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Abstract

This article is an introduction to newly discovered relations between volumes of moduli spaces
of Riemann surfaces or super Riemann surfaces, simple models of gravity or supergravity in two
dimensions, and random matrix ensembles. (The article is based on a lecture at the conference on
the Mathematics of Gauge Theory and String Theory, University of Auckland, January 2020)

1. Introduction

In this article, I will sketch some recent developments involving the volume of the moduli space
M, of Riemann surfaces of genus g, and also the volume of the corresponding moduli space 90, of
super Riemann surfaces. The discussion also encompasses Riemann surfaces with punctures and/or
boundaries. The main goal is to explain how these volumes are related to random matrix ensembles.
This is an old story with a very contemporary twist.

What is meant by the volume of M,? One answer is that M, for g > 1 has a natural Weil-
Petersson symplectic form. A Riemann surface ¥ of genus g > 1 can be regarded as the quotient
of the upper half plane H = PSL(2,R)/U(1) by a discrete group. Accordingly ¥ carries a natural
Riemannian metric g pulled back from 7#; this metric has constant scalar curvature R =—2 and
is called a hyperbolic metric. Similarly, 3 is endowed with a natural flat PSL(2,R) bundle! with
connection A pulled back from #. A point in M, determines a Riemann surface together with such
a flat connection, and the symplectic form w of M, can be defined by

1
wz—/Tr&A/\(SA, (1
47 b))

in close analogy with the definition used by Atiyah and Bott [1] for a symplectic form on the moduli
space of flat bundles with compact structure group G. The volume of M, is then

V, = / Pi(w) / ¢, ®
M M

g g

where Pf is the Pfaffian.

This approach generalizes perfectly well for super Riemann surfaces. One replaces SL(2,R),
which is the group of linear transformations of R? that preserve the symplectic form dudv, with
OSp(1/2), which is the supergroup of linear transformations of R?!! that preserve the symplectic form
dudv — d#?. OSp(1]2) is a Lie supergroup of dimension 3|2. Its Lie algebra carries a nondegenerate
bilinear form that I will denote as Tr. A point in 9),, the moduli space of super Riemann surfaces

Footnotes can be found in the appendix.
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2 E WITTEN

of genus g, determines an ordinary Riemann surface 3 together with a flat OSp(1|2) connection A.
The symplectic form of 91, can be defined by the same formula as before, only for flat OSp(1|2)
connections rather than flat PSL(2, R) connections:

1
Az—i/ﬂMAM. 3)
4772

The volume \A/g of M can be defined

V= / VBers, 4)
My

where Ber is the Berezinian, the superanalog of the determinant. This is analogous to the first of the
two formulas in Equation (2). There is no good superanalog of the integral of ¢, but the formula
Pf(w) for a measure does have a good superanalog, namely +/Ber(®).

I will now make a slight digression to explain how an ordinary Riemann surface ¥ with a
flat OSp(1|2) connection of the appropriate topological type (see the explanation of footnote 1
in the appendix) determines a super Riemann surface S. The superanalog of the upper half plane
Hois H = OSp(1]2)/U(1). 7 is a smooth supermanifold of real dimension 2|2; it carries a complex
structure in which it has complex dimension 1]1. 7{ also carries a canonical ‘completely uninte-
grable distribution’ making it a super Riemann surface. (There is no natural splitting of the Lie
superalgebra osp(1]2) as the direct sum of even and odd parts, but the choice of a point in H deter-
mines such a splitting, and the odd part defines a subbundle of the tangent bundle to . This is
the unintegrable distribution.) By taking the monodromies of the flat connection A — X, we get a
homomorphism p : 71 (X) — OSp(1]2). LetI' = = p(m1(X)). The quotient e H/F is a smooth super-
manifold of dimension 2|2 that inherits from 7{ the structure of a super Riemann surface. S is the
super Riemann surface associated to the pair 3, A. For our purposes here, however, it is convenient
to study the pair X, A rather than the super Riemann surface 3.

It is possible to describe the super volumes \A/g in purely bosonic terms, that is in terms of ordinary
geometry. The ‘reduced space’ of 91, is the moduli space M é that parametrizes an ordinary Riemann
surface Y with a spin structure, which we can think of as a square root K'/? of the canonical bundle
K — ¥. My is a finite cover of M,. The normal bundle to My, in 9, is the vector bundle U — M,

whose fiber is H' (X, K~!/?). Viewing U as a real vector bundle (of twice its complex dimension),
we denote its Euler class as x(U). The symplectic form & of 91, restricts along be, to the ordinary
symplectic form w of /\/lfb,. By general arguments about symplectic supermanifolds, one can show
that

%:/lmww. 5)

Thus what I will say about supervolumes can be interpreted as a purely classical statement about M’g
The quantities on the right-hand side of Equation (5) were studied by Norbury [2] from a different
point of view (related however to the same spectral curve that appears in our discussion in Section 5).

The bosonic volumes V, can also be expressed in terms of the intersection theory of M. Indeed,
the Weil-Petersson form is one of the tautological classes on M, that were introduced by Mumford,
Morita and Miller. Maryam Mirzakhani described [3] a sort of converse of this statement: from a
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VOLUMES AND RANDOM MATRICES 3

knowledge of the volumes (for Riemann surfaces possibly with geodesic boundary, as discussed
momentarily) one can deduce the intersection numbers of tautological classes. These facts do not
generalize directly to 9, as there is not a natural intersection theory on a supermanifold.

