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ABSTRACT: Recent developments involving JT gravity in two dimensions indicate that un-
der some conditions, a gravitational path integral is dual to an average over an ensemble
of boundary theories, rather than to a specific boundary theory. For an example in one
dimension more, one would like to compare a random ensemble of two-dimensional CFT’s
to Einstein gravity in three dimensions. But this is difficult. For a simpler problem, here
we average over Narain’s family of two-dimensional CF'T’s obtained by toroidal compacti-
fication. These theories are believed to be the most general ones with their central charges
and abelian current algebra symmetries, so averaging over them means picking a random
CFT with those properties. The average can be computed using the Siegel-Weil formula
of number theory and has some properties suggestive of a bulk dual theory that would be
an exotic theory of gravity in three dimensions. The bulk dual theory would be more like
U(1)2P Chern-Simons theory than like Einstein gravity.
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1 Introduction

A simple model of gravity in two dimensions — JT gravity — is dual to a random ensemble
of quantum mechanical systems, rather than a specific quantum mechanical system [1]. Tt
is natural to wonder if something similar happens in higher dimensions. For example,
gravity is still relatively simple in three spacetime dimensions, at least from some points
of view. Are there simple theories of gravity in three dimensions — maybe even pure
Einstein gravity — that are dual in some sense to a random two-dimensional conformal
field theory (CFT)?

The difficulty here is that while a quantum mechanical system can be defined by
specifying a Hamiltonian, the data required to specify a 2d CFT are far more complicated.
Accordingly, it is far from clear what should be meant by a random 2d CFT, though one
can possibly get some insight from results about asymptotic behavior of dimensions and



couplings of CFT primaries [2-5]. It is also not clear what should be the partition function
of pure Einstein gravity, though there have been a number of attempts [6-8].

Here we will consider a simpler problem. We consider 2d CFT’s with left and right
central charges (¢g,c,) = (D, D) (for some positive integer D) that also have left- and
right-moving U(1)? current algebras. It is expected that any such theory is in the family
originally constructed by Narain [9, 10], the parameter space being the locally symmet-
ric space

Mp =SO(D, D; Z)\SO(D, D;R)/SO(D) x SO(D). (1.1)

(Here SO(D, D;Z) must be understood as the automorphism group of an even integer
unimodular lattice A of signature (D, D).) As a CFT moduli space, Mp carries a natural
Zamolodchikov metric, which determines a natural measure. This is actually the same
metric and measure that Mp gets because it is locally homogeneous, that is, it is the
quotient of the homogeneous space SO(D, D;R)/SO(D) x SO(D) by the discrete group
SO(D, D;Z). Mp has finite measure for any D > 1, and when this is the case, it makes
sense to average over M p in its natural measure. This is what we will mean by “averaging
over Narain moduli space.”

For a point m € Mp, let Zs;(m, ) be the partition function of the corresponding CFT
on a Riemann surface ¥ with modular parameters 7. The lattice sum that controls the m-
dependence of Zx(m, T) is a nonholomorphic theta function that was originally introduced
by C. L. Siegel and rediscovered by Narain; we will call it the Siegel-Narain theta function,
and denote it as! ©(m,7). It turns out that the average of ©(m,7) over m € Mp can
be computed in a simple way, using what is known in number theory as the Siegel-Weil
formula, developed by Siegel, Maass, and Weil [11-15]. The Siegel-Weil formula expresses
the average over m of ©(m,7) in terms of a non-holomorphic Eisenstein series Ep /o(7)
with modular weights (D/2, D/2).?

If the ensemble of Narain theories is dual to a theory of gravity, that theory is not
going to be a conventional one. First of all, since the CFT’s considered have U(1)2” current
algebra and in particular U(1)?? global symmetry, the bulk theory will have U(1)?P gauge
symmetry. The perturbative anomalies of the boundary current algebra become Chern-
Simons couplings in the bulk theory. Those anomalies are controlled by the even integer
unimodular lattice Ay, I,J = 1,---,2D that is used in constructing the CFT. Thus at a
minimum we expect the bulk theory to have gauge fields A’, I = 1,---,2D of the group
U(1)2P with Chern-Simons couplings.® On a three-manifold Y, the Chern-Simons action is

Ay
Ies=Y" 2Tr/yAI AdA7. (1.2)
1.7

1®(m, 7) is not holomorphic or anti-holomorphic in 7. To emphasize this, one could denote it as
O(m,7,7). To lighten notation, we will not do that.

2Non-holomorphic or real analytic Eisenstein series may be less familiar than holomorphic ones; however,
they appear in the effective action of string theory [16, 17]. The constant term in the Siegel-Weil formula,
which is known as the Smith-Minkowski-Siegel mass formula, computes volumes of moduli spaces and has
appeared studies of the moduli space of conformal field theories [18, 19].

3A variant that we consider in section 4.4 is that the gauge group is really R?C.



Figure 1. If a closed Riemann surface ¥ is embedded in R? in an arbitrary fashion, then its
“interior” is, topologically, a handlebody Y. Such an embedding of ¥ determines a distinguished
sublattice Iy of the first homology I' = H; (X, Z), spanned by one-cycles that are contractible in Y.
In the present example, ¥ has genus 2, and I'g is spanned by the two one-cycles drawn.

The Narain CFT’s require that ¥ should be oriented (because the target space B-field
plays an important role). To define the Chern-Simons action, Y should be oriented, in
such a way that along the boundary its orientation induces the orientation of ¥ = 9Y.

The action (1.2) is diffeomorphism-invariant without any need for a metric tensor.
One may think that to get the dual theory we want, we must add a metric tensor and
a gravitational action. But there are reasons to believe that this is not the case. In
the boundary theory, the stress tensor can be expressed in terms of the currents via the
Sugawara construction: if 7" is the holomorphic stress tensor, and J%, a =1,--- , D are the
holomorphic currents, the formula is 7'(z) = >, : J*J%(z) :. What is the bulk dual of the
Sugawara formula? It is plausible that the bulk dual of the fact that the stress tensor is a
function of the currents rather than being “new” is that we should not introduce in bulk
a metric tensor that is independent of the gauge fields. Thus we might hope that the bulk
dual of the average over Narain moduli space is simply the gauge theory with action Icg, or
at least, something more like this than a theory with a dynamical metric tensor. This has
to be supplemented with a recipe for what Y should be. The Chern-Simons gauge theory
per se does not suggest any specific rule to sum over Y’s with fixed conformal boundary
3; in fact, the Chern-Simons path integral on a three-manifold ¥ makes sense for any
particular Y, and the Chern-Simons gauge theory does not come with any rationale for
summing over choices of Y.

However, the Siegel-Weil formula suggests how to sum over Y as long as Y is connected.
Topologically, the simplest class of three-manifolds with boundary ¥ are “handlebodies.”
An orientable two-manifold ¥ can be embedded in R? (in many topologically distinct
ways). Any such embedding divides the complement of ¥ in R3 into two components; the
“interior” component is called a handlebody (figure 1). With a plausible recipe for how to
compute Zy (7) for Y a handlebody, the Siegel-Weil formula gives

(Zs(m, 7)) = Zy(7), (1.3)

YeJg

where ( ) represents an average over Mp, and J is the set of all handlebodies with
boundary .

In pure Einstein gravity with negative cosmological constant, if ¥ has genus 1, there is
a semi-plausible justification for summing only over handlebodies [6]. Any three-manifold



that is a classical solution of Einstein gravity with negative cosmological constant and that
has a conformal boundary consisting of a single component of genus 1 is a handlebody.
Therefore, if the path integral of Euclidean quantum gravity should be constructed as an
expansion around critical points (or as an integral over Lefschetz thimbles associated to
critical points), then only handlebodies can contribute if ¥ has genus 1. (In a supersym-
metric extension of three-dimensional gravity, there can be a more clear-cut justification
to sum only over handlebodies in evaluating an appropriate index [20].)

This justification to include only handlebodies is not entirely convincing for pure Ein-
stein gravity, but in any case, we are here not considering pure Einstein gravity, but a more
exotic theory that can be approximated by the Chern-Simons theory (1.2). Moreover, even
in pure Einstein gravity, for ¥ of genus g > 1, there are classical solutions with conformal
boundary Y that are not handlebodies; see [21].

We can get, in a sense, a clearer picture of what the sum in eq. (1.3) would have
to mean by considering the case that ¥ is not connected. If ¥ is the disjoint union of
components ¥, a = 1,--- , s, with modular parameters 7, then for fixed m € Mp, the
partition function is a simple product: Zx,(m,7) = [[, Zx,(m, 7o) (here we write 7 for the
whole collection of all the 7,). After averaging over m, this is of course no longer true:

(Zs(m,m) # [ [(Zs. (m, 7). (1.4)

The Siegel-Weil formula gives an answer for (Zx;(m, 7)) also when ¥ is not connected,
but to describe it, we have to first restate the formula in the connected case. Let X be
a connected Riemann surface of genus g. The first homology group H;(X,Z) is a lattice
[ = 7%, For v, ' € H1(%,Z), we denote their oriented intersection number as (7, ~'). The
pairing (, ) is antisymmetric and nondegenerate. A “Lagrangian sublattice” I'g C H;(X%,7Z)
is a primitive? sublattice of rank g on which the intersection pairing vanishes; in other
words, (v,7") = 0 for 7,7 C T'y. For example, any set of A-cycles on ¥ determines a
Lagrangian sublattice, namely the sublattice of Hy(X,Z) spanned by the homology classes
of those A-cycles. Alternatively, any oriented manifold ¥ with boundary 3 determines a
Lagrangian sublattice, namely the sublattice 'y C H;(3,Z) that is spanned by all one-
cycles v C ¥ that are boundaries of two-manifolds in Y.

If ¥ is connected, then every Lagrangian sublattice I'g is associated in this way to a
distinguished three-manifold Y, namely a handlebody. (To construct Y, pick a set of A-
cycles or disjoint simple closed curves in ¥ that provides a basis of 'y, and embed ¥ in R3 so
that these A-cycles are contractible in the interior.) This gives a one-to-one correspondence
between handlebodies and associated Lagrangian sublattices. However, associated to the
same sublattice there are infinitely many other three-manifolds that are not handlebodies.

For connected X, using the correspondence between handlebodies and Lagrangian sub-
lattices of H(X,Z), we can reinterpret J as the set of Lagrangian sublattices. Once this

4Here “primitive” means that if I'g contains a nonzero multiple of some z € Hq(X,Z), then it actually
contains z. In other words, we are not allowed to replace I'g by a proper sublattice of the same rank. An
equivalent definition is that a sublattice I'o C H1(X,Z) is primitive if the quotient H1(X,Z)/T¢ is torsion-
free. All sublattices considered in this paper are assumed to be primitive; this condition is not always
stated.



is done, the Siegel-Weil formula says that (with a plausible interpretation of Zy (7)) the
formula (1.3) holds for all ¥, connected or not. The difference is that if ¥ is not connected,
there is no distinguished choice of a manifold Y associated with a given Lagrangian sub-
lattice. So to state the formula in a way that is valid whether ¥ is connected or not, we
have to interpret the sum on the right hand side of eq. (1.3) as a sum over Lagrangian
sublattices. We write it as such:

(Zs(m, 7)) =Y Zry(7), (1.5)
o

where the sum now runs over the set of Lagrangian sublattices and Zp,(7) is the contribu-
tion to the partition function associated to the Lagrangian sublattice I'g.

This tells us something about the exotic gravitational theory that is dual to an average
over Narain moduli space — if such a theory exists. In this theory, the objects that
are analogous to “manifolds with boundary »” in ordinary geometry are classified by
Lagrangian sublattices of H(X,Z). Apparently, the additional topological invariants that
would be present in ordinary geometry are lacking in this more exotic theory.

A conceivable alternative interpretation might be that in the exotic theory, there are
many “manifolds” associated to a given Lagrangian sublattice I'g, and the sum over all of
these is giving what we call Zp, (7). This seems less plausible, in part for the following
reason. We will see that to reproduce the effect of averaging over M p, we have to use
Zr, (1) = cf—?o, where cr, depends on I'g and 7 but not on D. If Zr(7) is built in a nontrivial
way as a sum of contributions of different “manifolds” I'g ;, then, since a nontrivial formula
0190 = clj?oﬂ_ is not going to hold for all D no matter what we assume for the cry,
individual contributions must have a more complicated dependence on D, which then
cancels out in the sum ), cf—?o’i. It seems more economical to assume that in the exotic
theory under discussion, the analog of a “manifold with boundary »” is just classified by
the choice of I'g. This possibility does not sound completely far-fetched; it would be in
keeping with the idea that among all the topological invariants of classical geometry, only
some that are particularly robust are well-defined in quantum gravity.

A close cousin of the U(1)2D current algebra considered in the present paper is a ratio-
nal conformal field theory (RCFT), with an extended chiral algebra that has only finitely
many modules. Attempts have been made to express RCFT partition functions in terms of
sums over modular images of a function which would be hypothetically the partition func-
tion of an exotic theory of gravity on a handlebody [22, 23]. This program is successful at
¢ =1/2 at least in the sense that a suitable function exists, except that one has to assume
slightly puzzling equivalences between different handlebodies. The program does not seem
to work in the same way for theories with 1/2 < ¢ < 1. Those theories have a chiral algebra
that admits more than one modular-invariant partition function. It may be that the bulk
path integral in these cases represents a sort of average over the possible boundary theories,
given a knowledge of the chiral algebra. That is in the spirit of what we find here for a
boundary theory with U(1)? left-moving and right-moving current algebras. The difference
is that instead of finitely many possible boundary theories with a given chiral algebra, we
will have a continuous family of possible boundary theories, parametrized by Mp.



