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Abstract

In this paper, we establish the two weight commutator theorem of Calderén—Zygmund
operators in the sense of Coifman—Weiss on spaces of homogeneous type, by studying
the weighted Hardy and BMO space for A, weights and by proving the sparse operator
domination of commutators. The main tool here is the Haar basis, the adjacent dyadic
systems on spaces of homogeneous type, and the construction of a suitable version
of a sparse operator on spaces of homogeneous type. As applications, we provide
a two weight commutator theorem (including the high order commutators) for the
following Calder6n—Zygmund operators: Cauchy integral operator on R, Cauchy-
Szegd projection operator on Heisenberg groups, Szegd projection operators on a
family of unbounded weakly pseudoconvex domains, the Riesz transform associated
with the sub-Laplacian on stratified Lie groups, as well as the Bessel Riesz transforms
(in one and several dimensions).

Keywords BMO - Commutator - Two weights - Hardy space - Factorization

Mathematics Subject Classification 42B30 - 42B20 - 42B35

1 Introduction and Statement of Main Results

It is well-known that Coifman et al. [8] characterized the boundedness of the commu-
tator [b, R;] acting on Lebesgue spaces in terms of BMO, where R; = %A‘l/ 2 is
the jth Riesz transform on the Euclidean space R". Their result extended the work of
Nehari [40] about Hankel operators from complex setting to the real setting R”. Later,
Bloom [3] established the characterisation of weighted BMO in terms of boundedness

B Dongyong Yang
dyyang@xmu.edu.cn

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-019-00308-x&domain=pdf

Two Weight Commutators on Spaces of Homogeneous Type 981

of commutators [b, H] in the two weight setting, where H is the Hilbert transform on
R.

Recent remarkable results were achieved by Holmes—Lacey—Wick [21] giving the
characterisation of weighted BMO space on R” in terms of boundedness of com-
mutators of Riesz transforms, and by Lerner—-Ombrosi—Rivera-Rios [32,33] in terms
of boundedness of commutators of Calder6n—Zygmund operators with homogeneous
kernels Q(ﬁ)ﬁ, and Hytonen [25] in terms of boundedness of commutators of a
more general version of Calderén—Zygmund operators and weighted BMO functions
on R". Meanwhile, the two weight commutator has also been studied extensively in
different settings, see for example [13,15,20].

We note that to get the lower bound of the two weight commutator for Riesz trans-
forms (or the Hilbert transform in one dimension) in terms of the weighted BMO space,
the first proofs used spherical harmonics to expand the Riesz (Hilbert) kernels, which
relies on properties of the Fourier transform of the Riesz (Hilbert) kernels. A similar
method of expansion of the Riesz transform associated with Neumann Laplacian was
used in [13] for a larger class of A, weights and for the BMO space associated with
Neumann Laplacian which is strictly larger than classical BMO. In [32], concerning
the two weight commutator for Calderén—Zygmund operators associated with homo-
geneous kernel €2( \§_|)|X]W’ the proof of the lower bound was obtained by assuming
suitable conditions on the homogeneous function €2, see also [19,20]. More recently,
Hytonen [25] studied the two weight commutator for Calder6n—Zygmund operators
and proposed a condition denoted by the “non-degenerate Calderén—Zygmund ker-
nel”, then he proved the lower bound of the commutator by constructing a factorisation.
Also, in [14,15], they established a version of a pointwise kernel lower bound for the
Riesz transform associated to the sub-Laplacian on stratified Lie groups, which cov-
ers the Heisenberg group, and used this kernel lower bound to obtain the two weight
commutator result following the idea in [32].

However, there are other important Calderén—Zygmund operators (not built on
the Euclidean space setting) whose kernels do not have a connection to the Fourier
transform and are not of homogeneous type such as Q(ﬁ)#. Moreover, whether
the kernels fall into Hytonen’s “non-degenerate Calderén—Zygmund kernel” has not
been studied before and hence the two weight commutator estimates and higher order
commutator are unknown.

For example, the Riesz transform from Muckenhoupt-Stein [39]: R; = —%
(A x)_%, associated with the Bessel operator on R :
A > 2 d 0.3 1
= —-——, x>0,A>—=,
* dx?  x dx 2
and the Riesz transform R;, ; = %}_(AYLH))_%, j=1,...,n+ 1, associated with

the Bessel operator A)(\"H) on RTI studied in Huber [23]:

A _ d? d? d? 2% d

A. —_ - .
dxi dxjp dxy,  Xn1 dXpqn
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982 X.T.Duong et al.

Another example is the Cauchy—Szego projection operator C (for all the notation
below we refer to Section 2 in Chapter XII in Stein [43]), which is the orthogonal
projection from L?(b4™) to the subspace of functions {F”} that are boundary values
of functions F € H?*(U"). The associated Cauchy—Szegd kernel is as follows:

COH(x) = /H KO om sy,

where K (x) = —%(%[r T i|§|2]_") for x = [¢,1] € H" = C" x R.

Then, it is natural to study the following question: Can one establish the character-
isation of boundedness of two weight commutators in terms of the related weighted
BMO space for Calderén—Zygmund operators 7 in a more general setting such that
many examples, including the Bessel Riesz transform, the Cauchy—Szegd projection
operator on Heisenberg groups and others, can be covered?

To address this question we work in a general setting: spaces of homogeneous type
introduced by Coifman and Weiss in the early 1970s, in [9], see also [10]. We say that
(X,d, n) is a space of homogeneous type in the sense of Coifman and Weiss if d is
a quasi-metric on X and p is a nonzero measure satisfying the doubling condition.
A quasi-metric d on a set X is a function d : X x X —> [0, co) satisfying (i)
d(x,y) =d(y,x) > 0forall x, y € X; (ii) d(x, y) = 0 if and only if x = y; and
(iii) the quasi-triangle inequality: there is a constant Ag € [1, co) such that for all x,
v,z €X,

d(x,y) = Aold(x,z) +d(z, y)]. (1.1)

We say that a nonzero measure u satisfies the doubling condition if there is a constant
C,, such that forall x € X and r > 0,

n(B(x,2r)) < Cuu(B(x,r)) < 00, (1.2)

where B (x, r) is the quasi-metric ballby B(x,r) :={y € X : d(x,y) <r}forx € X
and r > 0. We point out that the doubling condition (1.2) implies that there exists a
positive constant n (the upper dimension of ) such that for all x € X, A > 1 and
r>0,

w(B(x, Ar)) < C A" w(B(x,r)). (1.3)

Throughout this paper we assume that u(X) = oo and that u({xo}) = 0 for every
xo € X.

We now recall the singular integral operator on spaces of homogeneous type in the
sense of Coifman and Weiss.

Definition 1.1 We say that 7 is a Calderén—Zygmund operator on (X, d, n) if T
is bounded on L2(X) and has the associated kernel K (x, y) such that T(f)(x) =
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fx K(x,y)f(y)du(y) for any x ¢ supp f, and K (x, y) satisfies the following esti-
mates: for all x # y,

K91 5o (1.4)
and for d(x, x') < (2A¢) " 'd(x, y),
/ / C d(x,x’)
IK(x,y) — K&, )| + 1K (v, x) — K(y.x)| < V(x,y)w(d(x,y))’ (1.5)

where V(x,y) = w(B(x,d(x,y))) and by the doubling condition we have that
Vix,y) = V(y,x), o : [0,1] — [0, 00) is continuous, increasing, subadditive,
w(0) =0.

We say that w satisfies the Dini condition if fol a)(t)% < 00.
Let T be a Calderén—Zygmund operator on X. Suppose b € LllOC (X) and f €
LP(X). Let [b, T] be the commutator defined by

(D, T1f (x) := b()T (f)(x) = T(bf)(x).

The iterated commutators Tl;”, m € N, are defined inductively by

T f(x) = b, T '1f (), T)f(x):=Ib, T1f(x).

Next, we use A, 1 < p < 00, to denote the Muckenhoupt weighted class on X
(see the precise definition of A, in Sect. 2), and the weighted BMO on X is defined as
follows (the Euclidean version of weighted BMO was first introduced by Muckenhoupt
and Wheeden [38]).

Definition 1.2 Suppose w € Ax. A function b € LIIOC(X) belongs to BMO,, (X) if

1
w(B)

Ib]IBMO,, (X) := Sup / |b(x) — bp| dju(x) < o0,
B B

where bg = ﬁ f p b(x)dp(x) and the supremum is taken over all balls B C X.

Our first main result is the following theorem.
1 _1
Theorem 1.3 Suppose 1 < p < 00, A1, 2 € Ap, v :=A{ L, " and m € N. Suppose
b € BMO 1 (X). Then for any Calderon—Zygmund operator T as in Definition 1.1
ym

with w satisfying the Dini condition, there exists a positive constant C| such that

m+1 1
#5= -max{l, pTl}

173 L2, (X) = LE,CON = Cillblivo | oo (D414, [3214, )

vin
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984 X.T.Duong et al.

To obtain the upper bound, we characterise the sparse system and then use the idea
from [32] to build a suitable version of a sparse operator on a space of homogeneous
type. Here, we apply the tool of adjacent dyadic systems from [26], the explicit con-
struction of Haar basis from [28], and we have to allow suitable overlapping for the
sparse sets due to the partition and covering of the whole space via quasi-metric balls.

To consider the lower bound of the commutator, we assume that the Calderon—
Zygmund operator 7', as given in Definition 1.1 with w satisfying w(#) — Oast — O,
satisfies the following “non-degenerate” condition:

There exist positive constants co and C such that for every x € X and r > 0, there
exists y € B(x, Cr)\B(x, r) satisfying

1
K (x, y)| = m (1.6)

Note that in R", this “non-degenerate” condition was first proposed in [24], and a
similar assumption on the behaviour of the kernel lower bound was proposed in [32].
On stratified Lie groups, a similar condition of the Riesz transform kernel lower bound
was verified in [14].

Then, we have the following lower bound.

1
Theorem 1.4 Suppose 1 < p < 00, A, A2 € Ap, v = k Ay " and m € N. Suppose
b e LIOC(X ) and that T is a Calderon—Zygmund operator as in Definition 1.1 and
satisfies the non-degenerate condition (1.6). Also suppose that T} is bounded from
Lfl (X) to sz (X). Then b € BMOU% (X), and there exists a positive constant Co

such that

16lIEp0 | (x) < C2UT," : LY (X) — LT, (X)].

Based on the characterisation of BMO, (X) via commutators Tb1 = [b, T], we
further have the weak factorisation for the weighted Hardy space H, ! (X) as follows.
1 1

Theorem 1.5 Suppose 1 < p < 00, A, A2 € Ap and v := A{ )»2; Let p’ be the

conjugate of p and ) = )‘2 . Forany f € H (X), there exist numbers {a Yk, j
functions {g },j C Lp (X) and {hk}k i C L (X) such that

Mg

>

k=1j

a I ( gl,h’;) (1.7)

1

in HV1 (X), where the operator Tl is defined as follows: for g € Lfl (X)and h €
LV (X),
2

M(g, h) :=gTh—hT*g,
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where T is a Calderon—Zygmund operator as in Definition 1.1 and satisfies the non-
degenerate condition (1.6) and T* is the conjugate of T in the sense that

/XTf(X)g(X)dM(X)=/Xf(X)T*g(X)du(X), fog € L2(X).

Moreover, we have

o0 o0 o0 o0
~ 3 k k k k 1k
o ~mf{zzwugj ol 1= S )

k=1 j=1 i =1 j=1

where the implicit constants are independent of f.

As applications, besides the classical Hilbert transform, Riesz transform and the
Calder6n—Zygmund operators with homogeneous kernels 2 (ﬁ)# on R" (studied
in [21,32]), we use our main theorems to obtain the two weight commutator result of
the following operators:

1. the Cauchy integral operator C4 along a Lipschitz curve z := x +iA(x), x €
(=00, 00) and A’ € L*(R);

The Cauchy—Szeg6 projection operator on Heisenberg group H";

The Szegd projection operator on a family of weakly pseudoconvex domains;
Riesz transforms associated to the sub-Laplacian on stratified Lie groups G;
Riesz transforms associated to the Bessel operator Ay on Ry for A > —1/2;
Riesz transforms associated to the higher order Bessel operator A, , on IR:’_‘H for
A>—1/2.

SNk wN

The definitions of the above operators will be given in Sect. 7. We have the following
result.

Theorem 1.6 Let T be one of the operators listed above and let (X, d, u) be the
1 1

underlying space adapted to T. Suppose 1 < p < 00, A1, A2 € Ap, v = )»1’7’)»2_; and
m € N. Suppose that b € LIIOC(X). Then, we have

1bIEMo | o) & IT" = LY (X) — L7 (X)I.

Moreover, based on the result above for m = 1 and on the duality, the corresponding
weighted Hardy space Hv1 (X) has a weak factorisation as in (1.7).