Volumes for surfaces with boundary are introduced as follows. Let 3 be a hyperbolic Riemann
surface of genus g with n boundaries. We require the boundaries to be geodesics of prescribed lengths
by, by, ..., b,. Let M ob be the moduli space of such objects. It has a symplectic form and volume
that can be defined by precisely the same formulas (1) and (2) as before. Mirzakhani showed that
Vg’ 7 18 a polynomial in by, by, .. ., by, and that the canonical intersection numbers are the coefficients
of the top degree terms in this polynomial.

One can similarly define a moduli space zmg, ; of super Riemann surfaces with geodesic

boundaries of specified lengths by, by, .. ., b,, and its volume \A/g‘,;.

The relation of volumes to intersection numbers gives one way to compute them [4, 5]. Mirza-
khani, however, discovered a new direct way to compute the volumes [6]. Regardless of how volumes
are to be computed, the relation between volumes and intersection numbers shows that volumes are
related to random matrix ensembles, since intersection numbers are known to be related to random
matrix ensembles in multiple ways. Indeed, my conjecture [7] on intersection theory on M, was
inspired directly by discoveries made in that period [8—10] relating two-dimensional gravity to ran-
dom matrix ensembles. Moreover, Kontsevich’s proof [11] involved a relation of the intersection
numbers to a different random matrix ensemble. However, at least in my opinion, the role of the ran-
dom matrices in all of these constructions was somewhat obscure. The new developments that I will
describe give a much clearer picture, since the random matrix will have a simple physical meaning.

In this article, I will sketch how Saad, Shenker and Stanford [12], following Eynard and Orantin
[13], reinterpreted Mirzakhani’s results in terms of a random matrix ensemble. They were motivated
by considerations of quantum gravity, and I will try to give at least some idea about their motivation
and why their results are of physical interest. Then I will explain how Stanford and I [14] generalized
the story to super Riemann surfaces and quantum supergravity.

2. Universal Teichmiiller space

Let S' be a circle and diff S' its group of orientation-preserving diffeomorphisms. The homogeneous
spaces diffS! /PSL(2,R) or diffS' /U(1) can be viewed as coadjoint orbits of a central extension
of diffS', so they carry natural symplectic structures. Let X be one of these spaces, and denote
its symplectic structure by w. We will see that X with its symplectic structure is a sort of infinite-
dimensional analog of M,. Actually, diffS' /PSL(2, R) is sometimes called universal Teichmiiller
space, and the developments that will be reviewed here perhaps give a perspective on the sense in
which this name is justified.

It is believed that there is no reasonable definition of the ‘volume’ f Py e . However, we can do
the following. Consider a subgroup U(1) 22 S' C diffS', consisting of rigid rotations of S'. In other
words, for some parametrization of S! by an angle 6, U(1) acts by # — 6 -+ constant. Then there is
a moment map K for this action of U(1); in other words, if V is the vector field on X that generates
U(1) and iy is contraction with V, then

dK = —ivw. (6)
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4 E WITTEN

Then introducing a real constant /3, the integral

() = /X exp(K/B +w) ™

is better-behaved.

In fact, this integral can be viewed as an infinite-dimensional example of a situation that was
studied by Duistermaat and Heckman [18], and then reinterpreted by Atiyah and Bott [19] in terms of
equivariant cohomology. Let Y be a symplectic manifold (compact, or with some suitable conditions
at infinity) with symplectic form w and action of U(1). Let py, ..., p, be the fixed points of the U(1)
action. For simplicity I assume that there are finitely many. Let K be the moment map for the U(1)
action. The Duistermaat—Heckman/Atiyah—-Bott (DH/AB) formula gives

exp(K(p:)/B)
/yeXPK/ﬁ—kw Z RCWIT

where the ¢; , are integers that represent the eigenvalues of the U(1) action on the tangent space to
Y atp;.

In the present example, there is only one fixed point in the U(1) action on diffS' /PSL(2,R) or
diffS' /U(1). The product over eigenvalues at this fixed point becomes formally [ [~ ,n/27 3 in the
example of diffS! /PSL(2,R) (or [[°, n/2n3 in the other example). This infinite product is treated
with (for example) (-function regularization. For diffS' /PSL(2, R), the result is

C
Z(p) = Wexp(ﬁz/ﬂ), (®)

where the constant C, which has been normalized for later convenience, depends on the regularization
and so is considered inessential, but the rest is ‘universal’. (This problem was first studied by Kitaev
[15] and subsequently analyzed in [16]. There are many derivations of the formula (8) in the physics
literature. The explanation that I have sketched is from [17].) There is a similar formula for the other
example diffS' /U(1).

To use the DH/AB formula, we did not need to know what is the moment map K (only its value at
the fixed point). But in fact it is a function of interest. To pick the U(1) subgroup of diffS' that was
used in this ‘localization’, we had to pick an angular parameter 6 on the circle; an element of diffS'
maps this to another parameter u, and K is the integral of the Schwarzian derivative {u, 6}.

