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INTERPOLATION IN MODEL SPACES

PAMELA GORKIN AND BRETT D. WICK

(Communicated by Javad Mashreghi)

ABSTRACT. In this paper we consider interpolation in model spaces, H?>© BH?
with B a Blaschke product. We study unions of interpolating sequences for
two sequences that are far from each other in the pseudohyperbolic metric
as well as two sequences that are close to each other in the pseudohyperbolic
metric. The paper concludes with a discussion of the behavior of Frostman
sequences under perturbations.

1. INTRODUCTION

Let H* denote the space of bounded analytic functions and let H? denote the
Hardy space of functions on the unit circle T satisfying

2
sup / FO)Pdm () < .

o<r<1

A sequence (a;) of points in D is interpolating for H>°, if for every bounded sequence
(a;) of complex numbers, there is a function f € H*> with f(a;) = «; for all j.
A Blaschke product B with zero sequence (a;) is called an interpolating Blaschke
product if its zero sequence is an interpolating sequence for H>°. Carleson’s theorem
tells us that the Blaschke product is interpolating if and only if there exists 6 > 0
with

iréf(l — |an|?)|B (an)| > 6.

The main goal of this paper is to study unions of interpolating sequences that are
near and far from each other in the setting of the model space H? © BH? with B
a Blaschke product.

To set the context for our work requires some notation: For an inner function 6,
let K7 := H> ©0H? = H* N 0(zH?), where zH? denotes the set of functions with
complex conjugate in zH2. We let Kg° = H>® N0zH>® = H® N 0zH2, and we let

K. := K3 ﬂ BMO,
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where BM O denotes the space of functions of bounded mean oscillation on the unit
circle.

For a sequence (a;) of points in the open unit disk I satisfying the Blaschke
condition »_ (1 — [a;]) < oo, we consider Blaschke products, or functions of the

form
|aj] Z—a;
—)\Il_aj l—a] where A € T.

(Here, as in the future, we interpret |a;|/a; = 1 if a; = 0.) We are particularly
interested in Blaschke products for which the zero sequence (a;) is an interpolating
sequence for H.

In [5], Dyakonov proved the following:

Theorem 1.1 ([B]). Suppose that (o) is an £ sequence and B is an interpolating
Blaschke product with zeros (aj;). In order that there exist a function f € Kg for
which f(a;) = a; for all j, it is necessary and sufficient that

W W EJ: B/(aj)(lj— ayan)| =

Note that Theorem [[Tlassumes only that (a;) can be interpolated to a particular
sequence (¢y;); in particular, one satisfying the conditions of equation ().

In this paper, we combine Dyakonov’s techniques with those of Kenneth Hoffman
to obtain further results about interpolation in Kg°.

To discuss these results, we need a measure of separation of points in the open
unit disk D. The natural metrics are the hyperbolic or pseudohyperbolic distances.
We begin with the latter. Let

zZ—a

pla,z) =

1—az

denote the pseudohyperbolic distance between two points a and z in D.

If (a;) and (z;) are two sequences of points in D and we assume that we can
interpolate (a;) to any {o, sequence (a;) and (z;) to any { sequence (/3;) then,
using Hoffman’s results, it is not difficult to show that p-separation of (a;) and
(z;) implies that we can interpolate an (ordered) union of the sequences to any
l+ sequence. For ease of notation, we will primarily consider the union defined by
alternating points of the sequences.

In this paper, we first consider the case when the sequences (z;) and (a;) are
“far from each other”: We show (Theorem [B]) that if (a;) can be interpolated to
(aj) in K and (z;) can be interpolated to (5;) in K, then the union of the two
sequences can be interpolated to the union of (a;) and (8;) (in the appropriate
order) in K% if the sequences (a;) and (z;) are p-separated; that is, there exists
a constant A > 0 such that p(a;, zx) > A for all j and k. Using Theorem [[.T] allows
us to rephrase this as a statement about a series like the one appearing in equation
m.