To prove this theorem, the key step is to verify that all these operators listed above
satisfy the conditions as in Definition 1.1 and the non-degenerate condition as in (1.6).
We point out that such verification for Cauchy integral operator Cy4 is direct. The
verifications of Cauchy—Szegd projection operator on Heisenberg group, the Szego
projection operator on a family of weakly pseudoconvex domains and the Riesz trans-
forms associated with the sub-Laplacian on stratified Lie groups can be derived based
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986 X.T.Duong et al.

on the results in [43, Chapter XII], [18] and [14], respectively. The verification for
Riesz transforms associated with the Bessel operator A, on Ry for A > 0 can be
derived from the result in [39], while for A € (—1/2, 0) is new here. The verifica-
tion for Riesz transforms associated with higher order Bessel operator is totally new,
especially the pointwise kernel lower bound of this Riesz transform.

We now address our result Theorem 1.6 with respect to the 6 examples above,
respectively:

1. The unweighted result was obtained in [34] when m = 1, and the two weight result
is new here form > 1;

This result is new, even the unweighted version is unknown;

This result is new, even the unweighted version is unknown;

This result was obtained in [15] when m = 1 and is new here when m > 1.

The unweighted result was obtained in [16] when A > 0 and m = 1, the two
weight result is new here for m > 1 and for all A > —1/2;

6. This result is new, even the unweighted version is unknown;

nk e

This paper is organised as follows. In Sect. 2 we recall the necessary preliminaries
on spaces of homogeneous type. In Sect. 3, we first characterise the sparse system
equivalently via the A-Carleson packing condition and the n-sparse condition, and
then borrowing the idea from [32], we study the sparse operators and its domination
of commutator on spaces of homogeneous type, and using this as a main tool, in Sect. 4
we obtain the upper bound of two weight commutator, i.e., Theorem 1.3. In Sect. 5 we
provide the lower bound of two weight commutator, i.e., Theorem 1.4, by combining
the ideas in [25,33]. In Sect. 6 we provide a study of weighted Hardy spaces and its
duality on spaces of homogeneous type, and provide the proof of Theorem 1.5. In Sect.
7 we provide the applications where we address the new points in this paper. In the last
section we also provide a new proof of the lower bound of two weight commutators
in the product setting for little bmo space on spaces of homogeneous type. Note that
in R" x R™, this was first studied by [22] by using the Fourier transform for the Riesz
transform kernel.

Throughout the paper, we denote by C and c positive constants which are indepen-
dent of the main parameters, but they may vary from line to line. Forevery p € (1, 00),
we denote by p’ the conjugate of p, i.e., # + % =1.If f <Cgor f > Cg, we then
write f Sgor f 2 g;andif f < g < f, wewrite f ~ g.

2 Preliminaries on Spaces of Homogeneous Type

Let (X, d, i) be a space of homogeneous type as mentioned in Sect. 1.

2.1 A System of Dyadic Cubes
In (X, d, n), a countable family 2 := Urez %k, Pk = {Q’é: a € o}, of Borel

sets QK C X is called a system of dyadic cubes with parameters § € (0, 1) and
0 < a; < A1 < oo if it has the following properties:
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Two Weight Commutators on Spaces of Homogeneous Type 987

X = U Q(I; (disjoint union) for all k € Z;
a €

if £ > k, then either Qf, - Q'& or Qg N Qf; = 0
for each (k, «) and each £ < k, there exists a unique § such that Q’; C Qg;
for each (k, ) there exists at most M (a fixed geometric constant) 8 such that

opt'cob and0l = | o
0€Dkt1,0C 0k
B(xf a18") € 0F < B(:E, 4165 = B(O);
if £ > kand Qf C QF, then B(Q}) < B(Q%). (2.1

The set QF is called a dyadic cube of generation k with centre point x¥ € QF and
sidelength 8.

From the properties of the dyadic system above and from the doubling measure,
we can deduce that there exists a constant C;, o depending only on C, as in (1.2) and

ap, A1 as above, such that for any Q’; and Q];H with QZH C Q(’;,

w(QE™) = (k) < Con(@f™. 22)

We recall from [26] the following construction, which is a slight elaboration of
seminal work by Christ [5], as well as Sawyer—Wheeden [42].

Theorem 2.1 On (X, d, ), there exists a system of dyadic cubes with parameters
0<d< (12A(3))_1 and ay = (3A(2))_1, Ay := 2Ag. The construction only depends
on some fixed set of countably many centre points xéj, having the properties that
d(xéj, xllg) > 8% with # 3, ming d(x, xg) < &k forall x € X, and a certain partial
order “<” among their index pairs (k, «). In fact, this system can be constructed in

such a way that

Go=tf:@p=ka) G=md,=(UT). Tcoicd.
yFa

. —k ~ .
where Q{; are obtained from the closed sets Q,, and the open sets Q{; by finitely many
set operations.

We also recall the following remark from [28, Section 2.3]. The construction of
dyadic cubes requires their centre points and an associated partial order be fixed a
priori. However, if either the centre points or the partial order is not given, their
existence already follows from the assumptions; any given system of points and partial
order can be used as a starting point. Moreover, if we are allowed to choose the centre
points for the cubes, the collection can be chosen to satisfy the additional property
that a fixed point becomes a centre point at all levels:

given a fixed point xo € X, for every k € Z, there exists « such that
k

xo = x,, the centre point of Q]; € Y.
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988 X.T.Duong et al.

2.2 Adjacent Systems of Dyadic Cubes

On (X, d, 1), afinite collection {2": t = 1,2, ..., T} of the dyadic families is called
a collection of adjacent systems of dyadic cubes with parameters § € (0,1),0 < a; <
Ay < ooand 1 < Cyyj < oo if it has the following properties: individually, each
2" is a system of dyadic cubes with parameters § € (0,1) and 0 < a1 < A} < o0;
collectively, for each ball B(x,r) € X with 3 < r < 82 k e Z, there exist
t € {l,2,...,T}) and Q € 2" of generation k and with centre point ’ xéj such that
d(x,'xX) < 2A408* and

B(x,r) € QO C B(x, Cyqjr). 2.4)

We recall from [26] the following construction.

Theorem 2.2 Let (X, d, i) be a space of homogeneous type. Then, there exists a
collection{2": t = 1,2, ..., T} of adjacent systems of dyadic cubes with parameters
8 € (0, (96A) ™Y, ay := (124 7", Ay := 4A] and C := 8A}S 3. The centre points
’x§ of the cubes Q € .@,ﬁ have, for eacht € {1,2, ..., T}, the two properties
d('xl.'xp) = 4A5) '8¢ (@ # )., mind(x,'x}) <2A08" forallx € X.
o

Moreover, these adjacent systems can be constructed in such a way that each 2'
satisfies the distinguished centre point property (2.3).

We recall from [28, Remark 2.8] that the number 7 of the adjacent systems of
dyadic cubes as in the theorem above satisfies the estimate

T = T(Ao, A1, 8) < AC(Ad/s)oe X

where A 1 is the geometrically doubling constant, see [28, Section 2].

2.3 An Explicit Haar Basis on Spaces of Homogeneous Type

Next, we recall the explicit construction in [28] of a Haar basis {hGQ 10 € P, e =
1,...,Mg — 1} for LP(X, u), 1 < p < o0, associated to the dyadic cubes Q € ¥
as follows. Here, Mo = #H(Q) = #{R € Zi4+1: R € Q} denotes the number of
dyadic sub-cubes (“children”) the cube Q € % has; namely H(Q) is the collection
of dyadic children of Q.

Theorem 2.3 ([28]) Let (X, d, i) be a space of homogeneous type and suppose L is
a positive Borel measure on X with the property that u(B) < oo for all balls B C X.
For1 < p < oo, foreach f € LP(X, ), we have

Mp—1

FO =" D (f R (),

07 e=l
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Two Weight Commutators on Spaces of Homogeneous Type 989

where the sum converges (unconditionally) both in the LP (X, n)-norm and pointwise
w-almost everywhere.

The following theorem collects several basic properties of the functions heQ

Theorem 2.4 ([28]) The Haar functions h$,, Q € 9, ¢ = 1,..., Mg — 1, have the
following properties:
@) héQ is a simple Borel-measurable real function on X;
(i1) heQ is supported on Q;
(iii) hGQ is constant on each R € H(Q);
iv) [ h{ du = 0 (cancellation);
V) (h, th’) =0fore#¢, e efl,....,Mg—1};
(vi) the collection {;L(Q)_I/ZIQ} U {heQ e =1,..., Mg — 1} is an orthogonal
basis for the vector space V (Q) of all functions on Q that are constant on each
sub-cube R € H(Q);

1_1
(vii) lthQ # 0 then ||h€Q||LP(X,u) ~u(Qe)r 2 forl < p < oo;
viil) 1Al x 0 - 1A Lo x ) & 1.

As stated in [28], we also have hOQ = /L(Q)_l/ 21Q which is a non-cancellative
Haar function. Moreover, the martingale associated with the Haar functions are as
follows: for Q € Z,

Mp—1
Eof = (f. hp)hY and Dof= Y Dff.

e=1

where ]D)eQ = {f, hEQ)hGQ is the martingale operator associated with the eth subcube
of Q. Also we have

Ef= Y Eof and Dif =iy f —Bif.
(78

Hence, based on the construction of Haar system {heQ} in [28] we obtain that for each
R e 2,

Mo—1
Do Y hhghy = Y Dof -hly=Erf b} =(f, hg)hfh}.
Q: RCQ e=l Q: RCQ
2.4 Muckenhoupt A, Weights

Definition 2.5 Let w(x) be a nonnegative locally integrable function on X. For 1 <
p < 00, we say w is an A, weight, written w € A, if

I\ =D\ P!
[w]a, = sup <][ w) <][ (—) ) < 00.
B \JB B\W
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990 X.T.Duong et al.

Here, the supremum is taken over all balls B C X and {3 w := ,4(;3) [ wx)du(x).
The quantity [w]a, is called the A, constant of w. For p = 1, we say w is an A,
weight, written w € Ay, if M(w)(x) < w(x) for u-almost every x € X, and let
Ac '=Ul<p<coA) and we have [w]a,, = supg (JCB w) exp (JLB log (%)) < 00.

Next, we note that for w € A, the measure w(x)du(x) is a doubling measure on
X. To be more precise, we have that for all . > 1 and all balls B C X,

w(AB) < A"P[w]a,w(B),

where 7 is the upper dimension of the measure u, as in (1.3).
We also point out that for w € A, there exists ¥ > 0 such that for every ball B,

w(fren:ww =y 7[3 HE %mm.

And this implies that for every ball B and for all § € (0, 1),

1/8
][ w<C <][ w‘s) : (2.5)
B B

see also [33].

3 Sparse Operators and Domination of Commutators on Spaces of
Homogeneous Type

Let D be a system of dyadic cubes on X as in Sect. 2.1. As in the Euclidean setting,
we have two competing versions of sparsity for a collection of sets, one geometric and
the other a Carleson measure condition.

Definition 3.1 Given 0 < 1 < 1, a collection S C D of dyadic cubes is said to be
n-sparse provided that for every Q € S, there is a measurable subset Eg C Q such
that u(Ep) > nu(Q) and the sets {Ep}pes have only finite overlap. That is, there
exists a constant ¢ > 1 such that ZQ XEq (x) <cforallx € X.

The reason for the extra constant ¢ in the above, is that for our arguments in Theorem
3.7, to control the commutator, we need to allow the sets E¢ to have finite overlap.
If the sets E o were exactly disjoint then one could take ¢ = 1 in the above and the
statement would be cleaner and more in line with that in [31].

We note that in [29], Karagulyan introduced a more general family of sets, called
ball-basis, and then defined the sparse family based on these ball-basis, using the
geometric version of sparsity, which is similar to our Definition 3.1. However, the
ball-basis in [29] is pairwise disjoint, which does not seem well fit for our proof for
upper bound of the commutator.

We now provide the Carleson measure condition for the sparse family, which was
not studied in [29].
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Definition 3.2 Given A > 1, a collection S C D of dyadic cubes is said to be A-
Carleson if for every cube Q € D,

Y u(P) = AQ).

PeS,PCQ

We first show that the above two definitions are equivalent in a space of homo-
geneous type. The proof closely follows the original idea in [31] with modifications,
especially on the replacement of using of translation in [31].

Theorem 3.3 Given0 < n < 1 and a collection S C D of dyadic cubes, the following
statements hold:

o If S is n-sparse, then S is %-Carleson, where c is the constant in Definition 3.1;

o IfSis %—Carleson, then S is n-sparse.

Proof Note that if a collection S C D of dyadic cubes is n-sparse, that is for every
Q € S, there is a measurable subset Eg C Q such that u(Eg) > nu(Q) and the sets
{E 0} pecs have only finite overlap, we will have that S is cn~!'-Carleson according to
Definition 3.2 (following from the standard computation).