By an inverse Laplace transform, we can write

2(8)= [ dEn(E)exp(-36) ©)
0
with
p(E) = % sinh(27VE). (10)

3. Quantum gravity in two dimensions

I will next explain why this result was considered problematical and how it has been interpreted [12].
This will require explaining some physics.
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VOLUMES AND RANDOM MATRICES 5

General Relativity is difficult to understand as a quantum theory. Searching for understanding,
physicists have looked for a simpler model in a lower dimension. Two dimensions is a good place to
look. An obvious idea might be to start with the Einstein—Hilbert action in two dimensions, Igy =
fz dzx\/g)R/ 27, with R the Ricci scalar of a Riemannian metric g. This does not work well, as in
two dimensions this action is a topological invariant, the Euler characteristic x, according to the
Gauss—Bonnet theorem. Instead it turns out to be better to add a scalar (real-valued) field ¢. For
many purposes, a simple and illuminating model of two-dimensional gravity is ‘Jackiw—Teitelboim
(JT) gravity’, with action

1
[JT:—E/ZdZX\/g(b(R-I—Z). (11)

Actually, even though the Einstein—Hilbert action is a topological invariant, it turns out that it is
important to include a multiple of this term in the action. The combined action is then

1 R
I'=1Iyr — Solgn = *E/ dzx\/§¢(R+2)*SO/d25\/§%- (12)
)

In conventional General Relativity, the coefficient of the Einstein—Hilbert term is 1/167Gy, where
Gy is Newton’s constant. In the real world, Gy is extremely small in natural units set by the values
of Planck’s constant, the speed of light, and atomic masses. So 1/167Gy is very large in natural
units. Similarly, here we are going to think of Sy as being large. The same goes for the renormalized
parameter S introduced below.

Because /gy is a topological invariant, the Euler-Lagrange equations come entirely from /;r. The
Euler-Lagrange equation for ¢ is simply R+ 2 =0, so a classical solution is a hyperbolic Riemann
surface. The Feynman path integral for compact 3 without boundary (or with geodesic boundary of
prescribed length) is very simple. The path integral is

1
Zs = —/DqﬁDge—], (13)
vol

where formally vol is the volume of the diffeomorphism group and the factor 1/vol is a way to
indicate that we have to divide by the diffeomorphism group (that is, we integrate over pairs ¢, g up
to diffeomorphism). Since I = Iyt — Solgg = Irr — Sox, we have in more detail

1 1
Zs, = %X . ﬁ/D(ﬂ)gexp (z/dzx\/§¢(R+2)) . (14)

The integral over ¢ and g is studied by integrating first over ¢ (after rotating the integration contour
¢ — i¢) and gives a delta function setting R+ 2 =0. Since we have to divide by the diffeomor-
phism group, the integral ‘localizes’ on the moduli space of two-manifolds with hyperbolic structure,
modulo diffeomorphism.

If ¥ is orientable and of genus g, the moduli space of two-manifolds with metric of constant
curvature R =—2 is the usual moduli space M, of Riemann surfaces of genus g, and one can show
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6 E WITTEN

that the integral over M, gives its usual volume, up to an elementary factor:

L/’Dqﬂ)gexp (;/dzx\/gqb(R—&—Z)) :CX/M ev. (15)

vol
g

C is a constant, independent of g, that depends on the regularization used in defining the integral.
There is no natural choice of regularization, so there is no preferred value of the constant C. However,
in Equation (13), we see that Zs, has an additional factor ¢5°X. We simply eliminate the arbitrary
constant C by setting ¢5 = ¢ C. So finally

Zs, :eSX/ ev. (16)
M

g

What has just been explained is a typical, though elementary, example of renormalization theory.
The theory does not depend on the choice of regularization, as long as it is expressed in terms of
the ‘renormalized’ parameter S rather than the ‘bare’ parameter Sy. If 3 is unorientable, the moduli
space of hyperbolic structures is not a symplectic manifold, and the formula analogous to Equation
(16) involves the Reidemeister or Ray-Singer torsion [14].

So far, I have assumed that ¥ is a compact surface without boundary. The case that ¥ has geodesic
boundaries of specified length is similar. What really led to progress in the last few years was applying
JT gravity to, roughly speaking, the whole upper half-plane . The Euler—Lagrange field equations
of JT gravity tell us that R 4+ 2 =0, and also give a certain equation for the real-valued field ¢. Since
the natural metric on H has R+2 =0, H, endowed with a suitable ¢ field, can be regarded as a
classical solution of JT gravity. The Euler—Lagrange equations for ¢ have a natural interpretation if
one views H as a Kahler manifold, and thus in particular as a Riemannian manifold that also has a
symplectic structure. These equations say that ¢ is the moment map for a vector field V on A that
generates an automorphism of # as a Kahler manifold: thus V is a Hamiltonian vector field, with
Hamiltonian function ¢, for H viewed as a symplectic manifold, and also is a Killing vector field
for H viewed as a Riemannian manifold. In short, V generates a one-parameter subgroup of the
automorphism group PSL(2, R) of #. The case that one wants (because it makes possible a limiting
procedure that is described shortly) is that this is a compact subgroup U(1) C PSL(2,R). Any two
such subgroups are conjugate so it does not matter which one we choose. Concretely, if one describes
H as the sheet x>0 in a hyperboloid x> — y? — z2 = 1, then we can choose the U(1) that rotates y
and z. The moment map for a generator of this U(1) is simply the function x, and we take ¢ to be a
positive multiple of this:

o=cx, c¢>0. (17

In this description, the conformal boundary of 7 is atx — co, and we see that ¢ blows up everywhere
near this conformal boundary.