We then consider two p-separated sequences (a;) and (z;) that are “near each
other”; that is, with the property that there exists A < 1 with p(a;,z;) < A <1
for all j. In this case, we show that the modified statement of Proposition 2.1] is
true for sequences in model spaces (Theorem [2)); that is, if (a,) is interpolating

«.
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for K% and the two sequences are near each other, then (z,) is interpolating for
Kg.

From this result, we obtain some information about (uniform) Frostman Blaschke
products. Recall that a sequence (a;) in D satisfies the Frostman condition if and
only if

(2) sup Zl_|aj|:C6T < o0.

—~ ¢ — a4l
As a consequence of Vinogradov’s work [I4], it follows that an H°-interpolating
sequence (a;) is Frostman if and only if it is interpolating for K. This can also be
seen by considering Theorem [Tl and using the following: In [4, Section 3], Cohn
shows that an interpolating sequence (ay) is a Frostman sequence if and only if

(3) supz:|1 — la| < 0.

— Qgay,|

Our paper concludes with a fact about (uniform) Frostman Blaschke products
that we have not seen in the literature. Recall that a Frostman Blaschke product
is a Blaschke product with zeros (a,) that satisfy the Frostman condition (2)). An
example of such a Blaschke product appears in [9] (or [2, p. 130]) and is given by

B 1 2"
ap = 1—2—n exp 3n .

In general, it is not easy to check that something is a Frostman Blaschke product.
Vasyunin has shown that if B is a uniform Frostman Blaschke product with zeros
(an), then Y0 (1 —|an|) log(1/(1 — |as|)) < oo, but this is not a characterization.
For generalizations of this as well as more discussion see [I]. Here, we show that
if you start with a uniform Frostman Blaschke product and move the zeros, but
not too far pseudo-hyperbolically speaking, then the resulting Blaschke product is
also a uniform Blaschke product. In view of the difficulty of proving something is
a Frostman Blaschke product, this result could be useful. We accomplish this by
using Dyakonov’s methods and result to conclude that as long as we move the zeros
of a Frostman Blaschke product within a fixed pseudohyperbolic radius r < 1 of
the original zeros, the resulting Blaschke product will remain a Frostman Blaschke
product.

2. PRELIMINARIES

In this section we collect all the necessary background and estimates that play
a role in the proofs in later sections. We first recall the fact that if points are close
to an interpolating sequence, then they are interpolating as well.

Proposition 2.1 ([6, p. 305]). Let (a;) be an interpolating sequence for H> and
(zj) a p-separated sequence with

plaj,zj) < A <1,

for all j, then (z;) is an interpolating sequence for H>.
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This proposition is an exercise in [6]. For a proof, see [I0] Theorem 27.33]. Using
the same notation as above, we will need the following estimate that appears in the
proof:

@) 1= plagean) < (153) (0= plaroa))

Recall that for two points z and w in D), the pseudohyperbolic distance is

p(z,w) =

z—w
1-wz

‘ and the hyperbolic metric is given by

1, 14 p(zw)
=—log————=.
Bz, w) = 5 log 7— (o)

In what follows, we will consider two interpolating sequences (a;) and (z;) that
are p-separated or far from each other; that is, with the property that there exists
e > 0 with
(5) inf p(a, ) > <.

3k
We then consider sequences that are near each other in the sense that there exists
e < 1 with p(a;,2;) <e <1 for all j. In this case, we have the following estimates
that we will refer to later. Let & be chosen with 0 < e < 1. Suppose that p(a;,z;) <
e for all j. Then r := sup; ; B(a;, z1) < 3log 122 < co. Let s = tanhr € (0,1) and
apply ([15, Proposition 4.5]) to obtain for each ] and k,

1 — s|zk] 1 1 — s|ay| 1
6 1—-5s5< < — and < —.
©) TP = Tmgal " 1= 0P = T-aa
Thus,
1 >1—s|z| > 1— tanhr,
|1 — @z

and a similar inequality holds with z; replaced by a;.

Our work relies on Dyakonov’s proof techniques, which rely on the following two
results of W. Cohn. The convergence below is taken in the weak-* topology of
BMOA := BMO N H?, and it also converges in H2. Thus, the convergence also
holds on compact subsets of .