Thus, it suffices to show that for A > 1, if a collection S C D of dyadic cubes is
A-Carleson, then it is A ™! -sparse. To see this, we first point out that if the collection
S C D of dyadic cubes {Q} has a bottom layer Zk for some fixed integer K, then it
is direct to construct the set £ . We begin with considering all dyadic cubes {Q} C
S N Yk and choose any measurable set Eg C Q of measure A~ (Q) for them. We
now just repeat this choice for each dyadic cube in upper layers one by one. To be
more specific, for each Q € S N P with k < K, choose a set

EQCQ\ U Egr
0

ReS,RC

such that u(Egp) = A~ '1(Q). We now show that such choice of E ¢ is possible. In
fact, note that for every Q € S, we have

u( U ER>5A—1 Yo r® = ATHA = DH(Q) = (1 - AHu(Q),
ReS,RCQ ReS,RCQ

where the last inequality follows from the A-Carleson condition and from the fact that
R C Q. This shows that

u(Q\

and so the choice of the top set £ is always possible.
Next, we consider the case that there is no fixed bottom layer. We run the above
construction with a particular choice for each K = 0, 1,2, ... and then pass to the

U ER> > w(@) - (1= A Hu(@) = A~'w(Q)

ReS,RCQ
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limit. To begin with, fix K > 0. Foreach Q € SN (Ux<x Zk), we define the sets E(K)

inductively as follows.
First, for each Q € S N % with k < K, we consider the auxiliary set

(1, Q) := B(xg, 185N Q, 1€(0,A),

where x¢ is the centre point of Q and Ay, § are the constants as introduced in Sect.
2.1. From property (2.1), it is clear that when 0 < t < ay, then B(xop, 185y c 0
and when ¢t > Ay, then Q C B(xgp, 18%); moreover, we have n(B(xq, 185)) — 0 as
t — 0t.

Now for O € § N Pk, from the above observations together with the continuity
and monotonicity of the function ¢ > Q(t, Q) = u(B(xg, t8 Ky n Q, we conclude
that there must be some 75 g ¢ € (0, Ay) such that u(B(xg, tA’K,K(SK) NnQ) =
A~'(Q). Here and in what follows, we use the triple (A, k, K) for the subscript of
t, where A denotes that the value of such ¢ depends on A, k denotes that Q is in the
layer k and the last K denotes that we start at the layer K. We set

EQY = Q(ax.x. Q) = Blxg.tak.x65) N 0.

Suppose now E}K) are already defined for every R € S N (Ugt1<i<k Zi). We now
define E (QK) for Q € S N Z in the following manner. We set

Ey’ = Qlarx. O JF.
where

(K) ._ =(K)
Fy = U EY
ReSN(Ugt1<i<k %), RSO

and 1A x,x € (0, Ay) is chosen such that the set

(K) (K)

= QU .k k. O\Fy
satisfies M(E(QK)) = A‘l,u(Q).

Now, we claim that E(QK) C E(QKH) for every Q € S N (Ux<kx Zk). To see this,
we note that for each Q € S N Yk, E(QK) is just the set Q(ta k.x, Q). On the other

hand, E(QK+1) contains the set Q(fa k. x+1, Q) which has the same centre point as
Q(ta k. k» Q), but with 15 g k11 > ta Kk K since

pl|Quakki. O\ |J  EXTV|=2A""m(0) = n(Quak k. Q).

RESﬁ.@K+|,R§Q
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Hence, we see that for each Q € SN Yk, we have E (QK) - E (QK+1). Then, we proceed
via backward induction. Assume that E(QK) - E(QK+]) forevery O € SN(Uk<i<kx Zi).
Take any Q € S N Z. Then, the inductive hypothesis implies that F g() CF éKH)-
Let Q(ta k., Q) be the set added to F g() when constructing E (QK). Then, we have

n(QGakx OVFSY) < p(Q0nsk, OVFGY) = A7 (),

whichimpliesthatza x x+1 > A k. k. Thus,wehave Q(ta k. x, Q) C QU k. k+1, Q),
which yields E (QK) C E (K'H), and hence the claim follows.

Now for Q € S N 9, we define
- (K)

Eo = Jim Eo”

which, by using the claim above, equals

(@

~(K
EE)CQ.

K=k

Moreover, for each K we have
K ~(K K _
n(EG ) = w(Eg \Fy) = A7 u(Q).

Note that the sets F'X) also form an increasing sequence (with respect to K), so for
each Q € S, the limit set

Ep:= lim E® = E,\( lim F€) = E ( | E)
Q= 5o o\( lim Fy')=Eo\ K
ReS,RCQ

exists, and is contained in Q and has the required measure. Moreover, all E¢ are
disjoint. The proof of Theorem 3.3 is complete. O

We now recall the well-known definition for sparse operators.

Definition 3.4 Given O < 1 < 1 and an p-sparse family S C D of dyadic cubes. The
sparse operator Ag is defined by

Asfx) =Y foxo).
QeS

Following the proof of [37, Theorem 3.1], we obtain that

x{

ma l,)%}
IAs fllg ) < Complwly "I lp s 1< p < oo
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Denote by Q2 (b, B) the standard mean oscillation

1
Q(b, B) = W/B Ib(x) — bgldp(x). 3.1)

Lemma 3.5 Given 0 < y < 1. Let D be a dyadic system in X and let S C D be a
y-sparse family. Assume that b € L} (X). Then there exists a m-sparse family

loc

S C D such that S C S and for every cube Q € S,

b(x) —bol <C Y Qb R)xr(x) (32)
ReS.RCQ

for p-almost every x € Q.

Proof Fix a dyadic cube Q € D. We now show that there exists a family of pairwise
disjoint cubes {P;} C D(Q) such that Zj u(Pj) < %,u(Q) and for p-almost every
X € Q,

b(x) —bol < C- CuoR(b, Q) + Y 16(x) — bp, I xp, (x). (3.3)
J

LetM ‘é be the standard dyadic local maximal operator restricted to D(Q) and C MZ)

be the weak type (1, 1)-norm of M‘é. Then one can choose a constant C depending
on CMd such that the set £ := {x € Q : Md (b—bp)(x) >4C, - C-Q2(b, Q)}

satlsﬁes that u(E) < ,u(Q) where C,, o is the constant as in (2.2).

If w(E) = 0, then (3 3) holds trivially with the empty family {P;};. If u(E) > 0,
then we now apply the Calderon—Zygmund decomposition to the function i (x) :=
xEe(x) on Q atheight A := 2C 5 as follows: we begin by considering the descendants

of Q in D(Q) since
fQIh(X)IdM(X) < Au(Q).
Let {Q§”} C D(Q) be the children of Q. If

[, meln > 2ol 34

J

then we select it as our candidate cube. If
/m [ (x)|dp(x) < AM(Q;.“)
Q;
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Two Weight Commutators on Spaces of Homogeneous Type 995

M
J
selection criteria and we will stop only when we find some descendant of Q;l) in
D(Q) such that it meets the criteria (3.4).

Then, it is direct to see that this produces pairwise disjoint cubes {P;} C D(Q)
such that

then we keep looking at the children of Q' in D(Q) and then repeat the above

1
P; P,NE) < —u(P;
ZC;L,OM( ‘/) < u( bi ) < 2,“( A/)

and w(E\ U; P;j) = 0. It follows that Zj w(Pj) < %/L(Q) and P; N EC # (.
Therefore, we get

lbp, —bol = |b(x) —boldu(x) =4Cpuo-C-Q(b, Q) (3.5

w(Pj) Jp;

and for p-almost every x € Q, |b(x) —bolxo\u;p; <4Cp0-CQ(b, Q).
Then, we have

Ib(x) — bolxo(x) < [b(x) — bolxo\u, P, (x)
+ Y lbp, — bolxp;(x) + D 1b(x) — bp;|xp, (x)
J J

< 4Cp0- Cb. Q)+ Y b(x) — bp,|xp, ().
J

which gives (3.3).

We observe that if P; C R, where R € D(Q), then RN E€ # (. Hence P; in (3.5)
can be replaced by R, namely, we have |bgr —bg| < 4C o - C2(b, Q). Therefore, if
U;P; C U;R;, where R; € D(Q), and the cubes {R;} are pairwise disjoint, then we
have

|b(x) —bol =4Cpo-CQ(b, Q) + Z |b(x) — DR, [X&; (x). (3.6)

1

Iterating (3.3), from the selection of {P;} and from Definition 3.2, we obtain that
there exists a %-sparse family F(Q) C D(Q) such that for p-almost every x € Q,

b(x) — bolxo(x) <4Cu0-C Y Qb P)xp(x).
PeF(Q)

Now for each F(Q), let F (Q) be the family that consists of all cubes {P} C F(Q)
that are not contained in any cube R € S with R C Q. Then, we define

S:=J 7.
QeS
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It is clear, by construction, that the augmented family S contains the original family
S. Furthermore, if S and each F(Q) are sparse families, then the augmented family
S is also sparse.

To be specific, we have that if S C D is an y-sparse family then the augmented
family S built upon %-sparse family 7(Q), Q € S, is an ﬁ-sparse family.

We now show (3.2). Take an arbitrary cube Q € S. Let P; be the cubes appearing
in (3.3). Denote by M (Q) the family of the maximal pairwise disjoint cubes from
S which are strictly contained in Q. Then by the augmentation process, U; P; C
Upem(g) P. Therefore, by (3.6), we have

b(x) = bolxo(x) <4Cu0-CQL, Q)+ Y [b(x)—bplxp(x). (37
PeM(Q)

Now split S(Q) :={P € S: P C 0} into the layers S(Q) = Up2 oMy, where

Mo = {Q}, M| := M(Q) and M, is the family of the maximal elements of M_1.
Iterating (3.7) k times, we get that

b@) — bolxo(x) 4Cu0-C Y Q. Pxp)+ Y [b(x)—bplxp(x).

PES(Q) PeM;
3.8)
Now, we observe that since Sis %-sparse,
1 & 1 2(y + 1)
P)< —— P)<—— P)< —— .
> )_kHZ D HP) = Z w(P) = 0 Q)
PeM; i=0 PeM; PeS(0)
By letting k — oo in (3.8), we obtain (3.2). O

Let T be a Calder6n—Zygmund operator as in Definition 1.1. We now have the
maximal truncated operator T defined by

T, f(x) := sup

e>0

/ K. y) f0)du(y)|.
d(x,y)>€

We recall the standard Hardy-Littlewood maximal function M f (x) on X, defined as

M f(x) := sup !

d ,
sup M(B)fBIf(y)l n(y)

where the supremum is taken over all balls B C X. We now have the grand maximal
truncated operator Mt defined by

Mz f(x) := supess sup | T(f xx\c38) (¢)
B>x &€B

)
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where the supremum is taken over all balls B C X containing x, ﬁ) is the smallest
integer such that

200 5 max{3Ag, 240 - Cadj} (3.9)

and Cﬁ) = 2/0F2 A, where Caqj 1s an absolute constant as mentioned in Sect. 2.2.
Given a ball By C X, for x € By we define a local grand maximal truncated operator
Mr ., as follows:

My fG) = sup esssup |T(fxcy by, 8) )|
B>x, BCBy &€B ’

Then, we first claim that the following lemma holds.
Lemma 3.6 The following pointwise estimates hold:

(1) for w-almost every x € By,
IT(f x5, 80O = CIT N1 proe | f I+ Mz g f(5).

(i) forall x € X, Mz f(x) < CMf(x)+ Tof(x).

Proof The result in the Euclidean setting is from [30, Lemma 3.2]. Here, we can adapt
the proof in [30] to our setting of spaces of homogeneous type. O

Next, we have the sparse domination for the higher order commutator.

Theorem 3.7 Let T be the Calderon—Zygmund operator as in Definition 1.1 and let
b e L}OC(X). For every f € L®(X) with bounded support, there exist T dyadic

systems D', t = 1,2, ..., T and n-sparse families S, C D' such that for w-almost
every x € X,

1T ()] <C Ch D Ib(x) = bo|™*

T
t=1k=0  QeS,

1
— | b(zx) = bolF d > , 3.10
X(M(Q)/Q| @) = bol 1 F@Idn() ) xo ). (3.10)

m!

k .
where Cm = m

Proof We follow the idea as in [33] for the domination, and adapt it to our setting of
space of homogeneous type.

Suppose f is supported in a ball By := B(xp, r) C X. We now consider a decom-
position of X with respect to this ball By. We define the annuli U; := 2/%1By\2/ By,
Jj = 0 and we choose jj to be the smallest integer such that

jo > jo and 270 > 4A,. (3.11)
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Next, for each U, we choose the balls
{Bj,l}gzl (312)

centred in U; and with radius 2/ ~Jor to cover U ;. From the geometric doubling
property [9, p. 67], it is direct to see that

supLj < Cyp 05 (3.13)
j

where C = is an absolute constant depending only on A, jo and C,. ~

We now first study the properties of these B; ¢. Denote B ¢ := B(xj ¢, 2/ /0r),
where j; is defined as in (3.9). Then we have Cadj vaj,g := B(xj ¢, Caqj2'~70r), where
Caaj 1s an absolute constant as mentioned in Sect. 2.2. We claim that

~

CudjBjeNUjrjo=9, Vj=>=0 and V€ =1,2,...,Lj; (3.14)
and that
CaajBjsNUj_jy =W, Vj=>jo and Ve=1,2,... L;. (3.15)

Assume (3.14) and (3.15) at the moment. Now combining the properties as in (3.14)
and (3.15), we see that each C,y; lj j,¢ only intersects with at most 2 jp + 1 annuli Us.
Moreover, for every j and £, C % Bj ¢ covers By.