But it turns out that literally studying JT gravity on all of H is not the right thing to do. This would
be rather like trying to calculate the naive integral [, e*, with X = diffS' /PSL(2, R), rather than the
improved version (7). A better thing to do is to study JT gravity not on all of H but on a very large
region U C H [23].

Such a large region is sketched on the left of Fig. 1. (The right of the figure will be discussed
later.) We are going to study JT gravity on a two-manifold U that topologically is a disc. To get a
good variational problem for JT gravity on a manifold with boundary, one needs to include in the
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VOLUMES AND RANDOM MATRICES 7

/

geodesic of length b

Figure 1. On the left, the upper half plane H is represented as a disc, and the shaded portion of the disc is a large region
U C H. On the right, a Riemann surface . is built by gluing together two pieces U’ and >’ (shaded) along an embedded
geodesic of circumference b. 3/ is a surface of g > 0 with one geodesic boundary. U’ is an annulus with a geodesic ‘inner’
boundary and a large ‘outer’ boundary. Near its outer boundary, U’ resembles locally a large region in H.

action a boundary contribution, somewhat like the boundary correction to the Einstein—Hilbert action
of General Relativity [20, 21]. The JT action, with the boundary term, is

= [ Pxveok+2) - [ axiok-1), (18)

where K is the extrinsic curvature of the boundary 0%, and 4 is the induced metric of the boundary.
The Einstein—Hilbert action /gy similarly needs a boundary term, so that it still equals the Euler
characteristic y. On QU, we impose a version of> Dirichlet boundary conditions: we specify the
induced metric 4 of the boundary OU, along with the boundary value of® ¢. Moreover, we specify
them so that the circumference of OU is very large, as is ¢|gy.

In a limit as the circumference of U goes to infinity and ¢|sy is taken to be a large constant, the
Feynman integral Zy () of JT gravity on U can be evaluated in terms of an integral that we already
studied in Section 2: Zy(8) = €% [, exp(K/S +w), where X = diffS' /PSL(2, R). The prefactor %
comes from the Einstein—Hilbert part of the action; that is, it is 53X where the disc U has x=1.
More subtle is to explain how the rest of the path integral gives the integral | v exp(K/B+w). Note
first that S' = OH comes with an angular parameter that is uniquely determined up to the action of
PSL(2,R). Moreover, since its induced metric is specified, OU has a natural arclength parameter, up
to an additive constant. In the limit of interest in which U is very large, it makes sense to compare
these two parameters, and the comparison defines an element of X = diffS! /PSL(2, R). So we can
think of X’ as parametrizing a family of large regions U C H, up to PSL(2,R). It turns out that in
the limit that ¢|y is large, forcing U closer to 9H, [, (K — 1) becomes a multiple of the moment
map K for the U(1) action on X'. Hence in this limit, apart from the factor %, the Feynman integral
Zy of JT gravity on the disc U becomes our friend | v exp(K/B +w). To achieve convergence to
this limit, both the circumference of OU and the constant value of ¢|gy are taken to infinity, keeping
fixed their ratio, 3. From Equations. (9) and (10), and setting e%°C = 5, we get

S

20(6) = [ AED(E)exp(~HE), p(E) = 1 sinh 2 VE) (19)

Here f3 is regarded as the renormalized circumference of QU, and S is the renormalized coefficient
of the Einstein—Hilbert term.

This is a deeply problematic answer for the Feynman integral on the disc U. To understand why,
one should be familiar with holographic duality between gravity in the bulk of spacetime and an ordi-
nary quantum system on the boundary [24]. If the bulk were four dimensional, as in ordinary physics,
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8 E WITTEN

the boundary would be three dimensional and the ‘ordinary quantum system’ on the boundary would
be a quantum field theory—not a very easy concept to understand mathematically. But here the bulk
is two dimensional, so the boundary is one dimensional and matters are simpler. An ordinary quan-
tum system in one dimension is just described by giving a Hilbert space H and a Hamiltonian operator
H acting on H. The basic recipe of holographic duality predicts that Zy(3) = Tryexp(—SH).

In a moment, we will check that that prediction is false, but before doing so, I want to explain
that this actually did not come as a complete surprise. Analogous calculations going back to the
1970s [21, 25] have always given the same problem: Euclidean path integrals give results that lack
the expected Hilbert space interpretation. The calculations were traditionally done in models (like
four-dimensional General Relativity) that were too complicated for a complete calculation, and there
was always a possibility that a more complete calculation would make the issue go away. The novelty
is that holographic duality and a variety of other related developments have made it possible to
ask the question in a model—JT gravity—that is so simple that one can do a complete calculation,
demonstrating the problem.

To see that the prediction of the duality is false, we just note the following. If we do have a Hilbert
space H and a Hamiltonian H acting on it such that the operator e ~?# has a trace, then H must have
a discrete spectrum with eigenvalues E}, E», - -+ (which moreover must tend to infinity fast enough)
and

Try exp(— Ze E— / dEZ5(E7E,-) e PE. (20)

But the integral over diffS' /PSL(2, R) gave

S

Zy(B) = / h dE% sinh(2mVE)e PE. Q1)
0 I

The function % sinh(27r\/E) is not a sum of delta functions, so the prediction of the duality is false.