The organization of this article is as follows. Section 2 is devoted to averaging over
Narain moduli space in the case of a surface ¥ of genus 1. The Siegel-Weil formula that
carries out this averaging is explained in sections 2.1 and 2.2. In section 2.3, we attempt to
interpret the output of the Siegel-Weil formula in terms of a bulk dual theory. In section 2.4,
we consider what happens if we supply more information about the CFT by for example
specifying a particular extension of the boundary current algebra. This leads to a restricted
averaging problem that is governed by a more general version of the Siegel-Weil formula.
In the most extreme case the average is a sum over a finite set of CFTs, rather than an
integral over a moduli space; nevertheless, the result has a plausible gravity interpretation.

In section 3, we study the generalization to surfaces of higher genus and to the case
of a surface with multiple connected components. The Siegel-Weil formula is applicable
in any genus. As we have already explained, to interpret the result in terms of a bulk
dual theory, we seemingly have to assume that the dual theory has a nonclassical notion of
“manifold with boundary 3..” The Siegel-Weil formula also applies to the case of a surface 2
with multiple connected components. Connected correlators between different components
would come, in ordinary gravity, from connected manifolds with disconnected boundary,
as in the case of JT gravity [1]. We study explicitly one example of a contribution to a
connected correlator, which is related to the spectral form factor (Zp2(m, ") Zp2(m,7")).
The contribution that we analyze vanishes exponentially for large D, compared to the
corresponding disconnected correlator. This is as if adding a wormhole that connects two
components increases the classical action, which is probably the general state of affairs of
a hypothetical theory of gravity related to the Siegel-Weil formula. The contribution to
the spectral form factor we analyze is non-zero at large Lorentzian time, a feature which is
indicative of theories with a discrete spectrum. We discuss in section 3.3 the special case
that X is of genus 0 or has a component of genus 0. In averaging over Narain moduli space,
a surface of genus 0 has no connected correlator with anything else. In the dual theory,
this might mean that there is no way to make a wormhole connecting a surface of genus
zero to another surface. An alternative interpretation might be that in the dual theory,
there is no notion of whether spacetime is connected.

Finally, in section 4, we describe in more detail the attempt to interpret the dual of
the average over Narain moduli space in terms of a gauge theory with gauge group U(1)2?
or possibly R?P. We find that when the boundary has a single connected component, bulk
Chern-Simons theory on a handlebody, under some assumptions, exactly reproduces the
corresponding term in the Siegel-Weil formula. Indeed, there is a sense in which the bulk
partition function is one-loop exact in a perturbative expansion in 1/D.> However, we will
discover that the situation is considerably more subtle when the boundary is disconnected.

Appendix A contains further details about Narain moduli space, as well as a sketch of
the derivation of the Siegel-Weil formula at genus ¢ > 1 and D > 1.

When this draft was largely complete, we learned of parallel work by Afkhami-Jeddi,
Cohn, Hartman, and Tajdini [25].

5This is much simpler than the case of pure gravity, where the perturbative expansion is one-loop exact
when the boundary is a torus [6] but is not expected to terminate when the boundary has higher genus [24].



2 The Siegel-Weil formula in genus one

2.1 A practice case: D =1

We begin by discussing the Siegel-Weil formula in genus 1, where we can write somewhat
more explicit formulas and the hypothetical gravitational dual can be analyzed in a more
direct way.

In general, the Narain models are sigma-models with target a D-torus TP, leading to
a CFT with (¢, ¢,) = (D, D). We will begin with the case D = 1, to illustrate the main
idea. We take the target space to be a circle of circumference 2m R. The moduli space M
in this example is parametrized by R, which can be restricted to the range 1 < R < o0
because of the R — 1/R duality symmetry. Parametrizing the circle by an angle-valued
field X, the action (with conventions as in [26], eq. (2.1.1)) is

R2

4o’

1

/ d%o 0, X0°X. (2.1)

The marginal operator associated with a deformation R — R + 0R is ;;fg 0, X0“X, and
its two-point function is proportional to (§R)?/R?. This gives the Zamolodchikov metric
of My
dR?
2

which is also the natural metric on M;j as a locally homogeneous space. (The factor of
4 is chosen for later convenience and to agree with the more general formula (A.3) of
appendix A.)

The partition function of the model on a genus 1 surface ¥ with modular parameter

T =1 +imp is (see [26], eq. (8.2.9))

ZE(R7 T) = ’ (23)
In(7)[?
where 7(7) is the Dedekind eta function
n(r)=¢" [[(1—q"), q=exp(2nir), (2.4)
n=1
and ©(R, 1) is the D =1 case of the Siegel-Narain theta function,
o) = Y Qnuwsk,7), (2.5)
n2WEZ
with
1,2 2 p2
Q(n,w; R, T) = exp <—7T7'2 (O[Rg + UQ) + 27Tiﬁnw> ) (2.6)

The integers n and w are the momentum and winding quantum numbers of a string.



A small calculation gives

87‘ R? o
a'n2 2p2\ 2
_ 22 w*R
t0- o ()
-2 62 Ar2r2n 202
T ys 2@ = —4r 1yn w
0 2 5 o (a'n?  wPR?\? an?  w?R?
Therefore ,
0? 0? 0 1 0
g — -~ (rR= =0 2.8
(Tz (aﬁ? * ag) e T < 8R> )Q ’ (2:8)
and it follows immediately that © obeys the same equation:
2 02 o 1/ 9\
— — - | R=—= O(R,7)=0. 2.9
<72 <an " 8722> o < 8R> (&.7) (29)

The measure on M can be deduced from the metric (2.2) and is

dR

w(R) = SR (2.10)

The volume of M is infinite, so averaging over M does not make sense, as remarked in the
introduction. Let us ignore this for a moment and explain the strategy in the derivation of
the Siegel-Weil formula. We would define a function Fi(7) by integrating ©(R, 7) over M:

Fy(r) = /100 4Bo k). (2.11)

In reality, this integral does not converge, since ©® ~ R for R — oo. Then using the
differential equation for ©, we find that

92 92 B, dR o \?
2 _
(TQ <a 7+ aT2> TR 2>F1( )= 8/1 R <R6R> O, 7)

S [Cand (RPED) ey

Next one tries to integrate by parts to prove the vanishing of the right hand side of this
equation. There is no surface term at R = 1 because the R — 1/R symmetry ensures that
OrO|r=1 = 0. If there were also no surface term at R = oo, we would deduce a differential

<72 <§22 + ;Z) + 7268 > Fi(r) =0. (2.13)

The derivation of the Siegel-Weil formula would be completed by using this differential

equation for Fy(7):

equation together with a knowledge of the behavior for 75 — oo to determine Fi (7).



The only problem with this derivation is that the behavior for R — oo does not allow
either the definition of Fi(7) in eq. (2.11) or the integration by parts that would show
the vanishing of eq. (2.12). Hence we will move on to the case of larger D, where such a
derivation does work.

Before doing so, we restate the differential equation in a convenient form. The Lapla-
cian of M; in the metric (2.2) is

1/ d)?

The natural metric of the upper half plane H is

2 _ d7'12 + d722

ds pe (2.15)
Acting on a scalar function, the Laplacian of the upper half plane is
0? 0?
Ay =713 =5+ ). 2.16
" 2 <87’12 + 87’%) ( )

Therefore the differential equation for the Siegel-Narain theta function for D = 1 can be
written

(AH - 72887_2 — AMI) O(R,7) =0. (2.17)

2.2 The Siegel-Weil formula for higher D

For general D, we consider a sigma-model with target TP and general (constant) metric
G and two-form field B. G and B together are the moduli that parametrize Mp; we
schematically denote these moduli as m. For D > 1, Mp has finite volume® and we
normalize its measure p(m) so that the volume is 1:

/ dpu(m) = 1. (2.18)
Mp

The partition function of the sigma-model in genus 1 is

O(m,T)
()22’

where ©(m, 7) is the Siegel-Narain theta function that comes from a sum over momenta

Zs(m,7) = (2.19)

and windings. See eq. (A.5) for the explicit formula.

For example, for D = 2, using the relationships SO(2, 2, R) = (SL(2, R) x SL(2,R))/Z2 and SO(2,2,Z) =
(SL(2,Z) x SL(2,Z))/Z2, one can show that My is (calF X F)/Zz, where F = SL(2,Z)\H, with H =
SL(2,R)/U(1) being the upper half plane. F is isomorphic to the moduli space of Riemann surfaces of
genus 1 and has finite volume. Using the metric (A.3), one can show that as D increases, the volume
integral converges more rapidly. The same is true for the integral in (2.21). To verify the last statement,
one has to take into account the behavior of the function © near infinity in the space of target space metrics.



©(m, ) obeys a differential equation that generalizes eq. (2.17) for d = 1:

0
<AH — Dry— — AM,;) O(R,T) =0. (2.20)
01
A derivation of this equation similar to the one in section 2.1 is sketched in appendix A.
The next step is to average ©(m, 7) over the Narain moduli space M p, defining

FD(T):/M dp(m) O(m, 7). (2.21)

Actually, this integral converges only for D > 2, so in continuing, we make that restriction.
(M3 has finite volume, but ©(m,7) grows at infinity in such a way that the integral is
divergent for D = 2. To be precise, ©(m, 7) grows in the limit that the target space volume
is large and also in the “large complex structure” limit.) Following the same steps as in
section 2.1, we deduce from the last two formulas a differential equation for Fp(7):

0
(AH — D7'2> Fp(r) =0. (2.22)
8’7’2

In addition to satisfying this differential equation, Fp(7) transforms under modular
transformations with weights” (D/2, D/2), since Fp(7)/|n(7)|*” is modular-invariant. In
addition,

lim Fp(r) =1, (2.23)

T2 —00

since lim;, oo O(m, 7) = 1.
It is convenient to define Wp(71) = T2D / *Fp(r). This function is modular-invariant,
since multiplying by TzD /% cancels the modular weights of Fp(r). Clearly Wp(r) ~ 7'2D /2

for 75 — oo. Finally the differential equation for Fp(7) becomes
(Ay +s(s—1))Wp(r)=0, s=DJ/2. (2.24)

Thus Wp(7) is an eigenfunction of Ay with the eigenvalue —s(s — 1), which is negative
for D > 2.

For D > 2, the differential equation (2.24) has no nonzero solution that grows at
/2 This fact was importantD i/r; [16, 17]. Indeed, any solution of

the differential equation that grows more slowly than 7,

721 -b/ 2, and therefore (for D > 2) is a square-integrable eigenfunction of the Laplacian

infinity more slowly than 7'2D
is bounded by a constant times

with the negative eigenvalue —s(s — 1). But the Laplacian on any manifold, acting on
square-integrable wavefunctions, is strictly non-negative.

"To say that a function f has modular weights (u,v) with v — v € Z means that f((a7 4+ b)/(cT +d)) =
(et +d)“(cT + d)? f(7) for “ Z € SL(2,Z). For example, 72 = Im 7 has modular weights (—1,—1). The
c

function |n(7)|? has modular weights (1/2,1/2), so Fp(7) must have modular weights (D/2, D/2) to ensure
modular invariance of the partition function. The case u — v € % + Z is more complicated and will appear
later.

~10 -



A function that satisfies all of the necessary conditions is the non-holomorphic (real

analytic) Eisenstein series®

_
(e,d)=1

The sum is over pairs of relatively prime integers c,d, up to sign (that is, we do not

distinguish (—c, —d) from (¢, d)). Alternatively, the sum is over all modular images of the
ab
cd

sum in equation (2.25) can be alternatively written as

function 75, since a general element ) € SL(2,Z) maps 75 to 75/|er + d|**. So the

E(r)= > Im(y7) (2.26)

~EP\SL(2,Z)

where P = {(é Tf)} is the subgroup of SL(2,Z), isomorphic to Z, that leaves Im 7 invariant.
It is straightforward to check that the coprime integers (¢, d) uniquely label elements of the
coset P\SL(2,Z). The sum in eq. (2.25) converges for Res > 1, which in our application
means D > 2.

Since E5(7) is a sum over all of the modular images of 73§, it is modular-invariant.
The function 73 is easily seen to be an eigenfunction of Ay with eigenvalue —s(s — 1); the
same therefore is true of its modular images, and of Es(7). Finally, it is immediate that
Es(1) ~ 75 for o — o0o. Thus, Ep/y(7) satisfies all of the desired properties of Wp(7).
These functions must be equal, since their difference Wp(7) — Ep/s(7) grows at infinity

D/2

more slowly than 7,”"” and hence must vanish, as discussed earlier.
Finally, we get an explicit formula for the average of the genus 1 partition function
over the Narain moduli space M p:
Epja(7)

(Zs(m, 7)) = W- (2.27)

The numerator and denominator are both modular-invariant.

2.3 Gravitational interpretation of the formula

Our next task is to provide a possible interpretation of this formula in terms of an exotic
bulk theory that is dual to an average over Narain moduli space.

As discussed in the introduction, the starting point is to assume that the bulk partition
function, for the case that the conformal boundary is a surface ¥ of genus 1, should be
expressed as a sum over handlebodies. Let us decompose the genus 1 surface ¥ as St x S*,

)

where the first factor parametrizes “space,” and the second factor parametrizes “Euclidean
time.” One particular handlebody Y with boundary ¥ is obtained by filling in the first
factor by a two-dimensional disc Do. Thus Y 22 Do x S'. This handlebody can be obtained

by Wick rotating Lorentzian AdS3 to Euclidean time via ¢t — itg, where ¢ is the usual

8Tt is important to note that this real analytic Eisenstein series is different from the holomorphic Eisen-
stein series (which transforms with modular weight (n,0)) that commonly appears in the theory of modular
forms.
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global time coordinate, and then periodically identifying ¢z. This handlebody is usually
referred to as thermal AdS, since it is the one used to study thermal physics in an AdS
background.