Now, for the given ball By as above, we point out that from (2.4) we have that there
exist an integer fo € {1,2,...,7} and Q¢ € 2" such that By € Qo C Cadj Bo.
Moreover, for this Qg, as in (2.1) we use B(Qg) to denote the ball that contains Qg
and has measure comparable to Qg. Then it is easy to see that B(Qg) covers By and
w(B(Qo)) < n(Bo), where the implicit constant depends only on Cqj, C,, and Aj
asin (2.1).

We show that there exists a %-sparse family F C D"(Qy), the set of all dyadic
cubes in fpth dyadic system that are contained in Qg, such that for p-almost every
X € By,

|T1;n(fXC70B(Qo))(x)|

m
=cyoch Y (b —bro"HIf 1= brol|  Yxow). (16)
k=0 QeF B

Here, R is the dyadic cube in &' for some ¢ € {1,2, ..., T} such that C;)B(Q) C
Rop C Cyuqj - C%B(Q), where B(Q) is defined as in (2.1), jo defined as in (3.11) and
Jo defined as in (3.9).
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To prove the claim it suffices to prove the following recursive estimate: there exist
pairwise disjoint cubes P; € 2'(Qy) such that Zj w(Pj) < %M(Q()) and

T, (f x5, B(20) (X)X 0y (¥)
m
= €3 Ch (166 = brg, " |LF116 = b, ] ., )x0n®)
k:() ./0

+ 21T (fxes )@ xp; () (3.17)
j

for p-almost every x € By.

Iterating this estimate we obtain (3.16) with " being the union of all the families
{PJ’.‘} where {P]‘.)} = {Qo}, {le} = {Q/} as mentioned above, and {PJ’.‘} are the cubes
obtained at the kth stage of the iterative process. It is also clear that ™ is a 1/2-sparse
family.

Let us prove then the recursive estimate. We observe that for any arbitrary family
of disjoint cubes {P;} C D"(Qy), we have that

|Tbm(fXC7OB(Q0))(x)|XQ0(x)
< T3 (f xc5, B(00) ) x0o\u; p; (¥) + > T, (f x5, B(20) (X)X P, ()
J

< T (f x5, B(00) D)X 00\u; P (¥) + > Ty (f x5, Boo\C3, B(P) (X)X, (X)
J

+ Z |Tbm(fXC7OB(Pj))(x)|XPj (x).
J

So it suffices to show that we can choose a family of pairwise disjoint cubes {P;} C
DN (Qp) with Zj w(Pj) < %M(Qo) and such that for p-almost every x € By,

|Tbm(fXC;(]B(QO))(x)|XQ0\Uij (x) + Z IT;,m(ch;OB(QO)\Cﬁ)B(Pj))(x)IXP,» ()
j

m
<> kb —b m*"‘ b—b k’ .
< kgjo nlbC) = breg, " H 1110 = bk

To see this, using the fact that

T =Ty S =D (=D CLT((b = bro,) f) (b = brg))" ™",
k=0
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we obtain that

|T5" (f x5, B(00) ()X 0o\U; P; (X) + Z Ty (f x5, Boo\C5, B(P) (X)X P, (X)
J
m
Z T((b — bro,)" f xC5 B0w) 1b() = broy I" ™  x00\U; P, (X)

Z WIT (0 —bry)* fxcs;, BoonCs, B ))b(x) = bry, " xp; (x)

+

Now, fork =0, 1, ..., m, we define the set E; as

E::{xeB:bx—b k£ (x >a)b—b k ‘ }
k 02 |b(x) = bry, " f ()] | Ro, | I f1 C: B(Ow)

U {r € B0 s My (6 = o)) ) @) > aCrfib = brg, 11|
Jo

and E := U]’ Ey. Then, choosing a big enough (depending on C7
Aj asin (2.1)), we have that

Caaj, C, and

Jjo?

n(E) = 7 w(Bo),

where C,, ¢ is the constant in (2.2). We now apply the Calder(’)n—Zygmund decompo-
sition to the function xg on By at the height A := 2C , to obtain pairwise disjoint

cubes {Pj} C D"(Qp) such that

1
P))<u(PiNE)<—u(P;
2ClL,0M( ) < u(P; ) < 2”( i)

and w(E\ U; Pj) = 0. It follows that
1 C
ZM(P,-) < E,JL(BO) and P; NE # 0.
J
Then, we have

€SS sup
EEP]'

T(lb —bry, |k|f|XC]~.OB(QO)\c]~.OB(Pj))(E) < C‘lfl |b—bry, Ik

C5,B(Q0)
which allows us to control the summation in the term I, above.
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Now, from (i) in Lemma 3.6, we obtain that for p-almost every x € By,

[7((6 = broy) £ X5, 500) )|
< Clb() = bro, [ F (1 + M gy ((b = bro, ) f xc5, Biow) (¥)-

Since (E\ U; Pj) = 0, we have that from the definition of the set E, the following
estimate

b(x) — bg. [K <’ b—b "‘
|b(x) = DRy, I"1f ()] < a|[ f]] Ro, | c; 50w

holds for p-almost every x € Bo\ U; P;, and also

M b—>b k - x) <aC b—>b k
1o (0 = bigy ! xci ) ) < aCrL7110 = brg

holds for p-almost every x € Bo\ U; P;. These estimates allow us to control the
summation in the term /; above. Thus, we obtain that (3.17) holds, which yields that
(3.16) holds.

We now consider the partition of the space as follows. Suppose f is supported in a
ball By C X. We have

o0
X = U 2/ By.
j=0
We now consider the annuli U; := 2/71B;\2/ By for j > 0 and the covering

{Bj g}Z 1ofU asin (3.12). We note that for each B, ¢, thereexistt; o € {1,2,..., 7T}
and Q] ¢ € Pt such that B] ¢ C Q] ¢ € Caqj Bj 0. Moreover we note that for each
such B; j.¢, the enlargement C B(Q ;. ¢) covers By since C ~ Bj ¢ covers By.

We now apply (3.16) to each B; j.¢» then we obtain a —-sparse family Fi je C
D f(Qj ¢) such that (3.16) holds for p-almost every x € Bj ‘-

Now we set F := U, @f _¢. Note that the balls Caij i ¢ are overlapping at most
CA0 wo ~(2jo+ 1) times, where CAo,u,ﬂ) is the constant in (3.13). Then, we obtain that

Fisa x;-sparse family and for p-almost every x € X,
AQs 140

2jo+1)

T HE®I=CY Ch Y (|b<x) — bro|" |1 £ 11D — bRyl
k=0 QeF

(x).
C;OB(Q))XQ

Since C~ B(Q) C Rg, and it is clear that u(Rg) < C/L(C - B(Q)) (C depends
only on Cy and C,4j), we obtain that |f|chB(Q) < C|f|RQ. Next, we further set

={Rp € D': Q€ F}, t € {l,2,...,7}, and from the fact that F is
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1 . . . 1
2 Tt sparse, we can obtain that each family &; is o TR sparse.

Now, we let

1
n :: . el
2CAo,u,ﬁ)(2]0 + 1)c

where T is a constant depending only on C, C % and the doubling constant C,. Then
it follows that (3.10) holds, which finishes the proof.

In the end, we show (3.14) and (3.15). ~
We first show (3.14) by contradiction. Suppose there exists some Bj, =

B(xj.e, 2j:j0r) such that CadjEj’g NUjij, # 9. Then there exists at least one
Yo € CaajBj e N Ujyj,- Then from the definition of U4 j, we see that

d(xo, yo) > 2/ oy,

Moreover, from the definition of x; ¢ and the quasi triangular inequality (1.1) we get
that

d(x0, y0) < Ao(d(x0, xj.0) +d(xj ¢, y0)) < Ao (27T r + Cugj2?~0r),

which, together with the previous inequality, shows that 2/7/0r < Ag(2/Tr +
Caa;j2/~70r). And hence we have

200 < Ag(2 + Cagj27 ) < 34,
which contradicts to (3.11). Hence, we see that (3.14) holds.
We now show (3.15), and again we will prove it by contradiction. Suppose there
exists some B ¢ = B(xj ¢, 27 —doy) sucllthat CaajBjeNU;j_j, # 9, where j > jo.

Then there exists at least one yo € CyqjBj.¢ N Uj_j,. From the definition of x; ¢ and
the quasi triangular inequality (1.1), we see that

27r < d(xo, xj.0) < Ao(d(xo, Y0) + (30, X;.0)) < Ao(2T I r 4 Cugj27~0r),
which implies that
1< Ag2 0t 4 €2 ).

This contradicts to (3.11) and (3.9). Hence, we see that (3.15) holds. O

4 Upper Bound of the Commutator 7;": Proof of Theorem 1.3

In this section we provide the proof of Theorem 1.3 following the idea in [33].
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Let D be a dyadic system in (X, d, n) and let S be a sparse family from D. We
now define

. ol 1
APF F) :=Q§S|b(x>—bg| k(@ /Q |b<z>—bQ|"|f<z)|du(z))xQ(x).

By duality, we have that

145 Fluy o= sup D2 ( /Q |g(x>xz(x)||b<x>—bQ|m—kdu<x>)

g:”g”Lf;(x)ZI 0cs
1
x <M(Q) /Q 1b(2) _leklf(z)IdM(z)). 4.1)

Now, by Lemma 3.5, there exists a sparse family S c D such that S ¢ & and for
every cube Q € S, for u-almost every x € Q,

b(x) =bol <C Y Q(b, P)xp(x).
PeS‘,PCQ

Since b is in BMO ;1 (X), then we have for p-almost every x € Q
ym

Vi (P)
u(P)

b(x) — bol < Clibllsmo | x) Y xp(x).

PeS.PCQ

Then, combining this estimate and inequality (4.1), we further have

m,k
||Ab f”sz(X)

1
<Clbligvo , oy swp > <@ /Q lg()h2(x)]

v g: g”Lpl(X):l 0eS
A2

1 m—k
vm (P)
X( 2 XP(X)) an (x))
PeS,PCQ

o k
L v (P)
d .
* (u(Q)/Q( 2 P m(z)) £ @) M(z)) w(Q)
PeS,PCQ
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Next, note that for each £ € N, we have

(Y Z00)
xp(x
£ u(P)
PeS,PCQ
1 1
_ Z v (Pr) W(Pe)X{P ()
= A
£ u(Pr) (P " ‘
P, Py,...PyeS, P, Ps,....P,CQ
1 1
vin (P1) v (Py)
< > xp, (%)
N u(Pr) u(Pe)
Pi,...PieS,PiCPy_1--CPCQ
Therefore, for an arbitrary function /4, we have
v (P) ¢
h(x x) ) du(x
/Q| ( >|( PO )) o)
PeS,PCQ
1 1
vin (Pr) v (Py)
<0 > || p, i (Pp)
3 n(Pr) n(Pe)
Pi,..., PyeS,PiCPy_1--CPICQO
1 1
vm (P vm (Pp_
<C Z (P1) v (Pr1)
N n(Pr) m(Pe—1)
Py,..., Py_1€S,Py_1CPy_p--CP1CQ
1
x Y |hlpvn(Py)
P(CP(_l,P(ES
1 1
vm (P vm (Pyp_
<c Z (P1)  vm(Pr-1)
~ /’L(Pl) I'L(Pf—l) Py
Py,..., Py €S, Py_1CPi_»---CPICQ
1
x Ag(lhD)(x)vm (x)dp(x)
1 1
vm (P vm (Pp_
_c Z (P1)  vm(Pr-1)
3 n(Pr) m(Pe—1)
Py,..., Py €S, Py_1CPi_o---CPICQ

x (AS,U% (|h|)>P/¢_1M(PZ_1)’

where Ag 1 (Jh)(x) = As(hD )V (x) and Ag(h) := Y peshoxo

By iteration, we obtain that

[QIh(X)I(

P

5 Vi (P)

eS,pc

wu(P)
0
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where A¢ , denotes the £-fold iteration of A Sk Then we have
a7 ,om

S,vm

k
||AZ’ f”sz(X) < ClIblgmo 1 (X) sup

vin g:llgll =1
Ly 0

1 ok )
- A N .
: Qgg (M(Q) /Q 5‘,1}% (gl A2)(x)du(x)

1
« (M(Q)fg L DG ) k@)

= C”b”’]gMo 1 (X) sup

vin g:llgll =1
Ly 0

x ( [ as(a, asp)want (|g|x2><x)dﬂ(x))_

Observe that A g is self-adjoint. We have

fXAs(Ag,U% (FD) AT (g172) ()

= fx As(f‘s(Ag’w;l<|f|>))<x>A§,—v’jh—l(|g|Az)(x)du(x)

= [ as(an , ar0)wlgmiracoduc.
X S,vm
‘Then from Holder’s inequality, we further have

m,k
”Ab f”Li’z(x)

fC”b”gMo LX) sup »
v g~|\g||Li,;(X)—

m P g
x ( fx [AS(AS’WLufD)(x)] /\z(x)du(x)) I8l

x{1

ma 1%}
< CIIbII’;?Mo L(X)[)Q]AP ! ||Ag v%(|f|)||Li’2(X)

— Clblino , cobiala 7 [ag(an )
= BMOU%(X) 214, S S.V% L” , X
Az»vﬁ
max{l,lfl}
< Clb|m (Dala, 2 vi1a,) 7 A '
< || ”BMOU%(X) [ 2]AP[ 2V ]Ap S,v%ﬂfl) LP E(X)
Ap-vm
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Then, by iteration we have that

k
145" Py, 00 = CI o | 0

vm

» mp max{l,ﬁ}
X ([/\z]A,,[/\z cvm]a, e [Ap v ]Ap) 1A,

Ay

< Clblgyo | x)

m—1 . 1
1—i i max{l, =7}
x (Dala,la, [0 v71a,) 7 i o
i=1
By Holder’s inequality, we have
m—1 . X m—1
" L 2
[T02"% v, < (Dala, 2la, )
i=1
As a consequence, we have that
. 2L max(1 517)
m, -
145 Fllzg ) = Clb Mo L oo(R2la, s, ) 10 oy

5 Lower Bound of the Commutator T,',”: Proof of Theorem 1.4

In this section, we use some ideas from [25,32,33] and adapt them to our general setting
with the aim to prove Theorem 1.4. To begin with, let 7 be the Calder6n—Zygmund
operator as in Definition 1.1 with the kernel K and w satisfying w(#) — 0 ast — 0,
and satisfying the homogeneous condition as in (1.6).

