+,m
3d

82 -
- 7 (1rov+o/N? ), oU =T (52)

(d_2>2r(§) (75"‘2"}/1[,) d—2

In the last line we expanded in the small anomalous dimensions. Expanding the right-hand
side of (5.21), up to next-to-leading order in 1/N, and comparing to (5.4), we deduce that
the leading term reproduces (5.3), while the next-to-leading order correction is given by,'?

2(d—1) ((d = 2)Hy—s + (d — 2) cot () - 2)
(d—2)?

A
Wips = A¢+73+5Z+5U = Yo - (5.23)
It is instructive to check our result for W, .. To this end, we substitute (5.3) and (5.23)
into (5.4), and expand the three-point function (¢ts) in € = 4 — d. The leading order
term in € matches (4.29), in accord with the equivalence between the critical Gross-Neveu

9The analogous OPE coefficient in the O(N) vector model was recently derived in [50].
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2.0 25 3.0 3.5 4.0

Figure 11. The 1/N correction to the OPE coefficient, W, (defined in eq. 5.4), as a function
of space-time dimension 2 < d < 4. The end points of the plot satisfy Wl/?ws(d =2) =0 and
dews(d = 4) =-3.

and Gross-Neveu-Yukawa models. Moreover, Wiys vanishes in d = 2, and therefore the
OPE coefficient equals —1, up to order 1/N. This result is expected, because the critical
GN model is free in two dimensions and (i1ps) ~ (p(1))), since s ~ 1p/v/N, by the
equations of motion. In particular, it follows from the standard Wick contraction applied
to a free field theory (with properly normalized fields) that the OPE coefficient is indeed
—1, to all orders in 1/N. Figure 11 displays Wis for dimensions 2 < d < 4.

Evaluation of (¢(x1)%(x2)s%(x3)). Let us close this section by deriving the three-
point function <1/_1¢32> between the Dirac fields and the composite operator s2. To leading

order in the 1/N expansion, this correlator is not affected by the anomalous dimensions of
¥ and s?,

(2 (@1 (@2)(s)) = Cpagy —— BI— (140(/N)).  (5.24)
SV |12 |213)? | 3|42

On the other hand, it is determined by the diagram

where insertion of s? is denoted by a black square.

Using the star-triangle relation (4.10) to integrate over the internal vertices, and nor-
malizing s% and the Dirac fields according to s> — v/2 Cy s% and (5.1), respectively, yields

273 sin (o) T (451
R e L
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This result is in full agreement with the GNY model.?Y Moreover, the three point func-
tion (5.24) respects discrete symmetry (4.27). Indeed,

(s(20)%0(@2)b(ws)) = —(s(@1) (@) Plea))y* = Cuagy = Cagy.  (5.26)

6 Discussion

In this paper we used the background field method [29] as a simple way to calculate
conformal cubic vertices in critical O(N) vector models, up to next-to-leading order in
1/N. To the best of our knowledge, this method of calculation has not been previously
employed in large-N conformal perturbation theory.

We explicitly studied two critical vector models: the O(N) sextic ¢% model in dimen-
sion d = 3, and the U(n) Gross-Neveu model in dimensions 2 < d < 4. For the ¢% model,
we derived the leading order anomalous dimensions, (2.31) and (3.10), of the composite
operators p" ~ (¢?)", as well as the OPE coefficients associated with the three-point func-
tions (¢2¢?¢?) and (ppp?), up to the next-to-leading order in 1/N, see (3.17) and (3.19).
For the critical Gross-Neveu model, we derived the leading order and next-to-leading order
OPE coefficient of the three-point functions (11)s) and (1ps2), see (5.3), (5.23) and (5.25).
Our results agree with the literature [26, 42] and extend it in several ways.

There are a number of motivations for studying critical vector models. The Gross-
Neveu model, specifically, is asymptotically safe despite being non-renormalizable in the
vicinity of the Gaussian fixed point above two dimensions. Its RG flow is therefore com-
pletely determined by a finite number of parameters, and its UV fixed point has been
extensively studied in the large-N limit [15, 34-42, 47]. In particular, it was shown that
the UV CFT of the model is equivalent to an IR CF'T of the renormalizable Gross-Neveu-
Yukawa model [15]. From this perspective, the Gross-Neveu model provides a laboratory
where theoretical questions about the structure of RG flows and mechanisms of UV com-
pletion can be explicitly addressed. In two dimensions it presents a simple example of an
asymptotically free field theory [14].