However, the interpretation via JT gravity gives us a key insight that we did not have when we
were just abstractly integrating over X’ = diffS' /PSL(2,R). In Equation (10), C was an arbitrary
constant, but now C has been replaced with ¢5 where S is should be large to get a model more similar
to the real world. This was explained following Equation (12). To amplify on the point a bit, S is
analogous to black hole entropy in four dimensions; it is very large in any situation in which the usual
puzzles of quantum black hole physics arise. If S is just moderately large, say of order 100, then eSis
huge. So we think of ¢° as a huge number. With this in mind, the function 2 s s1nh(27r\f ) actually
can be well-approximated for many purposes as ) .6(E — E;), for suitable E;. One must look very
closely to see the difference. One could not reasonably approximate 2 sinh(27v/E) (for example) by
a such a sum, but ¢'% sinh(27+/E) is another matter.

4. A random matrix ensemble

The novel idea of Saad, Shenker and Stanford [12] was to interpret the function ;%> smh 27v/E not
as the density of energy levels of a particular Hamiltonian but as the average level density of an
ensemble of Hamiltonians—a random matrix. In terms of the physics involved, this interpretation is
rather provocative, though it may be a challenge to convey this fully.
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VOLUMES AND RANDOM MATRICES 9

What motivated this interpretation? One clue came from the work of Kitaev [15], who discovered
a simple model of holographic duality based on a random ensemble that was more complicated
than the one of Saad et al. Unfortunately, to explain this would take us rather far afield. Another
clue came from the prior history of relations between random matrices and two-dimensional gravity
[8-11]. A final clue, more directly related to the topic of the present article, involved the volumes
of the moduli spaces of Riemann surfaces. As noted in the introduction, Mirzakhani [6] had found
a powerful new way to compute the volumes of these moduli spaces. And Eynard and Orantin [13]
had interpreted her formulas in terms of their notion of topological recursion [22], which is related
to a random matrix ensemble. The key technical observation of Saad et al. was that the eigenvalue
density of a random matrix ensemble related to the spectral curve of Eynard and Orantin is precisely
the function % sinh 27+/E that arises in JT gravity and integration over diffS' /PSL(2, R).

The sort of random matrix ensemble used in [12] is the following. M will be an N X N hermitian
matrix for some N. We are really interested in N very large and ultimately in a limit with N — oco.
Picking some suitable real-valued function 7(M), we consider the integral

Z(T;N) = ﬁ/dMexp(—NTrT(M)). (22)

vol

(The space of N x N Hermitian matrices is a copy of RNZ, and the measure dM is the standard
Euclidean measure on RNz.) If the function T(M) is quadratic, this is a Gaussian random matrix
ensemble, as studied originally in the 1960s by Wigner, Dyson, Mehta and many others. We are
interested in the case that T(M) is not quadratic. In this case, Z(T; N) or more precisely its logarithm
has an asymptotic expansion for large N:

oo

log Z(T;N) = N*Fy(T) + F{(T) + %FZ(T) Hooe= Y NTTEF(T). (23)

g=0

This expansion can be constructed by standard Feynman diagram methods. As shown by f Hooft
[26], the Feynman diagrams for a matrix model are in a natural way ribbon graphs, each of which
can be naturally drawn on a certain Riemann surface. F(T) is the contribution of connected ribbon
graphs that can be drawn on a surface of genus g.

However, instead of making a Feynman diagram expansion, we can try to just evaluate the
integral [27]. We do this by first diagonalizing M, writing M = UAU~!, with U € U(N), and
A a diagonal matrix A =diag(Af, A, ..., Anv), A1 < A <--- < \y. The measure becomes dM =
dUTLANT (N — )2, Here dU is Haar measure on the group U(N), and the integral over U
just cancels the factor 1/vol(U(N)) in the definition of Z(T; N). So we reduce to

Z(T;N) = / A 8= N) exp (—NZ T()\k)> . (24)
k

i<j

For large N, the integrand [, ;(Ai — A)?exp(—N>_, T(\¢)) has a sharp maximum as a function
of the \;. To describe this maximum, assuming N to be very large, we think in terms of a continuous
distribution of eigenvalues, p(A) = Npg(\) for some function py(A) (normalized to f dApo(N) = 1).
In terms of such a distribution, the integrand in (24) becomes
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P2)

A

Figure 2. For a nice class of functions T(\), the support of the eigenvalue density po(A) is an interval [a, b]

exp <N2 <— / AApo(N)T(A) + / AN po(A)po(N) log |A — X|)> . (25)

For a nice class of functions 7T()), the exponent has a unique maximum at some function py(A). The
most famous case is that T is quadratic; then (with suitable normalization) po(A) = %\/ 1 — A2 in the
interval [—1, 1] and po()\) =0 outside the interval. This example illustrates a general behavior; for
a nice class of functions 7, the support of the function py()) is an interval [a, b]; moreover, po(A)
vanishes near the endpoints of the interval as the square root of the distance to the endpoint, and can
be continued to an algebraic function of \ with only those singularities.*