We first introduce another version of the homogeneous condition: There exist pos-
itive constants 3 < A; < Aj such that for any ball B := B(xg,r) C X, there e)gist
balls B := B(yp, r) such that Ajr < d(xg, yo) < Aar, and for all (x, y) € (B x B),
K (x, y) does not change sign and

1
|K(x, »I 2 (B (5.1

If the kernel K (x, y) := Ki(x, y) + iK2(x, y) is complex-valued, where 2 = -1,
then at least one of K; satisfies (5.1).
Then, we first point out that the homogeneous condition (1.6) implies (5.1).

Proposition 5.1 Let T be the Calderon—Zygmund operator as in Definition 1.1 with

the kernel K and w satisfying w(t) — 0 ast — 0, and satisfy the homogeneous
condition as in (1.6). Then T satisfies (5.1).
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Proof Since w(t) — 0ast — 0, there exists § € (0, 1) such that when 0 < ¢ < §,

1

w(t) < )
20-3"-C-Cy-co

where cg is from (1.6), C is from Definition 1.1 and C,, is from (1.3).
For all numbers A with

1
A>max[3,2+g,2Ao}, (5.2)

and for any ball B := B(xo, r) CX, according to the homogeneous condition (1.6),
there exists a point yg € B(xo, CAr)\B(xo, Ar) such that

1

- (5.3)
com(B(xo, Ar))

|K (x0, yo)| =

Next, from the smoothness condition (1.5), we have that for every x € B(xg, r)
and y € B(yo, 1),

A

K (x,y) — K(x0, yo)| < |K(x,y) — K(x, yo)| + |K(x, yo) — K (x0, y0)]
c (d(y,yo)> c (d(x,xo)>
[0)] w
T Vix,y) \dx,y) V(x0, y0) \d(xo, y0)

C r
s ()
u(B(xo, (A—=2)r)) \(A—2)r

e an )

2C 1
< w
~ u(B(xo, (A —2)r)) <A—2>’

where we use the fact that w(7) is increasing. Next, by (1.3), we obtain that

A o1 I
K xy) = Ko o)l = 2CC“(A —2) ‘”(A —2) 1(B (x0, Ar))
1

<
= 10cou(B(xg, Ar))’

where the last inequality follows from the choice of A as in (5.2).

We now fix a positive number A; satisfying (5.2) and set Ay := CAj.

We first consider the kernel K (x, y) to be a real-valued function. If K (xq, yo) > 0,
then for every x € B(xg, r) and y € B(yp, r) we have that

K(x,y) = K(x0, y0) — (K(x0, y0) — K(x, y))
> K (x0, y0) — |K(x,y) — K(x0, y0)|
- 1 _ 1 - 1 .
~ cou(B(xo, Ar))  10cou(B(xg, Ar))  2cop(B(xo, Ar))
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Similarly, if K (xg, yo) < 0, then every x € B(xg, r) and y € B(yo, r) we have that

1

K ) < = (B, Ar)

Thus, combining these two cases we obtain that (5.1) holds.
Next, we consider the kernel K (x, y) to be acomplex function. We write K (x, y) =
Ki(x,y)+iK>(x,y), with i? = —1. Then (5.3) implies that

V2 V2
either |K1(xo, y0)| > ————— or |Kz(x0,y0)| > ———F——.
2cou(B(xq, Ar)) 2cou(B(xo, Ar))

Suppose | K j (xo, yo)| > W forsome j € {1, 2}.If K (xo, yo) > 0, then
every x € B(xg,r) and y € B(yo, r) we have that

Kj(x,y) = K;j(x0, y0) — (Kj(x0, yo) — K (x, y))

K j(x0, y0) — |K (x, y) — K (x0, y0)

. V2 B 1 - 1

~ 2cou(B(xg, Ar))  10copm(B(xo, Ar))  2cou(B(xo, Ar))

v

Similarly, if K;(xo, yo) < 0 for some j € {1, 2}, then for every x € B(xp,r) and
y € B(yo, r) we have that

1

Ky = = (B Go, A

Thus, (5.1) holds for K (x, y).
The proof of Proposition 5.1 is complete. O

Definition 5.2 By a median value of a real-valued measurable function f over a ball
B we mean a possibly non-unique, real number o g ( f) such that

1 1
nx € B: f(x)>ap(f)}D = E,U«(B) and pu({x € B : f(x) <ap(f)}) = EM(B)'

It is known that for a given function f and ball B, the median value exists and may
not be unique; see, for example, [27].

Lemma 5.3 Let b be a real-valued measurable function. For any ball B, let B be as
in (5.1). Then there exist measurable sets E1, Ey C B, and F1, F» C B, such that

() B=EiUEy, B=F UFandu(F) > ipB),i=12
(ii) b(x) — b(y) does not change sign for all (x,y)in E; x F;,i =1,2;
(i) [b(x) —ag®)| < |b(x) —b(y)| forall (x,y)in E; x F;, i =1,2.
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Proof For the given balls B and B, following the idea in [33, Proposition 3.1] we set
={yeB:b(y) <az®)} and F,:={ye B:b(y) = azD).
Moreover, we define
={xeB:bx)=az®)} and E;:={x € B:bx) <ap)}.

Then, by Definition 5.2, we see that @ (F;) > %,u(lN?),i = 1, 2. Moreover, for (x, y) €
Ei X Fi,i = 1,2,
Ib(x) = b(y)| = |b(x) — ag () + aj(b) — b(y)|
= [b(x) — ag)| + |ag() — b(y)| = |b(x) — az®)|.

This finishes the proof of Lemma 5.3. O

We now return to the proof of Theorem 1.4, following the approach and method in
[33].

Proof of Theorem 1.4 For given b € LIOC(X) and for any ball B, let Q2 (b, B) be the
oscillation as in (3.1). Under the assumptions of Theorem 1.4, we will show that for
any ball B,

Q(b, B) < %(BB)). (54)

Without loss of generality, we assume that K (x, y) is real-valued. Let B be a ball.
We apply the assumption (5.1) and Lemma 5.3 to get sets E;, F;, i = 1, 2.
On the one hand, by Lemma 5.3 and (5.1), we have that for f; := xr,,i =1, 2,

1(B) Z/ 7" fi ] dpa(x)

> z [ 1rsicol duco

(B)Z f f 1b(x) —b()I™ K (x, )| dpu(y) dpu(x)

1b(x) — az®O)I"
d d
M(B)Z/ / ) () dpx)

> m /B 1b00) — ag®)[" dp(x)
> Q(b; B)".

2\/
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On the other hand, from Holder’s inequality and the boundedness of 7}, we deduce
that

2
1 m
B i§:1j fB |7 £ (0)| dp(x)

2

1 1/p S 1/p
[ /B |Tzf"ﬁ(x)|pk2(X)du(X)} ( /B A (x) ﬂldum)

< _
= W) &

1/ 1 1/p'
< P T
< (B) Z[M(F) (/;gkz(x) d,u(x))
< - 1/p --L R

p—1

< (B)[M(B)] ( /B Ao (x) du(x))
< 1/p -4 i
< mwm] ( /B Ao (x) T du(x)) ,

where in the last inequality, we use the fact that Kyrp < d(xp,xp) < Korp and
Al € Ap.
Combining the two inequalities above and invoking A; € A, we conclude that

1/p 1 B)\"
Qme<—AB]/p</A “1d ) <(L)
(b, B) (B)[ 1(B)] . 2(x) m(x) ~\ B

where the last inequality follows from the argument as in the proof of Theorem 1.1 in
[33], by using (2.5). Thus, (5.4) holds and hence, the proof of Theorem 1.4 is complete.
]

6 Weighted Hardy Space, Duality and Weak Factorisation: Proof of
Theorem 1.5

In this section, we study the weighted Hardy, BMO spaces and duality, as well as their
dyadic versions on spaces of homogeneous type.

6.1 Dyadic Littlewood-Paley Square Function

Following the form in [21], we now introduce the dyadic Littlewood—Paley square
function on spaces of homogeneous type.

Definition 6.1 Given a dyadic grid Z on X, the dyadic square function S¢ is defined
by
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Mo—1 1

_ 2XQ 2
Sof = [QZJZ%' 0| (Q)}

Our main result in this subsection is:

Theorem 6.2 Suppose 1 < p < oo and w € A,. Then we have

ax{1, 57}
”ij”L”(X) = Cp[w] K 1 ”f”LI’(X)

We prove this theorem by following the idea in [41, Theorem 3.1 and Corollary
3.2]. We would like to remark that there are additional Euclidean proofs that one could
adapt to this setting to achieve this result (e.g. a sparse domination). We don’t pursue
those additional proofs, but instead give one that utilizes Carleson Embedding and
extrapolation. To begin with, we first introduce an auxiliary lemma.

Lemma 6.3 Let w be an Ay weight in (X, d, ). Then

Mo—1
1
> |<f,h€>|2T Wil fl5s , forall fe Ll (X),
0e7 e=I vt
where (w) g = @ Jo w)dp(x).

Proof Recall from [28], we have h¢ 0 =deX0. — be xE.,,» Where

WEer) | n(Qo)

_ e = |——————— d Ee: eUEe s
(0 (Ee) WEEcr) Qc U Eett

where Q. and E.;; are disjoint. Now we introduce the weighted Haar system
{hZ’e}lfegMQ—l,Qe@ in L%;(X), where

B — 1 (\/w(E€+1) Vw(Qe) )

¢ Jw(Eo) B

Y00 “% T JwEan "

Note that when w = 1, we have

ple . pe — 1 \/M(EeJrl)X _ V(Qe) XE
0 TR T JiE) \ V@0 "% JuEa) )
We set
hl — XE. ’
Ee ™ W(Ee)

and write h, = Co(w, €)hy + Do(w, €)h .
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Itis easy to see that [, hyy“dw = O and [, (hyy“)*dw = 1. This implies

w(Q,€)

Polw. ==,

, where w(Q, €) := (w, hy)

and, after some computation,

l/v( e+1) M(Qe ,U«(Ee+1) w(Qe¢)
Colw, o) == s who + “ s e = = ey e
1(0) w(Eesr) w(Eey1) w(Qo)
———WE +2———

~ WE) w(Eo) w(E) w(E)
Note that it does not really matter what C g (w, €) really is as long as we have some
nice bound for it. In fact, from Lemma 4.6 in [28], we have that

M(E6+1) M(Qe)
w(Eo ot ey
_ w(Qo) + wEer) _

~ m(Ee)

Co(w,€)? <

<w)Ee+1

which implies that Co (w, €)? (w)g ! <1.

Now,
Mp—1
DD g K P
Qe e=I
Mgo—1
=Y > g l(f. Cow, Y+ Do(w, e)h )
0P e=l1
Mp—1
=Y Y ) ICow. e)f. hye) + Do(w, e){f. h )|
Qe €=l
Mp—1
=D D (wig'Cotw, e I(f hy )
Qe €=l
Mp—1
+2) Y (w)y' Co(w, €) Do(w, &) (f. hy) (f. h,)
Qe e=1
Mgp—1
+ > Y (w)g' Do(w, ) |(f. hy )
07 e=1
=: 51+ 5+ 8.
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S> can be bounded by +/S14/53, so it suffices to bound S7 and S3. By using the bound
on Cg(w, €), we have

MQ_l MQ—l
SIS D0 2 WGP =30 2w g e S 115
Qe e=1 0e? e=1 w
On the other hand,
Mp—1 Mp—1
Si= Y Y (wig' Dow, ) (f hp )P =D Y Dow, )*(f)f (w)y"
Qe €=l Qe9 e=1
Now,
1

Y. Y Dr(w.p*w)g (w)g,

RCQ n:E CE.