In contrast, the ¢% vector model is manifestly renormalizable in three dimensions, yet
it also possesses a UV fixed point which is interesting in its own way. It turns out that
the UV physics of the model is closely related to the study of big crunch singularities in
asymptotically AdSy spacetimes [56, 57], see also [58]. In the latter context, one studies a
marginal triple trace deformation of ABJM theory [59], where the deformation corresponds
to adding a potential which is unbounded from below. The UV fixed point of the deformed
ABJM theory in the limit of zero ‘t Hooft coupling is described by the critical ¢ model
studied in this work. It would be interesting to systematically explore the effects of the
non-perturbative instability in 1/N [30] on the CFT data of the critical ¢® model and
understand the cosmological implications of our findings in the holographic context studied
in [56, 57].

20Tn the GNY model (1p1s?) is determined by a similar diagram. To explicitly verify that it matches the
GN counterpart, it is sufficient to use the leading order relation (g7)2 Cs/Cs = 1+O(e, 1/N), see section 4.3.
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It is tempting to study the critical ¢ vector model away from d = 3. By continuity,
the UV fixed point does not disappear as we move towards other dimensions, provided that
N is sufficiently large. Thus, we expect to generate a family of CF'Ts parameterized by d,
and a natural question is whether there is a range for d such that the corresponding CFTs
are non-perturbatively stable.

Finally, it turns out that critical vector models exhibit peculiar behavior when coupled
to a thermal bath. For instance, it was shown recently that there are O(NN) theories which
have some of their internal symmetries broken at arbitrary finite temperature [60]. The
results of this paper might be of help in understanding this behavior in three dimensions.
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A Interaction vertex in the critical ¢* model

In this appendix we derive the effective interaction vertex in the critical ¢* vector model in
2 < d < 6 dimensions. The q§4 vector model has an IR fixed point in dimensions 2 < d < 4,
and a UV fixed point in dimensions 4 < d < 6. For a recent discussion of this model
see [50] and references therein, including [6, 7, 55, 61-67]. Our goal is to demonstrate
that the background field method, used in section 5 to calculate the effective s vertex
in the Gross-Neveu model, is also applicable to the O(N) vector model. Our result for
the cubic vertex in the ¢* model fully agrees with [55], where it was evaluated using a
different method. Since, to the best of our knowledge, the background field method has
not been used before in the context of large-INV conformal perturbation theory, we felt some
researchers may find the current discussion useful. The discussion in this appendix parallels
the discussion in section 5.
The critical ¢* vector model is described by the action,

S:/dd:c G (06)% + —— 5 g2 4 Vo L s ¢2) , (A1)

VN VNG

where ¢ is a real N-component multiplet of scalar fields in the fundamental representation
of O(N), s is the auxiliary Hubbard-Stratonovich field, § is a UV regulator, and 74 s
are the anomalous dimensions associated with the loop corrections to the large-N scaling
dimensions Ay = d/2 — 1 and Ay = 2 of ¢ and s, respectively. Note that the Hubbard-
Stratonovich field is dynamical; its propagator is built from an infinite series of ¢ bubbles.?!

21The effective action for s includes an infinite tower of non-local n-vertices suppressed by 1/N 3L
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The UV divergences of the theory are regulated by adding a small shift to the scaling
dimension of the internal s-lines in the Feynman graphs, i.e. 2A; — 2A; 4. In particular,
the last term in (A.1) is the counterterm generated by wave function renormalization of
the fields ¢ and s. Other possible counterterms vanish at the conformal fixed point.

The cubic term in the effective action will be non-local. By conformal invariance, its
form is fixed up to an overall constant Z, and can be represented diagrammatically as a
conformal triangle [54],

s(x3)
2Z et urets
_ 7\/N X 20 2a - /// |x13|2a|m32|2a|x12\2ﬁ ¢(.’131)¢<332>8(.Z’3) )
(A.2)
P(x1) 28 P(x2)
where
a:A(ﬁ—%, B:As—%jt%. (A.3)

Using the above cubic vertex, one can calculate the corresponding conformal three-
point function by attaching to it the full ¢ and s propagators, which are given by,

Ba)o0) = T s@so) = T (A1)

where the normalizations are,

r(s-) (%
Tt o

(%) s

~2)

l\’)\&_ v

and the anomalous dimensions are [6, 7, 50, 55, 61-67],

(A.6)

Note that the integration vertices x1,x2 and z3 become conformal and can be integrated
over using the star-triangle relation (2.12).