Any other handlebody with boundary ¥ is obtained from Y by a modular transforma-
tion of the boundary. In other words, to construct a more general handlebody one takes
some other decomposition of ¥ as S x S1, and fills in the first factor by a disc. These other
handlebodies are thus labelled by elements of the modular group SL(2,Z). In fact, because
the element T" = (é TIL) € SL(2,7Z) does not generate a new handlebody, each handlebody
is uniquely labelled by an element of the coset P\SL(2,7Z), where P is the subgroup of
triangular matrices generated by T. One simple example is the handlebody obtained from
thermal AdS by an S transform — this handlebody is obtained by filling in the “Euclidean
time” circle, rather than the spatial circle. This handlebody is the Euclidean continuation
of the BTZ black hole in AdS.

In [6], a Hamiltonian approach was used to evaluate the path integral of Einstein
gravity on D x S'. In this approach, the key step is to determine the spectrum of physical
states that arise in quantization on the spatial manifold D. The partition function on D x S!
is then evaluated as a trace in that Hilbert space. In Einstein gravity, there are no bulk
excitations; the only physical states in quantization on D are the “boundary gravitons,”
first described by Brown and Henneaux [27]. The proposal in [6] was that the path integral
on D x 8! simply equals the partition function of the Brown-Henneaux modes. In other
words, D x S! is thermal AdS, and in three spacetime dimensions, the only excitations in
thermal AdS are the Brown-Henneaux modes. The resulting formula for the gravitational
path integral on D x S' was later confirmed by a direct 1-loop computation? in Einstein
gravity [28].

In the present context, instead of the boundary gravitons, we should discuss the bound-
ary modes of the current algebra. In other words, instead of Einstein gravity, we are here
considering a theory that is supposed to be approximated, in some sense, by the U(1)2P
Chern-Simons theory

A
Ies =Y 2 | AT ndA’, (2.28)
7 27T Y

where A is an even integral unimodular form of signature (D, D). Instead of boundary
gravitons, the Chern-Simon theory, if treated as in [29], has chiral and anti-chiral bound-
ary current algebras which are abelian (since in this case we are studying an abelian gauge
theory) and are each of rank D (because of the signature of the quadratic form). As ex-
plained in the introduction, this relation of the bulk Chern-Simons theory to the boundary
current algebra was the rationale for introducing the Chern-Simons theory.

The partition function of the boundary current algebras is the same as the partition
function of D left- and right-moving chiral bosons, with zero-modes omitted. It is simply

DxSt _ —-D/12
ZCS>< = ’ ( )’2D ’CI‘ / H — ‘QD (2'29)

9There can be no higher order corrections, since the energy and momentum of the boundary gravitons

are uniquely determined by conformal invariance along the boundary.
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This can be interpreted as the thermal partition function of a gas of D “boundary photons,”
in the same way that the gravity partition function was the thermal partition function of
a gas of boundary gravitons. It is the vacuum character of D copies of the U(1) x U(1)
current algebra. This expression can be verified in a direct bulk computation in U(1)2??
Chern-Simons theory, just as in the gravity case. This will be discussed in section 4.
One important feature to note is that we have not included any separate factors of |g| in

1/24 \which are contained in the definition of 1(7).

equation (2.29), aside from the factors of ¢
In a normal theory of gravity such a factor would come from the classical Einstein action of
the saddle point. In the present case we have not included a separate Einstein-Hilbert term
in the action since, as explained in the introduction, the boundary stress tensor is itself
an element of the U(1)?P current algebra. The factor of |¢|~P/'2 in equation (2.29) comes
entirely from the bulk Chern-Simons computation, as we will discover in section 4, and
can be regarded as a one-loop contribution of bulk Chern-Simons theory to the effective
cosmological constant. We note also that equation (2.29) is one-loop exact because, as in
the gravity case, the form of the answer is entirely fixed by the structure of the U(1)2P
current algebra.

Equation (2.29) is the result of the bulk path integral for one particular handlebody
with boundary ¥. To get the full partition function we need to sum over all handlebodies.
That is, we must compute

1
M= N 2.30
()22 (230

yeP\SL(2,Z)

This is a much more straightforward problem than the superficially similar problem that
was treated in [6]. We simply write

1 1

()PP 2Py 20

The function 74°|n(7)|?P is modular invariant. So summing over modular images does

nothing to this function. Thus we just need the sum over modular images of the func-

D/2

tion 7,”"“. But this sum was already done in equation (2.26); it equals the real-analytic
Eisenstein series Ep /(7).
So given our assumptions, the result that comes from summing over handlebodies is

E
gk — _Eop(T) (2.32)

D/2 ’
752 n(7)[2P

which as we learned in section 2.2 is equal to the average of the partition function of the
boundary CFT over the moduli space Mp.
We consider the generalization of this derivation to higher genus in section 3.

2.4 Adding more information about the CFT

We have so far considered the Siegel-Weil formula only for the case that the lattice A
is even and unimodular, as well as integral. In number theory, this restriction would be
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considered slightly artificial; there is a Siegel-Weil formula for an arbitrary integer lattice.
Here we will sketch how this generalization can arise in a variant of the problem that
we have considered so far. We will not be as detailed as we were in the case of an even
unimodular lattice. In particular, we will not try to provide proofs of the more general
version of the Siegel-Weil formula that we will invoke, though it appears that the approach
in appendix A can potentially be generalized.

Up to this point, we have considered a boundary CFT about which we know nothing
except that it has central charges (D, D) and left- and right-moving U(1)? current algebras.
We did not assume any knowledge about the dimensions of primary fields of this theory.
Instead we averaged over all possibilities, getting an answer with a plausible gravitational
interpretation.

We could instead input some knowledge about the spectrum of primary fields and
average only over the remaining possibilities. It turns out that this leads to more general
versions of the Siegel-Weil formula.

As a special case, let us suppose that we know that the CFT has a primary field
for the current algebra of dimension (1,0). The condition under which this occurs is as
follows. The vector space V. = A ®z R has a metric of signature (D, D) that comes
from the intersection form on the lattice A and does not depend on the CFT moduli.
Once one specifies those moduli, the metric G of the torus determines the dynamics of
the CFT fluctuations and one gets a decomposition V = V. § V_, where V, and V_ are
subspaces on which the intersection form is positive or negative definite and (with a suitable
orientation convention) are respectively the spaces of left- and right-moving modes of the
CFT. Generically, neither Vi nor V_ contain any points of the lattice A; both Vi, N A
and V_ N A are generically empty. The condition for the CFT to have a current algebra
primary of dimension (1,0) is that there should be a point z € V3 N A of length squared 2
(it does not matter if this length is computed using the indefinite signature metric of A or
the positive-definite metric of V,; these coincide for vectors in V). The existence of this
(1,0) primary, along with a second one that is associated to the vector —z, which also lies
in V4 NA, extends a U(1) subalgebra of the CFT current algebra to SU(2) at level 1, which
we denote as SU(2);. (If we want to specify the level of the U(1)2” current algebra, we
could call it U(1)3P and then the extended current algebra would be SU(2); x U(l)gfi -1
where T is introduced momentarily. We will not use this notation because it is not clear
that subtleties concerning the level of the abelian current algebra are meaningful in the
present context. See section 4.4.)

Specifying the existence of such an x reduces the CFT moduli space from Mp to a
subspace Mp ;. Roughly speaking, Mp, = SO(D — 1, D;Z)\SO(D — 1, D;R)/SO(D —
1) x SO(D). However, one has to clarify what is meant by SO(D — 1, D;Z). Let T be
the rank 1 sublattice of A that is generated by x, and let T, be its orthocomplement.
The group SO(D — 1, D;Z) that appears in the definition of Mp , is the automorphism
group of 1.

Ty is even but not unimodular; its quadratic form is the 1 x 1 matrix 2, so its discrimi-
nant is the determinant of that matrix, or 2. Likewise T | has discriminant 2. In particular
A is not the tensor product Yo x Y| ; A has discriminant 1, and T¢ x T has discriminant
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2 x 2 = 4. The relation between them is
A=To@T, oY, (2.33)

where Y/ is a coset of To® Y | . More specifically, if y € A is any vector whose inner product
with z is an odd integer, then Y’ consists of vectors of the form y + z, z € Yo ® Y. The
Siegel-Narain theta function has a corresponding decomposition

O(m,7) = Or,er, + O, (2.34)

where Oy, o1, + Oy are computed, respectively, by sums over lattice points in To ® T |
and in Y’.

If we consider left-moving modes to be holomorphic and right-moving ones antiholo-
morphic, then the momentum-winding sum of Ag is a holomorphic theta function

0(1) = Z 7, q= exp(2mir). (2.35)
nez

Because Ag is not unimodular, this function is not mapped to itself by modular transfor-
mations. Rather,

9(—1/7):\/;(9(7)+5(7)>, =Y ¢ (2.36)

reZ+1/2

The functions # and 6 are associated to the two characters of the chiral algebra SU(2);.

Let m’ be the CFT moduli that remain after we insist on the existence of the vector
x € AN V.. In other words, m’ are the Narain moduli of T . The expansion of ©(m/, 1)
in terms of theta functions of Ag and A is

O(m/,7) =0(1)Oy (m',7) +0(1)Ox, (m/,7), (2.37)

where Oy (m/,7) is the momentum-winding sum of the lattice T |, and E:)TL (m/,7) is a
second function into which this transforms under modular transformations. The two terms
on the right hand side of (2.37) are associated to the two summands in eq. (2.33).

Thus, in order to compute an average CFT partition function, we need to average
Oy, (m',7) and Oy, (m/,7) over Mp,. We will write (Zs(m/,7)), for the average of
Zs,(m/,T) over Mp 5. The Siegel-Narain formula for the lattice T expresses this average
in terms of real-analytic Eisenstein series E(7) and E(7) of weights (—1/2,0):

6(r)E(r) + 0(r) E(r)

R

(2.38)

The definition of a function of modular weight (—1/2,0) (or more generally of modular
weight (u,v) with u — v € & + Z) is rather subtle. The simplest definition is simply to say
that E(7) and E(7) transform in such a way that the expression on the right hand side
of eq. (2.38) is modular invariant. A definition rather along these lines (for holomorphic
forms) is given in Chapter IV of [30]. E(r) and E(r) are given by formulas similar to
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eq. (2.25), with an extra factor 1/(cr + d)'/? in the denominator on the right hand side;
there are also some congruence conditions on ¢ and d, and one has to include some roots
of unity in the sum to compensate for such factors in the modular transformations of the
theta functions. Details are described in [30] for the case of holomorphic modular forms of
half-integral weight.

Qualitatively, eq. (2.38) is in agreement with what we might expect in a bulk analysis
along the lines of section 2.3. As already noted, the existence of a vector x € ANV, extends
the left-moving current algebra from U(1)? to SU(2); x U(1)P~!. The right-moving current
algebra is still U(1)P. So the natural bulk Chern-Simons theory is SU(2); x U(1)2P~1. The
starting point in trying to compute a bulk partition function is to determine the partition
function of a handlebody D x S' by taking a trace in the Hilbert space associated with
quantization on D. In a hypothetical bulk theory that can be approximated in some sense
by Chern-Simons theory of SU(2); x U(1)?2P~1, the natural physical states in quantization
on D are the current algebra modes on the boundary, and the corresponding partition
function is (1) /|n(7)|?P. To derive this formula, one just needs to know that the partition
function of a holomorphic or antiholomorphic U(1) current algebra is 1/n(r) or 1/n(7),
while the partition function of the vacuum module of holomorphic SU(2); current algebra
is 0(r) /n(7).

To get an ansatz for the bulk partition function in this situation, we sum over modular
images of 0(7)/|n(7)|?". Writing

o) o)’

- : 2.39
In(D)PP 2Py 20 (2:39)

where the denominator is modular-invariant, we see that have to sum over the modular im-
ages of G(T)TQD /2. This will generate the numerator on the right hand side of eq. (2.38). The
details are somewhat complicated because the modular transformation of (1) is somewhat
complicated, so we will not attempt more detail.

We have considered the special case that a U(1) subgroup of the current algebra is
extended to SU(2), but one can analyze in a similar way any assumed extension of the
U(1)P x U(1)P current algebra.!” In general, averaging over the remaining moduli via the
Siegel-Weil formula always gives a result that has a more or less plausible interpretation
in terms of an exotic bulk theory of gravity. We will just describe the construction that
leads to the holomorphic case of the Siegel-Weil formula. Suppose that D is a multiple
of 8, so that positive-definite even integer unimodular lattices of rank D exist. Let A_
be such a lattice, and let us stipulate that the CFT moduli are such that ANV_ = A_.
This corresponds to a particular extension of the right-moving U(1)” current algebra. For
example, if D = 8, there is only one choice for A_, namely the Eg lattice, and U(1)® is
extended to Eg current algebra at level 1. With our stipulation that ANV_ = A_ it follows
that ANV, is equal to a possibly inequivalent even integer unimodular lattice A, of rank
D. However, for D > 8, there are multiple isomorphism classes of such lattices, and all

10The extension does not necessarily involve an enhanced symmetry group. For example, if we had
assumed a vector z € A NV, with 2 = 2r, 7 > 1, we would get U(1) current algebra at level 7.
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isomorphism classes can appear. At the point in moduli space at which A appears, the
CF'T partition function is
Oa, (1)O4_(7)
In(7)[*P
Here ©), and ©,_ are holomorphic theta functions associated to the lattices Ay and A_;

(2.40)

Op_ is complex-conjugated because we have assumed the A_ C V_ so that the A_ modes
are right-moving.

In this situation, the only possible averaging is over the choice of even integer unimod-
ular lattice Ay ; there are finitely many possibilities, depending on D.'' The holomorphic
case of the Siegel-Weil formula says that the average'? of O . over all possibilities is a
holomorphic Eisenstein series of weight D/2:

1
(a1 (er +d)P/

Thus the average partition function of this class of theories is

(Zs(rha = 2 2‘(777(1)‘2 o) (2.42)

The symbol { )A_ represents an average under the constraint ANV_ = A_.