Lemma 2.2 ([3 Lemma 3.1]). Given an interpolating Blaschke product B with
zeros (aj), the general form of a function g € K.p is

Z 1—laf
K 1-a;z’
where (¢;) € oo

Lemma 2.3 ([4, Corollary 3.2]). Let B be an interpolating Blaschke product with
zeros (aj) and let g € K.p. Then (g(a;)) € los if and only if g € H*.

Another key ingredient in our proofs are the following three theorems from Ken-
neth Hoffman’s seminal paper, which we recall here.
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Lemma 2.4 (Hoffman’s Lemma, [7], [0, p. 395]). Suppose that B is an interpolating
Blaschke product with zeros (z,) and

inf(1 — |2, ]2)| B (20)] = 6 > 0.

Then there exist A := A(0) with 0 < A < 1 and r :=r(8) with 0 < r < 1 satisfying
lim A(0) =1 and limr(d) =1
d—1

§—1
such that
{z:|B(2)| < r}
is the union of pairwise disjoint domains V,, with z, € V,, and

Vi C{z: p(z,2n) < A}

Let M(H*) denote the maximal ideal space of H* or the set of non-zero mul-
tiplicative linear functionals on H*°. Identifying points of D with point evaluation,
we may think of D as contained in M(H®). Carleson’s Corona Theorem tells us
that D is dense in the space in the weak-* topology. The maximal ideal space
breaks down into analytic disks called Gleason parts. These may be a single point,
in which case we call them trivial, or they may be true analytic disks, in which case
we call them nontrivial. It is a consequence of Hoffman’s work that points in the
closure of an interpolating sequence are nontrivial. (See [7, Theorem 4.3].)

Theorem 2.5 ([7, Theorem 5.3]). Let B be a Blaschke product and let m be a point
of M(H*®)\ D for which B(m) = 0. Then either B has a zero of infinite order at
m or else m lies in the closure of an interpolating subsequence of the zero sequence

of B.

In the same paper of Hoffman, [, Theorem 5.4], shows that an interpolating
Blaschke product cannot have a zero of infinite order. Therefore, if B is an interpo-
lating Blaschke product and B(m) = 0, then m must lie in the closure of the zero
sequence of B.

Theorem 2.6 (Hoffman’s Theorem). A necessary and sufficient condition that a
point m of the mazimal ideal space lie in a nontrivial part is the following: If S
and T are subsets of the disk D and if m belongs to the closure of each set, then the
hyperbolic distance from S to T is zero.

As a result of Hoffman’s theorem we show that, if (a;) is interpolating for Kg
and (z;) is interpolating for K& and the p distance between the two sequences is
positive, then (see Corollary 27) B is bounded below on {z;} and C' is bounded
below on {a;}. This is known, but for future use we isolate this as a corollary to
Theorem

Corollary 2.7. Let (aj) and (z;) be two interpolating sequences for H> with cor-
responding Blaschke products B and C, respectively. Suppose further that the p-
distance between the two sequences satisfies

i_nkfp(aj,zk) >e>0.
2

Then there exists n > 0 such that
inf [C(a;)| = 0 and inf | B(z)| = n.
J J
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Proof. If not, we may suppose that inf; |[B(z;)| = 0. Therefore, there exists a sub-
sequence (z;,) of (z;) with B(zj,) — 0. Let m € M(H>) \ D be a point in the
closure of the set {zj, }. Then B(m) = 0. By the aforementioned work of Hoffman,
m lies in the closure of the zeros of B, namely the closure of {a;}. On the other
hand, m lies in the closure of {z;}, by the choice of m. By Theorem the hyper-
bolic distance between the two sets must be zero. But since the pseudohyperbolic
distance between the two is bounded away from zero, this is impossible. O

3. SEQUENCES THAT ARE FAR FROM EACH OTHER

In this section, we will consider unions of finitely many interpolating sequences
defined in the following manner: Let (o) and (5;) be sequences. Define (o) U (5;)
to be the sequence (vy;) where

_f «a; ifjisodd

(7) = { B; if j is even.