If Fo(T) is the value of the exponent at its maximum, then the leading approximation to the

logarithm of the integral is
log Z(N;T) = N*Fo(T) + O(1). (26)

How can we calculate the further terms in this expansion? Something quite remarkable happens,
though a detailed explanation would go beyond the scope of this article. (There is a brief introduction
in Section 4 of [14], for example.) One should define the ‘spectral curve’ in the y — \ plane:’

¥ = (). ey

This curve is a double cover of the A plane, branched at the endpoints of the eigenvalue distribution,
where the function pj(\) has simple zeroes. Once one knows this spectral curve, one can forget
about doing integrals and one can forget the original function 7(M). The whole expansion

oo

log Z(T,N) = N*Fo(T) + F,(T) + %Fz(T) toe= > NTEF(T) (28)

g=0

(and a wide variety of other things about this ensemble) can be worked out just from a knowledge of
the spectral curve. A very useful version of this process is the ‘topological recursion’ of Eynard and
Orantin [22].

Now let us go back to the volumes of moduli spaces. As I have explained, Saad, Shenker and
Stanford interpreted the function % sinh 27v/E as the average density of eigenvalues for a random
matrix drawn from a non-Gaussian hermitian matrix ensemble. In principle, the procedure is to start
with a function 7" and then compute the density of eigenvalues Npgr(E), where we now denote
the eigenvalue as E, and we also make explicit the dependence of py on 7. Then we take N — oo
while adjusting T so that Npg r(E) converges to the desired % sinh27rv/E. This process is called
double-scaling.
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VOLUMES AND RANDOM MATRICES 11

But we can skip all that work, because everything we want to compute depends only on the spectral
curve, which we know is going to be

1
V= sinh? (27 VE). (29)
1672

This curve is a double cover of the complex E-plane, with branch points at £ =0 and E = co. (In the
process of double-scaling to get this curve, the interval [a, b] converges to [0, c0).) In short, all we
have to do is to start with that spectral curve, and apply topological recursion to get the expansion
logZ(T) = Z;O e(—2)5F, , as well as other quantities of interest that are introduced momentarily.
Here, after double-scaling, the expansion parameter is e~ rather than 1/N.

Now we can compute volumes, with a few steps, as follows. First we compute the average of
Trexp(—FH) in this matrix ensemble, where now I refer to the random matrix M as a Hamiltonian
H. This can be done explicitly, applying topological recursion to the spectral curve (29). The result
is an expansion of the ensemble average (Tr exp(—3H)) in powers of e~25.

To interpret the result in terms of volumes, one proceeds as follows. The Feynman diagram
expansion of (Tr exp(—(H)) involves Feynman diagrams drawn on a Riemann surface ¥ with one
boundary component, like those drawn in Fig. 1. This happens because when we make a Feynman
diagram expansion, the trace Trexp(—(H) turns into a boundary. The picture on the left of Fig. 1
actually corresponds to the leading contribution, the special case that 3 is a disc. In Section 3, we
analyzed the JT path integral for the case of a disc of regularized circumference [, and interpreted
the answeraas [~ dEp(E) exp(—SE) with p(E) = 4‘;:2 sinh27+/E. We have chosen a matrix ensemble
that reproduces this answer for the leading contribution. We are now interested in the higher topolo-
gies shown on the right of Fig. 1. They contribute the higher order terms in the expansion in powers
of e~5. The contribution from Feynman diagrams drawn on a genus g surface ¥ is of relative order
exp(—2gS).

In the right-hand panel of Fig. 1, the surface X has been cut in two along a geodesic of length b.
To the right of the cut is a hyperbolic Riemann surface ¥’ of genus g, with one geodesic boundary
of length b. Let My, be the moduli space of such hyperbolic surfaces, and V, ; its volume. To the
left of the cut is a hyperbolic two-manifold U’ that is topologically an annulus. U’ has one geodesic
boundary of length b and another ‘large’ boundary near which U’ looks locally like a large portion
of H. In the same sense that the disc U depicted on the left of Fig. 1 represents diffS! /PSL(2, R),
U’ represents diffS! /U(1). Apart from an overall multiplicative constant, the symplectic structure of
diffS' /U(1) depends on one parameter® b, which corresponds to the length of the geodesic boundary
of U'. Let us just write O(b; () for the JT integral on this orbit (3 being again the regularized cir-
cumference of the ‘large’ boundary of U’). The function ©(b; 3) can be computed from the DH/AB
formula and is given by a formula similar to Equation (9). Roughly because of locality properties
of quantum field theory, or because the length of a geodesic on a hyperbolic two-manifold is the
Hamiltonian that generates a corresponding Dehn twist, the JT path integral Zs; on X is obtained by
integrating over b the product of the JT path integral on U’ times the JT path integral on X'

oo
Zs = 5172 / bdb O (b; B) Vg (30)
0

One has to include here a factor of b that comes from integrating over a ‘twist’ parameter in the
gluing of U’ to X’. We have used the fact that the JT path integral on 3 is X))V, , = 5022y,

On the other hand, the Feynman diagram expansion of the matrix model makes us expect that
Zs; will be the term of order ¢5(!~22) in the expansion of (Tr exp(—(H)). This can be computed by
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applying topological recursion to the spectral curve (29). Using also the explicit result for O(b; j3),
one can make an inverse Laplace transform of the result for Zy; to obtain an explicit formula for V.

