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1 Introduction

A simple model of gravity in two dimensions — JT gravity — is dual to a random ensemble

of quantum mechanical systems, rather than a specific quantum mechanical system [1]. It

is natural to wonder if something similar happens in higher dimensions. For example,

gravity is still relatively simple in three spacetime dimensions, at least from some points

of view. Are there simple theories of gravity in three dimensions — maybe even pure

Einstein gravity — that are dual in some sense to a random two-dimensional conformal

field theory (CFT)?

The difficulty here is that while a quantum mechanical system can be defined by

specifying a Hamiltonian, the data required to specify a 2d CFT are far more complicated.

Accordingly, it is far from clear what should be meant by a random 2d CFT, though one

can possibly get some insight from results about asymptotic behavior of dimensions and
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couplings of CFT primaries [2–5]. It is also not clear what should be the partition function

of pure Einstein gravity, though there have been a number of attempts [6–8].

Here we will consider a simpler problem. We consider 2d CFT’s with left and right

central charges (c`, cr) = (D,D) (for some positive integer D) that also have left- and

right-moving U(1)D current algebras. It is expected that any such theory is in the family

originally constructed by Narain [9, 10], the parameter space being the locally symmet-

ric space

MD = SO(D,D;Z)\SO(D,D;R)/SO(D)× SO(D). (1.1)

(Here SO(D,D;Z) must be understood as the automorphism group of an even integer

unimodular lattice Λ of signature (D,D).) As a CFT moduli space, MD carries a natural

Zamolodchikov metric, which determines a natural measure. This is actually the same

metric and measure that MD gets because it is locally homogeneous, that is, it is the

quotient of the homogeneous space SO(D,D;R)/SO(D) × SO(D) by the discrete group

SO(D,D;Z). MD has finite measure for any D > 1, and when this is the case, it makes

sense to average overMD in its natural measure. This is what we will mean by “averaging

over Narain moduli space.”

For a point m ∈MD, let ZΣ(m, τ) be the partition function of the corresponding CFT

on a Riemann surface Σ with modular parameters τ . The lattice sum that controls the m-

dependence of ZΣ(m, τ) is a nonholomorphic theta function that was originally introduced

by C. L. Siegel and rediscovered by Narain; we will call it the Siegel-Narain theta function,

and denote it as1 Θ(m, τ). It turns out that the average of Θ(m, τ) over m ∈ MD can

be computed in a simple way, using what is known in number theory as the Siegel-Weil

formula, developed by Siegel, Maass, and Weil [11–15]. The Siegel-Weil formula expresses

the average over m of Θ(m, τ) in terms of a non-holomorphic Eisenstein series ED/2(τ)

with modular weights (D/2, D/2).2

If the ensemble of Narain theories is dual to a theory of gravity, that theory is not

going to be a conventional one. First of all, since the CFT’s considered have U(1)2D current

algebra and in particular U(1)2D global symmetry, the bulk theory will have U(1)2D gauge

symmetry. The perturbative anomalies of the boundary current algebra become Chern-

Simons couplings in the bulk theory. Those anomalies are controlled by the even integer

unimodular lattice ΛIJ , I, J = 1, · · · , 2D that is used in constructing the CFT. Thus at a

minimum we expect the bulk theory to have gauge fields AI , I = 1, · · · , 2D of the group

U(1)2D with Chern-Simons couplings.3 On a three-manifold Y , the Chern-Simons action is

ICS =
∑
I,J

ΛIJ
2π

∫
Y
AI ∧ dAJ . (1.2)

1Θ(m, τ) is not holomorphic or anti-holomorphic in τ . To emphasize this, one could denote it as

Θ(m, τ, τ). To lighten notation, we will not do that.
2Non-holomorphic or real analytic Eisenstein series may be less familiar than holomorphic ones; however,

they appear in the effective action of string theory [16, 17]. The constant term in the Siegel-Weil formula,

which is known as the Smith-Minkowski-Siegel mass formula, computes volumes of moduli spaces and has

appeared studies of the moduli space of conformal field theories [18, 19].
3A variant that we consider in section 4.4 is that the gauge group is really R2D.
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Figure 1. If a closed Riemann surface Σ is embedded in R3 in an arbitrary fashion, then its

“interior” is, topologically, a handlebody Y . Such an embedding of Σ determines a distinguished

sublattice Γ0 of the first homology Γ = H1(Σ,Z), spanned by one-cycles that are contractible in Y .

In the present example, Σ has genus 2, and Γ0 is spanned by the two one-cycles drawn.

The Narain CFT’s require that Σ should be oriented (because the target space B-field

plays an important role). To define the Chern-Simons action, Y should be oriented, in

such a way that along the boundary its orientation induces the orientation of Σ = ∂Y .

The action (1.2) is diffeomorphism-invariant without any need for a metric tensor.

One may think that to get the dual theory we want, we must add a metric tensor and

a gravitational action. But there are reasons to believe that this is not the case. In

the boundary theory, the stress tensor can be expressed in terms of the currents via the

Sugawara construction: if T is the holomorphic stress tensor, and Ja, a = 1, · · · , D are the

holomorphic currents, the formula is T (z) =
∑

a : JaJa(z) :. What is the bulk dual of the

Sugawara formula? It is plausible that the bulk dual of the fact that the stress tensor is a

function of the currents rather than being “new” is that we should not introduce in bulk

a metric tensor that is independent of the gauge fields. Thus we might hope that the bulk

dual of the average over Narain moduli space is simply the gauge theory with action ICS, or

at least, something more like this than a theory with a dynamical metric tensor. This has

to be supplemented with a recipe for what Y should be. The Chern-Simons gauge theory

per se does not suggest any specific rule to sum over Y ’s with fixed conformal boundary

Σ; in fact, the Chern-Simons path integral on a three-manifold Y makes sense for any

particular Y , and the Chern-Simons gauge theory does not come with any rationale for

summing over choices of Y .

However, the Siegel-Weil formula suggests how to sum over Y as long as Σ is connected.

Topologically, the simplest class of three-manifolds with boundary Σ are “handlebodies.”

An orientable two-manifold Σ can be embedded in R3 (in many topologically distinct

ways). Any such embedding divides the complement of Σ in R3 into two components; the

“interior” component is called a handlebody (figure 1). With a plausible recipe for how to

compute ZY (τ) for Y a handlebody, the Siegel-Weil formula gives

〈ZΣ(m, τ)〉 =
∑
Y ∈J

ZY (τ), (1.3)

where 〈 〉 represents an average over MD, and J is the set of all handlebodies with

boundary Σ.

In pure Einstein gravity with negative cosmological constant, if Σ has genus 1, there is

a semi-plausible justification for summing only over handlebodies [6]. Any three-manifold
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that is a classical solution of Einstein gravity with negative cosmological constant and that

has a conformal boundary consisting of a single component of genus 1 is a handlebody.

Therefore, if the path integral of Euclidean quantum gravity should be constructed as an

expansion around critical points (or as an integral over Lefschetz thimbles associated to

critical points), then only handlebodies can contribute if Σ has genus 1. (In a supersym-

metric extension of three-dimensional gravity, there can be a more clear-cut justification

to sum only over handlebodies in evaluating an appropriate index [20].)

This justification to include only handlebodies is not entirely convincing for pure Ein-

stein gravity, but in any case, we are here not considering pure Einstein gravity, but a more

exotic theory that can be approximated by the Chern-Simons theory (1.2). Moreover, even

in pure Einstein gravity, for Σ of genus g > 1, there are classical solutions with conformal

boundary Y that are not handlebodies; see [21].

We can get, in a sense, a clearer picture of what the sum in eq. (1.3) would have

to mean by considering the case that Σ is not connected. If Σ is the disjoint union of

components Σα, α = 1, · · · , s, with modular parameters τα, then for fixed m ∈ MD, the

partition function is a simple product: ZΣ(m, τ) =
∏
α ZΣα(m, τα) (here we write τ for the

whole collection of all the τα). After averaging over m, this is of course no longer true:

〈ZΣ(m, τ)〉 6=
∏
α

〈ZΣα(m, τα)〉. (1.4)

The Siegel-Weil formula gives an answer for 〈ZΣ(m, τ)〉 also when Σ is not connected,

but to describe it, we have to first restate the formula in the connected case. Let Σ be

a connected Riemann surface of genus g. The first homology group H1(Σ,Z) is a lattice

Γ ∼= Z2g. For γ, γ′ ∈ H1(Σ,Z), we denote their oriented intersection number as 〈γ, γ′〉. The

pairing 〈 , 〉 is antisymmetric and nondegenerate. A “Lagrangian sublattice” Γ0 ⊂ H1(Σ,Z)

is a primitive4 sublattice of rank g on which the intersection pairing vanishes; in other

words, 〈γ, γ′〉 = 0 for γ, γ′ ⊂ Γ0. For example, any set of A-cycles on Σ determines a

Lagrangian sublattice, namely the sublattice of H1(Σ,Z) spanned by the homology classes

of those A-cycles. Alternatively, any oriented manifold Y with boundary Σ determines a

Lagrangian sublattice, namely the sublattice Γ0 ⊂ H1(Σ,Z) that is spanned by all one-

cycles γ ⊂ Σ that are boundaries of two-manifolds in Y .

If Σ is connected, then every Lagrangian sublattice Γ0 is associated in this way to a

distinguished three-manifold Y , namely a handlebody. (To construct Y , pick a set of A-

cycles or disjoint simple closed curves in Σ that provides a basis of Γ0, and embed Σ in R3 so

that these A-cycles are contractible in the interior.) This gives a one-to-one correspondence

between handlebodies and associated Lagrangian sublattices. However, associated to the

same sublattice there are infinitely many other three-manifolds that are not handlebodies.

For connected Σ, using the correspondence between handlebodies and Lagrangian sub-

lattices of H1(Σ,Z), we can reinterpret J as the set of Lagrangian sublattices. Once this

4Here “primitive” means that if Γ0 contains a nonzero multiple of some x ∈ H1(Σ,Z), then it actually

contains x. In other words, we are not allowed to replace Γ0 by a proper sublattice of the same rank. An

equivalent definition is that a sublattice Γ0 ⊂ H1(Σ,Z) is primitive if the quotient H1(Σ,Z)/Γ0 is torsion-

free. All sublattices considered in this paper are assumed to be primitive; this condition is not always

stated.
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is done, the Siegel-Weil formula says that (with a plausible interpretation of ZY (τ)) the

formula (1.3) holds for all Σ, connected or not. The difference is that if Σ is not connected,

there is no distinguished choice of a manifold Y associated with a given Lagrangian sub-

lattice. So to state the formula in a way that is valid whether Σ is connected or not, we

have to interpret the sum on the right hand side of eq. (1.3) as a sum over Lagrangian

sublattices. We write it as such:

〈ZΣ(m, τ)〉 =
∑
Γ0

ZΓ0(τ), (1.5)

where the sum now runs over the set of Lagrangian sublattices and ZΓ0(τ) is the contribu-

tion to the partition function associated to the Lagrangian sublattice Γ0.

This tells us something about the exotic gravitational theory that is dual to an average

over Narain moduli space — if such a theory exists. In this theory, the objects that

are analogous to “manifolds with boundary Σ” in ordinary geometry are classified by

Lagrangian sublattices of H1(Σ,Z). Apparently, the additional topological invariants that

would be present in ordinary geometry are lacking in this more exotic theory.

A conceivable alternative interpretation might be that in the exotic theory, there are

many “manifolds” associated to a given Lagrangian sublattice Γ0, and the sum over all of

these is giving what we call ZΓ0(τ). This seems less plausible, in part for the following

reason. We will see that to reproduce the effect of averaging over MD, we have to use

ZΓ0(τ) = cDΓ0
, where cΓ0 depends on Γ0 and τ but not on D. If ZΓ0(τ) is built in a nontrivial

way as a sum of contributions of different “manifolds” Γ0,i, then, since a nontrivial formula

cDΓ0
=
∑

i c
D
Γ0,i

is not going to hold for all D no matter what we assume for the cΓ0,i ,

individual contributions must have a more complicated dependence on D, which then

cancels out in the sum
∑

i c
D
Γ0,i

. It seems more economical to assume that in the exotic

theory under discussion, the analog of a “manifold with boundary Σ” is just classified by

the choice of Γ0. This possibility does not sound completely far-fetched; it would be in

keeping with the idea that among all the topological invariants of classical geometry, only

some that are particularly robust are well-defined in quantum gravity.

A close cousin of the U(1)2D current algebra considered in the present paper is a ratio-

nal conformal field theory (RCFT), with an extended chiral algebra that has only finitely

many modules. Attempts have been made to express RCFT partition functions in terms of

sums over modular images of a function which would be hypothetically the partition func-

tion of an exotic theory of gravity on a handlebody [22, 23]. This program is successful at

c = 1/2 at least in the sense that a suitable function exists, except that one has to assume

slightly puzzling equivalences between different handlebodies. The program does not seem

to work in the same way for theories with 1/2 < c < 1. Those theories have a chiral algebra

that admits more than one modular-invariant partition function. It may be that the bulk

path integral in these cases represents a sort of average over the possible boundary theories,

given a knowledge of the chiral algebra. That is in the spirit of what we find here for a

boundary theory with U(1)D left-moving and right-moving current algebras. The difference

is that instead of finitely many possible boundary theories with a given chiral algebra, we

will have a continuous family of possible boundary theories, parametrized by MD.
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The organization of this article is as follows. Section 2 is devoted to averaging over

Narain moduli space in the case of a surface Σ of genus 1. The Siegel-Weil formula that

carries out this averaging is explained in sections 2.1 and 2.2. In section 2.3, we attempt to

interpret the output of the Siegel-Weil formula in terms of a bulk dual theory. In section 2.4,

we consider what happens if we supply more information about the CFT by for example

specifying a particular extension of the boundary current algebra. This leads to a restricted

averaging problem that is governed by a more general version of the Siegel-Weil formula.

In the most extreme case the average is a sum over a finite set of CFTs, rather than an

integral over a moduli space; nevertheless, the result has a plausible gravity interpretation.

In section 3, we study the generalization to surfaces of higher genus and to the case

of a surface with multiple connected components. The Siegel-Weil formula is applicable

in any genus. As we have already explained, to interpret the result in terms of a bulk

dual theory, we seemingly have to assume that the dual theory has a nonclassical notion of

“manifold with boundary Σ.” The Siegel-Weil formula also applies to the case of a surface Σ

with multiple connected components. Connected correlators between different components

would come, in ordinary gravity, from connected manifolds with disconnected boundary,

as in the case of JT gravity [1]. We study explicitly one example of a contribution to a

connected correlator, which is related to the spectral form factor 〈ZT 2(m, τ ′)ZT 2(m, τ ′′)〉.
The contribution that we analyze vanishes exponentially for large D, compared to the

corresponding disconnected correlator. This is as if adding a wormhole that connects two

components increases the classical action, which is probably the general state of affairs of

a hypothetical theory of gravity related to the Siegel-Weil formula. The contribution to

the spectral form factor we analyze is non-zero at large Lorentzian time, a feature which is

indicative of theories with a discrete spectrum. We discuss in section 3.3 the special case

that Σ is of genus 0 or has a component of genus 0. In averaging over Narain moduli space,

a surface of genus 0 has no connected correlator with anything else. In the dual theory,

this might mean that there is no way to make a wormhole connecting a surface of genus

zero to another surface. An alternative interpretation might be that in the dual theory,

there is no notion of whether spacetime is connected.