To interpret this result from a gravitational point of view, we start with a seed partition

function on D xS', which we take to be the partition function of the extended chiral algebra.

In the present example, this is ©_(7)/|n(7)|?P. We write this as

(2.43)

To simplify the remaining derivation, let us assume that D is divisible by 24 and not just by

)

8. Then %)(‘TSZ is modular-invariant, and so we just have to sum over the modular images

of the function 1/n(7)P. For D a multiple of 24, the subtle 24" roots of unity that appear
in the modular transformation of n(7) disappear, and we have just

n((ar +b)/(ct +d))P = (er + d)Pn(7). (2.44)

With this, we see immediately that the sum over modular images of 1/n(r)” is

SD/Q(T)/n(T)D. So the sum over modular images of the gravitational expression in eq. (2.43)
does give the formula (2.42) for the average partition function. If we had assumed that
D is divisible by 8 but not necessarily by 24, we would have reached the same result after
analyzing and canceling some cube roots of unity.

In this discussion, we started with the Narain family of CFT’s, based on an even
integer unimodular lattice A. Upon assuming an enhancement of the chiral algebra, we

" The number of such lattices is finite, but grows rapidly with D. For example, at D = 48 there are at
least 10*2° such lattices, although the number is not known exactly. At large D, the number of even integer
unimodular lattices up to isomorphism grows like D ’

12T this averaging, one weights the contribution of a given lattice A, by the inverse of the order of its
automorphism group.
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restrict to a sublattice of A. Such a sublattice automatically is still even and integer but
possibly not unimodular. So the averaging involves the Siegel-Weil formula for a general
even integer lattice. Alternatively, to study a family of spin CFT’s, which depend on a
spin structure on X, we could start with an integer lattice A that is unimodular but not
even. After assuming an enhancement of the chiral algebra, A would be replaced by an
integer sublattice that generically is neither even nor unimodular. So the averaging in this
case would depend on the Siegel-Weil formula for a general integer lattice.

3 Higher genus and disconnected boundaries

3.1 Higher genus

We will now describe the Siegel-Weil formula at higher genus, and understand its interpre-
tation in terms of our conjectured exotic theory of gravity. The higher genus CFT partition
function is more complicated, in part because a surface > of genus g > 1 does not admit
a flat metric, and hence in any explicit formula there is no way to avoid the conformal
anomaly. We will therefore need to be more schematic.

The genus g partition function of a CFT in the Narain family can be written as

O(m, 1)

Zz(m77—) = o )

(3.1)
where O(m, 7) comes from a momentum-winding sum and is the Siegel-Narain theta func-
tion in genus g, and ¢ comes from the integral over oscillator modes. As before, m denotes
a point in the CFT moduli space M p; 7 now represents the whole set of moduli of 3.
Since the denominator ® is not sensitive to the CFT moduli, averaging over M p means
averaging O(m,7) over Mp. This average is described again by a Siegel-Weil formula.
Using the higher genus analog of the Siegel-Weil formula,'? the result can be written as

Epja(7)

Z = _
(Zz(m, 7)) (det Tm Q)D/2| det’ 9P’

(3.2)

where Ep /2(7'), to be described shortly, is an Eisenstein series of the group Sp(2g); Q2 is the
period matrix of ¥; and det’  is the determinant of the @ operator of ¥, mapping functions
to (0, 1)-forms, with zero-modes removed. In the denominator on the right hand side of
eq. (3.2), the factor (det Im Q)P/2 generalizes 72D/2 in eq. (2.27), and | det’ 9| generalizes

2D
[n(7)]
Our main interest here, however, is the Fisenstein series that appears in the numerator.

in that formula.

Let us first restate in an alternative way the definition of the real analytic Fisenstein series
that we used in genus 1. If ¥ has genus 1, then the lattice I' C Hy(X,Z) is a copy of Z2.
Any primitive rank 1 sublattice I'y C T is a Lagrangian sublattice.'* Once we pick a basis
of I, say by choosing an A-cycle A and a B-cycle B on X, I'y can be specified by giving its

13In appendix A, we discuss the derivation of the Siegel-Weil formula at genus g, by generalizing the
method presented in the previous section.

1T agrangian sublattices were defined in the introduction; for the definition of a primitive lattice, see
footnote 4.
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generator, which is a linear combination c¢A 4 dB, with relatively prime integer coefficients
¢,d, up to sign. Hence the sum over such pairs in the definition (2.25) of the Eisenstein
series can be interpreted as a sum over Lagrangian sublattices.

The genus g analog of the Siegel-Weil formula similarly involves a sum over Lagrangian
sublattices. Once we pick a Lagrangian sublattice I'g C I', it is possible to define det Im €2
without any additional choices. To do this, we first pick a set of A-cycles A’ that provide
a basis of I'g, and a complementary set of B-cycles B;, the nonzero intersection pairings
being (A, Bj) = 5; The homology classes of the B; are not uniquely determined, but they
are determined up to B; — B; + n;; A7, n;; € Z. Then one picks a basis of holomorphic
1-forms wg with ffli wj = (5;'-, and defines the period matrix by 2;; = fBi wj. A shift
B; — B; + n;jA’ shifts the period matrix by Q;; — €;; + n;;, without changing Im ).
Replacing the chosen A’ by a different basis of the same lattice I'y changes Q to PQP'Y,
where P is an integer-valued matrix of determinant +1 (P is the transpose of P), without
affecting det Im 2. So in short det Im € is well-defined once I'g is chosen.

For a given Lagrangian sublattice I'g, let det Im 2, be the corresponding value of
the determinant of the imaginary part of the period matrix. Then the definition of the
Fisenstein series is

Ey(r) = (det ImQr,)°. (3.3)

To

The sum runs over all Lagrangian sublattices. For g = 1,  is the 1 x 1 matrix 7 = 7 +i79,
so det ImQ = Im Q = 75. Hence (3.3) reduces for g = 1 to the sum over modular images
of 75. This is the definition that we used in eq. (2.25), though in that case we wrote an
explicit formula for the dependence of Im 7 on the choice of Lagrangian sublattice. It is
possible to do the same for any g, and rewrite eq. (3.3) as a sum over modular images just
as in egs. (2.25) and (2.26). This version of eqn (3.3), where the Eisenstein series is written
explicitly as a sum over Sp(2g,7Z), is given in equation (A.20).

Now we can explain the properties that a hypothetical bulk dual of the average over
Narain moduli space should have in order to reproduce the result (3.2) for the average
partition function. The bulk contributions to the path integral should be labeled by La-
grangian sublattices I'g. In terms of classical geometry, we might try to attribute these
contributions to handlebodies with boundary 3, since (for connected X)) these are in natural
correspondence with Lagrangian sublattices, as noted in the introduction. That viewpoint
will not work well in the disconnected case, which we come to in section 3.2, so instead we
will just say that the bulk contributions are labeled by Lagrangian sublattices. The bulk
path integral for a given I'y should be

1

B 3.4
| detp, O|P 34

where we note that the determinant depends on I'g because of the subtleties involved in
treating the kernel and cokernel of 9. Writing this as

1

‘ D/2
(det Im Qp, )P/?| det/FO a|P (det Im Qr,)~/%, (3.5)
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where the denominator (det Im Qr, )" 2 detfo 9|P actually does not depend!'® on Ty, we

D/2 gver the

see that to get the full partition function, we just need to sum (det Im Qr)
choice of I'g. But this sum is the definition of the Eisenstein series Ep/o(7), so if (3.4) is
the appropriate formula for the contribution of a given I'y to the path integral, then the
sum over all Ty will indeed reproduce the desired answer (3.2) for the average partition
function.

Eq. (3.4) is a fairly plausible formula for the handlebody path integral in a theory in
which the only physical degrees of freedom are the boundary current algebra modes, the
analogs of the Brown-Henneaux modes for gravity. Such boundary current algebra modes
correspond to D left- and right-moving massless scalars that lack zero-modes, and eq. (3.4)

is a natural candidate for the path integral for such fields. One can think of S

1
[detp,, o0 &
a particular conformal block for the U(1)2” current algebra. This conformal block can be
characterized by saying that what is propagating through any one-cycle that represents a

class in I' is the vacuum module of the current algebra. In section 4, we do a direct gauge
1

W as a gauge theory

theory calculation that, under certain assumptions, exhibits

partition function in the handlebody.

The justification to consider only handlebodies is thin, as acknowledged in the in-
troduction, unless we assume that we are studying an exotic theory of gravity in which
“manifolds with boundary 37 are classified entirely by the associated Lagrangian sublattice
Ty C Hi(X,Z).

One more remark may provide some background for our discussion of the case that
the boundary is not connected. The hypothetical theory that we are discussing is not
conventional gravity and does not have a conventional semi-classical limit. The closest
analog is to consider D to be large. For generic 7 there will be one Lagrangian sublattice
I’y that maximizes det Im Qp,. For large D, this particular Lagrangian sublattice then
makes the dominant contribution in the definition (3.3) of the Eisenstein series Eps.
Other contributions are exponentially suppressed. Of course, as we vary 7, there will be
large D phase transitions at which two Lagrangian sublattices exchange dominance.

We will mention one additional subtlety which appears when we work at finite D rather
than in the large D limit. This can be seen by investigating the Eisenstein series Ep /o(7)
which appears as the average of the Siegel-Narain theta function. At genus 1, we saw that
the Eisenstein series diverged unless we took D > 2; this reflected the fact that the integral
over M p of the Siegel-Narain theta function was divergent. It turns out that the genus g
version of the Eisenstein series diverges unless

D<g+1. (3.6)

This and other properties of Ep /2(7) are discussed in more detail in appendix A. As
in the genus one case, this reflects a genuine divergence of the averaging over Narain

""The expression 1/ ((det Im Qr, )| detp, 5|2)D/2 is actually the partition function, per unit volume in
the target space, of a sigma-model with target R”. Thus in particular it does not depend on the choice of
Iy. See for example [31, 32]. We will not explore this rather subtle point here as our interest in the present
paper is really in the numerator of the partition function.
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moduli space. At finite D, the average partition function diverges for sufficiently large
g: when this happens, the typical CFT lives “at the boundary” of Mp. The result is
that the hypothetical gravitational dual theory can compute relatively coarse averaged
CF'T observables — namely, the low genus partition functions which encode the average
spectrum and low moments of the OPE coefficients — but fails to compute highly refined
observables, such as the large g partition functions which compute higher moments of the
OPE coefficients.

This has interesting implications for the structure of non-perturbative effects in our
theory of gravity. As noted earlier (and described in more detail in section 4), our bulk
Chern-Simons theory is one-loop exact at all genus, and so accounts for all of the pertur-
bative effects which arise in a large D limit. The Eisenstein series then computes a set of
non-perturbative corrections. However, we see that at finite D this is still not enough, as
this sum diverges at sufficiently large genus. This may hint that further non-perturbative
effects are necessary in order to render the theory sensible at finite D, analogous to the
“doubly non-perturbative effects” [1] which are necessary in JT gravity in order to render
the theory sensible nonperturbatively.'6

3.2 Disconnected boundaries

As explained in the introduction, one is particularly interested to know what is the outcome
of the averaging procedure if ¥ is not connected.

Recall first that the period matrix €2 of a genus g Riemann surface ¥ is a g x g symmetric
complex-valued matrix whose imaginary part is positive-definite. In what follows, ) always
refers to a complex matrix with those properties. For genus g > 3, it is not true that any
such 2 is the period matrix of some X. In general, such an 2 is associated to a principally
polarized abelian variety of rank g which is not necessarily the Jacobian of any 3.

However, all the formulas of section 3.1 make sense for an arbitrary €2, whether or not
it is the period matrix of a Riemann surface. For example, the Siegel-Narain theta function
©(m, 1) is defined by a momentum-winding sum that depends on 3 only through its period
matrix {2. The only properties of €2 that are needed for this sum to make sense are that it is
symmetric and has positive-definite imaginary part.!” (Positivity is needed for convergence
of the momentum-winding sum.) To emphasize this, we could denote the theta function
as ©(m, ) rather than ©(m, 7). Moreover, the Siegel-Weil formula for averaging over m
holds for an arbitrary €2, not necessarily the period matrix of any Riemann surface. In
fact, in the mathematical literature it is not usual to restrict €2 to be a period matrix.

This being so, before discussing disconnnected surfaces, we might want to ask if we
can find a physical interpretation of the Siegel-Weil formula for an 2 that is not associated
to a Riemann surface. Can we generalize the question that we have been asking so that
the answer will involve the more general case of the Siegel-Weil formula? We can, though
this involves asking a question that is possibly less natural than the question that we have

16We note that, although they diverge, the relevant Eisenstein series can be formally defined by analytic
continuation for g > D + 1. This may aid in interpreting our results at finite D.

Properties of the space of such matrices, as well as an explicit formula for the Siegel-Narain theta
function, are given in appendix A.
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been asking so far about the average of the partition function. Let Cy, a = 1,---,2¢g be
loops in X that represent a basis of H1(3,Z), and let XP, p=1,---, D be the scalar fields
of a Narain model. We add to the action a bilocal term

> dagp f dxr f dx¢, (3.7)
Ca Cs

aBpq

with arbitrary coefficients dngp,. This has no effect on the set of classical solutions of the
theory, and no effect on the quantum oscillations around a classical solution. But it changes
the action of a classical solution. By suitably adjusting the coefficients, we can arrange so
that the momentum-winding sum is ©(m; Q) for any desired Q. So averaging over m in
this situation will involve the Siegel-Weil formula for arbitrary §2. The reader may or may
not consider this a compelling context for the more general Siegel-Weil formula.