This procedure can be generalized to give the volumes ng}; of moduli spaces Mgﬁ of hyperbolic
surfaces of genus g with boundary geodesics of specified lengths b= (b1,by, ..., by). The resulting
formulas are correct, in view of the relation demonstrated by Eynard and Orantin [13] between
topological recursion for the spectral curve y* = — lﬁlﬂz sinh?27v/E and the recursion relation used
by Mirzakhani [6] to compute Vg’ 5

Matching with Mirzakhani’s recursion relation was how Eynard and Orantin determined which
spectral curve to use. Another way is to use the relation between volumes and intersection numbers
and the general relation of intersection numbers to spectral curves. (This approach is sketched in
[28]; see Section 2.4 and Equation (4.46).) As I have explained, Saad, Shenker and Stanford instead
arrived at the same spectral curve from the path integral of JT gravity on a disc.

The approach involving JT gravity is very interesting for physicists, but if one only cares about
volumes of moduli spaces, one might ask why it is important. One answer is that this derivation
sheds a new light on the relationship between diffS! /PSL(2, R) and the moduli spaces of Riemann
surfaces. Another answer is that this approach possibly gives a better understanding of why random
matrix ensembles are related to volumes and intersection numbers. A third answer is given by my
work with Stanford [14]. We ran the entire story for super Riemann surfaces. Every step has a direct
analog for that case.

5. Matrix ensembles and volumes of super moduli spaces

The superanalog of JT gravity is JT supergravity, which computes the volumes of moduli spaces
of super Riemann surfaces, in general with geodesic boundaries of specified lengths. As before, it
is important to consider the special case of a super Riemann surface which is the super upper half
plane #, or more precisely a very large region Q C H, as in the left-hand side of the familiar Fig. 1.
The boundary of U, or simply the boundary of H, is a super circle that we may call S'T. T also write
SdiffS! for its group of orientation-preserving diffeomorphisms. Let X = SdiffS! /OSp(1|2), which
we might think of as universal super Teichmiiller space. By similar arguments to those that were
described in Section 3, the super JT path integral on a large region UcH computes

Zy(B) =€ /;xp(@ﬂ +@), 31)

where K is the moment map for a subgroup U(1) C SdiffS', @ is the symplectic form of X, and
So is the coefficient of the Einstein—Hilbert term in the action. This integral can be computed using
DH/AB localization, with the result [14]

fe'e) S
2= [ ape e, i) = Y2 ERCIE, @)

As before, S is the renormalized coefficient of the Einstein—Hilbert term. Again, this is not
Tryexp(—SH) for a Hamiltonian H acting on a Hilbert space H, but now we know what to do:
we have to consider a random quantum ensemble.
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We can rerun the previous story with a few changes. The formula for Z(/3) tells us the spectral
curve:

¥ = —%coshz(ZTr\/E). (33)

However, the matrix ensemble is of a different type than we encountered before. One way to see
that it must be different is that the eigenvalue density p(E) in Equation (32) behaves as E~"? near
the endpoint of the energy spectrum at E =0, in contrast to the typical E*!? behavior of a matrix
ensemble of the sort that we studied in Section 4.

The ensemble must be different because as we are now studying super Riemann surfaces rather
than ordinary ones, the dual quantum mechanical system is now supposed to be supersymmetric. So
we need to do random supersymmetric quantum mechanics, not just random quantum mechanics.

In supersymmetric quantum mechanics, the Hilbert space H is Z,-graded by an operator

1 =(o %) (34)

where [ is the identity operator. The hamiltonian H commutes with the Z,-grading, but it is supposed
to be the square of an odd self-adjoint operator Q, that is, a self-adjoint operator that anticommutes

with (—1)F:
(0 P 5 (PPT 0
Q—(PT 0), H=0 —(0 PTP>' (35)

We then consider a random ensemble for Q defined by the measure exp(—NTrT(Q?)), for some
suitable function 7. If the function T is linear, this is a Gaussian ensemble; here we are interested in
a non-Gaussian ensemble. Ensembles of this type have been introduced (originally in the Gaussian
case) in [29-31].

Random supersymmetric quantum mechanics leads easily to the E~ "'~ behavior of the density of
eigenvalues near E = 0 that we see in Equation (32). Let 1 be an eigenvalue of Q, and let f{u)dyu be
the corresponding normalized density of eigenvalues. Since the ensemble for Q is invariant under
Q — —Q, we have f(u) =f(—u). The condition f(0) # 0 is generic. Now since H = Q, the relation
between an eigenvalue E of H and an eigenvalue y of Q is E = 2. Since f(1)dy = f(VE)dE/2VE,
the density of eigenvalues of H behaves as E~!? near E = 0. So an ensemble of this kind is a good
candidate for interpreting the formula (32) for Z(3).

For such a ‘supersymmetric’ matrix ensemble, there is again a version of topological recursion.
Applying this to the spectral curve of Equation (33), we get an expansion of (Try exp(—SH))
in powers of e~25. More generally, we can study the expectation value of a product of traces
<H;‘:1 Try exp(—S:H) > The terms in the expansion are related to the volumes of supermoduli spaces
in the same manner as in the bosonic case.