Finally, in section 4, we describe in more detail the attempt to interpret the dual of

the average over Narain moduli space in terms of a gauge theory with gauge group U(1)2D

or possibly R2D. We find that when the boundary has a single connected component, bulk

Chern-Simons theory on a handlebody, under some assumptions, exactly reproduces the

corresponding term in the Siegel-Weil formula. Indeed, there is a sense in which the bulk

partition function is one-loop exact in a perturbative expansion in 1/D.5 However, we will

discover that the situation is considerably more subtle when the boundary is disconnected.

Appendix A contains further details about Narain moduli space, as well as a sketch of

the derivation of the Siegel-Weil formula at genus g > 1 and D > 1.

When this draft was largely complete, we learned of parallel work by Afkhami-Jeddi,

Cohn, Hartman, and Tajdini [25].

5This is much simpler than the case of pure gravity, where the perturbative expansion is one-loop exact

when the boundary is a torus [6] but is not expected to terminate when the boundary has higher genus [24].
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2 The Siegel-Weil formula in genus one

2.1 A practice case: D = 1

We begin by discussing the Siegel-Weil formula in genus 1, where we can write somewhat

more explicit formulas and the hypothetical gravitational dual can be analyzed in a more

direct way.

In general, the Narain models are sigma-models with target a D-torus TD, leading to

a CFT with (c`, cr) = (D,D). We will begin with the case D = 1, to illustrate the main

idea. We take the target space to be a circle of circumference 2πR. The moduli space M1

in this example is parametrized by R, which can be restricted to the range 1 ≤ R < ∞
because of the R → 1/R duality symmetry. Parametrizing the circle by an angle-valued

field X, the action (with conventions as in [26], eq. (2.1.1)) is

I =
R2

4πα′

∫
d2σ ∂αX∂

αX. (2.1)

The marginal operator associated with a deformation R → R + δR is RδR
2πα′∂αX∂

αX, and

its two-point function is proportional to (δR)2/R2. This gives the Zamolodchikov metric

of M1

ds2 = 4
dR2

R2
, (2.2)

which is also the natural metric on M1 as a locally homogeneous space. (The factor of

4 is chosen for later convenience and to agree with the more general formula (A.3) of

appendix A.)

The partition function of the model on a genus 1 surface Σ with modular parameter

τ = τ1 + iτ2 is (see [26], eq. (8.2.9))

ZΣ(R, τ) =
Θ(R, τ)

|η(τ)|2
, (2.3)

where η(τ) is the Dedekind eta function

η(τ) = q1/24
∞∏
n=1

(1− qn), q = exp(2πiτ), (2.4)

and Θ(R, τ) is the D = 1 case of the Siegel-Narain theta function,

Θ(R, τ) =
∑
n,w∈Z

Q(n,w;R, τ), (2.5)

with

Q(n,w;R, τ) = exp

(
−πτ2

(
α′n2

R2
+
w2R2

α′

)
+ 2πiτ1nw

)
. (2.6)

The integers n and w are the momentum and winding quantum numbers of a string.
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A small calculation gives

τ2
∂

∂τ2
Q = −πτ2

(
α′n2

R2
+
w2R2

α′

)
Q

τ2
2

∂2

∂τ2
2

Q = π2τ2
2

(
α′n2

R2
+
w2R2

α′

)2

Q

τ2
2

∂2

∂τ2
1

Q = −4π2τ2
2n

2w2

(
R
∂

∂R

)2

Q =

(
4π2τ2

2

(
α′n2

R2
− w2R2

α′

)2

− 4πτ2

(
α′n2

R2
+
w2R2

α′

))
Q . (2.7)

Therefore (
τ2

2

(
∂2

∂τ2
1

+
∂2

∂τ2
2

)
+ τ2

∂

∂τ2
− 1

4

(
R
∂

∂R

)2
)
Q = 0, (2.8)

and it follows immediately that Θ obeys the same equation:(
τ2

2

(
∂2

∂τ2
1

+
∂2

∂τ2
2

)
+ τ2

∂

∂τ2
− 1

4

(
R
∂

∂R

)2
)

Θ(R, τ) = 0 . (2.9)

The measure on M1 can be deduced from the metric (2.2) and is

µ(R) =
dR

2R
. (2.10)

The volume ofM1 is infinite, so averaging overM1 does not make sense, as remarked in the

introduction. Let us ignore this for a moment and explain the strategy in the derivation of

the Siegel-Weil formula. We would define a function F1(τ) by integrating Θ(R, τ) overM1:

F1(τ) =

∫ ∞
1

dR

2R
Θ(R, τ). (2.11)

In reality, this integral does not converge, since Θ ∼ R for R → ∞. Then using the

differential equation for Θ, we find that(
τ2

2

(
∂2

∂τ2
1

+
∂2

∂τ2
2

)
+ τ2

∂

∂τ2

)
F1(τ) =

1

8

∫ ∞
1

dR

R

(
R
∂

∂R

)2

Θ(R, τ)

=
1

8

∫ ∞
1

dR
∂

∂R

(
R
∂Θ(R, τ)

∂R

)
. (2.12)

Next one tries to integrate by parts to prove the vanishing of the right hand side of this

equation. There is no surface term at R = 1 because the R→ 1/R symmetry ensures that

∂RΘ|R=1 = 0. If there were also no surface term at R =∞, we would deduce a differential

equation for F1(τ): (
τ2

2

(
∂2

∂τ2
1

+
∂2

∂τ2
2

)
+ τ2

∂

∂τ2

)
F1(τ) = 0. (2.13)

The derivation of the Siegel-Weil formula would be completed by using this differential

equation together with a knowledge of the behavior for τ2 →∞ to determine F1(τ).

– 8 –
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The only problem with this derivation is that the behavior for R→∞ does not allow

either the definition of F1(τ) in eq. (2.11) or the integration by parts that would show

the vanishing of eq. (2.12). Hence we will move on to the case of larger D, where such a

derivation does work.

Before doing so, we restate the differential equation in a convenient form. The Lapla-

cian of M1 in the metric (2.2) is

∆M1 = −1

4

(
R

d

dR

)2

. (2.14)

The natural metric of the upper half plane H is

ds2 =
dτ2

1 + dτ2
2

τ2
2

. (2.15)

Acting on a scalar function, the Laplacian of the upper half plane is

∆H = −τ2
2

(
∂2

∂τ2
1

+
∂2

∂τ2
2

)
. (2.16)

Therefore the differential equation for the Siegel-Narain theta function for D = 1 can be

written (
∆H − τ2

∂

∂τ2
−∆M1

)
Θ(R, τ) = 0. (2.17)

2.2 The Siegel-Weil formula for higher D

For general D, we consider a sigma-model with target TD and general (constant) metric

G and two-form field B. G and B together are the moduli that parametrize MD; we

schematically denote these moduli as m. For D > 1, MD has finite volume6 and we

normalize its measure µ(m) so that the volume is 1:∫
MD

dµ(m) = 1. (2.18)

The partition function of the sigma-model in genus 1 is

ZΣ(m, τ) =
Θ(m, τ)

|η(τ)|2D
, (2.19)

where Θ(m, τ) is the Siegel-Narain theta function that comes from a sum over momenta

and windings. See eq. (A.5) for the explicit formula.

6For example, for D = 2, using the relationships SO(2, 2,R) ∼= (SL(2,R)×SL(2,R))/Z2 and SO(2, 2,Z) ∼=
(SL(2,Z) × SL(2,Z))/Z2, one can show that M2 is (calF × F)/Z2, where F ≡ SL(2,Z)\H, with H =

SL(2,R)/U(1) being the upper half plane. F is isomorphic to the moduli space of Riemann surfaces of

genus 1 and has finite volume. Using the metric (A.3), one can show that as D increases, the volume

integral converges more rapidly. The same is true for the integral in (2.21). To verify the last statement,

one has to take into account the behavior of the function Θ near infinity in the space of target space metrics.
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Θ(m, τ) obeys a differential equation that generalizes eq. (2.17) for d = 1:(
∆H −Dτ2

∂

∂τ2
−∆MD

)
Θ(R, τ) = 0. (2.20)

A derivation of this equation similar to the one in section 2.1 is sketched in appendix A.

The next step is to average Θ(m, τ) over the Narain moduli space MD, defining

FD(τ) =

∫
MD

dµ(m) Θ(m, τ). (2.21)

Actually, this integral converges only for D > 2, so in continuing, we make that restriction.

(M2 has finite volume, but Θ(m, τ) grows at infinity in such a way that the integral is

divergent for D = 2. To be precise, Θ(m, τ) grows in the limit that the target space volume

is large and also in the “large complex structure” limit.) Following the same steps as in

section 2.1, we deduce from the last two formulas a differential equation for FD(τ):(
∆H −Dτ2

∂

∂τ2

)
FD(τ) = 0. (2.22)

In addition to satisfying this differential equation, FD(τ) transforms under modular

transformations with weights7 (D/2, D/2), since FD(τ)/|η(τ)|2D is modular-invariant. In

addition,

lim
τ2→∞

FD(τ) = 1, (2.23)

since limτ2→∞Θ(m, τ) = 1.

It is convenient to define WD(τ) = τ
D/2
2 FD(τ). This function is modular-invariant,

since multiplying by τ
D/2
2 cancels the modular weights of FD(τ). Clearly WD(τ) ∼ τ

D/2
2

for τ2 →∞. Finally the differential equation for FD(τ) becomes

(∆H + s(s− 1))WD(τ) = 0, s = D/2. (2.24)

Thus WD(τ) is an eigenfunction of ∆H with the eigenvalue −s(s − 1), which is negative

for D > 2.

For D > 2, the differential equation (2.24) has no nonzero solution that grows at

infinity more slowly than τ
D/2
2 . This fact was important in [16, 17]. Indeed, any solution of

the differential equation that grows more slowly than τ
D/2
2 is bounded by a constant times

τ
1−D/2
2 , and therefore (for D > 2) is a square-integrable eigenfunction of the Laplacian

with the negative eigenvalue −s(s − 1). But the Laplacian on any manifold, acting on

square-integrable wavefunctions, is strictly non-negative.

7To say that a function f has modular weights (u, v) with u− v ∈ Z means that f((aτ + b)/(cτ + d)) =

(cτ + d)u(cτ + d)vf(τ) for

(
a b

c d

)
∈ SL(2,Z). For example, τ2 = Im τ has modular weights (−1,−1). The

function |η(τ)|2 has modular weights (1/2, 1/2), so FD(τ) must have modular weights (D/2, D/2) to ensure

modular invariance of the partition function. The case u− v ∈ 1
2

+ Z is more complicated and will appear

later.
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A function that satisfies all of the necessary conditions is the non-holomorphic (real

analytic) Eisenstein series8

Es(τ) =
∑

(c,d)=1

τ s2
|cτ + d|2s

. (2.25)

The sum is over pairs of relatively prime integers c, d, up to sign (that is, we do not

distinguish (−c,−d) from (c, d)). Alternatively, the sum is over all modular images of the

function τ s2 , since a general element

(
a b
c d

)
∈ SL(2,Z) maps τ s2 to τ s2/|cτ + d|2s. So the

sum in equation (2.25) can be alternatively written as

Es(τ) =
∑

γ∈P\SL(2,Z)

Im (γτ) (2.26)

where P =
{(

1 n
0 1

)}
is the subgroup of SL(2,Z), isomorphic to Z, that leaves Im τ invariant.

It is straightforward to check that the coprime integers (c, d) uniquely label elements of the

coset P\SL(2,Z). The sum in eq. (2.25) converges for Re s > 1, which in our application

means D > 2.

Since Es(τ) is a sum over all of the modular images of τ s2 , it is modular-invariant.

The function τ s2 is easily seen to be an eigenfunction of ∆H with eigenvalue −s(s− 1); the

same therefore is true of its modular images, and of Es(τ). Finally, it is immediate that

Es(τ) ∼ τ s2 for τ2 → ∞. Thus, ED/2(τ) satisfies all of the desired properties of WD(τ).

These functions must be equal, since their difference WD(τ) − ED/2(τ) grows at infinity

more slowly than τ
D/2
2 and hence must vanish, as discussed earlier.

Finally, we get an explicit formula for the average of the genus 1 partition function

over the Narain moduli space MD:

〈ZΣ(m, τ)〉 =
ED/2(τ)

τD2 |η(τ)|2D
. (2.27)

The numerator and denominator are both modular-invariant.

2.3 Gravitational interpretation of the formula

Our next task is to provide a possible interpretation of this formula in terms of an exotic

bulk theory that is dual to an average over Narain moduli space.

As discussed in the introduction, the starting point is to assume that the bulk partition

function, for the case that the conformal boundary is a surface Σ of genus 1, should be

expressed as a sum over handlebodies. Let us decompose the genus 1 surface Σ as S1×S1,

where the first factor parametrizes “space,” and the second factor parametrizes “Euclidean

time.” One particular handlebody Y with boundary Σ is obtained by filling in the first

factor by a two-dimensional disc D2. Thus Y ∼= D2×S1. This handlebody can be obtained

by Wick rotating Lorentzian AdS3 to Euclidean time via t → itE , where t is the usual

8It is important to note that this real analytic Eisenstein series is different from the holomorphic Eisen-

stein series (which transforms with modular weight (n, 0)) that commonly appears in the theory of modular

forms.

– 11 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
7

global time coordinate, and then periodically identifying tE . This handlebody is usually

referred to as thermal AdS, since it is the one used to study thermal physics in an AdS

background.

Any other handlebody with boundary Σ is obtained from Y by a modular transforma-

tion of the boundary. In other words, to construct a more general handlebody one takes

some other decomposition of Σ as S1×S1, and fills in the first factor by a disc. These other

handlebodies are thus labelled by elements of the modular group SL(2,Z). In fact, because

the element Tn =
(

1 n
0 1

)
∈ SL(2,Z) does not generate a new handlebody, each handlebody

is uniquely labelled by an element of the coset P\SL(2,Z), where P is the subgroup of

triangular matrices generated by T . One simple example is the handlebody obtained from

thermal AdS by an S transform — this handlebody is obtained by filling in the “Euclidean

time” circle, rather than the spatial circle. This handlebody is the Euclidean continuation

of the BTZ black hole in AdS.