For simplicity of presentation, we have defined the sequence (v;) via this simple
“every-other” interlacing. It is clear that from the proof techniques that one could
interlace the sequences (o) and (5;) in other ways. Interlacing in other more exotic
ways would necessitate the introduction of additional more complicated notation
and to present the ideas most clearly we have chosen to use only these simple
process described here.

In what follows, for a Blaschke product B with zeros (a;), let

5= 2

and let Bj(z) = B(z)/b;j(z). (We interpret g‘ =1lifa; =0.)

If we wish to interpolate (a;) U (z;) (as defined in equation (7)) to the sequence
(cj) U (B;) and we know that (a;) is interpolating for K% and (z;) is interpolating
for K&, and both B(z;) and C(a;) are bounded below over all j, then we can
interpolate to (o) = (a;/C(a;)) and (B}) = (8;/B(z;)) with g1 € K and
g2 € K&, respectively. So G := Cg1 + Bga € Kg, will do the interpolation.
However, if we don’t know that we can do the interpolation to every bounded
sequence, then we need to combine Dyakonov and Hoffman’s work to obtain a
result.

Theorem 3.1. Let B and C be interpolating Blaschke products with zeros (a;) and
(zj) respectively, satisfying inf; p(zj,ax) > € > 0. If (a;) can be interpolated to
(aj) in K and (2;) can be interpolated to (B;) in K&, then (x;) = (a;) U (2;)
can be interpolated to (v;) == (o) U (B;) in K.

Proof. By Hoffman’s theorem the sequence (z;) is interpolating for H> and BC'is
interpolating. Note that
Ky =H*NBzH*® =H>*NBCzCH>® C Kz,

and, similarly, K& C K. Corollary 27 also implies that there exists § > 0 such
that inf(min{|B(;)], [C(a;)|}) = 6 > 0. We define 7 for j = 1,2,3,..., by

s —a; J2j—1 ./ B Y
V25—-1 =

— all
laj] Bj(ay)
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Then (%;) € £s. Let g be defined by

|aj| 1_|ZJ| )
-SG5, )

and use Lemma 22 the fact that BC is mterpolating7 and K]23 UKZ C K3, to
conclude that g € K,pc. In particular, g € H?.
Now for almost every z € T, we have

(8)

B(2)C(2)z9(2) = > _ 72 ;ﬂ?(z)C’(z)EM + Z%B(Z)O(z)zw.
r ’ 1—a;z 7 / 1—2z;z
For the first summand and almost every z € T,
_(1—1a;[*)
B(z)C(z)z a3z
—la;] z—a; \_(1—laj|*) _ —lay (1 —a )
— B. = B; .

The summation converges in H? and each summand is in H2, so the function
also lies in H?. Therefore

BCzg(2) € (Bcﬁ) NH? = K.

The same computations, with appropriate adjustments, hold for the second sum-
mand. Therefore,

(9) G(2) = BE)C(2)29() = S Far (ﬂBj(Z)C(Z) (1~ Ja| ))

= a; 1-ajz
G1
(oo}
e 21 (1 —1%]*) 2
+;72j (z—jB(ij(Z)W € Kie-
G2
Note that the equality
o~ —lajl=—— (1—la?) <~ =lzjl=— (1 -]z
G(z) =) ——A,;_1B;(2)C(2)—"— —39,B(2)Cj(z)—————=
()= L BT B IO T + 3 B

also holds in .
Now from ®) G; € H>N BC(zH?) = K34, G1 € CH?, and

Gi(aj) = a;C(a;).

But we assume there exists f € K§ with f(a;) = «; for all j, and therefore
(Cf)(aj) = oj(C(ay)). It follows that

— Cf = Bh for some h € H?.
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But since G; € CH? and B and C have no common zeros, we see that C must divide
h. Thus, we have G; — Cf = BCh; for some hy € H?. Thus G, — Cf € BCH?.
Note also that f € K implies that C'f € KZ. So,

G, —Cf e (BO)H?* N K% = {0}.