Regardless, a special case of the fact that the Siegel-Weil formula holds for any € is
that it holds for any ¥, connected or not. For example, suppose that ¥ is the disjoint union
of two connected surfaces ¥/ and X", of genus ¢’ and ¢”, and whose moduli we denote as
7/ and 7. Set ¢ = g + ¢’ and write 7 for the whole collection of moduli 7, 7. For fixed
m € M p, the partition function on ¥ is a product:

Zs(m, 1) = Zsy(m, ") Zsy (m, 7). (3.8)

We want to average over m and compute the connected correlation function
(Zsy(m, ") Zsn(m,7")).. The function that we need to average is, from eq. (3.1),

O(m,7)0(m, ")
@El@zl! ’

(3.9)

It is the numerator that has to be averaged, since only the numerator depends on m.

Let IV = Hi(X,Z), " = Hi(X",Z), and T = TV @ T = H1(X,Z). On T, there is
an intersection pairing, which is simply the sum of the intersection pairings on I'" and on
I'”. A Lagrangian sublattice I'g of T is a'® rank g sublattice of I' on which the intersection
pairing vanishes. Such a sublattice may be the direct sum of Lagrangian sublattices I'{, C I”
and I'j C I'”, in which case we will say that I'g is decomposable. But this is not the only
possibility. There is no problem to define a period matrix of ¥ associated to a Lagrangian
sublattice that is not decomposable. We will work out an example shortly.

Let € and Q" be the period matrices of ¥’ and ¥”. Then the direct sum™

Q0
- (7). o

8primitive, as in footnote 4 in the introduction.

YLet S be a connected Riemann surface defined as the connected sum of ¥’ and ¥”. In a limit that
) degenerates to the union of ¥’ and X" joined at a point, the period matrix of S reduces to that of the
disconnnected surface ¥ (eq. (3.10)). This fact actually gives one way to prove that the Siegel-Weil formula
must apply to disconnected Riemann surfaces if it applies to connected ones. But this is not very helpful
in understanding the geometric meaning of the averaged path integral on a disconnected manifold, because
a generic handlebody with boundary S is not related in a nice way to a three-manifold whose boundary
is the disjoint union of ¥’ and ¥”. The problem arises precisely in the interesting case of indecomposable
Lagrangian sublattices (see below).
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which we define as the period matrix of X, is symmetric with positive-definite imaginary
part, so we can apply the Siegel-Weil formula to the corresponding Siegel-Narain theta
function. But this theta function is just a product:

0(m, Q) = O(m, Y )O(m, Q") (3.11)

because the momentum-winding sum of a disjoint union of Riemann surfaces is just the
product of the two separate momentum-winding sums. The right hand side is the function
that we want to average in order to compute (Zsy(m,7’)Zsy(m,7"”)), and the left hand
side is the function that we know how to average using the Siegel-Weil formula. Applying
the Siegel-Weil formula, we learn that

ED/Q(T,7 T,/)

((det Im ©)P/2| det’ sv|P) ((det Im Q”)P/2|det’ Isn|P)
(3.12)
The denominator in this formula is the product of the denominators in the usual expressions

(Zsy(m,7') Zsn(m, 7)) =

for Zsy and Zs; as usual it only depends on the moduli 7/, 7", and not on the choices that
are used to define the period matrices and determinants. The definition of the Eisenstein
series is as usual

Epp(r,7") = Z (det Im QFO)D/2 . (3.13)

To

The sum runs over all Lagrangian sublattices I'g C I', and {2, is the period matrix defined
using I'g. If we restrict the sum to the decomposable case I'g = I'y @ I'j, where the
summands are Lagrangian sublattices of I and I'”, respectively, then the right hand side
will reduce to Ep /o(7") Ep /o(7"). When inserted in eq. (3.12), this will give the disconnected
contribution to the correlation function. The connected correlator comes precisely from
Lagrangian sublattices that are not decomposable.

To make this more concrete, we will describe an explicit example of an indecomposable
Lagrangian sublattice Iy and compute its contribution to the connected correlator. Let X’
and X" be Riemann surfaces of genus 1, with respective modular parameters 7" and 7. On
Y/, we pick an A-cycle A’ and a B-cycle B’; on ¥ we pick an A-cycle A” and a B-cycle
B”. The nonzero intersection numbers are

(A, By = (A", B") = 1. (3.14)

We also pick holomorphic differentials w’ on ¥’ and w” on X" normalized so that

7{ %4 :% W' = 1 7{ W = 7_/’ f = (3‘15)

We now want to pick a Lagrangian sublattice I'g. A sublattice generated by, for example,
A’ or B’ along with A" or B” is decomposable. Instead we pick one generated by

A=A —A" A*=B4+B" (3.16)

The minus sign in the definition of A' ensures that (A!, A%) = 0, so that A! and A? indeed
generate a Lagrangian sublattice. For a dual pair of cycles, we can pick

By =B, By=-A" (3.17)
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This ensures that (B1, Bg) = 0 and

(A", Bj) = o5 (3.18)

To compute the period matrix, we need holomorphic differentials w; with

7{ wj = 07 (3.19)
Ai

7_//(A‘)/ _ 7_/("JI/ (.U/ + (.U”
W= ——F—> — w2= (3.20)
T+ T

These are

The period matrix will then be

Qij :f wj. (321)
B

i

So
7_/7_//
Q = w1 =
11 él L=
/
-
Q = wWo = w = —
12 ?{Bl 2 7& L=
1
QQQ = %3 Wy = —77_/ T s (3.22)
2
Expanding in real and imaginary parts by 7/ = 7| +i74, 7"/ = 7' + ir, we find that
7! |,7_//‘2 P ! |7_/‘2 —7!
ImQ=—2 _ Ll —2 1 3.23
’T’—FT”P ( 7_{/ 1 ‘T’—i—T”P _7_{ 1 ? ( )

which is positive-definite, as expected. There is a simple result for det Im :

det ImQ = 737y . (3.24)
(71 + 1) + (15 + 75)?
The contribution of this particular Lagrangian sublattice to the Eisenstein series is
v D/2
(det Im Q)P/? = ( 22 > : (3.25)
(1 +71)2 + (13 + 79)?

Intuitively, one expects that in anything that one would call a semiclassical limit,
connected correlators between different components of ¥ should be small. As remarked
near the end of section 3.1, in the present context, the closest analog of a semiclassical
limit is large D. In fact, the connected contribution that we have analyzed is exponentially
small for large D compared to the disconnected correlation function. To see this, note that
eq. (3.24) implies a general upper bound

1
det ImQ < 7 (3.26)

where the maximum is attained if and only if 7/ + 71 = 0, 75 = 7. Therefore, the contri-
bution to the Eisenstein series from this particular indecomposable sublattice is at most
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(%)D/ 2, However, there is always a decomposable Lagrangian sublattice whose contribution

D/2

to the Eisenstein series is at least (%) . Indeed, the contribution of the decomposable

sublattice generated by A’ and A" is m5P/27/P/2. 1f 7/ 7" are in the usual fundamental

domain for SL(2,7Z), then 74,74 > 1/3/2, and the corresponding contribution to the Eisen-

. - D/2 . .
stein series is 73 P/275/P/2 > (3) /2 Even if 7/ and 7" are not in the usual fundamental

domain, by acting on A" and on A” with separate SL(2,Z) transformations that map 7’

and 7" into the usual fundamental domain, we find a different decomposable Lagrangian
3\D/2

)

correlator that we have examined is smaller than the disconnected correlator by at least

sublattice whose contribution is at least ( So the connected contribution to the
a factor of 3P/2. One expects that all connected contributions are similarly exponentially
suppressed for large D. The interpretation in terms of a hypothetical bulk dual theory
would be that “manifolds” with “wormhole” connections between different boundary com-
ponents have larger action (or at least smaller quantum path integrals) than disconnected
“manifolds.”

The connected correlator that we have analyzed has the interpretation of

(Tr exp(it{ P — 7H) Tr exp(it{ P — 75 H)), (3.27)

where the traces are taken in the CF'T Hilbert space, and H and P are the CFT Hamiltonian
and momentum operators. This correlator is a real-analytic function of 71,75, 7/, and 7.
so it can be analytically continued to complex values of those variables, at least within
certain limits. In particular, to get an analog of the “spectral form factor,” we can set
Ty = B +it, 7 = [ —it, where 8 and t are both real; t is interpreted as a real time
parameter. The limit of large ¢, keeping fixed /3, 71, 71 probes interesting properties of the
spectrum, and has been investigated in detail in other models; for example see [33]. It is not
difficult to calculate the contribution of the indecomposable sublattice I'g to the spectral
form factor. For ¥/, ¥” both of genus 1, the denominator in the formula (3.12) for the
correlation function simplifies to (Im 7/ Tm 7”)P/2|n(7")n(7")|P. Since n(r) is holomorphic
and |n(7+1)| = |n(7)], it follows that, when we give 75, 74/ imaginary parts it |n(7")n(7")]
is periodic in t with period 1. This periodicity simply reflects the fact that the energy
differences between current algebra modes are integer multiples of 2. The current algebra
modes are unaffected by averaging over Narain moduli space, so after this averaging the
’D

correlation function retains the periodic factor 1/|n(7")n(7")|”. More interesting is the ¢

dependence of the averaged product of Narain theta functions. This is

(75751’)0/2 ;(det Im Qr, )P/2. (3.28)
0

In view of eq. (3.25), the contribution to this expression of the particular indecomposable
Lagrangian sublattice that we considered is actually a positive constant independent of
t. We expect that the full spectral form factor has a positive constant limit at ¢ — oo,
just like the particular contribution that we have evaluated. We note that, as emphasized
in [33], for the spectral form factor to approach a non-zero constant at late time is a key
signature of the discreteness of the spectrum; this discreteness is, in general, quite difficult
to see in a quantum gravity computation.
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One may ask for a geometric realization of the Lagrangian sublattice that we have
considered. It is actually not difficult to find one. We want an oriented three-manifold Y
whose boundary consists of the disjoint union of ¥’ and X", such that A’ — A” and B’ + B”
are boundaries in Y. We can take Y = S1 x S! x I, where I is a unit interval. The two ends
of I correspond to the two boundaries of Y, each of which is a copy of S x S'. We identify
Y and X" with the two boundaries of Y in such a way that A’ and A" are identified with the
first factor of S* x S' (in the first and second boundary of Y, respectively) and B’ and —B”
are similarly identified with the second factor. The reason for a minus sign in the statement
about B” is that Y has to be oriented and its orientation has to induce the orientations of
the boundaries ¥/ and X" that were built into the statement (A’, B') = (A", B”) = 1. (The
need for compatible orientations was noted following eq. (1.2).) So the identification of %’
and X" with the boundaries of Y has to involve a relative orientation reversal. We used
an orientation-reversing map of X’ that maps (A", B"”) — (A", —B"”). We have given the
simplest example of a Y that is associated to the Lagrangian sublattice that we considered,
but there are infinitely many others. Since there appears to be no natural way to get the
answer (det Im Q)P/2 from a sum over distinct Y’s, it was suggested in the introduction
that in the exotic theory of gravity that is dual to an average over Narain moduli space,
there is not a well-defined distinction between different Y’s that are associated to the same
Lagrangian sublattice.

We conclude by noting that, as with the connected case described in the previous
subsection, the Eisenstein series which computes the analog of the sum over geometries in
our theory of gravity does not necessarily converge when D is finite. For example, we could
consider the N** moment of the torus partition function:

(Zs,(m, 1) ... 2%, (Mm,TN)) (3.29)

where the ¥; are tori. The Eisenstein series converges only when N < D — 1. Thus at
finite D our theory can successfully compute relatively coarse features of the spectrum of
the CFT, namely those features encoded in low moments of Zx(m,7), but fails when N
is large compared to D. This may indicate the need to include further non-perturbative
effects.

Perhaps some intuition may be gained in this case by thinking of Z not as a random
CFT partition function, but rather as a random D x D matrix (a reasonable analogy, since
Z comes from a random rank D lattice). Only the first D moments of such a matrix are
independent of one another, and these first D moments are the only data required to com-
pletely characterize the probability distribution. It may be that the gravitational theory
can only be used to compute the “independent” pieces of data needed to characterize the
distribution on the space of CFTs. Having specified these data, the higher order observ-
ables are then completely determined. This is reminiscent of the notion of gravitational
null states appearing in [34] (see also [35]).

3.3 Genus zero

We started this paper in genus 1, skipping the basic case of a surface of genus 0. Here we
will make amends for this omission.
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If ¥ is a surface of genus 0, then Yy has no complex moduli. Moreover, the partition
function of the Narain CFT on ¥ is Zx,(m) = 1, independent of m. So averaging Zy,,(m)
over m will not have any effect.

From the point of view of the Siegel-Weil formula, since H;(3g,Z) = 0, there is no
nontrivial sum to be carried out in averaging Zy,,(m). The only Lagrangian sublattice of
the zero lattice Hi(Xo,Z) is the zero lattice. Since “manifolds with boundary ¥” in the
theory under discussion correspond in general to Lagrangian sublattices of Hy(X,Z), we
conclude that in the case of a surface of genus 0, there is only one “manifold with boundary
30.”7 The closest analog of this object in classical geometry would be a three-ball, but in
classical geometry it is far from unique as an oriented manifold whose boundary is a surface
of genus 0.

Since Zs,(m) is a constant, independent of m, there is no connected correlator between
Zs,(m) and Zsy(m,7) for any other surface ¥'. In terms of the Siegel-Weil formula, one
would interpret this as follows. Let X be the disjoint union of 3y and ¥'. Since H;(X,Z) =
H,(¥X',Z), “manifolds with boundary ¥” are in 1-1 correspondence with “manifolds with
boundary ¥'.” It appears that if there really is an exotic gravitational theory with the
properties suggested by the Siegel-Weil formula, then in this theory there is no “wormhole”
connecting a genus 0 surface to anything else. Alternatively, it may be that in this theory
of gravity, there is no notion of whether spacetime is connected and thus no way to say
whether or not 3y and ¥’ are connected through the wormhole.