In [6], a Hamiltonian approach was used to evaluate the path integral of Einstein

gravity on D× S1. In this approach, the key step is to determine the spectrum of physical

states that arise in quantization on the spatial manifold D. The partition function on D×S1

is then evaluated as a trace in that Hilbert space. In Einstein gravity, there are no bulk

excitations; the only physical states in quantization on D are the “boundary gravitons,”

first described by Brown and Henneaux [27]. The proposal in [6] was that the path integral

on D × S1 simply equals the partition function of the Brown-Henneaux modes. In other

words, D× S1 is thermal AdS, and in three spacetime dimensions, the only excitations in

thermal AdS are the Brown-Henneaux modes. The resulting formula for the gravitational

path integral on D × S1 was later confirmed by a direct 1-loop computation9 in Einstein

gravity [28].

In the present context, instead of the boundary gravitons, we should discuss the bound-

ary modes of the current algebra. In other words, instead of Einstein gravity, we are here

considering a theory that is supposed to be approximated, in some sense, by the U(1)2D

Chern-Simons theory

ICS =
∑
I,J

ΛIJ
2π

∫
Y
AI ∧ dAJ , (2.28)

where Λ is an even integral unimodular form of signature (D,D). Instead of boundary

gravitons, the Chern-Simon theory, if treated as in [29], has chiral and anti-chiral bound-

ary current algebras which are abelian (since in this case we are studying an abelian gauge

theory) and are each of rank D (because of the signature of the quadratic form). As ex-

plained in the introduction, this relation of the bulk Chern-Simons theory to the boundary

current algebra was the rationale for introducing the Chern-Simons theory.

The partition function of the boundary current algebras is the same as the partition

function of D left- and right-moving chiral bosons, with zero-modes omitted. It is simply

ZD×S
1

CS =
1

|η(τ)|2D
= |q|−D/12

∞∏
n=1

1

|1− qn|2D
. (2.29)

9There can be no higher order corrections, since the energy and momentum of the boundary gravitons

are uniquely determined by conformal invariance along the boundary.
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This can be interpreted as the thermal partition function of a gas of D “boundary photons,”

in the same way that the gravity partition function was the thermal partition function of

a gas of boundary gravitons. It is the vacuum character of D copies of the U(1) × U(1)

current algebra. This expression can be verified in a direct bulk computation in U(1)2D

Chern-Simons theory, just as in the gravity case. This will be discussed in section 4.

One important feature to note is that we have not included any separate factors of |q| in

equation (2.29), aside from the factors of q1/24 which are contained in the definition of η(τ).

In a normal theory of gravity such a factor would come from the classical Einstein action of

the saddle point. In the present case we have not included a separate Einstein-Hilbert term

in the action since, as explained in the introduction, the boundary stress tensor is itself

an element of the U(1)2D current algebra. The factor of |q|−D/12 in equation (2.29) comes

entirely from the bulk Chern-Simons computation, as we will discover in section 4, and

can be regarded as a one-loop contribution of bulk Chern-Simons theory to the effective

cosmological constant. We note also that equation (2.29) is one-loop exact because, as in

the gravity case, the form of the answer is entirely fixed by the structure of the U(1)2D

current algebra.

Equation (2.29) is the result of the bulk path integral for one particular handlebody

with boundary Σ. To get the full partition function we need to sum over all handlebodies.

That is, we must compute

Zbulk =
∑

γ∈P\SL(2,Z)

1

|η(γτ)|2D
. (2.30)

This is a much more straightforward problem than the superficially similar problem that

was treated in [6]. We simply write

1

|η(τ)|2D
=

1

τ
D/2
2 |η(τ)|2D

· τD/22 . (2.31)

The function τD2 |η(τ)|2D is modular invariant. So summing over modular images does

nothing to this function. Thus we just need the sum over modular images of the func-

tion τ
D/2
2 . But this sum was already done in equation (2.26); it equals the real-analytic

Eisenstein series ED/2(τ).

So given our assumptions, the result that comes from summing over handlebodies is

Zbulk =
ED/2(τ)

τ
D/2
2 |η(τ)|2D

, (2.32)

which as we learned in section 2.2 is equal to the average of the partition function of the

boundary CFT over the moduli space MD.

We consider the generalization of this derivation to higher genus in section 3.

2.4 Adding more information about the CFT

We have so far considered the Siegel-Weil formula only for the case that the lattice Λ

is even and unimodular, as well as integral. In number theory, this restriction would be

– 13 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
7

considered slightly artificial; there is a Siegel-Weil formula for an arbitrary integer lattice.

Here we will sketch how this generalization can arise in a variant of the problem that

we have considered so far. We will not be as detailed as we were in the case of an even

unimodular lattice. In particular, we will not try to provide proofs of the more general

version of the Siegel-Weil formula that we will invoke, though it appears that the approach

in appendix A can potentially be generalized.

Up to this point, we have considered a boundary CFT about which we know nothing

except that it has central charges (D,D) and left- and right-moving U(1)D current algebras.

We did not assume any knowledge about the dimensions of primary fields of this theory.

Instead we averaged over all possibilities, getting an answer with a plausible gravitational

interpretation.

We could instead input some knowledge about the spectrum of primary fields and

average only over the remaining possibilities. It turns out that this leads to more general

versions of the Siegel-Weil formula.

As a special case, let us suppose that we know that the CFT has a primary field

for the current algebra of dimension (1, 0). The condition under which this occurs is as

follows. The vector space V = Λ ⊗Z R has a metric of signature (D,D) that comes

from the intersection form on the lattice Λ and does not depend on the CFT moduli.

Once one specifies those moduli, the metric G of the torus determines the dynamics of

the CFT fluctuations and one gets a decomposition V = V+ ⊕ V−, where V+ and V− are

subspaces on which the intersection form is positive or negative definite and (with a suitable

orientation convention) are respectively the spaces of left- and right-moving modes of the

CFT. Generically, neither V+ nor V− contain any points of the lattice Λ; both V+ ∩ Λ

and V− ∩ Λ are generically empty. The condition for the CFT to have a current algebra

primary of dimension (1, 0) is that there should be a point x ∈ V+ ∩Λ of length squared 2

(it does not matter if this length is computed using the indefinite signature metric of Λ or

the positive-definite metric of V+; these coincide for vectors in V+). The existence of this

(1, 0) primary, along with a second one that is associated to the vector −x, which also lies

in V+∩Λ, extends a U(1) subalgebra of the CFT current algebra to SU(2) at level 1, which

we denote as SU(2)1. (If we want to specify the level of the U(1)2D current algebra, we

could call it U(1)2D
Λ and then the extended current algebra would be SU(2)1 × U(1)2D−1

Υ⊥
,

where Υ⊥ is introduced momentarily. We will not use this notation because it is not clear

that subtleties concerning the level of the abelian current algebra are meaningful in the

present context. See section 4.4.)

Specifying the existence of such an x reduces the CFT moduli space from MD to a

subspace MD,x. Roughly speaking, MD,x = SO(D − 1, D;Z)\SO(D − 1, D;R)/SO(D −
1) × SO(D). However, one has to clarify what is meant by SO(D − 1, D;Z). Let Υ0 be

the rank 1 sublattice of Λ that is generated by x, and let Υ⊥ be its orthocomplement.

The group SO(D − 1, D;Z) that appears in the definition of MD,x is the automorphism

group of Υ⊥.

Υ0 is even but not unimodular; its quadratic form is the 1×1 matrix 2, so its discrimi-

nant is the determinant of that matrix, or 2. Likewise Υ⊥ has discriminant 2. In particular

Λ is not the tensor product Υ0×Υ⊥; Λ has discriminant 1, and Υ0×Υ⊥ has discriminant
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2× 2 = 4. The relation between them is

Λ = Υ0 ⊗Υ⊥ ⊕Υ′, (2.33)

where Υ′ is a coset of Υ0⊗Υ⊥. More specifically, if y ∈ Λ is any vector whose inner product

with x is an odd integer, then Υ′ consists of vectors of the form y + z, z ∈ Υ0 ⊗Υ⊥. The

Siegel-Narain theta function has a corresponding decomposition

Θ(m, τ) = ΘΥ0⊗Υ⊥ + ΘΥ′ , (2.34)

where ΘΥ0⊗Υ⊥ + ΘΥ′ are computed, respectively, by sums over lattice points in Υ0 ⊗ Υ⊥
and in Υ′.

If we consider left-moving modes to be holomorphic and right-moving ones antiholo-

morphic, then the momentum-winding sum of Λ0 is a holomorphic theta function

θ(τ) =
∑
n∈Z

qn
2
, q = exp(2πiτ). (2.35)

Because Λ0 is not unimodular, this function is not mapped to itself by modular transfor-

mations. Rather,

θ(−1/τ) =

√
τ

2i
(θ(τ) + θ̃(τ)), θ̃(τ) =

∑
r∈Z+1/2

qr
2
. (2.36)

The functions θ and θ̃ are associated to the two characters of the chiral algebra SU(2)1.

Let m′ be the CFT moduli that remain after we insist on the existence of the vector

x ∈ Λ ∩ V+. In other words, m′ are the Narain moduli of Υ⊥. The expansion of Θ(m′, τ)

in terms of theta functions of Λ0 and Λ⊥ is

Θ(m′, τ) = θ(τ)ΘΥ⊥(m′, τ) + θ̃(τ)Θ̃Υ⊥(m′, τ), (2.37)

where ΘΥ⊥(m′, τ) is the momentum-winding sum of the lattice Υ⊥, and Θ̃Υ⊥(m′, τ) is a

second function into which this transforms under modular transformations. The two terms

on the right hand side of (2.37) are associated to the two summands in eq. (2.33).

Thus, in order to compute an average CFT partition function, we need to average

ΘΥ⊥(m′, τ) and Θ̃Υ⊥(m′, τ) over MD,x. We will write 〈ZΣ(m′, τ)〉x for the average of

ZΣ(m′, τ) over MD,x. The Siegel-Narain formula for the lattice Υ⊥ expresses this average

in terms of real-analytic Eisenstein series E(τ) and Ẽ(τ) of weights (−1/2, 0):

〈ZΣ(m′, τ)〉x =
θ(τ)E(τ) + θ̃(τ)Ẽ(τ)

τ
D/2
2 |η(τ)|2D

. (2.38)

The definition of a function of modular weight (−1/2, 0) (or more generally of modular

weight (u, v) with u− v ∈ 1
2 + Z) is rather subtle. The simplest definition is simply to say

that E(τ) and Ẽ(τ) transform in such a way that the expression on the right hand side

of eq. (2.38) is modular invariant. A definition rather along these lines (for holomorphic

forms) is given in Chapter IV of [30]. E(τ) and Ẽ(τ) are given by formulas similar to
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eq. (2.25), with an extra factor 1/(cτ + d)1/2 in the denominator on the right hand side;

there are also some congruence conditions on c and d, and one has to include some roots

of unity in the sum to compensate for such factors in the modular transformations of the

theta functions. Details are described in [30] for the case of holomorphic modular forms of

half-integral weight.

Qualitatively, eq. (2.38) is in agreement with what we might expect in a bulk analysis

along the lines of section 2.3. As already noted, the existence of a vector x ∈ Λ∩V+ extends

the left-moving current algebra from U(1)D to SU(2)1×U(1)D−1. The right-moving current

algebra is still U(1)D. So the natural bulk Chern-Simons theory is SU(2)1×U(1)2D−1. The

starting point in trying to compute a bulk partition function is to determine the partition

function of a handlebody D × S1 by taking a trace in the Hilbert space associated with

quantization on D. In a hypothetical bulk theory that can be approximated in some sense

by Chern-Simons theory of SU(2)1×U(1)2D−1, the natural physical states in quantization

on D are the current algebra modes on the boundary, and the corresponding partition

function is θ(τ)/|η(τ)|2D. To derive this formula, one just needs to know that the partition

function of a holomorphic or antiholomorphic U(1) current algebra is 1/η(τ) or 1/η(τ),

while the partition function of the vacuum module of holomorphic SU(2)1 current algebra

is θ(τ)/η(τ).

To get an ansatz for the bulk partition function in this situation, we sum over modular

images of θ(τ)/|η(τ)|2D. Writing

θ(τ)

|η(τ)|2D
=

θ(τ)τ
D/2
2

τ
D/2
2 |η(τ)|2D

, (2.39)

where the denominator is modular-invariant, we see that have to sum over the modular im-

ages of θ(τ)τ
D/2
2 . This will generate the numerator on the right hand side of eq. (2.38). The

details are somewhat complicated because the modular transformation of θ(τ) is somewhat

complicated, so we will not attempt more detail.

We have considered the special case that a U(1) subgroup of the current algebra is

extended to SU(2), but one can analyze in a similar way any assumed extension of the

U(1)D ×U(1)D current algebra.10 In general, averaging over the remaining moduli via the

Siegel-Weil formula always gives a result that has a more or less plausible interpretation

in terms of an exotic bulk theory of gravity. We will just describe the construction that

leads to the holomorphic case of the Siegel-Weil formula. Suppose that D is a multiple

of 8, so that positive-definite even integer unimodular lattices of rank D exist. Let Λ−
be such a lattice, and let us stipulate that the CFT moduli are such that Λ ∩ V− ∼= Λ−.

This corresponds to a particular extension of the right-moving U(1)D current algebra. For

example, if D = 8, there is only one choice for Λ−, namely the E8 lattice, and U(1)8 is

extended to E8 current algebra at level 1. With our stipulation that Λ∩V− ∼= Λ−, it follows

that Λ ∩ V+ is equal to a possibly inequivalent even integer unimodular lattice Λ+ of rank

D. However, for D > 8, there are multiple isomorphism classes of such lattices, and all

10The extension does not necessarily involve an enhanced symmetry group. For example, if we had

assumed a vector x ∈ Λ ∩ V+ with x2 = 2r, r > 1, we would get U(1) current algebra at level r.
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isomorphism classes can appear. At the point in moduli space at which Λ+ appears, the

CFT partition function is
ΘΛ+(τ)ΘΛ−(τ)

|η(τ)|2D
. (2.40)

Here ΘΛ+ and ΘΛ− are holomorphic theta functions associated to the lattices Λ+ and Λ−;

ΘΛ− is complex-conjugated because we have assumed the Λ− ⊂ V− so that the Λ− modes

are right-moving.

In this situation, the only possible averaging is over the choice of even integer unimod-

ular lattice Λ+; there are finitely many possibilities, depending on D.11 The holomorphic

case of the Siegel-Weil formula says that the average12 of ΘΛ+ over all possibilities is a

holomorphic Eisenstein series of weight D/2:

ED/2(τ) =
∑

(c,d)=1

1

(cτ + d)D/2
. (2.41)

Thus the average partition function of this class of theories is

〈ZΣ(τ)〉Λ− =
ED/2(τ)ΘΛ−(τ)

|η(τ)|2
. (2.42)

The symbol 〈 〉Λ− represents an average under the constraint Λ ∩ V− ∼= Λ−.

To interpret this result from a gravitational point of view, we start with a seed partition

function onD×S1, which we take to be the partition function of the extended chiral algebra.