Therefore, Gy = C'f € H*>. The same computations show that Gy € H*°. There-
fore G = G1 + G2 € H* N K%, which implies the result. O

From Theorem [[.T] we have the following:
Corollary 3.2. Let B, C, (a;), and (z;) be as in Theorem Bl and let (z;) =
(a;) U (zj), where (aj) and (z;) are the zeros of B and C, respectively. If

@ B;
sup —— | < o0 and sup — | < 00,
k zj: B'(a;)(1 — a;ay) k zj: C'(2)(1 — zZx)

i
then Sl}ip Z (BC) (0)(1 — ajo)

where (v;) = (a;) U (B;).

4. SEQUENCES THAT ARE NEAR EACH OTHER

< o0

In the introduction to the paper, we mentioned (see Proposition [ZT]) that if
(an) is an interpolating sequence for H* and (z,) is a p-separated sequence with
pan, zn) <1—e < 1for all n, then (z,) is interpolating for H>°. Here we consider
the same result for K.

Proposition 4.1. If (ay,) is interpolating for K, then there is a constant M such
that || fllco < MI|(f(an))llec for every f € K.

Proof. Define T : K — ls by T(f) = (f(an)). Then T is a bounded linear
operator that maps surjectively onto f,,. Note that T is also injective, because
T(f) = T(g) implies f —g € BH*®. But f —¢g € K% N BH* implies that
f = g. The desired result now follows from the open mapping theorem (or, more
specifically, the bounded inverse theorem). ([l

We now prove that when points in an interpolating sequence for K can be
moved pseudohyperbolically, as long as they are not moved too far, the new se-
quence will be interpolating for K% if the original was.

Theorem 4.2. Let B be a Blaschke product and suppose that its zero sequence,
(an), is an interpolating sequence for K¢y . Let M be the constant in Proposition 1],
and suppose that (z,) is a sequence of distinct points with p(an,z,) < 1 —¢& <
1/(2M). Then (z,) is interpolating for K% .

Proof. Without loss of generality we may assume M > 1. Let (a,) € {o. Choose
fo € K with fo(an) = a, for all n. If necessary, divide (c,) by a constant to
assume that we can choose fy with norm at most one. Then, by Schwarz’s lemma,
for all n we have

p(fo(zn), folan)) < p(zn, an).
Thus,

|f0(zn) - fO(an)‘ < 2p(amzn)a
for all n.
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So, using our assumptions, for all n we have

|fo(zn) = folan)| < 2(1 —¢).

Now (a,,) is interpolating for K, so we may choose f1 € K so that fi(a,) =
folan) — fo(zy) for all n. By Proposition Bl we know that

[f1lloe < M|(f1(an))llec < 2M (1 —é).
Therefore, by Schwarz’s lemma,

(=) 20~ () e

Consequently, for all n we have

[f1(20) + fo(za) = folan)| = [f1(za) = filan)| < 2°M(1 — ).

Now we choose fy € K with

If2ll < M{[(f1(zn) = fi(an))lloo

S Zp(an7 Zn)

and

f2(an) = =(f1(zn) = fi(an)) = folan) — (fi(zn) + fo(2n)).

Therefore
[ foll <22M%(1 = €)* and falan) = —(f1(2n) + fo(za) = folan)).
Now by Schwarz’s lemma we have
|fa(zn) /I 2]l = fa(an) /Il f2lll < 2p(an, zn) < 2(1 =€),
and consequently
f2(zn) + fi(za) + folzn) = folan)| = [ fa(z) = folan)| < 2°M?(1 —€)®.

Continuing in this way, we assume we have chosen fy, ..., f,, € K% with

| (20) + -+ folzn) — an| < 2™ TEM™(1 — &)™t for all n
and

[fmll < 27M™(1—e)™.