1 DR, >
M(Ee)z Z <w>%n <w)R <w>En

RCQ n:EyCEe

u(jE)Z D DR ) w)y!

RCQ n:EyCE.

w(Ee)

A

S [wla, (w)e, .

where the last inequality follows from a Bellman function technique that can be found
in [6]. Thus, by adopting the remark of Treil in [45, Section 5] on the dyadic Carleson
Embedding Theorem on a general space of homogeneous type, we get:

Mo—1
_ _1
Ss= Y Y Do, ) (f)g, (g S wlalfw 2l7a
Qe e=1
The proof of Lemma 6.3 is complete. O

Proof of Theorem 6.2 Suppose w € A,. Following the argument in the proof of Theo-
rem 3.1 in [41], we obtain that the Lemma 6.3 above implies that

1
1Fl2 x) S [wig, 182 fllz x)s

where the implicit constant is independent of f and w.
Then following the argument in the proof of Corollary 3.2 in [41], we obtain that

1S2 /2 (X) S wla I f 12 (X)-

w w
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Next, by the sharp form of Rubio de Francia’s extrapolation theorem (due to
Dragicevi¢, Grafakos, Pereyra and Petermichl [12] in the Euclidean space and due
to Anderson and Damidn [1] on spaces of homogeneous type), this implies the corre-
sponding weighted L? bound

max{1,

”S@f”LZ(X) = Cp[w]Ap

p—

11}
”f”La(X)'

The proof of Theorem 6.2 is complete. O

6.2 Weighted Hardy Spaces, Duality and Weak Factorisation

We now introduce the atoms for the weighted Hardy space.

Definition 6.4 Suppose w € A,. A function a is called a (1, 2)-atom, if there exists a
ball B C X such that

(1) supp(@) C B:  (2) fB a@)du(r) = 0; () lallz g < [w(B)F.

Definition 6.5 Suppose w € Aj. A function f is said to belong to the Hardy space
Huljﬂz(X), if f= 2711 Ajaj with Z?ozl |Aj] < ocandajisa(l,2)-atom for each j.
Moreover, the norm of f on HJ)J(X) is defined by ||f||H1})Y2(X) = inf { Zj’ozl |kj|},
where the infimum is taken over all possible decompositions of f as above.

We then have the duality between the weighted Hardy space and weighted BMO.
We point out that for the sake of simplicity, we obtain this result for p = 2. For the
Euclidean version of duality of weighted Hardy and BMO spaces, we refer to [13,
Section 4] for the full range of p € [1, 2].

Theorem 6.6 Suppose w € Aj. Then we have (Hul),Z(X))/ = BMO, (X).

Proof To prove BMO,,(X) C (HJJ’Z(X))/, for any g € BMO,,(X), let

Le(a) =/Xa(x)g(x)du(x),

where a is an atom as in Definition 6.4.
Assume that a is supported in a ball B C X. Then by Holder’s inequality and
w € Ay, we see that
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’/Xg(x)a(X)dM(X) = /B[g(X)—gB]a(X)dM(X)

IA

/B g(x) — gslzw‘l(x)du(x)]z [ fB laCo)Pwx) du(X)] :

1

[ 1 ] ?
< _w(B)fglg(x) gBl w (X)du(X)]

< CllgllBMmO,, (x)-

Thus £, can be extended to a bounded linear functional on Hul}yz(X ).
Conversely, assume that £ € (HJJ’Z(X ))/. For any ball B C X, let

L3, (B) = {f € L2(B) : supp(f) C B, fo(x)du(x) - 0}.

Then we see that for any f € L% w(B),a = +f is an atom as in

1
[wBI2IF1 2 5
Definition 6.4. This implies that

lE@] = lI€lllall g oxy = I€1l-
Moreover, we see that
1
(I < ILNwBI2 1 £ l2 (5)-

From the Riesz Representation theorem, there exists [¢] € [L%’w(B)]* =
Li}_l(B)/(C, and ¢ € [¢], such that for any f € L%’w(B),

L) =/Bf(X)<P(X)dM(X)
and
gl =inf g +cll2_ g < I (B>

Now, for a fixed ball B, we define B; = 2/ B, Jj € N. And for By, we mean the ball
B itself. Then, we have that for all f € L%y w(B)and j € N,

fo(x)ws(x)du(x)=/Bf(X)¢)B,(X)dM(X).

It follows that for u-almostevery x € B, ¢ B, (x) —¢p,(x) = C; for some constant C ;.
From this we further deduce that for all j, / € N, j <[ and u-almost every x € B},
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@B;(x) — Cj = ¢p,(x) = ¢p (x) —

Define ¢(x) = ¢;(x) — C; on B; for j € N. Then, ¢ is well defined. Moreover, since
X = U;B;, by Holder’s inequality and w € A, we see that for any ¢ and any ball
B C X,

1

UB|¢<x>—¢B|2wl(x)duoc)]z: sup 1.9 — o)l

11,2 5y <1

— ap /B F@lp@) — ppldux)

HfHLz <!

= sup /B[f(X)—fB][ﬁo(x)—IrC]dM(X)

HfHLz <!

= sup [Ny + sl BIE | e +clxalz
17,2, ) <1

< |lle(x) +clxB ”szl (B)

Taking the infimum over ¢, we have that ¢ € BMO,,(X) and ||¢[lsmo,,x) < CII4Il.
m}

We now provide a sketch of the proof of Theorem 1.5, the details are similar to the
weak factorisation result obtained in [8].

Proof of Theorem 1.5 Similar to [8] (see also Corollary 1.4 in [21] and its proof), as a
consequence of the duality of weighted Hardy space H,! (X) and BMO, (X) (Theorem
6.6 above), we see that if f is of the form (1.7), then f is in H‘}(X) with the HVI(X)-
norm controlled by the right-hand side of (1.8). Conversely, based the characterisation
of BMO,, (X) via the commutator [b, T'] as in Theorem 1.4 (the case of m = 1) and
the linear functional analysis argument as in [7], we get that every f € HVl (X) admits
an factorisation as in (1.7). Hence, we obtain that Theorem 1.5 holds. O

7 Applications

The aim of this section is to show that Theorem 1.6 holds for each of the six operators
listed in the introduction.

7.1 Cauchy’s Integral Operator

Let A(x) be a Lipschitz function on R. Consider the Lipschitz curve as 7 = x +i A(x),
x € (—o00, 00). Recall that the Cauchy integral adapted to this Lipschitz curve is:

S (ydy
oo (X =) +i(A(X) — A(y)

Ca(fHx) =p.v. —/
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The (unweighted version) commutator result was obtained in [34], see also [44].
Here we point out that the two weight commutator and high-order commutator results
also hold for Cauchy’s Integral Operator.

Proposition 7.1 Theorem 1.6 holds for the Cauchy integral operator Cy with the
underlying setting (R, | - |, dx).

Proof To see this, we point out that this operator has the associated kernel

1 1
Calx,y) = T —y)+i(AG) — A®))

which satisfies the size condition

[Calx, y)| <
lx — ¥l

and the smoothness condition

ly =1

[Calx, y) = Calx, YN +1Ca(y, x) = Ca(y', 1) < 2(IIAlloe + 1) X — ]2

for every x, y, y’ such that |y — y'| < |x — y|/2. Moreover, for any interval [ :=
I(xg,r), we take yo = xo + 4r. Then we see that Re C4(xg, yo), the real part of
Ca(x0, Yo), satisfies that Re C 4 (x¢, yo) < 0 and

1 Yo — X0
|[Re Ca(x0, yo)| = —
Y= T (o — y0)2 + (A(xo) — A(3))2
Yo — Xo S 1

> —.
~ AN + Dxo = yo)? ™ |1

Therefore, (1.6) holds. As a consequence of this fact and Theorems 1.3 and 1.4, we
see that Theorem 1.6 holds. O

7.2 The Cauchy-Szeg6 Projection Operator on the Heisenberg Group H"

We recall all the related definitions for the Heisenberg group in [43, Chapter XII].
Recall that H” is the Lie group with underlying manifold C" x R = {[z,1] : z =
(z1, -+ ,zn) € C",t € R} and multiplication law

n
[z,t]o[Z, 1] := [Zl —I—z/l,-n , Zn —l—z,’l,t—{—t'—I—ZIm(ZZjZ/j)].
j=I
The identity of H” is the origin and the inverse is given by [z,7]7! = [—z, —].

Hereafter, we identify C" with R?" and use the following notation to denote the points
Of (Cl’l X R = R2n+1: g = [Z,t] = [x,y,f] = [xlv"' sy Xns Y1y 00t 7yl’lat] Wlth
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z = lz1,---,zal, zj = xj +iy; and xj,y;,t € R for j = 1,...,n. Then, the
composition law o can be explicitly written as

gog =[x,y tlolx/,y ' 1=Ix+x",y+y, t +1 +2(y,x") — 2(x, y)],

where (-, -) denotes the usual inner product in R”".
We recall the upper half-space U" and its boundary bi/" as follows:

n
u" = {z e C": Im(zpq) > Z Izj'lz},
j=1

n
" = {z e C"™: Im(zpq) = Z |Zj|2}.
j=1

For any function F defined on U", we write F, for its vertical translate: F(z) =
F(z 4 €i) withi = (0,...,0,i). We also recall the Hardy space H>(U"), which
consists of all functions F holomorphic on " for which

1
IF 2 eemy ==(sup‘/' |f1(zn2dﬁ<z>)2 < 0o,
Z/[”

€>0

where df(z) is the surface measure on biA".

The Cauchy—Szegd projection operator C is the orthogonal projection from L (bl")
to the subspace of functions { F?} that are boundary values of functions F € H>(U").
According to [43, Section 2.3, Section 2.4, Chapter XII], we get that for f € LZ(H"),

cmm=@memw

where K (x, y) = K(y~! o x) for x # y and

Kx) = —i<£[t +i|§|2]_”> for x =[¢,t] e H' = C" x R,
at\n

and ¢ = 2"~ Lty —n—l,

Proposition 7.2 Theorem 1.6 holds for the Cauchy-Szego projection operator C with
the underlying setting (H", p, dx), where dx is the usual Lebesgue measure on C* x R
and p is the norm on H" defined by p(x) := max{|¢], |t|%} for x =[¢,t] e H" =
C" x R.

Proof We begin by recalling that with this norm p(x) as above, and we set p(x, y) :=

p(y~! o x). From [43, Section 2.5, Chapter XII] we obtain that the Cauchy—Szegd
kernel K (x, y) satisfies the following conditions:
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K (e, )|~ plx, y)™ 272,
o (ys ¥0) 1
|K(x,y) = K(x, y0)| S Py) P )T whenever p(x,y) > co(y, yo),
, 1
IK(x,y) = K(x0, V)| S p(x. x0) whenever p(x,y) > cp(x, Xg).

p(x,y) p(x, y)?+?

Thus, it is straightforward to see that K (x, y) satisfies (1.6). Hence, we see that
Theorem 1.6 holds for the Cauchy—Szeg6 projection operator C. O

7.3 The Szego Projection Operator on a Family of Unbounded Weakly
Pseudoconvex Domains

We now recall the weakly pseudoconvex domains €2 and their boundary 02, k € Z,
from Greiner and Stein [18]:

= {12 eCim@) > ™), 0% ={@.2) e C i ime) = 1.

Recall that 0€2; is naturally parameterized by z; and Rez,. We use the following
notation. Points in d€2; are denoted by ¢, w, v etc.

¢ =(z1,22) ~(z, 1), z=21€C, t =Re(z2) € R;
o= (w,w) ~ (w,s), w=w; €C, s=Re(wy) €R;
v=(up,up) ~ (wu,r), u=u; €C,r=Re(u) ecR.

The Szegd projection S on €2 is the orthogonal projection from L?(32) to the
Hardy space H? () of holomorphic functions on € with L? boundary values. The
Szego kernel S(¢, ) is the kernel for which

S(HE&) = / f(@)S(¢, w)dV(w),
LI9f%

where dV (w) = dV (x,y,s) = dxdyds with w = (wy,s) = (x + iy, s), which is
Lebesgue measure on the parameter space R>. Greiner and Stein [18] have computed
the Szego kernel with Lebesgue measure on the parameter space with the formula

1 i lz P 4w g )
S w) = — @ — )_
& w) 47r2|:< Sls =1+ 5 +— Ziw]
k—1
i 20+ w1 ) £
—_ _[ s
X (Z[S 1+ > + >

where 1 = Im(z2) — |z1]%* and = Im(w») — |w;|?*.
In [11], Diaz defined and analyzed a pseudometric d(¢, w) globally suited to the
complex geometry of d 2k, which was arrived at by the study of the Szeg6 kernel. This
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allows the treatment of the Szego kernel as a singular integral kernel:

1

1
lz1 % + [ PR\ E |2
-5 —w

(¢, o) = '(%[s _0+

Then, the pseudometric balls are defined as
B: () = B?((S) ={wedQ: d(, w) <6}
and the volume of the balls is

(sin(rr/k)) %2

V(B (8)) = 47182( :

|Z|2k_252 + %62k> ,

and it is shown that this measure is doubling.