In this way, Stanford and I deduced a recursion relation that determines the volumes of the
supermoduli spaces Sﬁg Moreover, we were able to prove this formula by finding analogs of
results of Mirzakhani and of Eynard and Orantin. By imitating Mirzakhani’s derivation, we obtained
a Mirzakhani-style recursion relation for the volumes of supermoduli spaces. (See also [32] for
a related super McShane identity.) And similarly to the arguments of Eynard and Orantin, we

1/2
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showed that the recursion relation that comes from the matrix ensemble agrees with the Mirzakhani-
style recursion relation. Thus the relation of random matrices, volumes and gravity has a perfect
counterpart in the supersymmetric case.

Actually, the supersymmetric random matrix ensemble that was just described potentially involves
an integer invariant, the index of the operator P, or equivalently the difference in dimension between
the even and odd subspaces of H. It turns out that to compute volumes of supermoduli spaces smg B
of super Riemann surfaces with geodesic boundaries, one should take the index to vanish. But what
happens if the index is nonzero? At least in low orders of the expansion in powers of e, the answer
is known: the same type of ensemble based on the same spectral curve but with a nonzero index can
be used to compute volumes of moduli spaces of super Riemann surfaces with Ramond punctures
as well as geodesic boundaries. (A Ramond puncture represents a certain type of singularity in the
superconformal structure of a super Riemann surface; roughly, the spin structure is branched over a
Ramond puncture.) For this, one takes the size of the matrices to infinity, keeping the index fixed. A
complete proof to all orders in e~ is not yet available in this case.

Ramond punctures are the only punctures that add something essentially new to the computa-
tion of volumes, once one has already analyzed surfaces with geodesic boundaries. For purposes of
computing volumes, a puncture of an ordinary Riemann surface, or a Neveu—Schwarz puncture of
a super Riemann surface (which is a similar notion), is equivalent to the small b limit of a geodesic
boundary of length 5. Nothing like that is true for Ramond punctures.

Another important detail concerns the spin structures on a Riemann surface, which may be ‘even’
or ‘odd’. The two cases are distinguished by a topological invariant, interpreted by Atiyah as the
mod 2 index of the Dirac operator [33]. Accordingly, 9, has two components, parametrizing super
Riemann surfaces with even or odd spin structure. In the case of a super Riemann surface with
boundary, there is another topological invariant (also interpretable as a mod 2 index) that specifies
whether the spin structure on a given boundary component is even or odd. To get a full answer for
the volumes in all cases, one has to consider also a somewhat different matrix ensemble in which it
is still true that H = Q? (leading again to p(E) ~ E~'/? near E =0), but a Z,-grading by (—1)" is
not assumed.

Finally, one can make a similar analysis for unorientable two-manifolds. Even if 3 is unorientable,
we can still define a moduli space of hyperbolic structures on 3. These moduli spaces are not sym-
plectic, but JT gravity or supergravity determines volume forms on them. It turns out that these
volume forms can be computed using the Reidemeister or Ray-Singer torsion of a flat connection
(whose structure group is the full symmetry group of H or #, including symmetries that reverse the
orientation). In the bosonic case, the same volume form was first defined by Norbury [34] in another
way. The moduli space volumes are in most cases divergent if 3 is unorientable, but the volume
forms can be compared to random matrix theory. In a detailed analysis [14], all 10 standard types of
random matrix ensemble [31] make an appearance.
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Appendix

1. The group PSL(2, R) is contractible onto U(1), so a PSL(2, R) bundle over a surface ¥ has an
integer invariant, the first Chern class. The flat bundle related to a hyperbolic metric has first
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Chern class 2 — 2g. A similar remark applies for the supergroup OSp(1/2) introduced shortly.
The maximal bosonic subgroup of OSp(12) is the spin double cover SL(2, R) of PSL(2, R),
so in that case the relevant value of the first Chern classis 1 — g.

Note in particular that we do not constrain QU to be a geodesic. Classically, it would be
impossible to impose such a constraint, since a disc does not admit a hyperbolic metric with
geodesic boundary. But more to the point, we want a boundary condition that leads U to be,
in some sense, a good approximation to .

With this boundary condition, Equation (18) leads to a sensible classical variational problem
(and quantum path integral) regardless of whether we use K or K — 1 in the boundary term.
We use K — 1 because K — 1 vanishes in the limit of a large disc in . This is important for
the existence of the limit discussed momentarily in which U becomes large.

Because of the square root singularities at A = a, b, the analytically continued function py(\)
is imaginary on the real axis outside the interval [a, b], so in terms of the continued function,
the eigenvalue density is Re po(A) (Fig. 2). For example, note that the function %\/ 1—)2
which arises in the Gaussian case is imaginary on the real axis outside the interval [—1, 1].
The factor of 7> here is conventional. Its purpose is to avoid a factor of  in the relationship
between y and the expectation value of the matrix resolvent Tr /\%M

As explained for example in section 3.1 of [14], diffS' /U(1) can be viewed as a coadjoint
orbit of the Virasoro group (that is, the central extension of diffS'). But actually, there is a one-
parameter family of coadjoint orbits that are all isomorphic to diffS' /U(1), so the symplectic
structure of diffS! /U(1) depends on a parameter b, in addition to the possibility of scaling it
by an overall constant.
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