4 Path integrals in gauge theory

4.1 Preliminaries

In this section, we will compare the formulas of sections 2 and 3 to direct evaluation of a
gauge theory partition function on a handlebody. This will be done by adapting formulas
in [28], where a similar direct calculation was done for Einstein gravity.

Let us first recall that for U(1) gauge theory with the standard Maxwell action, the
partition function is

det’ Ag
(det' A1)1/2.

Here A is the Laplacian acting on a field of spin 0, and A; is the Laplacian acting on

IMax = (4.1)

a vector field or 1-form. With a standard gauge-fixing, the denominator comes from the
path integral over the gauge field, and the numerator is the ghost determinant.

Now consider a gauge field with Chern-Simons action. First consider the case that the
gauge group is U(1), with a single gauge field A, and the action on a three-manifold Y is

1
27T/YAAdA‘ (4.2)

In the approach to quantization followed in [29], the gauge-fixing action is

1 . .
— / d3x\/§ (qﬁDiA’ + EDiD’c) ) (4.3)
2 Y
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where ¢ and ¢ are ghost and antighost fields and ¢ is a scalar field that is a BRST partner
of €. The path integral for ¢ and ¢ gives the usual ghost determinant det’ Ag. The kinetic
operator acting on the bosonic fields A, ¢ can be regarded as the operator L_ = xd + dx
acting on differential forms of odd degree. The corresponding path integral is 1/4/det’ L_.
But since L2 is equivalent to the direct sum Ag @ Aj, we have det’ L_ = (det’ A -
det’ A1)/2. So finally the relevant ratio of determinants for U(1) Chern-Simons theory is
(det’ Ag)®/*/(det’ Ay)V/4,

The path integral of U(1) Chern-Simons theory is not just a product of determinants,
as there is also a phase that involves an Atiyah-Patodi-Singer n-invariant [29]. However,
in the present paper we are interested in a U(1)2? theory based on a lattice A of signature
(D, D), and in this case, the phase cancels between modes on which the metric of A is
positive and modes on which it is negative. An even unimodular integer lattice A of
signature (D, D) is actually simply the direct sum of D copies of a rank 2 lattice with

01
o= (02) "

So the U(1)?P Chern-Simons theory based on A is simply the product of D decoupled
copies of a U(1)? theory with two gauge fields A, B and action

intersection form

1
— ANdB. 4.
s /Y A (4.5)

To the extent that the partition function of this theory can be calculated just by evaluating
determinants, the determinants involved are the same ones as in the last paragraph but
with double the multiplicity, giving
/ 2
Zos = 4V D0 (4.6)
(det’ Ap)1/2
This formula was first obtained by A. Schwarz [36], who also recognized that this par-
ticular ratio of determinants is the Reidemeister-Ray-Singer torsion (of a background flat
connection, a trivial one in the case of expanding around A = B = 0).

Eq. (4.6) is not the whole story for evaluation of the partition function of Chern-Simons
theory. It is not correct to simply ignore the zero-modes. Zero-modes of A means that
the classical solution about which we are expanding is part of a family, and zero-modes
of Ay mean that the gauge group has an unbroken subgroup of positive dimension. In a
full evaluation of the Chern-Simons path integral, we have to integrate over the space of
all classical solutions (summing in general over its connected components) and divide by
the volume of the unbroken gauge group. Moreover, we are interested in evaluating the
path integral for the case that Y is a hyperbolic three-manifold with non-empty confor-
mal boundary Y. In Chern-Simons theory, one usually requires a subtle analysis of the
asymptotic behavior of the fields near the boundary, while in scalar field theory or Maxwell
theory, one can just assume that perturbations vanish at infinity.

Nevertheless, we will simply evaluate the right hand side of eq. (4.6), for the case
that Y is a hyperbolic three-manifold with conformal boundary 3. We do this using the
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formulas that were obtained in [28] as part of a similar calculation for Einstein gravity.
These are formulas for the determinants of Ay and A; in a space of perturbations that
vanish at infinity. We will find that this procedure works in the sense that — at least if ¥
is connected and Y is a handlebody — it gives the result that was needed in eq. (3.4) to
provide a bulk dual to the average over Narain moduli space.

Ideally, one would like to do a more rigorous evaluation of the Chern-Simons path
integral and compare it precisely to the average over Narain moduli space. There seem to
be real obstacles to this, as we discuss in section 4.4. Ultimately, we do not know to what
extent gauge theory can be used to construct a bulk theory that is dual to an average over
Narain moduli space.

4.2 Path integral on a handlebody

We will evaluate determinants by a heat kernel method, as in [28]. The basic idea is that
the determinant of an operator A is given by the following formula:

—log (det A) = /00 %Tr (K3) (4.7)

o+

where K; = e *2. In the case of interest, where A is a differential operator on a manifold
Y, the trace is just an integral over Y, and K; can be found by solving the differential
equation

(O +A)K; =0, (4.8)

which we will momentarily write in position space as an equation for the heat kernel.
The advantage of this technique is that (4.8) is a linear differential equation to which one
can apply the method of images. Thus by starting with K; on hyperbolic three-space
H?3, one can easily obtain K; on a general quotient H3/G, where G is a discrete group of
automorphisms of H?. For simplicity, we will assume that every element of G other than
the identity is of infinite order; this is so in many interesting examples, including the groups
(called Schottky groups) which are such that H/G is a handlebody.

As a simple illustration of this technique, let us take our operator to be the scalar
Laplacian Ay = —V? on Hj, acting on the space of functions. We then introduce the heat
kernel K13 (2, z'), which solves the equation

(V2 — 0K (2,2") =0 (4.9)
with the initial condition Ky(x, ') = §(x,2’) at t = 0. The solution is

d2
el"w d

KH3 / —
@) = T s d

(4.10)

where d = d(x,2’) is the geodesic distance between x and z’. The determinant of the
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operator Ay on Hjs is then

—log (det'Ay) :/ it/H d*z\/g (Kfﬂ“(x,x))
0 3

©dt et
= Vol (H «_°
ol( 3)/0 t (4mt)3/2

_ %w (Hs) . (4.11)

In writing the second line we have set d(z,z) = 0 and pulled out an overall factor of
Vol (Hj3). The resulting integral over ¢ diverges, reflecting the usual one-loop ultraviolet
divergence. In the final line we have regulated this divergence by defining the ¢ integral
by analytic continuation, as a Gamma function with negative argument. The final result
is proportional to Vol (Hs), and can be interpreted as a one-loop contribution to the bulk
cosmological constant.

To apply this to quotients of the form Hs/G, we first use the method of images to
determine the heat kernel

K6 (,a!) = 7 K (a,4a) (4.12)
veG

The determinant of the operator Ay on Hs/G is then found by integrating:
Iay [ dt 3 Hs /G
—log (det’Ag) = | — d’z\/g (Kt (x, ;E))
t Jus/G

~€G 3/G

y#1
In writing the second line we have separated out the v = 1 term in the sum and computed
the t integral as before, again finding a one-loop contribution to the cosmological constant.
To interpret the other term, note that each v can be thought of as an element of the
fundamental group, and the heat kernel is just a simple function of the length d(z,yz) of
the corresponding geodesic. The result is that equation (4.13) takes the general form of a
trace formula — such as the Selberg or Gutzwiller trace formula — where the spectrum of
a Hamiltonian is related to the lengths of classical orbits. In the present case, the spectrum
of V2 is related to the lengths of bulk geodesics. This will be a general feature of all of our
formulas.

The sum over G is typically impossible to carry out exactly. It can, however, be
simplified by separating out the sum over primitive elements of G: an element v € G is
primitive if it cannot be written as a positive power of any other element of G. Each
primitive element -y generates a Z subgroup of G which we call a primitive subgroup (a
primitive subgroup has two generators, namely v and 4~ !). The sum over G reduces
to a sum over the set P of primitive subgroups along with a sum over Z for each such
subgroup. We note that, since the quotient H3/Z is a solid torus, we can associate to each
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primitive element ~ the modular parameter 7, of the associated boundary torus. Writing
v € G C PSL(2,C) as a 2 x 2 matrix, the modular parameter satisfies

2cos Ty = Trry. (4.14)

This formula does not determine the sign of 7,, which we fix so that Im 7, > 0. It fixes
Re7, mod 1 (mod 1 and not mod 2, because lifting from PSL(2,C) to SL(2,C) means
that the sign of the right hand side is ill-defined). But our subsequent formulas will be
expressed in terms of ¢, = e?™™  which depends on Re 7, only mod 1.

It is now possible to evaluate the integrals dt and d3x in equation (4.13), and write
the result as a sum over the set P of primitive subgroups. The result is?’

2

det’ Ay = exp {—VOI(HO’/G)} H ﬁ (1 q§+1q€+1> : (4.15)

6m
~eP \£4,0/=0

! separately.

This is a sum over primitive subgroups, so we do not count v and v~

Although we have only written the formula for a massless scalar, this procedure can be
applied (with more work) to find analogous heat kernel expressions for higher spin fields.
The primary difficulty is dealing with the various different tensor structures that appear
in the heat kernel. We refer to [28] for detailed computations. We will need only the
result for the determinant for the spin one Laplacian A,” = —§,/V?+ R,”. In [28], it was

found that?!
2

det Ay =det' Ao~ T [ T (1-dfay™) (1-af"a0) | - (4.16)
~veP \£4,0'=0

(It appears that this formula is valid even if the operator A; has zero-modes. In that case,
the determinant on the left hand side of eq. (4.16) vanishes, and the infinite product on
the right hand side also vanishes. This will be discussed in section 4.3.)

We can now assemble these results together to evaluate the expression (4.6), which
formally is the one-loop determinant of Chern-Simons theory, expanded around the trivial
flat connection:

3/2

(det” Ao) Vol (Hs /G 2
(detAlo)l/? :exp{ 63} I1 (H =g > (4.17)

yEP

Let us first consider this formula for the solid torus Hjs/Z, where G is generated by
a single primitive element v with Tr () = 2cosn7. In this particular case, there is only
one term in the product on the right hand side of eq. (4.17), so this is the only case in
which we can evaluate the product in a completely explicit way. Although the volume
of H3/Z is divergent, we may regularize it using the standard procedures of holographic

OIntermediate steps in this derivation can be found in [28].
21 This formula is not written in precisely this way in [28]. In that reference, det A1/ det’ Ag is formally
called det” A, and eq. (4.16) is written as a formula for det’ A .
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renormalization. One begins by cutting off the volume integral near the boundary and
introducing boundary counterterms which remove the divergence that appears as this cutoff
is taken away. The result is not invariant under conformal transformations on the boundary,
so requires a choice of metric on the boundary. With the usual flat metric on the torus,
one finds

Vol (H3/Z) = —m*Im . (4.18)

The final result for our the one-loop determinant is??

(det’ Ag)*?
(det A2

~1/12 1
= || H = T E (4.19)

We note that this one loop determinant naturally gives the usual prefactor of |g| —1/12 which
in the boundary language is attributable to the negative Casimir energy of a free boson on
a circle. In bulk gravity calculations, such a term would typically arise from the regularized
Einstein-Hilbert action of Hj3/Z. In our Chern-Simons computation, this term came for
free from the one-loop contribution to the bulk cosmological constant. Equation (4.19) is
appropriate for D = 1; for general D, one simply raises both sides to the power D. This is
the result for the bulk path integral that we needed (eq. (2.31)) for a bulk theory dual to
the average over Narain moduli space.

For higher genus, it is not possible to write such explicit formulas. But remarkably,
it is possible to show in general that if ¥ is a connected Riemann surface of genus g, and
Y is a handlebody with conformal boundary ¥, then making the same assumptions, the
bulk path integral on Y agrees with what is needed in eq. (3.4) for the average over Narain
moduli space to be reproduced by a sum over handlebodies.

If Y is a genus g handlebody, then its fundamental group G is a free group on g gen-
erators. Such a subgroup of PSL(2,C), acting on Hj in such a way that the quotient is
a handlebody Y, is called a Schottky group. In this case, Zograf [43], with further devel-
opments by Mclntyre and Takhtajan [45], proved the following “holomorphic factorization

o\ —1/2
det/ AO SL/247T
(mm) =] H (4.20)

yEP

formula”

where 30 is the Laplacian of a non-compact scalar on the surface .23 The function Sy, is
an appropriately defined Liouville action on the moduli space of Schottky groups, defined
explicitly in [44], which plays the role of the |¢|~!/12 factor in the torus case. Indeed, this

22Gimilar Chern-Simons computations have appeared in the literature before [38].

23The two dimensional Laplacian 30 should not be confused with the three dimensional Laplacian Ag
which appeared earlier; in this section we will denote two-dimensional operators with a hat to avoid con-
fusion. We note that both det’ AO(Q) and Sp are not conformally invariant, but rather transform with
conformal anomalies that match in such a way that eq. (4.20) is conformally invariant. We also note that we

! are not counted separately.

have written (4.20) as a product over primitive subgroups P where v and v~
In the literature this formula is often written in a slightly different way as a product over distinct primitive

conjugacy classes, so that v and v~ ! are counted separately.
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Liouville action was proven by Kraznov [40] to be proportional to the regularized volume
of Hg / G

H
Sr, = —4 Vol <G3> + counterterms . (4.21)

With this result, we see that eq. (4.20) matches exactly the path integral of U(1) x U(1)
Chern-Simons theory on a genus g handlebody given in eq. (4.17). This includes the
factor of Sy that, in other contexts, would arise from a regularized Finstein-Hilbert ac-
tion. Recalling the purely two-dimensional version of holomorphic factorization, det’ 30 =
(det Im )| dett,, 9]* (see for example [31, 32]; here Ty is the Lagrangian sublattice associ-
ated to the handlebody), we conclude that our bulk path integral reproduces precisely the
desired factor of | detp, 0| ~P.