In the present example, this is Θ−(τ)/|η(τ)|2D. We write this as

1

η(τ)D
Θ−(τ)

η(τ)D
. (2.43)

To simplify the remaining derivation, let us assume that D is divisible by 24 and not just by

8. Then Θ−(τ)
η(τ)D

is modular-invariant, and so we just have to sum over the modular images

of the function 1/η(τ)D. For D a multiple of 24, the subtle 24th roots of unity that appear

in the modular transformation of η(τ) disappear, and we have just

η((aτ + b)/(cτ + d))D = (cτ + d)D/2η(τ). (2.44)

With this, we see immediately that the sum over modular images of 1/η(τ)D is

ED/2(τ)/η(τ)D. So the sum over modular images of the gravitational expression in eq. (2.43)

does give the formula (2.42) for the average partition function. If we had assumed that

D is divisible by 8 but not necessarily by 24, we would have reached the same result after

analyzing and canceling some cube roots of unity.

In this discussion, we started with the Narain family of CFT’s, based on an even

integer unimodular lattice Λ. Upon assuming an enhancement of the chiral algebra, we

11The number of such lattices is finite, but grows rapidly with D. For example, at D = 48 there are at

least 10120 such lattices, although the number is not known exactly. At large D, the number of even integer

unimodular lattices up to isomorphism grows like DD2

.
12In this averaging, one weights the contribution of a given lattice Λ+ by the inverse of the order of its

automorphism group.
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restrict to a sublattice of Λ. Such a sublattice automatically is still even and integer but

possibly not unimodular. So the averaging involves the Siegel-Weil formula for a general

even integer lattice. Alternatively, to study a family of spin CFT’s, which depend on a

spin structure on Σ, we could start with an integer lattice Λ that is unimodular but not

even. After assuming an enhancement of the chiral algebra, Λ would be replaced by an

integer sublattice that generically is neither even nor unimodular. So the averaging in this

case would depend on the Siegel-Weil formula for a general integer lattice.

3 Higher genus and disconnected boundaries

3.1 Higher genus

We will now describe the Siegel-Weil formula at higher genus, and understand its interpre-

tation in terms of our conjectured exotic theory of gravity. The higher genus CFT partition

function is more complicated, in part because a surface Σ of genus g > 1 does not admit

a flat metric, and hence in any explicit formula there is no way to avoid the conformal

anomaly. We will therefore need to be more schematic.

The genus g partition function of a CFT in the Narain family can be written as

ZΣ(m, τ) =
Θ(m, τ)

Φ
, (3.1)

where Θ(m, τ) comes from a momentum-winding sum and is the Siegel-Narain theta func-

tion in genus g, and Φ comes from the integral over oscillator modes. As before, m denotes

a point in the CFT moduli space MD; τ now represents the whole set of moduli of Σ.

Since the denominator Φ is not sensitive to the CFT moduli, averaging overMD means

averaging Θ(m, τ) over MD. This average is described again by a Siegel-Weil formula.

Using the higher genus analog of the Siegel-Weil formula,13 the result can be written as

〈ZΣ(m, τ)〉 =
ED/2(τ)

(det Im Ω)D/2| det′ ∂|D
, (3.2)

where ED/2(τ), to be described shortly, is an Eisenstein series of the group Sp(2g); Ω is the

period matrix of Σ; and det′ ∂ is the determinant of the ∂ operator of Σ, mapping functions

to (0, 1)-forms, with zero-modes removed. In the denominator on the right hand side of

eq. (3.2), the factor (det Im Ω)D/2 generalizes τ
D/2
2 in eq. (2.27), and | det′ ∂|D generalizes

|η(τ)|2D in that formula.

Our main interest here, however, is the Eisenstein series that appears in the numerator.

Let us first restate in an alternative way the definition of the real analytic Eisenstein series

that we used in genus 1. If Σ has genus 1, then the lattice Γ ⊂ H1(Σ,Z) is a copy of Z2.

Any primitive rank 1 sublattice Γ0 ⊂ Γ is a Lagrangian sublattice.14 Once we pick a basis

of Γ, say by choosing an A-cycle A and a B-cycle B on Σ, Γ0 can be specified by giving its

13In appendix A, we discuss the derivation of the Siegel-Weil formula at genus g, by generalizing the

method presented in the previous section.
14Lagrangian sublattices were defined in the introduction; for the definition of a primitive lattice, see

footnote 4.
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generator, which is a linear combination cA+ dB, with relatively prime integer coefficients

c, d, up to sign. Hence the sum over such pairs in the definition (2.25) of the Eisenstein

series can be interpreted as a sum over Lagrangian sublattices.

The genus g analog of the Siegel-Weil formula similarly involves a sum over Lagrangian

sublattices. Once we pick a Lagrangian sublattice Γ0 ⊂ Γ, it is possible to define det Im Ω

without any additional choices. To do this, we first pick a set of A-cycles Ai that provide

a basis of Γ0, and a complementary set of B-cycles Bj , the nonzero intersection pairings

being 〈Ai,Bj〉 = δij . The homology classes of the Bi are not uniquely determined, but they

are determined up to Bi → Bi + nijA
j , nij ∈ Z. Then one picks a basis of holomorphic

1-forms ωk with
∮
Ai
ωj = δij , and defines the period matrix by Ωij =

∮
Bi
ωj . A shift

Bi → Bi + nijA
j shifts the period matrix by Ωij → Ωij + nij , without changing Im Ω.

Replacing the chosen Ai by a different basis of the same lattice Γ0 changes Ω to PΩP tr,

where P is an integer-valued matrix of determinant ±1 (P tr is the transpose of P ), without

affecting det Im Ω. So in short det Im Ω is well-defined once Γ0 is chosen.

For a given Lagrangian sublattice Γ0, let det Im ΩΓ0 be the corresponding value of

the determinant of the imaginary part of the period matrix. Then the definition of the

Eisenstein series is

Es(τ) =
∑
Γ0

(det Im ΩΓ0)s . (3.3)

The sum runs over all Lagrangian sublattices. For g = 1, Ω is the 1×1 matrix τ = τ1 +iτ2,

so det Im Ω = Im Ω = τ2. Hence (3.3) reduces for g = 1 to the sum over modular images

of τ s2 . This is the definition that we used in eq. (2.25), though in that case we wrote an

explicit formula for the dependence of Im τ on the choice of Lagrangian sublattice. It is

possible to do the same for any g, and rewrite eq. (3.3) as a sum over modular images just

as in eqs. (2.25) and (2.26). This version of eqn (3.3), where the Eisenstein series is written

explicitly as a sum over Sp(2g,Z), is given in equation (A.20).

Now we can explain the properties that a hypothetical bulk dual of the average over

Narain moduli space should have in order to reproduce the result (3.2) for the average

partition function. The bulk contributions to the path integral should be labeled by La-

grangian sublattices Γ0. In terms of classical geometry, we might try to attribute these

contributions to handlebodies with boundary Σ, since (for connected Σ) these are in natural

correspondence with Lagrangian sublattices, as noted in the introduction. That viewpoint

will not work well in the disconnected case, which we come to in section 3.2, so instead we

will just say that the bulk contributions are labeled by Lagrangian sublattices. The bulk

path integral for a given Γ0 should be

1

| det′Γ0
∂|D

, (3.4)

where we note that the determinant depends on Γ0 because of the subtleties involved in

treating the kernel and cokernel of ∂. Writing this as

1

(det Im ΩΓ0)D/2| det′Γ0
∂|D
· (det Im ΩΓ0)D/2, (3.5)
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where the denominator (det Im ΩΓ0)D/2| det′Γ0
∂|D actually does not depend15 on Γ0, we

see that to get the full partition function, we just need to sum (det Im ΩΓ0)D/2 over the

choice of Γ0. But this sum is the definition of the Eisenstein series ED/2(τ), so if (3.4) is

the appropriate formula for the contribution of a given Γ0 to the path integral, then the

sum over all Γ0 will indeed reproduce the desired answer (3.2) for the average partition

function.

Eq. (3.4) is a fairly plausible formula for the handlebody path integral in a theory in

which the only physical degrees of freedom are the boundary current algebra modes, the

analogs of the Brown-Henneaux modes for gravity. Such boundary current algebra modes

correspond to D left- and right-moving massless scalars that lack zero-modes, and eq. (3.4)

is a natural candidate for the path integral for such fields. One can think of 1
| det′Γ0

∂|D as

a particular conformal block for the U(1)2D current algebra. This conformal block can be

characterized by saying that what is propagating through any one-cycle that represents a

class in Γ0 is the vacuum module of the current algebra. In section 4, we do a direct gauge

theory calculation that, under certain assumptions, exhibits 1
| det′Γ0

∂|D as a gauge theory

partition function in the handlebody.

The justification to consider only handlebodies is thin, as acknowledged in the in-

troduction, unless we assume that we are studying an exotic theory of gravity in which

“manifolds with boundary Σ” are classified entirely by the associated Lagrangian sublattice

Γ0 ⊂ H1(Σ,Z).

One more remark may provide some background for our discussion of the case that

the boundary is not connected. The hypothetical theory that we are discussing is not

conventional gravity and does not have a conventional semi-classical limit. The closest

analog is to consider D to be large. For generic τ there will be one Lagrangian sublattice

Γ0 that maximizes det Im ΩΓ0 . For large D, this particular Lagrangian sublattice then

makes the dominant contribution in the definition (3.3) of the Eisenstein series ED/2.

Other contributions are exponentially suppressed. Of course, as we vary τ , there will be

large D phase transitions at which two Lagrangian sublattices exchange dominance.

We will mention one additional subtlety which appears when we work at finite D rather

than in the large D limit. This can be seen by investigating the Eisenstein series ED/2(τ)

which appears as the average of the Siegel-Narain theta function. At genus 1, we saw that

the Eisenstein series diverged unless we took D > 2; this reflected the fact that the integral

over MD of the Siegel-Narain theta function was divergent. It turns out that the genus g

version of the Eisenstein series diverges unless

D < g + 1. (3.6)

This and other properties of ED/2(τ) are discussed in more detail in appendix A. As

in the genus one case, this reflects a genuine divergence of the averaging over Narain

15The expression 1/
(
(det Im ΩΓ0)| det′Γ0

∂|2
)D/2

is actually the partition function, per unit volume in

the target space, of a sigma-model with target RD. Thus in particular it does not depend on the choice of

Γ0. See for example [31, 32]. We will not explore this rather subtle point here as our interest in the present

paper is really in the numerator of the partition function.
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moduli space. At finite D, the average partition function diverges for sufficiently large

g: when this happens, the typical CFT lives “at the boundary” of MD. The result is

that the hypothetical gravitational dual theory can compute relatively coarse averaged

CFT observables — namely, the low genus partition functions which encode the average

spectrum and low moments of the OPE coefficients — but fails to compute highly refined

observables, such as the large g partition functions which compute higher moments of the

OPE coefficients.

This has interesting implications for the structure of non-perturbative effects in our

theory of gravity. As noted earlier (and described in more detail in section 4), our bulk

Chern-Simons theory is one-loop exact at all genus, and so accounts for all of the pertur-

bative effects which arise in a large D limit. The Eisenstein series then computes a set of

non-perturbative corrections. However, we see that at finite D this is still not enough, as

this sum diverges at sufficiently large genus. This may hint that further non-perturbative

effects are necessary in order to render the theory sensible at finite D, analogous to the

“doubly non-perturbative effects” [1] which are necessary in JT gravity in order to render

the theory sensible nonperturbatively.16

3.2 Disconnected boundaries

As explained in the introduction, one is particularly interested to know what is the outcome

of the averaging procedure if Σ is not connected.

Recall first that the period matrix Ω of a genus g Riemann surface Σ is a g×g symmetric

complex-valued matrix whose imaginary part is positive-definite. In what follows, Ω always

refers to a complex matrix with those properties. For genus g > 3, it is not true that any

such Ω is the period matrix of some Σ. In general, such an Ω is associated to a principally

polarized abelian variety of rank g which is not necessarily the Jacobian of any Σ.

However, all the formulas of section 3.1 make sense for an arbitrary Ω, whether or not

it is the period matrix of a Riemann surface. For example, the Siegel-Narain theta function

Θ(m, τ) is defined by a momentum-winding sum that depends on Σ only through its period

matrix Ω. The only properties of Ω that are needed for this sum to make sense are that it is

symmetric and has positive-definite imaginary part.17 (Positivity is needed for convergence

of the momentum-winding sum.) To emphasize this, we could denote the theta function

as Θ(m,Ω) rather than Θ(m, τ). Moreover, the Siegel-Weil formula for averaging over m

holds for an arbitrary Ω, not necessarily the period matrix of any Riemann surface. In

fact, in the mathematical literature it is not usual to restrict Ω to be a period matrix.

This being so, before discussing disconnnected surfaces, we might want to ask if we

can find a physical interpretation of the Siegel-Weil formula for an Ω that is not associated

to a Riemann surface. Can we generalize the question that we have been asking so that

the answer will involve the more general case of the Siegel-Weil formula? We can, though

this involves asking a question that is possibly less natural than the question that we have

16We note that, although they diverge, the relevant Eisenstein series can be formally defined by analytic

continuation for g > D + 1. This may aid in interpreting our results at finite D.
17Properties of the space of such matrices, as well as an explicit formula for the Siegel-Narain theta

function, are given in appendix A.
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been asking so far about the average of the partition function. Let Cα, α = 1, · · · , 2g be

loops in Σ that represent a basis of H1(Σ,Z), and let Xp, p = 1, · · · , D be the scalar fields

of a Narain model. We add to the action a bilocal term∑
αβpq

dαβpq

∮
Cα

dXp

∮
Cβ

dXq, (3.7)

with arbitrary coefficients dαβpq. This has no effect on the set of classical solutions of the

theory, and no effect on the quantum oscillations around a classical solution. But it changes

the action of a classical solution. By suitably adjusting the coefficients, we can arrange so

that the momentum-winding sum is Θ(m; Ω) for any desired Ω. So averaging over m in

this situation will involve the Siegel-Weil formula for arbitrary Ω. The reader may or may

not consider this a compelling context for the more general Siegel-Weil formula.

Regardless, a special case of the fact that the Siegel-Weil formula holds for any Ω is

that it holds for any Σ, connected or not. For example, suppose that Σ is the disjoint union

of two connected surfaces Σ′ and Σ′′, of genus g′ and g′′, and whose moduli we denote as

τ ′ and τ ′′. Set g = g + g′ and write τ for the whole collection of moduli τ, τ ′. For fixed

m ∈MD, the partition function on Σ is a product:

ZΣ(m, τ) = ZΣ′(m, τ
′)ZΣ′′(m, τ

′′). (3.8)

We want to average over m and compute the connected correlation function

〈ZΣ′(m, τ
′)ZΣ′′(m, τ

′′)〉c. The function that we need to average is, from eq. (3.1),

Θ(m, τ ′)Θ(m, τ ′′)

ΦΣ′ΦΣ′′
. (3.9)

It is the numerator that has to be averaged, since only the numerator depends on m.