We now calculate Z, up to next-to-leading order in the 1/N expansion. To this end,
we notice that the full cubic vertex (A.2) is determined by the sum of the tree level term
n (A.1), the counterterm, and the quantum loop corrections. To order O(1/N %), it can be
represented by the following diagrammatic equation (there is a factor of —2/ V'N on both
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sides, which we drop),

S S S

5 o 2+
Z/,L YT 2a 2a = + 74)6 = x

¢ (AT

The first term on the right-hand side of (A.7) corresponds to the leading order tree level
vertex in (A.1), while the rest of the terms represent O(1/N %) corrections. Specifically,
the last two diagrams account for the loop corrections to the tree level vertex. The scaling
dimension of s in these diagrams undergoes a slight shift of §/2, in order to regularize
divergent loops. The last graph on the first line of (A.7) is associated with the counterterm,
see (A.1); in the limit § — 0, it cancels the divergences of the loop diagrams. The external
legs are associated with the fields ¢ and s, as indicated by the corresponding labels in
the figure.

The diagrammatic equation (A.7) defines Z up to order O(1/N %) It turns out that
the background field method simplifies this equation, and getting an explicit expression for
Z boils down to a relatively short calculation.

To begin with, we decompose the Hubbard-Stratonovich field into a constant back-
ground s and fluctuating component s, i.e. we replace s — 5+ s. Next, we substitute this
decomposition into (A.7) and retain only the linear terms in s. Now, replacing the external
fields ¢ with the full propagators (A.4) defines a linear (in §) correction to the two-point
function (¢(x1)d(x2))s, in the presence of a constant background s,




The amplitudes of the full ¢-propagators (A.4) cancelled out on both sides of this equa-
tion. Furthermore, starting from the integral over the insertion point of the vertex with a
constant background s, all diagrams in (A.8) can be calculated by repeatedly applying the
propagator merging relation reviewed in section 4.1.

Carrying out this calculation, one gets for the left-hand side,

d— s d— s >
-1 —1,2
2 ) 2t

d— d
><U< %—%,2—1—%%,%—1—1)

Lhs. of (A8)=2ZU <

2 2

d d—"s Vs ) et
——1 -1,24+—— . A.
U (2 T T T8 g e (A-9)
Substituting
Z=7y(1+6%2), (A.10)
where §Z = O(1/N), and expanding in v4 s ~ O(1/N), yields
2(d—2)r?U (4 -1,4-1,2 =
Lh.s. of (A.8) = Z, (22 2 ) G- <1 + 67+ (A.11)
(@-4r(3) @+ 0!
((26 — 3d)d — 44)vs + 2((d — 6)d + 4)7, )
— (274 — vs) 1 .

We wish to equate this with the right-hand side of (A.8), which is a sum of four diagrams
which we denote by,

1)
r.hus. of (A.8) = Vgree + Vet + vl(ol())p(é) + vl(fgp (2) ) (A.12)
Let us evaluate each of the four terms. The tree level term is given by,
d d spHe
UtreeZU(2—1+7¢72—1+’Y¢72—27¢>> W . (A.13)

This term contributes at leading and subleading order in 1/N,

d—2 : nd d—1
d d 1 297%(d—6)sin (%) I (5=
vtree—U(—l,—l,z) (1+ () (7) — 4y log(|z12|)

2 2 N 3/2T (% 4 1)
S
X —. A.l4
T (A.14)
The counterterm takes the form,
B d d 294 + s s
Vet = U <2 - 1, 5 - 1,2) 5 |$12|d74 . (A15)

The first loop diagram is given by,

22C3C 5 d  d d+6 d 5
(1) . 'S S a . a + a 9
vloop(5> - N (M‘xIQ‘)d_4+6 U (2 17 2 1, 2) U ( 9 Ty 9 1, 1 2) (Alﬁ)

d  d+6 5
@00 192 .
% U(Z T 2)
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and the second loop diagram is given by,

442 _
@ () _ 200 g (d_ d_ ) <_ 0 _5>

d+0 5 d d d d d
><U< 5 L2551 6>U(2 1,2+5,1—5>U<2—1,2—1+6,2—6>.