4.3 Disconnected boundaries

Remarkably, rather similar relationships between bulk and boundary functional determi-
nants continue to hold even when the boundary is disconnected. The case that is well-
established in the literature is the case that Y is topologically ¥ x I, where Y is a surface
of genus ¢ > 1 and [ is an open interval. In this case, if Y is geometrically a quotient
H3 /G, then the conformal infinity of Y consists topologically of two copies of ¥y. Generi-
cally, these two copies, which we will call ¥’ and X", have different complex structures. In
that case, the group G is called quasi-Fuchsian. In the special case that the two complex
structures are the same, G is called Fuchsian. Since the Fuchsian case is just a special case,
we need not consider it separately.
For quasi-Fuchsian groups, McIntyre and Teo [39] showed that for n > 1,

~ ~1/2 ~ ~1/2
det’An(§’) det’An(§”) _ el H
Im det Q) Im det Q2 P

> 1
En !1—q§”|2> . (4.22)
Here ﬁn is the boundary Laplacian acting on a field of spin n, and €,, is a generalized
period matrix, which reduces to the usual period matrix if n = 1 or n = 0.24 The left
hand side is now interpreted as a product of one-loop determinants for the two individual
boundary theories, regarded as functions of their period matrices. The Liouville action Sp,
appearing in this equation is again proportional to the regularized volume of Hs/G, just
as in eq. (4.21); this result was established for quasi-Fuchsian groups by Takhtajan and
Teo [41].

If we could set n = 0 in this formula, we would be in the same situation as in section 4.2.
After again invoking eq. (4.17), we would conclude that the product of determinants on
Y agrees with what is needed to reproduce the correlation functions that we studied in

24 A crucial feature of this formula — analogous to our use of the bulk geometry in section 3.2 to determine
an indecomposable Lagrangian sublattice — is that one is not free to choose independently the bases of
holomorphic cycles on the boundary surfaces in which " and Q" are computed. The choice of bases must
be related in a particular way which depends on the bulk geometry [39]. In this way the left hand side of
this formula depends implicitly on the choice of bulk geometry, consistent with the fact that the right hand
side depends on it.
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section 3.2 between disconnected boundary components (at least for the special case that
the two boundaries have the same genus and the indecomposable Lagrangian sublattice
considered is associated to a three-manifold that is topologically ¥ x I).

In fact, the formula (4.22) does not hold for n = 0. The infinite product on the right
hand side is divergent in that case. We will explain this in a moment, but first we will
point out that this should not be a surprise from the point of view of the bulk Chern-
Simons theory. For the case that the conformal boundary of Y is the disjoint union of
two components Y’ and X, the bulk operator A; has a zero-mode. This zero-mode is
pure gauge but it cannot be gauged away by a gauge transformation that is trivial at the
boundaries of Y. Being pure gauge, this mode does not contribute to any local gauge-
invariant observable, but it contributes to a Wilson line that stretches between the two
conformal boundaries. To demonstrate the existence of this zero-mode, one can proceed as
follows. Consider a function f that equals 0 on ¥’ and equals 1 on ¥”. If such a function
approaches its limiting boundary values sufficiently quickly, then

1) = [ Eayalvif (4.23)

is finite. By minimizing [ within the given class of functions f, one can ensure that
Aof = 0. Then A = df is a zero-mode of A; and is square-integrable since I(f) < oc.
Because the operator A; has this zero-mode, the left hand of eq. (4.16) vanishes, so we
are led to expect that the right hand side will also vanish. Equivalently, the left and right
hand sides of eq. (4.17) should both be divergent.

The divergence in the infinite product in eq. (4.22) — or equivalently eq. (4.17) — is
easiest to see in the Fuchsian case, so we concentrate on that case. The Fuchsian case is
the case that G sits inside a PSL(2, R) subgroup of PSL(2,C). In that case, Y = X x I has
a symmetry that exchanges the two ends of I. The fixed point set of this symmetry is a
totally geodesic embedded surface ¥ = Hy/G C Y, and all closed geodesics in Y actually
lie in ¥. So the product in (4.22) reduces to a product over geodesics in X. The Selberg
zeta function associated to G is defined as:

Zg(s) = H H (1- qzﬁs) = H H (1 - 6_(m+s)L(7)> (4.24)

yeP m=0 yeP m=0

where L(7) is the length of the geodesic associated to 7. We see that the product in (4.22)
is |Zg(1)|72. But it is a standard result that Zg(1) = 0. This vanishing is equivalent to a
divergence log Zg(s) — —oo for s — 1. The important contributions to Zg(s) for s near 1
come from m = 0 and from very long primitive closed geodesics:

log Zg(s) ~ —/p(L)eSLdL (4.25)

where p(L) is the density of primitive closed geodesics with length L. For a compact
Riemann surface, we have p(L) ~ % at large L, leading to a logarithmic divergence
in log Zg(1) and vanishing of Zg(1). (We are reversing the usual logic here: the usual
procedure is to prove first in a more direct way thst Zg(1) = 0 and then use this to

constrain the large L behavior of p(L).)
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4.4 U(1)?P and R?P Chern-Simons theories

The divergence that we have just encountered actually has a simple fix if we take seriously
the idea that the bulk theory is a Chern-Simons theory of the gauge group U(1)?P. The
Wilson line that stretches between the two boundary components of Y is really valued in
the gauge group. Instead of getting an infinity from a zero-mode of A;, we should get a
factor of the volume of the gauge group, which is finite for gauge group U(1)2P. This tells
us, then, that we should aim to replace eq. (4.16) and subsequent formulas with a formula
in which the zero-mode of Aq is removed on the left hand side. To compensate for this, the
heat kernel formulas will have to be modified, and the right hand side of eq. (4.16) would
be replaced with a regularized version. Hopefully, there would then also be a regularized
version of the McIntyre-Teo formula for n = 0.

This particular argument will clearly not work if we assume that the bulk gauge group
is R rather than U(1)2?P. In this case, the volume of the gauge group is infinite, and the
zero-mode of Ay will really lead to a divergence.

Nonetheless, it seems to be problematical to take too seriously the idea that the bulk
theory is a U(1)?P gauge theory. One reason, which does not depend on the assumed
gauge group, was explained in the introduction: gauge theory does not tell us to sum over
manifolds, and it certainly does not tell us to sum over a specific class of manifolds, such as
handlebodies. But there is actually a more specific problem if we assume that the theory
is a U(1)?P Chern-Simons theory based on an even integer unimodular lattice A.

The U(1)?P Chern-Simons theory based on such a lattice is actually completely trivial,
in a very strong sense. As already explained, this theory is equivalent to D copies of a
U(1)? theory with action

L [ aaB. (4.26)

2 Jy
Triviality of this theory is a special case of a statement in [46] and was analyzed in consid-
erable detail in [47]. Triviality means, first of all, that if Y is an oriented three-manifold
without boundary, then the partition function of the theory on Y is equal to 1. Second,
if 3 is a Riemann surface, then the Hilbert space Hy of the theory on X is 1-dimensional,
and contains a distinguished unit vector W. Third, if Y is any oriented three-manifold
with boundary 3, then the path integral on Y produces the same vector ¥ € Hy. All of
these statements immediately carry over to the U(1)2P theory based on an even integer
unimodular lattice.

In the case that Y is noncompact, with conformal boundary ¥, it does not follow from
this that the U(1)2” Chern-Simons path integral on Y is equal to 1; this depends on what
behavior of the fields is assumed near the conformal boundary. What does follow, however,
is that the Chern-Simons path integral on Y depends only on ¥ and not on Y. This may
be proved as follows. Let Yy be a cutoff version of Y in which the boundary ¥ is placed at
a finite distance rather than at infinity. And let U be the product of ¥ with a semi-open
interval [0,1). Thus we can build Y by gluing together Yy and U along 3. The dependence
of the Chern-Simons path integral on Y is entirely encoded in the vector in Hy that is
produced by the path integral on Y. But this is the same vector ¥, independent of Yj.
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Thus no matter what assumption we make about the behavior of fields near the conformal
boundary, the U(1)?? Chern-Simons path integral depends only on the boundary and not
on the bulk geometry.

What is happening is that U(1)?” Chern-Simons places too strong an equivalence
relation on manifolds. In this Chern-Simons theory, all manifolds with given boundary X
are equivalent. What we would like instead would be for all manifolds with boundary > that
induce the same Lagrangian sublattice of I' = H1(X,Z) to be equivalent. It is interesting
that we get something very close to this if we just replace U(1)2P by R2P. It suffices here
to consider the basic case D = 1 with the two gauge fields A, B. The phase space of R?
Chern-Simons on ¥ is the tensor product V = R? ® H!(X, R), with a symplectic form that
is the tensor product of the quadratic form A on R? and the intersection form on H!(X, R).
An element of V' is just a pair Ay, By of gauge fields on X satisfying dAg = dBy = 0, up to
gauge equivalence. The natural gauge-invariant observables in this theory are of the form
3% A, fv B, where 7 is a homotopically nontrivial closed loop in X. (As the gauge group is
R? rather than U(1)?, these expressions are gauge-invariant, with no need to exponentiate
them.) Suppose that ¥ = Y and let ¥ € Hyx, be the vector produced by the path integral
on Y. Let I'g be the Lagrangian sublattice of I' corresponding to Y. We claim that for any
loop 7 € ¥ whose homology class [y] is in g,

ﬁA-@:y{Bﬂ:O. (4.27)

Indeed, the condition [y] € Ty means that + is the boundary of some oriented two-manifold
C C Y, whence va ¥ = [,dA- ¥ = 0, since dA = 0 by the equations of motion.
Similarly fv B- ¥ = 0. The operators fv A and fv B, for [y] in a Lagrangian sublatttice g,
are a maximal set of commuting observables in this theory, and a state that they annihilate
is uniquely determined by I'g, up to a constant multiple. Thus any two Y’s that induce
the same Lagrangian sublattice I'g generate the same state ¥, up to an overall constant.
(These overall constants are not all equal to 1, and for some Y’s, the constants in question
are divergent because of the infinite volume of the assumed gauge group.)

We would have preferred to learn that any two Y’s associated to the same Lagrangian
sublattice determine precisely the same state. This might have been an approximation to
a statement that in the theory that we are looking for, “manifolds with boundary ¥” are
entirely classified by Lagrangian submanifolds. However, the R?” Chern-Simons theory
has come pretty close.

Hopefully by now it is apparent that each of U(1)?” and R?P have both virtues and
vices as candidate gauge groups for a theory dual to the average over Narain moduli space.
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A Derivation of the Siegel-Weil formula at D > 1 and g > 1

In this appendix we will describe in more detail the derivation of the Siegel-Weil formula.
We will begin in section A.1 by reviewing the moduli space M p of CFTs with D compact
free bosons. We will show that the torus partition function obeys the differential equa-
tion (2.20) which was needed in our derivation of the genus one version of the Siegel-Weil
formula. To discuss the higher genus version of this formula, we will first need to review in
section A.2 some facts about the geometry of Siegel upper half space. We will then discuss
the derivation of the higher genus version of the Siegel-Weil formula in section A.3.

A.1 Narain moduli space

A sigma-model with TP target space can be described by angle-valued fields X?, p =
1,...,D (XP = XP +2r), with a metric G, and two-form field B,,,. In this Narain family
of conformal field theories, G and B are constants that represent the moduli of the theory.
We will call this moduli space M p, and denote a point in Mp by m.

The action, on a Euclidean signature worldsheet with coordinates %, o = 1,2, flat
metric 6,3, and Levi-Civita tensor B is

i
4o

/ d%o (quaaﬁaaxpaﬁxq + inqsaﬁaaXpaﬁxq) : (A1)
The marginal operator that describes small perturbations 6Gg, 6By of G and B is
O = (0Gpg0*” 410 Bpge™? )00 XPO5 X 1. (A.2)

Similarly to the case D = 1 discussed in section 2.1, by computing the two-point function
of O one can determine the Zamolodchikov metric:

ds® = G™G™ (AGyndGpg + dBpmndByy) - (A.3)

This is also the metric of Mp as a locally homogeneous space. The Laplacian derived from
this metric is

Apmp = —GmpGng <5G'mn§qu + 5an53pq> o Gm”é\Gm" (A-4)

where Jg,,, = 5(1 + 5mn)7aG8 and 0p,,, = 5838mn'

mn

On a torus Y with modular parameter 7 = 7 +i7, the partition function of the model
is Zs(m,7) = O(m,7)/|n(T)|* where ©(m, 7) is the Siegel-Narain theta function and the
denominator does not depend on m. ©(m, 7) is a sum over integer-valued momenta n, and
windings w?, which we abbreviate as 7 and w. Explicitly

O(m,1) = ZQ(ﬁ,w;m,T), (A.5)
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with

Q(7, W;m, T) = exp (—LT? (GPlopvg + GpgwPw?) 4 27r17'1npwp> , (A.6)
a
where
vp = a'ny + Bygwl. (A.7)

A computation similar to the one in section 2.1 but somewhat longer reveals that
(Ay — D120/019 — Apm,,) Q = 0. (A.8)

Here Ay, introduced in eq. (2.16), is the Laplacian of the upper half plane. Since this
equation is linear, © satisfies the same equation:

(Ay — D10/0m9 — Apm,) © = 0. (A.9)
The steps that go from this result to the Siegel-Weil formula were explained in section 2.2.

A.2 Geometry of Siegel upper half space

We now wish to consider the partition function of the same family of CFTs on a genus g
Riemann surface ¥ with period matrix € = ;;, where i,5 =1,...,9.

This period matrix €2 is an element of Siegel upper half space H,, which is the space
of complex, symmetric g X g matrices with positive definite imaginary part:

Hg = {; : Qj = Qj;, ImQ > 0} (A.10)

Although not every element of H, can be realized as the period matrix of a Riemann
surface, both the Siegel-Narain theta function and relevant Eisenstein series are well-defined
functions on H,. This makes the analysis much easier, as H, is considerably simpler than
the moduli space of Riemann surfaces. We will just need to review a few facts about H,.