We choose f,,41 € K& with
Jmt1(an) = =(fm(zn) + -+ fo(zn) — an) and || frng1|] < 2m+1Mm+1(1 - 5)m+1-

Now we have chosen ¢ so that (1 —e) < 1/(2M) and || 1] < (2M(1—e))" .
Letting f = Z?io f; we obtain f € K with the property that for each n

[f(zn) = an| = Hm | fin(2n) + -+ f1(20) + fo(2n) = fo(an)] <
lim 2™ T MM (1 — )™t = 0.

m

Thus f € K2 and f does the interpolation. O
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5. FROSTMAN BLASCHKE PRODUCTS AND SEQUENCES THAT ARE NEAR EACH
OTHER

Tolokonnikov [13] showed that Frostman Blaschke products are always a finite
product of interpolating Blaschke products, [12]. In view of this, if we start with
two sequences (ay,) and (z,) with p(an,z,) < A <1 for all n and (a,) a Frostman
sequence, then we can write (a,) as a finite union of interpolating sequences and,
as long as (z,) is p-separated, the corresponding subsequences of (z,) will also be
interpolating, by Proposition 2.1l For this reason, we can reduce our discussion to
Frostman sequences that are interpolating for H>°.

Proposition 5.1. Let (a,)nen be a sequence of points in D. If N is an integer for
which (an)n>nN 18 a Frostman sequence, then (ay) is a Frostman sequence.

2
Proof. Consider the function F(¢) := Z;\Izl 1‘;]&_](\' on the unit circle. Then F
J
N

is continuous and therefore bounded. Thus, sup;cy i=1 Ta;=c| is finite and the
J
result follows. U

We turn to the main theorem of this section, which says that if we begin moving
points of a Frostman sequence, as long as we don’t move the sequence too far
pseudohyperbolically, the new sequence will be interpolating for K&, where C is
the Blaschke product corresponding to the new sequence.

Theorem 5.2. Let ¢ > 0. Let (a,) be an interpolating Frostman sequence and
let (z,) be a p-separated sequence with p(ay, z,) < 1 —e for all n. Then (z,) is a
Frostman sequence.

Proof. Using Proposition ZT] and (@) we know that for all j and k,

1= plaga) < (THI=T) (= pleso).

Since (1 + p(a;,ar)) <2 and 1 <1+ p(z;, 2x), it follows that

1+(1—-¢)

2
m> (1 + p(25,28)) (1 — p(zj, 21)) -

(1 pas, )1 plag. ) <2
A computation shows that

(1 —1a;[*)(A = |ax]?)
|1 —@jag|?

1—p*(aj,ax) =

Since all of this also holds with the roles of (a;) and (z;) interchanged, there are
positive constants C; = C1(e) and Cy = Cs(e) such that

(1= JaP) (1 —Jax?) _ (1 =12 P)(1 = |2]*)

(1 —a,*)(1 = \ak\Q).
|1 —@ja|? - 11— Zjz |2

10) C
o @ -zl

<G

Now p(an,z,) < 1 —e:=r and we know that every pseudohyperbolic disk is a
Euclidean disk (see [0, Chapter 1]). If we rotate the disk by a,, where a, := |a,|/an
(interpreting o, = 1 if a,, = 0), we do not change pseudohyperbolic distances; that
is, for a,z € D and a € T,

plaa, az) = p(a, z).
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So, anzn € Dy(lan|,1 —¢). Now we use the fact that the pseudohyperbolic disk
D,(Jan|,1 —¢€) is a Euclidean disk centered at the real number

with radius
1 — |an|?
C1- r2|an|2r'

Since |a,| — 1, there are finitely many a,, for which |a,| < 1—¢ and finitely many
corresponding z,. If we show that the Blaschke product with zeros (2,,)n,>n is a
Frostman Blaschke product, then Proposition E.Ilimplies that the Blaschke product
with zeros (z,,), is also a Frostman Blaschke product. Thus, we may assume that,
for all n. we have |a,| >1—e=rand |z,] > 1—e.

The assumption that r = 1 — ¢ < |a,| = p(0, |a,|), implies that 0 is not in
D,(lay|,r) for all such a,, and therefore 0 is not in the Euclidean disk D(p,, R,).
Since anzn € Dy(lan|,r) = D(pn, Ry), and D(pn, R,) is a Euclidean disk with
center on the positive real line, all points in D(p,,, R,) have modulus greater than
Pn — Ry,. A computation shows that

- lan| — 7‘2|an| — T+T|an|2 - (‘an‘ — T)(l +7‘\an|) - |an| —T

R = = = )
P " 1—r2la,|? 1—r2la,|? 1—r|ay]

Since we assume that |a,| > r we have p, — R, = p(|an|, 7).
Thus, |z,| = |anzn| > pn — Rp = p(|an], 7). So

L [zf? < 1= p2(Jaa], 7).