Expanding (A.16) and (A.17) around ¢ = 0, we obtain,

(1) @ (0\ . [d d 5
vloop(5) + vloop<2) =U <2 -1, 5 - 1a 2> W (A18)
2 s
X ( - %; T2 1 (29 + ) log(l12])

1 2972(3(d — 6)d + 28) sin (%d) r (%)
N m3/2(d — 4)(d — 2)T (%) )

Combining (A.14), (A.15) and (A.18), we see that the poles cancel, and we are left with a
piece that is finite in the limit & — 0,

0
Vtree + Vct. + Ul(;gp (6) + Ul(OZ(),p (2) (Alg)

d d s
= 0G50
<1 1 273(d(d(5d — 42) +116) — 96)sin (51) T (451
X |14 =
N 3/2(d - 4)(d - 2)T (§+1)

= (279 =) 10g(|1’1w)) :

Plugging this expression back into (A.12) and comparing to (A.11), yields

B =~ gra (10 + 1) A1) (;l B 2) b (;l) : (A.20)
iy L 24-3(d(d(5d — 42) + 116) — 96) sin () T (432)
N T2(d — 4)(d — 2T (4 +1)
:((d—84)2+d32+dﬁ4+5)7¢- (A.21)

This completes the evaluation of the cubic vertex (A.2). This expression matches the result
in [55], which was obtained in a different way.

B The ¢° model in terms of auxiliary fields

In this appendix we give a slight variant of the derivation of some of the results for the
sextic model that were presented in the main body of the paper. Recall that the action for
the ¢% model is given by (2.2),

1 1 g
S:/d3x(2(8¢>)2+\/NU<Z>2+6\/6Np3—Jp> . (B.1)
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Let us explicitly integrate out the ¢ fields, which results in the effective action,

_E 2_27J 3 g6 3 >
S = 5 Trlog(@ \/N)+/dx(6\/ﬁp op | . (B.2)

We now expand the logarithm to next-to-leading order in 1/N. Making use of the matrix

element,

@) a@ls) = o). Co - (B.3)

and discarding the constant and linear in o terms (which are removed by appropriate
counterterms) we obtain,

_ [ 3 g 3 1 / s 3 o(x)o(zs)
S = /d x (6\/]Vp O'p) = d’z1d x27|x12|2 (B.4)
11 o(r1)o(z2)o(xs)
—i-ii/dgxd?’xd‘?x +(91N2
/N 4873 1o |z12| 213|223 (A/N=),

In order to diagonalize the quadratic part, we define a new field s in terms of o,

4 p(a’)
= — [ B B.5
o) = () + 5 [ P (B.5)
Using the star-triangle relation, as well as the inverse propagator relation,

1
o2 g = 2 e, o

we obtain the effective action, up to next-to-leading order,

—/d3x1d3x2 <22 p(z1)p(w2) 41 8(161)8(372))
T |z12]* 1672 |z12]?
p(x1)*s(xa)
|712]?
77/ iy Py & p(x1)p(w2)p(z3)
\ﬁ37f9 21 — @[ Ho2 — 2h|Has —aplt |2)a|zls]|zhs]

/Hd3 ( s(z1)s(x2)s(x3) _1P(331)5(5U2)5(933)> ' (B.7)

4873 |z19||713]| 28] 27t |x19)?|w13)?

x1 p(z1) —I-if/dsx d3xs

Inverting the bilinear part of the action (B.7) through the use of (B.6), we obtain the
leading order propagators
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The Feynman rules for the amputated cubic vertices are??

p p

% s 2 -__ %
p N _W o WQ\/N

When all three fields p are located at different points, we can combine two O(p?) vertices
into one, with the total amplitude Mﬁ%. In particular, we recover the leading order three-
point function (3.15).

Using these rules, yields

<s<m1>s<x2>p<x3>>:o( ! ) (B.9)
(s(on)s(az)s(w) = O (557 ) (B.10)

(p(x1)p(a)s(zs)) = ‘} 3 +0 () - (B.11)

7V N |x13]?|z23]?

where we used (B.6) and the star-triangle relation, and s — /C s.
We conclude this appendix by reproducing the p? effective vertex at the next-to-leading
order. The contributing diagrams are

221t is assumed that all of the three s fields are located at different points z;, i = 1,2, 3, and are connected
with the ¢-propagator lines. If the locations of any of the two s fields coincide, the corresponding Feynman

rule vanishes, owing to the conformal relation (¢®) = 0.
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Using (B.6), we obtain

64 — g6\ >
lecg( 96> Wo,

VN
3 1 3 43
WQ :Cs (7-(-4\/N> (— T ) W(),
W3 =3C, 02 ! 8\’ 22 W,
64— 8 \?2
Wy = 3C2C, \/N% (—7r2 JN> (=27 Wy, (B.12)
where Wy = [ d34 2.3 % The cubic vertex is then given by
5(192 — go) / 3 p(x1)p(x2)p(xs3)
W, = d’x B.13
; 51270 \3312\|$13|!9323!) (B.13)

in agreement with (2.14).2% This vertex vanishes at the fixed point g§ = 192.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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