To describe the symplectic group Sp(2g,R), we introduce a vector space of row vectors

v= (b1 by by al a?at)), (A.11)

with matrix elements a',a?,--- ,a9 and by, bs, - - - ,bg and a symplectic form > Y_; db;da’.

. (é g) , (A.12)

constructed from g x g blocks A, B, C, D, that act on v on the right v — vvy. The condition

Sp(2¢g,R) consists of matrices

that ~ preserves the symplectic form is
AB' = BA', CD' = DC', AD' — BC' = 1. (A.13)

Sp(2g, R) is the group of real-valued matrices that satisfy these conditions. To get Sp(2¢,Z),
which is known as the Siegel modular group, we restrict A, B,C, D to be integer-valued.
Likewise we restrict a’, b; to be integers, giving an integer lattice I' on which Sp(2g, Z) acts.
In our application, I' = H (%, Z).
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The group Sp(2g,R) acts on Hgy, by
Q=0 = (AQ+ B)(CQ+ D). (A.14)

The group Sp(2g,Z) acts in a proper and discontinuous fashion on H,4. The fundamental
domain for this action is complicated (for example at g = 2 its boundary is a union of
28 pieces) but has finite volume. The quotient A, = Sp(2g,Z)\H4 is known as the Siegel
modular variety. When  is the period matrix of a Riemann surface ¥, this Sp(2g,7Z)
action can be thought of as acting on Hy(3,7Z) = Z29.

It is convenient to divide the period matrix into its real and imaginary parts, as
Q = x +1iy. Since y;; is positive-definite, it is invertible; we will denote its inverse as y%.
The metric on Siegel upper half space

ds? = y"yF (dyirdy; + degda ) (A.15)

is Hermitian and invariant under the action of Sp(2¢,R). The associated Laplace-Beltrami
operator can be written as

AHg = _yikyjl(amija$kl + 8yi,jaykl) (A'16)
where 5%. =11+ 527)8%]- and 5%]. =11+ (52-]-)%”. This Laplacian commutes with the
Sp(2g,R) action.

The imaginary part of the period matrix transforms as

ImQ = (CQ+ D) ' Im (vQ) (CQ + D) (A.17)

so that
det Im Q

det Im €2 = 5 -
|det(CQ2 + D)|

(A.18)

One can show that

(AHg - (932 ~ 9(9;1)3)) (detIm Q)® = 0. (A.19)

The Laplacian commutes with the action of Sp(2g,Z), so the Eisenstein series

E(Q)= ) (detImqQ)’ = (detImQ)® > [det(CQ+ D)["* (A.20)
YEP\Sp(29,2) YEP\Sp(29,2)

is an eigenfunction of the Laplacian with the same eigenvalue. This is the Eisenstein series
which appears in (3.2) as the average CFT partition function on a genus g surface. In this
equation we have defined the Siegel parabolic subgroup P = {(61 g ) € Sp(2g,Z)}; this
is the subgroup of Sp(2g,Z) which acts trivially®® on |det Im Q|. It follows that F,(f2) is
invariant under the action of Sp(2g,Z). We note that the sum diverges when Re s < %.
The Eisenstein series Es(€2) can be analytically continued from the region of convergence

Z5Here one has to know that det D = %1, as explained shortly.
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to define a meromorphic function in the whole complex s-plane, but its direct relation to
an average over Narain moduli space only holds for Re s > %.

In eq. (3.3), we defined the Eisenstein series in a seemingly different way as a sum over
Lagrangian sublattices. The relation between the two definitions is as follows. First of all,
the condition b; = 0 defines a particular Lagrangian sublattice I'g C I". The subgroup of
Sp(2g,7) that leaves I'g fixed is precisely the Siegel parabolic group P. So the sum over
P\Sp(2g,7Z) is precisely the sum over Lagrangian sublattices. Concretely, ' is spanned

by row vectors (0,a), where a = (a',a?,--- ,a%) is a g-component row vector. For vy =
A B
(C D> € Sp(2¢g,7Z), we have
(0,a)y = (aC,aD). (A.21)

Thus v maps Iy to a new Lagrangian sublattice spanned by vectors (aC,aD) for arbitrary
a. So the Eisenstein series can be written as a sum over the pairs (C, D), subject to the
equivalence relation (C, D) = (UC,UD), U € GL(g,Z), which comes from the action of P.

In proving that P is the automorphism group of the Lagrangian sublattice I'g, there
is just one nontrivial point. It is immediate that an element v = (‘g 5) € P maps I'y to
itself, but for it to be an automorphism of 'y (as an integer lattice), one needs det D = +1.
In fact, any element of the symplectic group has determinant 1, and for the block triangular
matrix v we have det v = det Adet D. Since det A and det D are integers, the fact that
det v = 1 implies that det A and det D are both +1. This condition is equivalent to A
and D having integer-valued inverses, and thus belonging to GL(g,Z). Actually for v € P,
A and D can be arbitrary elements of GL(g,Z), constrained by AD! = 1.

The group P also contains matrices ((1) ?), where the only constraint on B is that

it is symmetric and integer-valued. Such group elements act on the period matrix by
Q — Q4 B, thus shifting Re{2 by an arbitrary symmetric integer-valued matrix, and
leaving Im € fixed.

A.3 The average CFT partition function at genus g

We now consider the sigma-model with TP target space on a Riemann surface of genus
g. The partition function is a function of both the Narain moduli and the moduli of the
Riemann surface. As in the torus case, the partition function is equal to a Siegel-Narain
theta function times an oscillator contribution. The oscillator contribution is independent
of Mp, so will factor out when we average over Mp.

The genus g version of the Siegel-Narain theta function depends on both m € Mp
and the period matrix 2 € ‘H, of our Riemann surface, and can be written as

Om, Q)= Y QM w,mQ) (A.22)

n,wezZIxpP
where

Q(n,w,m,Q) = exp {—Wy—fj (quvipvjq + quwipqu) + 27rmijnipwjp} (A.23)
Q@
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with
v’y = a/n'y + Bpgw'. (A.24)

Note that the momentum n = nip and winding w = w” are now ¢ X p matrices,
with ¢ = 1,...,9g and p = 1,...,D. The Siegel-Narain theta function is not modu-
lar invariant, but rather transforms under Sp(2g,Z) transformations in such way that
(det Im Q)D/ 2©(m, Q) is invariant. It will therefore be convenient to work with this com-
bination of the determinant and the theta function.

The starting point for our derivation of the Siegel-Weil formula is the following differ-
ential equation for Q:

gD(D;g—l)> ((det T Q)D/2 Q(n,W,WQD =0. (A.25)

<A’H g A pm p T
The derivation of this differential equation from our previous expressions for the Laplacians
is somewhat lengthy. So we will just make a few comments on its derivation. The first is
that our formulas for Ay, and An, are quite similar to one another. So it is perhaps
not surprising that many of the terms which appear when Ay, — Ay, acts on @ directly
cancel with one another. There are additional terms which come from (among other things)
the piece of Apq,, which is linear in ggp , acting on @), but these cancel against the terms
that are linear in Jy,; acting on (det Im Q)D/ 2, This just leaves the terms where all of the
derivatives in Az, act on (det Im )P /2 which gives the constant term in (A.25), according
to equation (A.19).

We now perform the sum over n and w to get

gD(D —g—1)

(Aﬁg—AMD+ 1

) <(det m Q)”/2 6(m, Q)) = 0. (A.26)
We define W () = (det Im Q)D/2 F(€2), where

F(Q) = O(m, Q) du(m) (A.27)
Mp
is the average lattice theta function. We may then use the fact that, for sufficiently large
D, the integral fMD Apr,O(m, Q)dp(m) vanishes to conclude that

(AHQ + gD(D;H) W(Q) = 0. (A.28)

The result is that W () is an Sp(2¢, Z) invariant function which obeys precisely the same
eigenvalue equation as Ep »(€2).

We will now take D > g + 1, so that the eigenvalue of Ay, is negative. In this case
W () and Ep/5(Q2) must be equal. We explained the proof of this step for genus g = 1
in section 2.2: one shows that the difference Ep/o(Q2) — W(f2) is square-integrable, and
therefore as an eigenfunction of the Laplacian with a negative eigenvalue, it must vanish.
The proof for arbitrary g is similar but technically more complicated. We will only provide
a sketch.

— 41 —



What makes the case of general g more complicated is that there are different ways that
Q can go to infinity. Of course, the inequivalent possibilities are somewhat limited by the
Sp(2g,7Z) symmetry. Because of the symmetry of shifting ) by an arbitrary integer-valued
symmetric matrix (see the final comment of section A.2), there is no meaningful notion of
Re 2 becoming large, and we can keep it fixed in the following discussion. Similarly, we do
not have to worry about the possibility that an eigenvalue of y = Im Q becomes small (thus
reaching the boundary of the Siegel upper half space H); by an Sp(2g,Z) transformation
we can map any limiting behavior of y to the possibility that y is becoming large. However,
there are different ways for y to become large and we have to be careful about this.

Looking back to the lattice sum (A.22) that enters the definition of the Siegel-Narain
theta function, we see that when y becomes large, some contributions to the sum over the
g-plets of integers nip and w’? are strongly suppressed. For example, if y becomes large in
a completely generic way, all of its eigenvalues becoming large, then all contributions are
strongly suppressed unless n = w = 0. At the other extreme, if y11 becomes large while
other matrix elements of y remain fixed, then the surviving contributions in the lattice sum
are those with n',, = w!? = 0, but no constraint on the other integers in the lattice sum. In
general, there are g essentially different ways for y to go to infinity. An example of the k"
possibility is that the large matrix elements of y might be y11, 22, - - , yxr. A more general
way to describe this situation is to say that the k" possibility is that y goes to infinity
in such a way that the lattice sum in eq. (A.22) is reduced to a sum over (g — k)-plets of
integers, for some k € {1,2,3,---,¢}. In terms of Riemann surfaces, what is happening is
that a genus g surface is degenerating to a surface of genus g — k, with k pairs of points
glued together.

We will first consider the case that k = g, which we will describe by saying that y
is uniformly large. First let us look at the Eisenstein series (A.20). We see immediately
see that for generic large y (with fixed z = Re(2), the contribution to F4(2) with C =0
is (det Im Q)*, while any other contribution is of order 1/(det Im2)®. (There is only one
contribution with C' = 0, because the condition C' = 0 means that v € P, regardless of D.)
So for uniformly large vy,

Es(Q) ~ (det ImQ)* + O((det ImQ) 7). (A.29)

Now let us look at the definition of the Siegel-Narain theta function in eq. (A.22). With
y large and generic, all contributions to the lattice sum with nonzero integers n, w are
strongly suppressed. Thus the Siegel-Narain theta function reduces to ©(m, Q) = 1. After
averaging this over m, we get F(€) = 1, and hence W (Q) = (det ImQ)"/2, plus corrections
that vanish when y becomes uniformly large. So we have confirmed that in this region,
Ep/s(Q) and W () coincide, modulo terms that vanish asymptotically.20

26 A detail about these subleading terms might be puzzling at first. In eq. (A.29), we see that the sub-
leading terms in Ep/2(§2) are power law suppressed when y becomes uniformly large, while from egs. (A.22)
and (A.23), it may appear that contributions to the theta function with n or w nonzero are exponentially
suppressed for uniformly large y. That last statement is true for fixed values of the Narain moduli G, B.
However, we are really interested in averaging over these moduli to get F/(Q). In this averaging, it is possible
for G to be very large. For uniformly large y, the averaged theta function has contributions that decay like
a power of y that come from n, w # 0 but G ~ y. This gives power law suppressed contributions to the
averaged theta function because the measure of Narain moduli space decays as a power of G for large G.
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Finally we will discuss what happens when y becomes large in a nonuniform fashion.
For illustration, we consider the case £ = 1. The other cases are similar. For k& = 1, we
may assume that the only large matrix element of y is y;;. Looking back to eq. (A.20),
we see that all contributions to Es(£2) are suppressed in this region except those with
Ci1=0,7=1,---,¢g. Since one of the columns of C' vanishes, it follows that there is a
nonzero g-component row vector ag with agC' = 0. We can choose ag to be primitive. The
Lagrangian sublattice I'g associated to the pair (C, D) then contains the vector (0,aD).
Using the equivalence relation (C,D) = (UC,UD), U € GL(g,7Z), which does not affect
the condition C;; = 0, we can put agD in the form a = (1,0,0,---,0). Once we do this,
Iy contains the vector (b,a), with b = (0,0,---,0). Iy is spanned by this vector together
with a rank g — 1 lattice I'j) of vectors (b, a) where b and a have vanishing first component:
b = (0,ba,---,b,) and a = (0,a?,--- ,a9). But I'j is just a Lagrangian sublattice of
72972, Thus for y1; large, Fs(Q) reduces to (det Im2)* times a sum over Lagrangian
sublattices of Z2972, plus terms that vanish for y;; — oo. Now let us compare this to
the averaged theta function. In making this comparison, we assume inductively that we
already know that Ep/(2) = W(Q) for genus less than g, and we will prove that for
genus g, Ep/(2) — W(Q) vanishes for y11 — oo. (As explained earlier, if D > g + 1, it
then follows that Ep/,(Q2) = W(€2) in genus g.) For this, we just observe from eqs. (A.22)
and (A.23) that for y;; — oo, the surviving contributions to the lattice sum that define
the theta function are those with nlp = w'? = 0, so that this lattice sum reduces to a sum
of the same form with g replaced by g — 1. By the inductive hypothesis, the average of
this restricted sum is related to the Eisenstein series with g replaced by g — 1.27 So W (£2)
for genus g agrees for y11 — oo with Ep/(£2). As in footnote 26, to compare terms in
Epss(2) and in W (§2) that vanish for y1; — oo, one must take into account the behavior
at large GG, which gives the dominant correction at large y11 on the CF'T side.
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