Consequently,

—72)(1 = |an|?) < 1+7r

1
11 1-— n2<(
(11) S TRt P | ERES g

(1= lan[*).
Thus, for C, := =~ we have

=1
1- |Zn‘2 <Cp(1 - |an|2)7

for all n and we note that C. is a constant depending on r but independent of n.
Similarly, since p(an, 2,) < r, we may interchange the roles of a,, and z, above to
see that 1—|a,|? < C,.(1—2,|?), where C,. is a constant depending only on r (and,
hence, only on ¢).

From the work above, we see that (1 — |a,,|?) < (1 — |z,,|?); that is, there are
positive constants D and Dy independent of m with

(12) Di(1 = |am|?) <1 —|zm|* < Da(1 = |a,|?) for all m.
Now, for all z € D and all j (see [6, p. 4])
plaj, zj) + p(z5, 2)
plai,z) < .
502 < U5 blag, 200 2)

Thus,

2
1 p2(a‘ Z) >1 ( p(ajvzj) —l—p(Zj,Z) )
s 1+ paj,zj)p(z), )
Simplifying, we have
(1= Jag[*)(A = |2)

(1= p*(aj,2))(1 = p*(25, 2))
1 —ajz|? '

(1+ p(aj, z;)p(25, 2))?

>
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ol (L) ) (121
L=a521* = \ (1 + plaj, 2)p(25,2))° ) \I1 = %2
But by assumption p(aj, z;) <r <1 for all j, so

oy <1—r2>(1—|zj|2>

T—a:P = 4 \[L-5:P

Thus,

By equation ([2Z), we have

1— |z >Dﬁl—ﬂ)<1—%ﬁ
‘ .

1 —a;z? — 4 1—-%z?

2
L_ep (L)),
|1 —a,;z|? 4 11— Z;2|?

So there is a positive constant Cs, independent of j, such that for all z € D

1 1
—  >(Cq | —— .
1—a5z] = 3(|1—z7z|)

Choose ¢ € T and let z — (. Then
L > %
1 —a;¢] — 11—z

Since this holds for all ( € T, combining (1)) and ([IJ), we see that there is a
constant Cy such that for all j,

Therefore, for all j

(13)

el ] O et 71

|1 —a;(] 11—z
Thus, if (a;) is Frostman, so is (z;) and since this holds with the roles of a; and z;
reversed, we have (z;) Frostman if and only if (a;) is Frostman. O

We note that the proof can be slightly shortened by using the characterization
of Frostman sequences due to Cohn that appears in ([B]). Since we can also obtain
it directly, we prefer to do so.

Theorem [5.2should be compared with that of Matheson and Ross [9] who showed
that every Frostman shift of a Frostman Blaschke product is Frostman; that is,
if we start with a Frostman Blaschke product B and we consider ¢, o B where
wa(z) = (a—2)/(1—az), then ¢, o B is still a Frostman Blaschke product. We may
think of this as saying that if we move the zeros of a Frostman Blaschke product in
a systematic way (namely, to the places at which the Blaschke product assumes the
value a), the resulting product is still Frostman. Their proof is based on a result of
Tolokonnikov [I2] (that is itself based on a result of Pekarski [I1]) and a theorem
of Hrus¢év and Vinogradov, [8].

Corollary 5.3. Let (an) and (z,) be p-separated sequences with sup,, p(an, zn) <
A< 1. Let B and C be the corresponding Blaschke products. Then (ay,) is interpo-
lating for Kg if and only if (z,) is interpolating for K.
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Proof. Suppose first that (a,) is interpolating for K¢ . Since (a,,) is then interpo-
lating for H> and (z,) is p-separated with sup,, p(an, 2n) < A < 1, it follows from
Proposition 2] that (z,,) is interpolating for H°°. Similarly, the same is true if

we

interchange the roles of z, and a,,. The result now follows from Hrusc¢év and

Vingogradov’s work. (See also [B, (1.12)].) O

(1]

[13]

14]

[15]
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