Let Γ′ = H1(Σ′,Z), Γ′′ = H1(Σ′′,Z), and Γ = Γ′ ⊕ Γ′′ = H1(Σ,Z). On Γ, there is

an intersection pairing, which is simply the sum of the intersection pairings on Γ′ and on

Γ′′. A Lagrangian sublattice Γ0 of Γ is a18 rank g sublattice of Γ on which the intersection

pairing vanishes. Such a sublattice may be the direct sum of Lagrangian sublattices Γ′0 ⊂ Γ′

and Γ′′0 ⊂ Γ′′, in which case we will say that Γ0 is decomposable. But this is not the only

possibility. There is no problem to define a period matrix of Σ associated to a Lagrangian

sublattice that is not decomposable. We will work out an example shortly.

Let Ω′ and Ω′′ be the period matrices of Σ′ and Σ′′. Then the direct sum19

Ω =

(
Ω′ 0

0 Ω′′

)
, (3.10)

18Primitive, as in footnote 4 in the introduction.
19Let Σ̂ be a connected Riemann surface defined as the connected sum of Σ′ and Σ′′. In a limit that

Σ̂ degenerates to the union of Σ′ and Σ′′ joined at a point, the period matrix of Σ̂ reduces to that of the

disconnnected surface Σ (eq. (3.10)). This fact actually gives one way to prove that the Siegel-Weil formula

must apply to disconnected Riemann surfaces if it applies to connected ones. But this is not very helpful

in understanding the geometric meaning of the averaged path integral on a disconnected manifold, because

a generic handlebody with boundary Σ̂ is not related in a nice way to a three-manifold whose boundary

is the disjoint union of Σ′ and Σ′′. The problem arises precisely in the interesting case of indecomposable

Lagrangian sublattices (see below).
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which we define as the period matrix of Σ, is symmetric with positive-definite imaginary

part, so we can apply the Siegel-Weil formula to the corresponding Siegel-Narain theta

function. But this theta function is just a product:

Θ(m,Ω) = Θ(m,Ω′)Θ(m,Ω′′) (3.11)

because the momentum-winding sum of a disjoint union of Riemann surfaces is just the

product of the two separate momentum-winding sums. The right hand side is the function

that we want to average in order to compute 〈ZΣ′(m, τ
′)ZΣ′′(m, τ

′′)〉, and the left hand

side is the function that we know how to average using the Siegel-Weil formula. Applying

the Siegel-Weil formula, we learn that

〈ZΣ′(m, τ
′)ZΣ′′(m, τ

′′)〉 =
ED/2(τ ′, τ ′′)(

(det Im Ω′)D/2| det′ ∂Σ′ |D
) (

(det Im Ω′′)D/2| det′ ∂Σ′′ |D
) .
(3.12)

The denominator in this formula is the product of the denominators in the usual expressions

for ZΣ′ and ZΣ′′ ; as usual it only depends on the moduli τ ′, τ ′′, and not on the choices that

are used to define the period matrices and determinants. The definition of the Eisenstein

series is as usual

ED/2(τ ′, τ ′′) =
∑
Γ0

(det Im ΩΓ0)D/2 . (3.13)

The sum runs over all Lagrangian sublattices Γ0 ⊂ Γ, and ΩΓ0 is the period matrix defined

using Γ0. If we restrict the sum to the decomposable case Γ0 = Γ′0 ⊕ Γ′′0, where the

summands are Lagrangian sublattices of Γ′ and Γ′′, respectively, then the right hand side

will reduce to ED/2(τ ′)ED/2(τ ′′). When inserted in eq. (3.12), this will give the disconnected

contribution to the correlation function. The connected correlator comes precisely from

Lagrangian sublattices that are not decomposable.

To make this more concrete, we will describe an explicit example of an indecomposable

Lagrangian sublattice Γ0 and compute its contribution to the connected correlator. Let Σ′

and Σ′′ be Riemann surfaces of genus 1, with respective modular parameters τ ′ and τ ′′. On

Σ′, we pick an A-cycle A′ and a B-cycle B′; on Σ′′ we pick an A-cycle A′′ and a B-cycle

B′′. The nonzero intersection numbers are

〈A′,B′〉 = 〈A′′,B′′〉 = 1. (3.14)

We also pick holomorphic differentials ω′ on Σ′ and ω′′ on Σ′′ normalized so that∮
A′
ω′ =

∮
A′′
ω′′ = 1,

∮
B′
ω′ = τ ′,

∮
B′′
ω′′ = τ ′′. (3.15)

We now want to pick a Lagrangian sublattice Γ0. A sublattice generated by, for example,

A′ or B′ along with A′′ or B′′ is decomposable. Instead we pick one generated by

A1 = A′ −A′′, A2 = B′ + B′′. (3.16)

The minus sign in the definition of A1 ensures that 〈A1,A2〉 = 0, so that A1 and A2 indeed

generate a Lagrangian sublattice. For a dual pair of cycles, we can pick

B1 = B′, B2 = −A′′. (3.17)
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This ensures that 〈B1,B2〉 = 0 and

〈Ai,Bj〉 = δij . (3.18)

To compute the period matrix, we need holomorphic differentials ωi with∮
Ai
ωj = δij . (3.19)

These are

ω1 =
τ ′′ω′ − τ ′ω′′

τ ′ + τ ′′
, ω2 =

ω′ + ω′′

τ ′ + τ ′′
. (3.20)

The period matrix will then be

Ωij =

∮
Bi

ωj . (3.21)

So

Ω11 =

∮
B1

ω1 =
τ ′τ ′′

τ ′ + τ ′′

Ω12 =

∮
B1

ω2 =

∮
B2

ω1 =
τ ′

τ ′ + τ ′′

Ω22 =

∮
B2

ω2 = − 1

τ ′ + τ ′′
. (3.22)

Expanding in real and imaginary parts by τ ′ = τ ′1 + iτ ′2, τ ′′ = τ ′′1 + iτ ′′2 , we find that

Im Ω =
τ ′2

|τ ′ + τ ′′|2

(
|τ ′′|2 τ ′′1
τ ′′1 1

)
+

τ ′′2
|τ ′ + τ ′′|2

(
|τ ′|2 −τ ′1
−τ ′1 1

)
, (3.23)

which is positive-definite, as expected. There is a simple result for det Im Ω:

det Im Ω =
τ ′2τ
′′
2

(τ ′1 + τ ′′1 )2 + (τ ′2 + τ ′′2 )2
. (3.24)

The contribution of this particular Lagrangian sublattice to the Eisenstein series is

(det Im Ω)D/2 =

(
τ ′2τ
′′
2

(τ ′1 + τ ′′1 )2 + (τ ′2 + τ ′′2 )2

)D/2
. (3.25)

Intuitively, one expects that in anything that one would call a semiclassical limit,

connected correlators between different components of Σ should be small. As remarked

near the end of section 3.1, in the present context, the closest analog of a semiclassical

limit is large D. In fact, the connected contribution that we have analyzed is exponentially

small for large D compared to the disconnected correlation function. To see this, note that

eq. (3.24) implies a general upper bound

det Im Ω ≤ 1

4
, (3.26)

where the maximum is attained if and only if τ ′1 + τ ′′1 = 0, τ ′2 = τ ′′2 . Therefore, the contri-

bution to the Eisenstein series from this particular indecomposable sublattice is at most
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(
1
4

)D/2
. However, there is always a decomposable Lagrangian sublattice whose contribution

to the Eisenstein series is at least
(

3
4

)D/2
. Indeed, the contribution of the decomposable

sublattice generated by A′ and A′′ is τ ′2
D/2τ ′′2

D/2. If τ ′, τ ′′ are in the usual fundamental

domain for SL(2,Z), then τ ′2, τ
′′
2 ≥
√

3/2, and the corresponding contribution to the Eisen-

stein series is τ ′2
D/2τ ′′2

D/2 ≥
(

3
4

)D/2
. Even if τ ′ and τ ′′ are not in the usual fundamental

domain, by acting on A′ and on A′′ with separate SL(2,Z) transformations that map τ ′

and τ ′′ into the usual fundamental domain, we find a different decomposable Lagrangian

sublattice whose contribution is at least
(

3
4

)D/2
. So the connected contribution to the

correlator that we have examined is smaller than the disconnected correlator by at least

a factor of 3D/2. One expects that all connected contributions are similarly exponentially

suppressed for large D. The interpretation in terms of a hypothetical bulk dual theory

would be that “manifolds” with “wormhole” connections between different boundary com-

ponents have larger action (or at least smaller quantum path integrals) than disconnected

“manifolds.”

The connected correlator that we have analyzed has the interpretation of〈
Tr exp(iτ ′1P − τ ′2H) Tr exp(iτ ′′1P − τ ′′2H)

〉
, (3.27)

where the traces are taken in the CFT Hilbert space, and H and P are the CFT Hamiltonian

and momentum operators. This correlator is a real-analytic function of τ ′1, τ
′
2, τ
′′
1 , and τ ′′2 .

so it can be analytically continued to complex values of those variables, at least within

certain limits. In particular, to get an analog of the “spectral form factor,” we can set

τ ′2 = β + it, τ ′′2 = β − it, where β and t are both real; t is interpreted as a real time

parameter. The limit of large t, keeping fixed β, τ ′1, τ ′′1 probes interesting properties of the

spectrum, and has been investigated in detail in other models; for example see [33]. It is not

difficult to calculate the contribution of the indecomposable sublattice Γ0 to the spectral

form factor. For Σ′, Σ′′ both of genus 1, the denominator in the formula (3.12) for the

correlation function simplifies to (Im τ ′ Im τ ′′)D/2|η(τ ′)η(τ ′′)|D. Since η(τ) is holomorphic

and |η(τ+1)| = |η(τ)|, it follows that, when we give τ ′2, τ ′′2 imaginary parts ±it, |η(τ ′)η(τ ′′)|
is periodic in t with period 1. This periodicity simply reflects the fact that the energy

differences between current algebra modes are integer multiples of 2π. The current algebra

modes are unaffected by averaging over Narain moduli space, so after this averaging the

correlation function retains the periodic factor 1/|η(τ ′)η(τ ′′)|D. More interesting is the t

dependence of the averaged product of Narain theta functions. This is

1

(τ ′2τ
′′
2 )D/2

∑
Γ0

(det Im ΩΓ0)D/2. (3.28)

In view of eq. (3.25), the contribution to this expression of the particular indecomposable

Lagrangian sublattice that we considered is actually a positive constant independent of

t. We expect that the full spectral form factor has a positive constant limit at t → ∞,

just like the particular contribution that we have evaluated. We note that, as emphasized

in [33], for the spectral form factor to approach a non-zero constant at late time is a key

signature of the discreteness of the spectrum; this discreteness is, in general, quite difficult

to see in a quantum gravity computation.
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One may ask for a geometric realization of the Lagrangian sublattice that we have

considered. It is actually not difficult to find one. We want an oriented three-manifold Y

whose boundary consists of the disjoint union of Σ′ and Σ′′, such that A′−A′′ and B′+B′′

are boundaries in Y . We can take Y = S1×S1×I, where I is a unit interval. The two ends

of I correspond to the two boundaries of Y , each of which is a copy of S1×S1. We identify

Σ′ and Σ′′ with the two boundaries of Y in such a way that A′ and A′′ are identified with the

first factor of S1×S1 (in the first and second boundary of Y , respectively) and B′ and −B′′

are similarly identified with the second factor. The reason for a minus sign in the statement

about B′′ is that Y has to be oriented and its orientation has to induce the orientations of

the boundaries Σ′ and Σ′′ that were built into the statement 〈A′,B′〉 = 〈A′′,B′′〉 = 1. (The

need for compatible orientations was noted following eq. (1.2).) So the identification of Σ′

and Σ′′ with the boundaries of Y has to involve a relative orientation reversal. We used

an orientation-reversing map of Σ′′ that maps (A′′,B′′) → (A′′,−B′′). We have given the

simplest example of a Y that is associated to the Lagrangian sublattice that we considered,

but there are infinitely many others. Since there appears to be no natural way to get the

answer (det Im Ω)D/2 from a sum over distinct Y ’s, it was suggested in the introduction

that in the exotic theory of gravity that is dual to an average over Narain moduli space,

there is not a well-defined distinction between different Y ’s that are associated to the same

Lagrangian sublattice.

We conclude by noting that, as with the connected case described in the previous

subsection, the Eisenstein series which computes the analog of the sum over geometries in

our theory of gravity does not necessarily converge when D is finite. For example, we could

consider the N th moment of the torus partition function:

〈ZΣ1(m, τ1) . . . ZΣN (m, τN )〉 (3.29)

where the Σi are tori. The Eisenstein series converges only when N < D − 1. Thus at

finite D our theory can successfully compute relatively coarse features of the spectrum of

the CFT, namely those features encoded in low moments of ZΣ(m, τ), but fails when N

is large compared to D. This may indicate the need to include further non-perturbative

effects.

Perhaps some intuition may be gained in this case by thinking of Z not as a random

CFT partition function, but rather as a random D×D matrix (a reasonable analogy, since

Z comes from a random rank D lattice). Only the first D moments of such a matrix are

independent of one another, and these first D moments are the only data required to com-

pletely characterize the probability distribution. It may be that the gravitational theory

can only be used to compute the “independent” pieces of data needed to characterize the

distribution on the space of CFTs. Having specified these data, the higher order observ-

ables are then completely determined. This is reminiscent of the notion of gravitational

null states appearing in [34] (see also [35]).

3.3 Genus zero

We started this paper in genus 1, skipping the basic case of a surface of genus 0. Here we

will make amends for this omission.
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If Σ0 is a surface of genus 0, then Σ0 has no complex moduli. Moreover, the partition

function of the Narain CFT on Σ0 is ZΣ0(m) = 1, independent of m. So averaging ZΣ0(m)

over m will not have any effect.

From the point of view of the Siegel-Weil formula, since H1(Σ0,Z) = 0, there is no

nontrivial sum to be carried out in averaging ZΣ0(m). The only Lagrangian sublattice of

the zero lattice H1(Σ0,Z) is the zero lattice. Since “manifolds with boundary Σ” in the

theory under discussion correspond in general to Lagrangian sublattices of H1(Σ,Z), we

conclude that in the case of a surface of genus 0, there is only one “manifold with boundary

Σ0.” The closest analog of this object in classical geometry would be a three-ball, but in

classical geometry it is far from unique as an oriented manifold whose boundary is a surface

of genus 0.

Since ZΣ0(m) is a constant, independent of m, there is no connected correlator between

ZΣ0(m) and ZΣ′(m, τ) for any other surface Σ′. In terms of the Siegel-Weil formula, one

would interpret this as follows. Let Σ be the disjoint union of Σ0 and Σ′. Since H1(Σ,Z) ∼=
H1(Σ′,Z), “manifolds with boundary Σ” are in 1-1 correspondence with “manifolds with

boundary Σ′.” It appears that if there really is an exotic gravitational theory with the

properties suggested by the Siegel-Weil formula, then in this theory there is no “wormhole”

connecting a genus 0 surface to anything else. Alternatively, it may be that in this theory

of gravity, there is no notion of whether spacetime is connected and thus no way to say

whether or not Σ0 and Σ′ are connected through the wormhole.