Proposition 7.3 Theorem 1.6 holds for the Szegd projection S with the underlying
space of homogenous type (082, d, dV), where d and dV are as introduced above.

Proof We point out that it is proved in [11] that S(¢, w) satisfies the following size
and smoothness conditions:

1
S N ~ T 1.
R R TR))
/ 4. ') I ,
15, @) — S@ )] < <d(§,a))> ey T e ) =),
, d(a),a)/) 1 ,
_ <

1S, @) — S, )] < (d(;,w) )V(Bg(d@’w))), for cd(@, ) < d(¢, o).

(7.1)

Thus, from (7.1) it is direct to see that S(¢, w) satisfies (1.6). Hence, we see that
Theorem 1.6 holds for the Szegd projection operator S on Qi fork € Z.. O

7.4 Riesz Transforms Associated with Sub-Laplacian on Stratified Nilpotent Lie
Groups

Recall that a connected, simply connected nilpotent Lie group G is said to be stratified
if its left-invariant Lie algebra g (assumed real and of finite dimension) admits a direct
sum decomposition

k
g:@Viwhere[Vl,Vi]z Vigr fori <k —1.

i=1

One identifies g and G via the exponential map exp : g —> G, which is a diffeomor-
phism. We fix once and for all a (bi-invariant) Haar measure dg on G (which is just
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the lift of Lebesgue measure on g via exp). There is a natural family of dilations on g
defined for r > 0 as follows:

k k
Sy <Z v,') = Zrivi, with v; € V;.
i=1

i=1

This allows the definition of dilation on G, which we still denote by §,. We choose once
and for all abasis {X, - - - , X,,} for V| and consider the sub-Laplacian A = Z?:l X?.
Observe that X; (1 < j < n) is homogeneous of degree 1 and A of degree 2 with
respect to the dilations in the sense that: X (f 08,) =r (X )08, 1 <j <n, r >
0, feClandthati o Aod, =r2A, Vr>D0.

Let Q denote the homogeneous dimension of G, namely, Q = Zle idimV;.
And let p, (h > 0) be the heat kernel (that is, the integral kernel of ehA) on G.
For convenience, we set p,(g) = pn(g, o) (that is, in this article, for a convolution
operator, we will identify the integral kernel with the convolution kernel) and p(g) =
P1(g).

Recall that (c.f. for example [17]) pn(g) = h_%p(S%(g)), Vh >0, g € G.

h

The kernel of the jth Riesz transform X./(—A)—% (1 < j < n) is written simply as
Kj(g.8") = K;j(g" " 0g), where

| oo | oo
K,-(g>=ﬁ/0 h%X,-ph<g>dh=ﬁ/0 W81 (%) (61 (20 dh.

Proposition 7.4 Theorem 1.6 holds for the Riesz transform Xj(—A)_% (1<j<n)
with the underlying setting (G, p, dg), where p is the homogeneous norm on G (see

[14]).

Proof For the Riesz transform kernel, we have the following lower bound estimate,
obtained in [14]:

Fix j =1,...,n. There exist 0 < ¢, < 1 and C > 0 such that forany0 < n < ¢,
and forall g € Gandr > 0, we can find g, = g«(j, g, r) € G satisfying

p(g.8) =1, |K;(g1,g)l>Cr 2, Vg €B(g nr), g € Blg nr)

and all K ;(g1, g2) have the same sign.
From this kernel lower bound estimate, it is direct to see that for each j, K (g1, g2)

satisfies (1.6). Hence, Theorem 1.6 holds for Xj(—A)_% (1<j<n). O
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7.5 Riesz Transform Associated with the Bessel Operator on R

Consider Ry = (0, 00). For A > —%, the Bessel operator A, on Ry [39] is defined
by

A d> 2xd
T AT x dx

It is a formally self-adjoint operator in L>(R, dmy), where dm; (x) = x**dx. For
any x € Ryandr > 0,1let I(x,r) = (x —r,x +r) NR;. Moreover, we assume
that r < x without loss of generality. Observe that for any x € R4 and r € (0, x],
m; (I(x,r)) ~ x*r. Thus, R4, | -], dmy) is a space of homogeneous type.

The Bessel Riesz transform is defined as R, = %(A A)’%. In [39], Muckenhoupt—
Stein introduced and obtained the L? (R, dm;)-boundedness of R; for A € (0, o0).
Under this condition, the unweighted version of commutator theorem for R; was
obtained in [16] via weak factorisation. However, the two weight commutator and high-
order commutator are unknown, and the case when A € (—1/2, 0) is totally unknown.
Here, we will establish the two weight commutator and high order commutator for R;,
forall A € (—1/2, 00).

Proposition 7.5 Theorem 1.6 holds for the Bessel Riesz transform R with the under-
lying setting (R4, | - |, dm,).

Proof In [2], Betancor et al. further considered R;, for the range & € (—1/2, 00). They
showed that for f € C°(Ry) and x € (0, 00),

Ry f(x) = P-V-/O Ry (x, y) f (y)dm; (y)

with the kernel

Ri(x,y) l/OOSWX( )dl
X = — _— X _—
MEW=Tm ) e YA

for x, y € (0, 0o) with x # y. Here W,A (x, y) is the heat kernel associated to A

(xy)—k+l/2

W,)‘ (x,y) >

eI (5) (7.2)

with I, being the modified Bessel function of the first kind and order v > —1. They
also showed that Ry is bounded on the space L” (R, x’dx) if and only if p > 1
and —1 — p < § < (22 + 1) p — 1. Moreover, the kernel R, (x, y) has the following
estimates (see [2, Lemmas 4.3 and 4.4]):

(1) forx/2 <y <2xand x #y,

—A
Ry(x,y) = l *xy) + 0O <y_2l_1 (1 + log x—y2>) ;
T y—X (y—x)
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(ii) in the off-diagonal region,

—25—1 )
X .Yy =<x/2;
<
Ry (x, Y| S {xymz’ 2 < y.

From this fact, one deduces that R, (x, y) satisfies (1.4) and (1.5) (see [4, Theorem
2.2]). Moreover, there exist K1 € (0, 1/2) small enough, K» > 1 and C, > 0 such
that

(i) forany x, y e Ry with0 < y/x — 1 < Kj,

1
Ry(x,y) =2 Cho 55— (7.3)
xtyty —x
(i) forany x, y € Ry with 0 < Kpx <y,
Ri(x,y) = Gy 72, (7.4)

Then, an argument involving (7.3) and (7.4) shows that assumption (5.1) holds (see also
[36, Lemma2.3]). Infact,let I := I(xp, r) withxg > rand K¢ := (K1+K>+2)/2K;.
We consider the following two cases.

Case (a): xo < 2Kor.Inthiscase, m) (I) ~ x%*r ~ Ko)cé)‘+1 .Letyg := xo+4K§r.
Then (2K + D)xo < yo < (4K + 1)xo. This via (7.4) implies that

X0 1
Ry (x0,%0) 2 33 ~ =
yg)»+2 my (1)

Case (b): xo > 2Kor. In this case, m (1) ~ xg)‘r. Let yo := xo + Kar. Then
0 < yo/x0—1 < Ky and

1 1
xg)‘(yo — X0) m;(I)’

R;.(x0, y0) 2

which implies that Theorem 1.6 holds for R;. O

7.6 Riesz Transforms Associated with Bessel Operators on R’}r“

We now recall the Bessel operator and the Bessel Riesz transform in high dimension
from Huber [23]. Consider R%' = R” x (0, 00). For A > —1,

2 2 2
sty __d d 22 d 75
* dxi dxjp dxy,  Xn1 dXpqn
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(n+1) .

The operator A; is symmetric and non-negative in C2° (RTI) C L>(R"! duy),

where

n
duy (x) = 1_[ dxjx,%f;_ldxn“.
j=1

The jth Riesz transform is defined as

d

(n+1)—1 .
—(A z, =1,...,n+1
dxj( o) J

Ry.j =

We point out that there is no known results for the commutator of R, ;. Here we
provide an intensive study of the kernel of R;,_;, especially for the lower bound, and
then we obtain the two weight commutator and higher order commutator for R; ;.

Proposition 7.6 Theorem 1.6 holds for the Bessel Riesz transform R; j, j =
1,...,n 4+ 1, with the underlying setting (R'fl, | -1, duy).

Proof To begin with, note that (7.5) can be written as A("+1) A™ 4+ A, where

A denotes the standard Laplacian on R”, and A;, denotes the Bessel operator on
L . . . .. (n+1)

R, which is one-dimensional as shown in Sect. 7.5. Then, it is clear that e~ A, =

¢~1(A™+45) and hence the heat kernel
Py a0 (¥, ) = Py p ', YIYW] (g1, Yns1)
forx = (x', Xp11), ¥y = (', yut1) € R" x (0, 00), where W/ is the heat kernel of Ay,

as in (7.2).
Then, it is direct that for 1 < j < n:

Ry j(x. y) ! /Oo (o) &
(x,y) =cp— a+ (X, y) —
AJ y n,\ Bx]- ) pt,Af\ +1) y «/;
0 e 1 I’ >\2 W( )
=Cnigo e Xn+1s Yn+1
Poxi Jo @ann)s e f

andfor j =n+1,

0 /0" ( )dt
n X, —
oy )
dt

d /"o 1 1’ W 2 W ( )4t
= Cn,A e Xn+15 Yn+1
" 0xn1 Jo o (4’ RV

Rk,n+1 (x, Y) = Cn,a

By [4, Theorem 2.2], {R;,; }’hLl are Calder6n—Zygumnd operators with kernel satis-
fying (1.4) and (1.5).

Moreover, we have the following estimates on {R;,_; (x, y)}”Jrl
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Lemma7.7 Let j € {1,...,n}. The following statements hold:
(1) There exist positive constants 5, ¢ > 1 such that for any (x, y) with0 < x,11 <
Yn+1/C Ry, j(x, y) does not change sign and
Ixj — ¥l
Oy 16 =]

|R)»,](xa)’)|2C 2)%-{—)»4-1.

(i1) There exists a positive constant C,, such that for any (x, y),

Vi —Xj 1 lx; — yjl
Ry, j(x,y) =Cy, + 0O .
Xy Vg I — Y1 xrﬁ:ll r)lLIll =yl

Proof By (7.2) and letting x, 41 = zy,+1 and u = yz we see that
n+1
Ry j(x,y)

1

/Oo 1 _WRE X =y (Xnt1Yng1) 2
— *n n e 4 I

0 (4mt)2 —2t 2t
(x,,+1yn+1) _";%H*»V%H dt
X\———)e % —
2t

>
|
=

N

_)L+l
o0 1 W2 Xj—Yj y,2,+lz 2
= Cn,k 3 e 4t _ T _
0 (4m)2 —2t 2t

z 2,0+ gf
<,y y"“ (aryre 2= 41
; NG

= ey =) [ nd) e T (5 ()
Recall that forany z > O and v > —1,
lim 2@ = (7.6)
=0t 2T(wv+1)
and forany z > 0,v> —landn =0,1,2,...,
e . k —k “n-t
I(z) = Nz (;H) v, k122)* + O(z )) : (7.7)

where [v, 0] := 1 and for k € N,

@2 — D@2 —3%) - (4? — 2k — 1?)

.kl = 22T (k + 1) ’
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see [2, p. 109].
Then, letting z — 0 and applying the Lebesgue Dominated Convergence Theorem,
we have

2
0 —L(M'Fl)
—n—21-2 —Ap—2, w2
Ry j(x, ¥) = cnn(xj — yj) Yty / u? e el du
0
Xj— )i

¢ 2
Vpypy T 1 =1

2)%+1+A'

This shows (i).
Now, for j =1,2,...,n,let

R;j(x, ) /00 L -elei—yi b &
.x7y :ZC‘A. 7€ 4 [x+17y +1)—F>
! "o @nnt =20 Xy ! NG

where

| 2
1 _ g1 =Yn41)
4t .

e
4

Wi (Xng1, Yag1) ==

~

Then, we see that for any x, y € R" such that x; # y;,

Y =X
A

Rj(x,y)=C, .
xn+1y,’}+l|x — y[rt2

On the other hand, using (7.7) for n = 0, we conclude that

|R)L,j(-xa y) - Rj(-x7 y)l

/ RIS bl
0 (1)’ —2t

= Cn,A
_)\_’_l Xn41Yn+1 2 L2
(Cnp1ynt1) 72 e X 2t RS Ay
% n+1Yn+ (1 + C—)e -
2t 27 - Zwtldnsl Xn+1Yn+1
!
1 1 _(xn+l4yn+l)2j| dt
e e T 1 JE—
A A /
xn+1yn+l 4rt \/;

< o 1 _Ixzy\z lx; — yjl dt
~ o S W S W R

(471[)% X1 Yn41 !
bj =yl [ 1 kel
ST b
< i—yil 1
NG
The proof of Lemma 7.7 is complete. O
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Similarly, for Ry ,+1(x, y), we have show the following lemma.