4 Path integrals in gauge theory

4.1 Preliminaries

In this section, we will compare the formulas of sections 2 and 3 to direct evaluation of a

gauge theory partition function on a handlebody. This will be done by adapting formulas

in [28], where a similar direct calculation was done for Einstein gravity.

Let us first recall that for U(1) gauge theory with the standard Maxwell action, the

partition function is

ZMax =
det′ ∆0

(det′ ∆1)1/2
. (4.1)

Here ∆0 is the Laplacian acting on a field of spin 0, and ∆1 is the Laplacian acting on

a vector field or 1-form. With a standard gauge-fixing, the denominator comes from the

path integral over the gauge field, and the numerator is the ghost determinant.

Now consider a gauge field with Chern-Simons action. First consider the case that the

gauge group is U(1), with a single gauge field A, and the action on a three-manifold Y is

1

2π

∫
Y
A ∧ dA. (4.2)

In the approach to quantization followed in [29], the gauge-fixing action is

1

2π

∫
Y

d3x
√
g
(
φDiA

i + cDiD
ic
)
, (4.3)
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where c and c are ghost and antighost fields and φ is a scalar field that is a BRST partner

of c. The path integral for c and c gives the usual ghost determinant det′ ∆0. The kinetic

operator acting on the bosonic fields A, φ can be regarded as the operator L− = ∗d + d∗
acting on differential forms of odd degree. The corresponding path integral is 1/

√
det′ L−.

But since L2
− is equivalent to the direct sum ∆0 ⊕ ∆1, we have det′ L− = (det′∆0 ·

det′∆1)1/2. So finally the relevant ratio of determinants for U(1) Chern-Simons theory is

(det′ ∆0)3/4/(det′ ∆1)1/4.

The path integral of U(1) Chern-Simons theory is not just a product of determinants,

as there is also a phase that involves an Atiyah-Patodi-Singer η-invariant [29]. However,

in the present paper we are interested in a U(1)2D theory based on a lattice Λ of signature

(D,D), and in this case, the phase cancels between modes on which the metric of Λ is

positive and modes on which it is negative. An even unimodular integer lattice Λ of

signature (D,D) is actually simply the direct sum of D copies of a rank 2 lattice with

intersection form

H =

(
0 1

1 0

)
. (4.4)

So the U(1)2D Chern-Simons theory based on Λ is simply the product of D decoupled

copies of a U(1)2 theory with two gauge fields A,B and action

1

2π

∫
Y
A ∧ dB. (4.5)

To the extent that the partition function of this theory can be calculated just by evaluating

determinants, the determinants involved are the same ones as in the last paragraph but

with double the multiplicity, giving

ZCS =
(det′ ∆0)3/2

(det′ ∆1)1/2
. (4.6)

This formula was first obtained by A. Schwarz [36], who also recognized that this par-

ticular ratio of determinants is the Reidemeister-Ray-Singer torsion (of a background flat

connection, a trivial one in the case of expanding around A = B = 0).

Eq. (4.6) is not the whole story for evaluation of the partition function of Chern-Simons

theory. It is not correct to simply ignore the zero-modes. Zero-modes of ∆1 means that

the classical solution about which we are expanding is part of a family, and zero-modes

of ∆0 mean that the gauge group has an unbroken subgroup of positive dimension. In a

full evaluation of the Chern-Simons path integral, we have to integrate over the space of

all classical solutions (summing in general over its connected components) and divide by

the volume of the unbroken gauge group. Moreover, we are interested in evaluating the

path integral for the case that Y is a hyperbolic three-manifold with non-empty confor-

mal boundary Σ. In Chern-Simons theory, one usually requires a subtle analysis of the

asymptotic behavior of the fields near the boundary, while in scalar field theory or Maxwell

theory, one can just assume that perturbations vanish at infinity.

Nevertheless, we will simply evaluate the right hand side of eq. (4.6), for the case

that Y is a hyperbolic three-manifold with conformal boundary Σ. We do this using the
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formulas that were obtained in [28] as part of a similar calculation for Einstein gravity.

These are formulas for the determinants of ∆0 and ∆1 in a space of perturbations that

vanish at infinity. We will find that this procedure works in the sense that — at least if Σ

is connected and Y is a handlebody — it gives the result that was needed in eq. (3.4) to

provide a bulk dual to the average over Narain moduli space.

Ideally, one would like to do a more rigorous evaluation of the Chern-Simons path

integral and compare it precisely to the average over Narain moduli space. There seem to

be real obstacles to this, as we discuss in section 4.4. Ultimately, we do not know to what

extent gauge theory can be used to construct a bulk theory that is dual to an average over

Narain moduli space.

4.2 Path integral on a handlebody

We will evaluate determinants by a heat kernel method, as in [28]. The basic idea is that

the determinant of an operator ∆ is given by the following formula:

− log (det ∆) =

∫ ∞
0+

dt

t
Tr (Kt) (4.7)

where Kt ≡ e−t∆. In the case of interest, where ∆ is a differential operator on a manifold

Y , the trace is just an integral over Y , and Kt can be found by solving the differential

equation

(∂t + ∆)Kt = 0, (4.8)

which we will momentarily write in position space as an equation for the heat kernel.

The advantage of this technique is that (4.8) is a linear differential equation to which one

can apply the method of images. Thus by starting with Kt on hyperbolic three-space

H3, one can easily obtain Kt on a general quotient H3/G, where G is a discrete group of

automorphisms of H3. For simplicity, we will assume that every element of G other than

the identity is of infinite order; this is so in many interesting examples, including the groups

(called Schottky groups) which are such that H/G is a handlebody.

As a simple illustration of this technique, let us take our operator to be the scalar

Laplacian ∆0 ≡ −∇2 on H3, acting on the space of functions. We then introduce the heat

kernel KH3
t (x, x′), which solves the equation

(∇2
x − ∂t)K

H3
t (x, x′) = 0 (4.9)

with the initial condition Kt(x, x
′) = δ(x, x′) at t = 0. The solution is

KH3
t (x, x′) =

e−t−
d2

4t

(4πt)3/2

d

sinh d
(4.10)

where d = d(x, x′) is the geodesic distance between x and x′. The determinant of the
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operator ∆0 on H3 is then

− log
(
det′∆0

)
=

∫ ∞
0

dt

t

∫
H3

d3x
√
g
(
KH3
t (x, x)

)
= Vol (H3)

∫ ∞
0

dt

t

e−t

(4πt)3/2

=
1

6π
Vol (H3) . (4.11)

In writing the second line we have set d(x, x) = 0 and pulled out an overall factor of

Vol (H3). The resulting integral over t diverges, reflecting the usual one-loop ultraviolet

divergence. In the final line we have regulated this divergence by defining the t integral

by analytic continuation, as a Gamma function with negative argument. The final result

is proportional to Vol (H3), and can be interpreted as a one-loop contribution to the bulk

cosmological constant.

To apply this to quotients of the form H3/G, we first use the method of images to

determine the heat kernel

K
H3/G
t (x, x′) =

∑
γ∈G

KH3
t (x, γx′) . (4.12)

The determinant of the operator ∆0 on H3/G is then found by integrating:

− log
(
det′∆0

)
=

∫
dt

t

∫
H3/G

d3x
√
g
(
K

H3/G
t (x, x)

)
=

1

6π
Vol (H3/G) +

∑
γ∈G
γ 6=1

∫
dt

t

∫
H3/G

d3x
√
gKH3

t (x, γx) . (4.13)

In writing the second line we have separated out the γ = 1 term in the sum and computed

the t integral as before, again finding a one-loop contribution to the cosmological constant.

To interpret the other term, note that each γ can be thought of as an element of the

fundamental group, and the heat kernel is just a simple function of the length d(x, γx) of

the corresponding geodesic. The result is that equation (4.13) takes the general form of a

trace formula — such as the Selberg or Gutzwiller trace formula — where the spectrum of

a Hamiltonian is related to the lengths of classical orbits. In the present case, the spectrum

of ∇2 is related to the lengths of bulk geodesics. This will be a general feature of all of our

formulas.

The sum over G is typically impossible to carry out exactly. It can, however, be

simplified by separating out the sum over primitive elements of G: an element γ ∈ G is

primitive if it cannot be written as a positive power of any other element of G. Each

primitive element γ generates a Z subgroup of G which we call a primitive subgroup (a

primitive subgroup has two generators, namely γ and γ−1). The sum over G reduces

to a sum over the set P of primitive subgroups along with a sum over Z for each such

subgroup. We note that, since the quotient H3/Z is a solid torus, we can associate to each
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primitive element γ the modular parameter τγ of the associated boundary torus. Writing

γ ∈ G ⊂ PSL(2,C) as a 2× 2 matrix, the modular parameter satisfies

2 cosπτγ = Tr γ. (4.14)

This formula does not determine the sign of τγ , which we fix so that Im τγ > 0. It fixes

Re τγ mod 1 (mod 1 and not mod 2, because lifting from PSL(2,C) to SL(2,C) means

that the sign of the right hand side is ill-defined). But our subsequent formulas will be

expressed in terms of qγ = e2πiτγ , which depends on Re τγ only mod 1.

It is now possible to evaluate the integrals dt and d3x in equation (4.13), and write

the result as a sum over the set P of primitive subgroups. The result is20

det′∆0 = exp

{
−Vol (H3/G)

6π

} ∏
γ∈P

 ∞∏
`,`′=0

(
1− q`+1

γ q`
′+1
γ

)2

. (4.15)

This is a sum over primitive subgroups, so we do not count γ and γ−1 separately.

Although we have only written the formula for a massless scalar, this procedure can be

applied (with more work) to find analogous heat kernel expressions for higher spin fields.

The primary difficulty is dealing with the various different tensor structures that appear

in the heat kernel. We refer to [28] for detailed computations. We will need only the

result for the determinant for the spin one Laplacian ∆µ
ν = −δµν∇2 +Rµ

ν . In [28], it was

found that21

det ∆1 = det′∆0 ·
∏
γ∈P

 ∞∏
`,`′=0

(
1− q`γq`

′+1
γ

)(
1− q`+1

γ q`
′
γ

)2

. (4.16)

(It appears that this formula is valid even if the operator ∆1 has zero-modes. In that case,

the determinant on the left hand side of eq. (4.16) vanishes, and the infinite product on

the right hand side also vanishes. This will be discussed in section 4.3.)

We can now assemble these results together to evaluate the expression (4.6), which

formally is the one-loop determinant of Chern-Simons theory, expanded around the trivial

flat connection: (
det′ ∆0

)3/2
(det ∆1)1/2

= exp

{
−Vol (H3/G)

6π

} ∏
γ∈P

( ∞∏
n=1

1

|1− qnγ |

)2

. (4.17)

Let us first consider this formula for the solid torus H3/Z, where G is generated by

a single primitive element γ with Tr (γ) = 2 cosπτ . In this particular case, there is only

one term in the product on the right hand side of eq. (4.17), so this is the only case in

which we can evaluate the product in a completely explicit way. Although the volume

of H3/Z is divergent, we may regularize it using the standard procedures of holographic

20Intermediate steps in this derivation can be found in [28].
21This formula is not written in precisely this way in [28]. In that reference, det ∆1/ det′ ∆0 is formally

called det′ ∆⊥, and eq. (4.16) is written as a formula for det′ ∆⊥.
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renormalization. One begins by cutting off the volume integral near the boundary and

introducing boundary counterterms which remove the divergence that appears as this cutoff

is taken away. The result is not invariant under conformal transformations on the boundary,

so requires a choice of metric on the boundary. With the usual flat metric on the torus,

one finds

Vol (H3/Z) = −π2 Im τ . (4.18)

The final result for our the one-loop determinant is22

(
det′ ∆0

)3/2
(det ∆1)1/2

= |q|−1/12
∞∏
n=1

1

|1− qn|2
=

1

|η(τ)|2
. (4.19)

We note that this one loop determinant naturally gives the usual prefactor of |q|−1/12, which

in the boundary language is attributable to the negative Casimir energy of a free boson on

a circle. In bulk gravity calculations, such a term would typically arise from the regularized

Einstein-Hilbert action of H3/Z. In our Chern-Simons computation, this term came for

free from the one-loop contribution to the bulk cosmological constant. Equation (4.19) is

appropriate for D = 1; for general D, one simply raises both sides to the power D. This is

the result for the bulk path integral that we needed (eq. (2.31)) for a bulk theory dual to

the average over Narain moduli space.

For higher genus, it is not possible to write such explicit formulas. But remarkably,

it is possible to show in general that if Σ is a connected Riemann surface of genus g, and

Y is a handlebody with conformal boundary Σ, then making the same assumptions, the

bulk path integral on Y agrees with what is needed in eq. (3.4) for the average over Narain

moduli space to be reproduced by a sum over handlebodies.

If Y is a genus g handlebody, then its fundamental group G is a free group on g gen-

erators. Such a subgroup of PSL(2,C), acting on H3 in such a way that the quotient is

a handlebody Y , is called a Schottky group. In this case, Zograf [43], with further devel-

opments by McIntyre and Takhtajan [45], proved the following “holomorphic factorization

formula” (
det′ ∆̂0

det Im Ω

)−1/2

= eSL/24π
∏
γ∈P

( ∞∏
n=1

1

|1− qnγ |2

)
(4.20)

where ∆̂0 is the Laplacian of a non-compact scalar on the surface Σ.23 The function SL is

an appropriately defined Liouville action on the moduli space of Schottky groups, defined

explicitly in [44], which plays the role of the |q|−1/12 factor in the torus case. Indeed, this

22Similar Chern-Simons computations have appeared in the literature before [38].
23The two dimensional Laplacian ∆̂0 should not be confused with the three dimensional Laplacian ∆0

which appeared earlier; in this section we will denote two-dimensional operators with a hat to avoid con-

fusion. We note that both det′ ∆̂0(Ω) and SL are not conformally invariant, but rather transform with

conformal anomalies that match in such a way that eq. (4.20) is conformally invariant. We also note that we

have written (4.20) as a product over primitive subgroups P where γ and γ−1 are not counted separately.

In the literature this formula is often written in a slightly different way as a product over distinct primitive

conjugacy classes, so that γ and γ−1 are counted separately.
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Liouville action was proven by Kraznov [40] to be proportional to the regularized volume

of H3/G

SL = −4 Vol

(
H3

G

)
+ counterterms . (4.21)

With this result, we see that eq. (4.20) matches exactly the path integral of U(1) × U(1)

Chern-Simons theory on a genus g handlebody given in eq. (4.17). This includes the

factor of SL that, in other contexts, would arise from a regularized Einstein-Hilbert ac-

tion. Recalling the purely two-dimensional version of holomorphic factorization, det′ ∆̂0 =

(det Im Ω)| det′Γ0
∂|2 (see for example [31, 32]; here Γ0 is the Lagrangian sublattice associ-

ated to the handlebody), we conclude that our bulk path integral reproduces precisely the

desired factor of | det′Γ0
∂|−D.

4.3 Disconnected boundaries

Remarkably, rather similar relationships between bulk and boundary functional determi-

nants continue to hold even when the boundary is disconnected. The case that is well-

established in the literature is the case that Y is topologically Σ0×I, where Σ0 is a surface

of genus g > 1 and I is an open interval. In this case, if Y is geometrically a quotient

H3/G, then the conformal infinity of Y consists topologically of two copies of Σ0. Generi-

cally, these two copies, which we will call Σ′ and Σ′′, have different complex structures. In

that case, the group G is called quasi-Fuchsian. In the special case that the two complex

structures are the same, G is called Fuchsian. Since the Fuchsian case is just a special case,

we need not consider it separately.

For quasi-Fuchsian groups, McIntyre and Teo [39] showed that for n > 1,(
det ′∆̂n(Σ′)

Im det Ω̂′n

)−1/2(
det ′∆̂n(Σ′′)

Im det Ω̂′′n

)−1/2

= e
6n(n−1)+1

24π
SL
∏
γ∈P

( ∞∏
m=n

1

|1− qmγ |2

)
. (4.22)

Here ∆̂n is the boundary Laplacian acting on a field of spin n, and Ωn is a generalized

period matrix, which reduces to the usual period matrix if n = 1 or n = 0.24 The left

hand side is now interpreted as a product of one-loop determinants for the two individual

boundary theories, regarded as functions of their period matrices. The Liouville action SL
appearing in this equation is again proportional to the regularized volume of H3/G, just

as in eq. (4.21); this result was established for quasi-Fuchsian groups by Takhtajan and

Teo [41].

If we could set n = 0 in this formula, we would be in the same situation as in section 4.2.

After again invoking eq. (4.17), we would conclude that the product of determinants on

Y agrees with what is needed to reproduce the correlation functions that we studied in

24A crucial feature of this formula — analogous to our use of the bulk geometry in section 3.2 to determine

an indecomposable Lagrangian sublattice — is that one is not free to choose independently the bases of

holomorphic cycles on the boundary surfaces in which Ω′ and Ω′′ are computed. The choice of bases must

be related in a particular way which depends on the bulk geometry [39]. In this way the left hand side of

this formula depends implicitly on the choice of bulk geometry, consistent with the fact that the right hand

side depends on it.
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section 3.2 between disconnected boundary components (at least for the special case that

the two boundaries have the same genus and the indecomposable Lagrangian sublattice

considered is associated to a three-manifold that is topologically Σ0 × I).

In fact, the formula (4.22) does not hold for n = 0. The infinite product on the right

hand side is divergent in that case. We will explain this in a moment, but first we will

point out that this should not be a surprise from the point of view of the bulk Chern-

Simons theory. For the case that the conformal boundary of Y is the disjoint union of

two components Σ′ and Σ′′, the bulk operator ∆1 has a zero-mode. This zero-mode is

pure gauge but it cannot be gauged away by a gauge transformation that is trivial at the

boundaries of Y . Being pure gauge, this mode does not contribute to any local gauge-

invariant observable, but it contributes to a Wilson line that stretches between the two

conformal boundaries. To demonstrate the existence of this zero-mode, one can proceed as

follows. Consider a function f that equals 0 on Σ′ and equals 1 on Σ′′. If such a function

approaches its limiting boundary values sufficiently quickly, then

I(f) =

∫
Y

d3x
√
g|∇f |2 (4.23)

is finite. By minimizing I within the given class of functions f , one can ensure that

∆0f = 0. Then A = df is a zero-mode of ∆1 and is square-integrable since I(f) < ∞.

Because the operator ∆1 has this zero-mode, the left hand of eq. (4.16) vanishes, so we

are led to expect that the right hand side will also vanish. Equivalently, the left and right

hand sides of eq. (4.17) should both be divergent.

The divergence in the infinite product in eq. (4.22) — or equivalently eq. (4.17) — is

easiest to see in the Fuchsian case, so we concentrate on that case. The Fuchsian case is

the case that G sits inside a PSL(2,R) subgroup of PSL(2,C). In that case, Y = Σ× I has

a symmetry that exchanges the two ends of I. The fixed point set of this symmetry is a

totally geodesic embedded surface Σ ∼= H2/G ⊂ Y , and all closed geodesics in Y actually

lie in Σ. So the product in (4.22) reduces to a product over geodesics in Σ. The Selberg

zeta function associated to G is defined as:

ZG(s) ≡
∏
γ∈P

∞∏
m=0

(
1− qm+s

γ

)
=
∏
γ∈P

∞∏
m=0

(
1− e−(m+s)L(γ)

)
(4.24)

where L(γ) is the length of the geodesic associated to γ. We see that the product in (4.22)

is |ZG(1)|−2. But it is a standard result that ZG(1) = 0. This vanishing is equivalent to a

divergence logZG(s)→ −∞ for s→ 1. The important contributions to ZG(s) for s near 1

come from m = 0 and from very long primitive closed geodesics:

logZG(s) ≈ −
∫
ρ(L)e−sLdL (4.25)

where ρ(L) is the density of primitive closed geodesics with length L. For a compact

Riemann surface, we have ρ(L) ∼ eL

L at large L, leading to a logarithmic divergence

in logZG(1) and vanishing of ZG(1). (We are reversing the usual logic here: the usual

procedure is to prove first in a more direct way thst ZG(1) = 0 and then use this to

constrain the large L behavior of ρ(L).)
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4.4 U(1)2D and R2D Chern-Simons theories

The divergence that we have just encountered actually has a simple fix if we take seriously

the idea that the bulk theory is a Chern-Simons theory of the gauge group U(1)2D. The

Wilson line that stretches between the two boundary components of Y is really valued in

the gauge group. Instead of getting an infinity from a zero-mode of ∆1, we should get a

factor of the volume of the gauge group, which is finite for gauge group U(1)2D. This tells

us, then, that we should aim to replace eq. (4.16) and subsequent formulas with a formula

in which the zero-mode of ∆1 is removed on the left hand side. To compensate for this, the

heat kernel formulas will have to be modified, and the right hand side of eq. (4.16) would

be replaced with a regularized version. Hopefully, there would then also be a regularized

version of the McIntyre-Teo formula for n = 0.

This particular argument will clearly not work if we assume that the bulk gauge group

is R2D rather than U(1)2D. In this case, the volume of the gauge group is infinite, and the

zero-mode of ∆1 will really lead to a divergence.

Nonetheless, it seems to be problematical to take too seriously the idea that the bulk

theory is a U(1)2D gauge theory. One reason, which does not depend on the assumed

gauge group, was explained in the introduction: gauge theory does not tell us to sum over

manifolds, and it certainly does not tell us to sum over a specific class of manifolds, such as

handlebodies. But there is actually a more specific problem if we assume that the theory

is a U(1)2D Chern-Simons theory based on an even integer unimodular lattice Λ.

The U(1)2D Chern-Simons theory based on such a lattice is actually completely trivial,

in a very strong sense. As already explained, this theory is equivalent to D copies of a

U(1)2 theory with action
1

2π

∫
Y
AdB. (4.26)

Triviality of this theory is a special case of a statement in [46] and was analyzed in consid-

erable detail in [47]. Triviality means, first of all, that if Y is an oriented three-manifold

without boundary, then the partition function of the theory on Y is equal to 1. Second,

if Σ is a Riemann surface, then the Hilbert space HΣ of the theory on Σ is 1-dimensional,

and contains a distinguished unit vector Ψ. Third, if Y is any oriented three-manifold

with boundary Σ, then the path integral on Y produces the same vector Ψ ∈ HΣ. All of

these statements immediately carry over to the U(1)2D theory based on an even integer

unimodular lattice.

In the case that Y is noncompact, with conformal boundary Σ, it does not follow from

this that the U(1)2D Chern-Simons path integral on Y is equal to 1; this depends on what

behavior of the fields is assumed near the conformal boundary. What does follow, however,

is that the Chern-Simons path integral on Y depends only on Σ and not on Y . This may

be proved as follows. Let Y0 be a cutoff version of Y in which the boundary Σ is placed at

a finite distance rather than at infinity. And let U be the product of Σ with a semi-open

interval [0, 1). Thus we can build Y by gluing together Y0 and U along Σ. The dependence

of the Chern-Simons path integral on Y is entirely encoded in the vector in HΣ that is

produced by the path integral on Y0. But this is the same vector Ψ, independent of Y0.
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Thus no matter what assumption we make about the behavior of fields near the conformal

boundary, the U(1)2D Chern-Simons path integral depends only on the boundary and not

on the bulk geometry.

What is happening is that U(1)2D Chern-Simons places too strong an equivalence

relation on manifolds. In this Chern-Simons theory, all manifolds with given boundary Σ

are equivalent. What we would like instead would be for all manifolds with boundary Σ that

induce the same Lagrangian sublattice of Γ = H1(Σ,Z) to be equivalent. It is interesting

that we get something very close to this if we just replace U(1)2D by R2D. It suffices here

to consider the basic case D = 1 with the two gauge fields A,B. The phase space of R2

Chern-Simons on Σ is the tensor product V = R2⊗H1(Σ,R), with a symplectic form that

is the tensor product of the quadratic form Λ on R2 and the intersection form on H1(Σ,R).

An element of V is just a pair A0, B0 of gauge fields on Σ satisfying dA0 = dB0 = 0, up to

gauge equivalence. The natural gauge-invariant observables in this theory are of the form∮
γ A,

∮
γ B, where γ is a homotopically nontrivial closed loop in Σ. (As the gauge group is

R2 rather than U(1)2, these expressions are gauge-invariant, with no need to exponentiate

them.) Suppose that Σ = ∂Y and let Ψ ∈ HΣ be the vector produced by the path integral

on Y . Let Γ0 be the Lagrangian sublattice of Γ corresponding to Y . We claim that for any

loop γ ∈ Σ whose homology class [γ] is in Γ0,∮
γ
A ·Ψ =

∮
γ
B ·Ψ = 0. (4.27)

Indeed, the condition [γ] ∈ Γ0 means that γ is the boundary of some oriented two-manifold

C ⊂ Y , whence
∮
γ A · Ψ =

∫
C dA · Ψ = 0, since dA = 0 by the equations of motion.

Similarly
∮
γ B ·Ψ = 0. The operators

∮
γ A and

∮
γ B, for [γ] in a Lagrangian sublatttice Γ0,

are a maximal set of commuting observables in this theory, and a state that they annihilate

is uniquely determined by Γ0, up to a constant multiple. Thus any two Y ’s that induce

the same Lagrangian sublattice Γ0 generate the same state Ψ, up to an overall constant.

(These overall constants are not all equal to 1, and for some Y ’s, the constants in question

are divergent because of the infinite volume of the assumed gauge group.)

We would have preferred to learn that any two Y ’s associated to the same Lagrangian

sublattice determine precisely the same state. This might have been an approximation to

a statement that in the theory that we are looking for, “manifolds with boundary Σ” are

entirely classified by Lagrangian submanifolds. However, the R2D Chern-Simons theory

has come pretty close.

Hopefully by now it is apparent that each of U(1)2D and R2D have both virtues and

vices as candidate gauge groups for a theory dual to the average over Narain moduli space.
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A Derivation of the Siegel-Weil formula at D > 1 and g > 1

In this appendix we will describe in more detail the derivation of the Siegel-Weil formula.

We will begin in section A.1 by reviewing the moduli space MD of CFTs with D compact

free bosons. We will show that the torus partition function obeys the differential equa-

tion (2.20) which was needed in our derivation of the genus one version of the Siegel-Weil

formula. To discuss the higher genus version of this formula, we will first need to review in

section A.2 some facts about the geometry of Siegel upper half space. We will then discuss

the derivation of the higher genus version of the Siegel-Weil formula in section A.3.

A.1 Narain moduli space

A sigma-model with TD target space can be described by angle-valued fields Xp, p =

1, . . . , D (Xp ∼= Xp + 2π), with a metric Gpq and two-form field Bpq. In this Narain family

of conformal field theories, G and B are constants that represent the moduli of the theory.

We will call this moduli space MD, and denote a point in MD by m.

The action, on a Euclidean signature worldsheet with coordinates σα, α = 1, 2, flat

metric δαβ , and Levi-Civita tensor εαβ , is

I =
1

4πα′

∫
d2σ

(
Gpqδ

αβ∂αX
p∂βX

q + iBpqε
αβ∂αX

p∂βX
q
)
. (A.1)

The marginal operator that describes small perturbations δGpq, δBpq of G and B is

O = (δGpqδ
αβ + iδBpqε

αβ)∂αX
p∂βX

q. (A.2)

Similarly to the case D = 1 discussed in section 2.1, by computing the two-point function

of O one can determine the Zamolodchikov metric:

ds2 = GmpGnq (dGmndGpq + dBmndBpq) . (A.3)

This is also the metric ofMD as a locally homogeneous space. The Laplacian derived from

this metric is

∆MD
= −GmpGnq

(
∂̂Gmn ∂̂Gpq + ∂̂Bmn ∂̂Bpq

)
−Gmn∂̂Gmn (A.4)

where ∂̂Gmn = 1
2(1 + δmn) ∂

∂Gmn
and ∂̂Bmn = 1

2
∂

∂Bmn
.

On a torus Σ with modular parameter τ = τ1 +iτ2, the partition function of the model

is ZΣ(m, τ) = Θ(m, τ)/|η(τ)|2 where Θ(m, τ) is the Siegel-Narain theta function and the

denominator does not depend on m. Θ(m, τ) is a sum over integer-valued momenta np and

windings wq, which we abbreviate as ~n and ~w. Explicitly

Θ(m, τ) =
∑
~n,~w

Q(~n, ~w;m, τ), (A.5)

– 37 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
7

with

Q(~n, ~w;m, τ) = exp
(
−πτ2

α′
(Gpqvpvq +Gpqw

pwq) + 2πiτ1npw
p
)
, (A.6)

where

vp = α′np +Bpqw
q. (A.7)

A computation similar to the one in section 2.1 but somewhat longer reveals that

(∆H −Dτ2∂/∂τ2 −∆MD
)Q = 0. (A.8)

Here ∆H, introduced in eq. (2.16), is the Laplacian of the upper half plane. Since this

equation is linear, Θ satisfies the same equation:

(∆H −Dτ2∂/∂τ2 −∆MD
) Θ = 0. (A.9)

The steps that go from this result to the Siegel-Weil formula were explained in section 2.2.

A.2 Geometry of Siegel upper half space

We now wish to consider the partition function of the same family of CFTs on a genus g

Riemann surface Σ with period matrix Ω = Ωij , where i, j = 1, . . . , g.

This period matrix Ω is an element of Siegel upper half space Hg, which is the space

of complex, symmetric g × g matrices with positive definite imaginary part:

Hg ≡ {Ωij : Ωij = Ωji, Im Ω > 0} . (A.10)

Although not every element of Hg can be realized as the period matrix of a Riemann

surface, both the Siegel-Narain theta function and relevant Eisenstein series are well-defined

functions on Hg. This makes the analysis much easier, as Hg is considerably simpler than

the moduli space of Riemann surfaces. We will just need to review a few facts about Hg.
To describe the symplectic group Sp(2g,R), we introduce a vector space of row vectors

v =
(
b1 b2 · · · bg a1 a2 · · · ag

)
, (A.11)

with matrix elements a1, a2, · · · , ag and b1, b2, · · · , bg and a symplectic form
∑g

i=1 dbida
i.

Sp(2g,R) consists of matrices

γ =

(
A B

C D

)
, (A.12)

constructed from g×g blocks A,B,C,D, that act on v on the right v → vγ. The condition

that γ preserves the symplectic form is

ABt = BAt, CDt = DCt, ADt −BCt = 1. (A.13)

Sp(2g,R) is the group of real-valued matrices that satisfy these conditions. To get Sp(2g,Z),

which is known as the Siegel modular group, we restrict A,B,C,D to be integer-valued.

Likewise we restrict ai, bj to be integers, giving an integer lattice Γ on which Sp(2g,Z) acts.

In our application, Γ = H1(Σ,Z).
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The group Sp(2g,R) acts on Hg, by

Ω→ γΩ ≡ (AΩ +B)(CΩ +D)−1. (A.14)

The group Sp(2g,Z) acts in a proper and discontinuous fashion on Hg. The fundamental

domain for this action is complicated (for example at g = 2 its boundary is a union of

28 pieces) but has finite volume. The quotient Ag ≡ Sp(2g,Z)\Hg is known as the Siegel

modular variety. When Ω is the period matrix of a Riemann surface Σ, this Sp(2g,Z)

action can be thought of as acting on H1(Σ,Z) = Z2g.

It is convenient to divide the period matrix into its real and imaginary parts, as

Ω = x + iy. Since yij is positive-definite, it is invertible; we will denote its inverse as yij .

The metric on Siegel upper half space

ds2 = yijykl(dyikdyjl + dxikdxjl) (A.15)

is Hermitian and invariant under the action of Sp(2g,R). The associated Laplace-Beltrami

operator can be written as

∆Hg = −yikyjl(∂̂xij ∂̂xkl + ∂̂yij ∂̂ykl) (A.16)

where ∂̂xij = 1
2(1 + δij)

∂
∂xij

and ∂̂yij = 1
2(1 + δij)

∂
∂yij

. This Laplacian commutes with the

Sp(2g,R) action.

The imaginary part of the period matrix transforms as

Im Ω = (CΩ +D)t Im (γΩ) (CΩ +D) (A.17)

so that

det Im γΩ =
det Im Ω

|det(CΩ +D)|2
. (A.18)

One can show that (
∆Hg +

(
gs2 − g(g + 1)

2
s

))
(det Im Ω)s = 0. (A.19)

The Laplacian commutes with the action of Sp(2g,Z), so the Eisenstein series

Es(Ω) ≡
∑

γ∈P\Sp(2g,Z)

(det Im γΩ)s = (det Im Ω)s
∑

γ∈P\Sp(2g,Z)

|det(CΩ +D)|−2s (A.20)

is an eigenfunction of the Laplacian with the same eigenvalue. This is the Eisenstein series

which appears in (3.2) as the average CFT partition function on a genus g surface. In this

equation we have defined the Siegel parabolic subgroup P ≡
{(

A B
0 D

)
∈ Sp(2g,Z)

}
; this

is the subgroup of Sp(2g,Z) which acts trivially25 on | det Im Ω|. It follows that Es(Ω) is

invariant under the action of Sp(2g,Z). We note that the sum diverges when Re s ≤ g+1
2 .

The Eisenstein series Es(Ω) can be analytically continued from the region of convergence

25Here one has to know that det D = ±1, as explained shortly.

– 39 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
7

to define a meromorphic function in the whole complex s-plane, but its direct relation to

an average over Narain moduli space only holds for Re s > g+1
2 .

In eq. (3.3), we defined the Eisenstein series in a seemingly different way as a sum over

Lagrangian sublattices. The relation between the two definitions is as follows. First of all,

the condition bi = 0 defines a particular Lagrangian sublattice Γ0 ⊂ Γ. The subgroup of

Sp(2g,Z) that leaves Γ0 fixed is precisely the Siegel parabolic group P . So the sum over

P\Sp(2g,Z) is precisely the sum over Lagrangian sublattices. Concretely, Γ0 is spanned

by row vectors (0,a), where a = (a1, a2, · · · , ag) is a g-component row vector. For γ =(
A B
C D

)
∈ Sp(2g,Z), we have

(0,a)γ = (aC, aD). (A.21)

Thus γ maps Γ0 to a new Lagrangian sublattice spanned by vectors (aC, aD) for arbitrary

a. So the Eisenstein series can be written as a sum over the pairs (C,D), subject to the

equivalence relation (C,D) ∼= (UC,UD), U ∈ GL(g,Z), which comes from the action of P .

In proving that P is the automorphism group of the Lagrangian sublattice Γ0, there

is just one nontrivial point. It is immediate that an element γ =
(
A B
0 D

)
∈ P maps Γ0 to

itself, but for it to be an automorphism of Γ0 (as an integer lattice), one needs det D = ±1.

In fact, any element of the symplectic group has determinant 1, and for the block triangular

matrix γ we have det γ = det A det D. Since det A and det D are integers, the fact that

det γ = 1 implies that det A and det D are both ±1. This condition is equivalent to A

and D having integer-valued inverses, and thus belonging to GL(g,Z). Actually for γ ∈ P ,

A and D can be arbitrary elements of GL(g,Z), constrained by ADt = 1.

The group P also contains matrices

(
1 B
0 1

)
, where the only constraint on B is that

it is symmetric and integer-valued. Such group elements act on the period matrix by

Ω → Ω + B, thus shifting Re Ω by an arbitrary symmetric integer-valued matrix, and

leaving Im Ω fixed.

A.3 The average CFT partition function at genus g

We now consider the sigma-model with TD target space on a Riemann surface of genus

g. The partition function is a function of both the Narain moduli and the moduli of the

Riemann surface. As in the torus case, the partition function is equal to a Siegel-Narain

theta function times an oscillator contribution. The oscillator contribution is independent

of MD, so will factor out when we average over MD.

The genus g version of the Siegel-Narain theta function depends on both m ∈ MD

and the period matrix Ω ∈ Hg of our Riemann surface, and can be written as

Θ(m,Ω) =
∑

n,w∈Zg×p
Q(n,w,m,Ω) (A.22)

where

Q(n,w,m,Ω) ≡ exp
{
−πyij

α′
(
Gpqvipv

j
q +Gpqw

ipwjq
)

+ 2πixijn
i
pw

jp
}

(A.23)
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with

vip = α′nip +Bpqw
iq. (A.24)

Note that the momentum n = nip and winding w = wip are now g × p matrices,

with i = 1, . . . , g and p = 1, . . . , D. The Siegel-Narain theta function is not modu-

lar invariant, but rather transforms under Sp(2g,Z) transformations in such way that

(det Im Ω)D/2 Θ(m,Ω) is invariant. It will therefore be convenient to work with this com-

bination of the determinant and the theta function.

The starting point for our derivation of the Siegel-Weil formula is the following differ-

ential equation for Q:(
∆Hg −∆MD

+
gD(D − g − 1)

4

)(
(det Im Ω)D/2Q(n,w,m,Ω)

)
= 0. (A.25)

The derivation of this differential equation from our previous expressions for the Laplacians

is somewhat lengthy. So we will just make a few comments on its derivation. The first is

that our formulas for ∆Hg and ∆MD
are quite similar to one another. So it is perhaps

not surprising that many of the terms which appear when ∆Hg −∆MD
acts on Q directly

cancel with one another. There are additional terms which come from (among other things)

the piece of ∆MD
which is linear in ∂̂Gpg acting on Q, but these cancel against the terms

that are linear in ∂yij acting on (det Im Ω)D/2. This just leaves the terms where all of the

derivatives in ∆Hg act on (det Im Ω)D/2, which gives the constant term in (A.25), according

to equation (A.19).

We now perform the sum over n and w to get(
∆Hg −∆MD

+
gD(D − g − 1)

4

)(
(det Im Ω)D/2 Θ(m,Ω)

)
= 0. (A.26)

We define W (Ω) ≡ (det Im Ω)D/2 F (Ω), where

F (Ω) =

∫
MD

Θ(m,Ω) dµ(m) (A.27)

is the average lattice theta function. We may then use the fact that, for sufficiently large

D, the integral
∫
MD

∆MD
Θ(m,Ω)dµ(m) vanishes to conclude that(

∆Hg +
gD(D − g − 1)

4

)
W (Ω) = 0. (A.28)

The result is that W (Ω) is an Sp(2g,Z) invariant function which obeys precisely the same

eigenvalue equation as ED/2(Ω).

We will now take D > g + 1, so that the eigenvalue of ∆Hg is negative. In this case

W (Ω) and ED/2(Ω) must be equal. We explained the proof of this step for genus g = 1

in section 2.2: one shows that the difference ED/2(Ω) −W (Ω) is square-integrable, and

therefore as an eigenfunction of the Laplacian with a negative eigenvalue, it must vanish.

The proof for arbitrary g is similar but technically more complicated. We will only provide

a sketch.
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What makes the case of general g more complicated is that there are different ways that

Ω can go to infinity. Of course, the inequivalent possibilities are somewhat limited by the

Sp(2g,Z) symmetry. Because of the symmetry of shifting Ω by an arbitrary integer-valued

symmetric matrix (see the final comment of section A.2), there is no meaningful notion of

Re Ω becoming large, and we can keep it fixed in the following discussion. Similarly, we do

not have to worry about the possibility that an eigenvalue of y = Im Ω becomes small (thus

reaching the boundary of the Siegel upper half space Hg); by an Sp(2g,Z) transformation

we can map any limiting behavior of y to the possibility that y is becoming large. However,

there are different ways for y to become large and we have to be careful about this.

Looking back to the lattice sum (A.22) that enters the definition of the Siegel-Narain

theta function, we see that when y becomes large, some contributions to the sum over the

g-plets of integers nip and wjq are strongly suppressed. For example, if y becomes large in

a completely generic way, all of its eigenvalues becoming large, then all contributions are

strongly suppressed unless n = w = 0. At the other extreme, if y11 becomes large while

other matrix elements of y remain fixed, then the surviving contributions in the lattice sum

are those with n1
p = w1q = 0, but no constraint on the other integers in the lattice sum. In

general, there are g essentially different ways for y to go to infinity. An example of the kth

possibility is that the large matrix elements of y might be y11, y22, · · · , ykk. A more general

way to describe this situation is to say that the kth possibility is that y goes to infinity

in such a way that the lattice sum in eq. (A.22) is reduced to a sum over (g − k)-plets of

integers, for some k ∈ {1, 2, 3, · · · , g}. In terms of Riemann surfaces, what is happening is

that a genus g surface is degenerating to a surface of genus g − k, with k pairs of points

glued together.

We will first consider the case that k = g, which we will describe by saying that y

is uniformly large. First let us look at the Eisenstein series (A.20). We see immediately

see that for generic large y (with fixed x = Re Ω), the contribution to Es(Ω) with C = 0

is (det Im Ω)s, while any other contribution is of order 1/(det Im Ω)s. (There is only one

contribution with C = 0, because the condition C = 0 means that γ ∈ P , regardless of D.)

So for uniformly large y,

Es(Ω) ∼ (det Im Ω)s +O((det ImΩ)−s). (A.29)

Now let us look at the definition of the Siegel-Narain theta function in eq. (A.22). With

y large and generic, all contributions to the lattice sum with nonzero integers n, w are

strongly suppressed. Thus the Siegel-Narain theta function reduces to Θ(m,Ω) = 1. After

averaging this over m, we get F (Ω) = 1, and hence W (Ω) = (det ImΩ)D/2, plus corrections

that vanish when y becomes uniformly large. So we have confirmed that in this region,

ED/2(Ω) and W (Ω) coincide, modulo terms that vanish asymptotically.26

26A detail about these subleading terms might be puzzling at first. In eq. (A.29), we see that the sub-

leading terms in ED/2(Ω) are power law suppressed when y becomes uniformly large, while from eqs. (A.22)

and (A.23), it may appear that contributions to the theta function with n or w nonzero are exponentially

suppressed for uniformly large y. That last statement is true for fixed values of the Narain moduli G,B.

However, we are really interested in averaging over these moduli to get F (Ω). In this averaging, it is possible

for G to be very large. For uniformly large y, the averaged theta function has contributions that decay like

a power of y that come from n, w 6= 0 but G ∼ y. This gives power law suppressed contributions to the

averaged theta function because the measure of Narain moduli space decays as a power of G for large G.
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Finally we will discuss what happens when y becomes large in a nonuniform fashion.

For illustration, we consider the case k = 1. The other cases are similar. For k = 1, we

may assume that the only large matrix element of y is y11. Looking back to eq. (A.20),

we see that all contributions to Es(Ω) are suppressed in this region except those with

Ci1 = 0, i = 1, · · · , g. Since one of the columns of C vanishes, it follows that there is a

nonzero g-component row vector a0 with a0C = 0. We can choose a0 to be primitive. The

Lagrangian sublattice Γ0 associated to the pair (C,D) then contains the vector (0,a0D).

Using the equivalence relation (C,D) ∼= (UC,UD), U ∈ GL(g,Z), which does not affect

the condition Ci1 = 0, we can put a0D in the form a = (1, 0, 0, · · · , 0). Once we do this,

Γ0 contains the vector (b,a), with b = (0, 0, · · · , 0). Γ0 is spanned by this vector together

with a rank g−1 lattice Γ′0 of vectors (b,a) where b and a have vanishing first component:

b = (0, b2, · · · , bg) and a = (0, a2, · · · , ag). But Γ′0 is just a Lagrangian sublattice of

Z2g−2. Thus for y11 large, Es(Ω) reduces to (det Im Ω)s times a sum over Lagrangian

sublattices of Z2g−2, plus terms that vanish for y11 → ∞. Now let us compare this to

the averaged theta function. In making this comparison, we assume inductively that we

already know that ED/2(Ω) = W (Ω) for genus less than g, and we will prove that for

genus g, ED/2(Ω) −W (Ω) vanishes for y11 → ∞. (As explained earlier, if D > g + 1, it

then follows that ED/2(Ω) = W (Ω) in genus g.) For this, we just observe from eqs. (A.22)

and (A.23) that for y11 → ∞, the surviving contributions to the lattice sum that define

the theta function are those with n1
p = w1p = 0, so that this lattice sum reduces to a sum

of the same form with g replaced by g − 1. By the inductive hypothesis, the average of

this restricted sum is related to the Eisenstein series with g replaced by g − 1.27 So W (Ω)

for genus g agrees for y11 → ∞ with ED/2(Ω). As in footnote 26, to compare terms in

ED/2(Ω) and in W (Ω) that vanish for y11 → ∞, one must take into account the behavior

at large G, which gives the dominant correction at large y11 on the CFT side.
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