Lemma 7.8 The following statements hold:

(i) There exist positive constants C , € > 1 such that for any (x, y) with 0 < x4 <

2
Ynt1

Ynt1/C and ok SR YR
ALy =y

Xn+1
(Vo + X =y

IRy i1 (x, )| = € Ay

(i1) There exists a positive constant Cy, such that for any (x, y),

Ynt1 = Xn+1 1 1 1
Rint1(x,y) = Gy +O( PRNRWES )

n
K1 Yne1)* [x — p|nt2 xhoyit =yl

Proof Observe that

d
0Xn41

_ 1 . l(yn+1)2 (xn+1yn+1)***%l l(anrIYnJrl)
Qs U 2t Az 2t

Wf)b(er»l s Y1)

_)L_;’_l XZ +v2
_xn+1 (xn+1)7n+l) 2 I (xn+1yn+1) e_%t“n-#l'
2t 2t A2 2t ’
see, [2]. Then we have
Rowir1 (6, y) = ¢ /OO 1 6_7"";;"‘2 1 X ()’n+1>2 (Xn+1)’n+1)*"
A, n+ 3 = A n +
! "o @rn)s Qi+ 2t 2t
I (x,,+1yn+1> _XZH;»%H dt
My 2t ¢ NG
—c /Oo ! e lety/lz 1 Xn+1 (xn+lyn+1 >_)‘+%
0 (471’1‘)% (2t))“+% 2t 2t
Xn+1Yn+1 _x2+1+y3+1 dt
x I, _1 (—) e I -
2 2t Vit

By change of variables, we have

a1
<1 e Ynt1\2 [ Va2 ’
A P A e )
" " " 0 (@mnt)2 (2t)}‘+% 2t 2t

yiaz\ . >‘3+1§1+22) dt
Int1< ), — 4
2t ﬁ

X1y

=

< 1, Ry n+1(x, y) does not change sign and

1
2
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a1
e L G | 1 (yi2 2
— Xn+1 — = € o |
0 (@Amt)2 (Zt))‘+7 2t 2t

2 .
y2iz\ _ma0h di
x 1, _1 e a —
—-2 2t \ﬁ
WP |
=c A|: o - e Min (L _)‘_il (* e_l;zrﬁzdl
B n—+2+2x 1442 )L+7
Vi 0 wu2 u u u
0 _‘X/_),/‘Z s 1 5
Xn+1 / 1 2wl (% +3 I LA PHE du
e n - 1= )e 2 —|.
n+21+2 [ )‘_j
Vi 0 wu2 u u u

By letting z — 0 and applying (7.6), we see that

n+2i1+2 00 1 IX/—y/Iz
Yot 1 1 2+ 7 ) du
Ry nt1(x, w2l ¢ A : 3 / rwetd Yl
Xn41 220+ 3)Jo w2 u
X — 712
1 /00 L a0 D du
— - e n P
2)‘—%1"()\ + %) 0o wuztitl u
n+21+2 n
n+3 INeS + 5 — 1
=C, 2" Int1 A+3-D

(yr21+l + |x — y/|2)%+k+1 T+ %)

% Vit )“"%_1_1
Ve =y A+

n+21+2
Yn+1

2 2 / /
Dy + 1=

y Vg1 )""%"‘1_1
Var1 HIX =V A+

" 2)5+A+1

Since

Vi Ats+l

1>0,
Ve I =y a+]

the conclusion (i) holds.

Let
o 1 r—y[% 1 —aA
H(x,y) := Cn,k/ e A 1 (xn+lyn+1>
0 (4mt)?2 Q1) +2 2t
x | x (yn+1>2 (xn+1)’n+1>_1 . Xn+1 ﬂ
n+1 2 > 5 ﬁ
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Then, observe that

/OO 1 677"‘;"'2 1 (xn+1yn+1 )_)L
0 (4mt)? Q0)*+3 2t

o |x (yn+1)2<xn+1yn+1>_1_xn+1 di
T 2t 2t |Vt

Yol — Xpg1 [ 1 _ko?
n -+ e 7odt
Cnt1yntD* Joo 2t
Yn+1 — Xn+1 1
" .
np1 YD) |x — y|n+2

By using (7.7) forn = 0,

o0 1 =y X Ypr1\ A
R x,y) — H(x, < ——e & ( ) dt
|Rint1(x, y) =HGx, p)| S fo pEEvE > o
1 1
Toahah or
We then see that (ii) holds. The proof of Lemma 7.8 is complete. O
We now return to the proof of Proposition 7.6. Based on Lemmas 7.7 and 7.8, we

see that (5.1) holds. Indeed, For any x := (x1, ..., xy41) € IR:’_‘H and r € (0, 00), let
0, r)i={y =1y ynr) RN xj —yjl <r/2,j €l n+ 1))
Then, we have u; (Q(x, r)) ~ r”“x,%f,‘rl.Let Co > c.Forany x := (x1,...,Xx,41) €
RTI and r € (0,00), if r > EE—OIXHJ,_], take y := (y1,..., Yuq1) such that y; =

xi + Cor fori = jori =n+1andy; := x; otherwise. Then by Lemma 7.7(i), we
see that y,4+1 > Cx,41 and

Cor > 1

R, j(x, I 2 z ~ '
| )\.,J(x y)' [yr21+1+(cor)2]7+)u+1 M)L(Q(x,r))

Ifr < EC;lenH, then there exists y € RT‘I such that |y,4+1 — Xu41] = |y; — x| ~
|y — x| and |y4+1 — Xn+1| < Xn41. Then by Lemma 7.7(ii), we also have

ly;j — xjl 1
IR, j(x, I Z ~ _
! Xp el =y ma(Q(x, )

Therefore, (1.6) holds for Ry j(x,y), j € {1, ..., n}. The argument for Ry ,11(x,y)
is similar and omitted. Then Theorem 1.6 holds for the Bessel Riesz transform R, ;,
j=1...,n+ 1

The proof of Proposition 7.6 is complete. O
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8 A Digression to Product Setting: Little bmo Space

In this section, we consider the weighted little bmo space on product spaces of homo-
geneous type. To begin with, let (X1, di, 1) and (X2, da, 1u2) be two copies of spaces
of homogeneous type as stat_(j,d in Sect. 2, and denote X ::_.Xl X Xo, b 1= 1 X ).
Moreover, for the points in X, we denote X := (x1, x2) € X.

Macias and Segovia [35] proved the following fundamental result on spaces of
homogeneous type. Suppose that (X, d) is a space endowed with a quasi-metric d that
may have no regularity. Then there exists a quasi-metric d’ that is pointwise equivalent
to d such that d(x, y) ~ d’'(x, y) for all x, y € X and there exist constants 8 € (0, 1)
and C > 0 so that d’ has the following regularity:

d'(x,y) —d'(x', y)| < Cd'(x, x") [d'(x, y) + d'(x', )]0

forall x, x’, y € X. Moreover, if the quasi-metric balls are defined by this new quasi-
metric d’, that is, B'(x,r) := {y € X : d'(x, y) < r} for r > 0, then these balls are
open in the topology induced by d’. See [35, Theorem 2, p.259]. So, without lost of
generality, we assume that in our product setting, the quasi-metrics d; and d> have
regularity with constants 6 and 6,, respectively.

We now recall the product A , (X) weights on product spaces of homogeneous type.

Definition 8.1 Let w(x1, x2) be a nonnegative locally integrable function on X. For
1 < p < 00, we say w is a product A, weight, written as w € A, (X), if

1\ Ve-D\ 7!
= (L) (L)) <

Here, the supremum is taken over all “rectangles” R := B; X By C X , where B; are
balls in X; for i = 1, 2. The quantity [w]Ap(;() is called the A, constant of w.

Next, we recall the weighted little bmo space on product spaces of homogeneous
type.

Definition8.2 For | < p < coand w € A (X) the we1ghted little bmo space
bmow(X ) is the space of all locally integrable functions b on X such that

1
b = —_— b(X) — brldi(x ,
Il ”bmow(X) Sl;p w(R) /I; [b(x) Rldp(x) < 00

where the supremum is taken over all “rectangles” R = By x By C X , where B; are
ballsin X; fori =1, 2.

Similar to [22, Section 7.1], we introduce the bi-parameter Journé operator on X as
follows. Let Cg "(X1), n1 € (0, 6], denote the space of continuous functions f with
bounded support such that
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1fllem o,y == sup If&) = fl _
0 X,yEX1,x#y dy(x, y)m
Let CJ*(X2), n2 € (0, 6>] be defined similarly.

I Structural Assumptions: Given f = fi® f>and g = g1®g», where f;, gi : X; — C,
fi. 8 € Coi(X,-) satisfy supp f; Nsuppg; = ¥ fori = 1,2, we assume the kernel
representation

(Tf.g) = /X /XK(ic',?)f(i)g(a‘c’)dﬁ(i)dﬁ(ic').

The kernel K : X x )?\{(55, y) € XxX:x = y1, or x3 = y} — C is assumed
to satisfy:

1. Size condition:

1
pwi(B(xi, di(x1, y)pa(B(xz, da(x2, y2)))

K&,y =C

2. Holder conditions:

2a. if di(y1, y}) < sdi(x1, y1) and da(y2, ¥5) < gioda(x2, y2):

- -/

IK(X,5) — K&, (y1. y5) — KX, (5], y2) + KX, ¥)I
c di(y1, y))°da (y2, ¥5)°
T By, di(er, y))di(xr, y1)P o (B(x2, da(x2, y2)))da(x2, y2)8

2b. if di(x1, %)) < g=di (1, y1) and da(x2, ) < =da(x2, y2):

|K()_ér 5;) - K(()C], xé)’ y) - K((xi’ x2)7 y) + K(;/’ ;))'
c di(x1, x])°d (x2, x5)°
T i (Bxr, di(xer, y))di(xr, y1)P o (B(x2, da(x2, y2)))da(x2, y2)°

2¢. if di(y1, ) < g=di(x1, y1) and da(x2, ¥5) < 5i=da(x2, y2):

|K (X, ) — K((x1,x3), ) — K&, (1, y2)) + K((x1, x5), (31, y2))|
c di(y1. y})2da(x2, x5)°
T By, di(er, y))di (x1, y1)P o (B(x2, da(x2, y2)))da(x2, y2)8

2d. if di(x1, ) < gi=di(x1, y1) and da(y2, y) < zi-da(xa, y2):

IK(X,5) — K&, (y1. y5) — K((x], x2), ¥) + K((x], x2), (1, y2))
-c di (x1, x])°da (y2, ¥5)°
T (B, di(er, y))di(xr, y1)P o (B(x2, da(x2, y2)))da(x2, y2)°
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3. Mixed size and Holder conditions:

3a. ifdi(x1, %)) < g=di(x1, y1):

K (X,¥) — K((x}, x2), y)|
-c dy (x1, x})°
T B, di (e, yD))di(x1, y1)P 2 (B(xz, da(x2, y2)))

3b. if di(y1, ¥)) < g=di (x1, y1):

|K (X, ) — K&, (y1. y2))I
—c di(y1. y})?
T i (B(xr, di(xr, y))di(x1, y1)2 o (B(x2, da(xa, y2)))

3c. if da(x2, X)) < o (x2, 2):

|K(;7 5;) - K(()Cl,.xé), §)|
-c d>(x2, x5)?
T pi(Bxr, di(xr, y)) (B (x2, da(x2, y2)))da (x2, y2)°

3d. if da(y2, ¥5) < gi-da(x2, y2):

—c do(y2, ¥5)°
T i (Bxr, di(xr, y)) (B (x2, da(x2, y2)))da(x2, y2)8

4. Calderén—Zygmund structure in X and X, separately: If f = f1 ® frand g =
g1 ® g» with supp f1 N suppg; = ¥, we assume the kernel representation:

(Tf,g)=/;( /X K oo (x1, y0) iy g1 (x)dpr (x1)d e (y1),
1 1

where the kernel Ky, o, © X1 x X1\{(x1,y1) € X1 x X1 : x1 = yi1} satisfies the
following size condition:

1
w1(B(x1, di(x1, y1)))

IK fy.0,(x1, yDI < C(f2, 82)

@ Springer



Two Weight Commutators on Spaces of Homogeneous Type 1033

and Holder conditions:

IK f5,6, (X1, y1) — Kfz»gz(x{v vl
- C(fo. g2) di(x1, x})°
T pi(B(xy, di(xy, y)di(xr, yD)?’
|K fy.00(x1, Y1) — K py g5 (x1, y])I
C(f2, g2)di (1, y})°
T pi(B(xy, dy(xy, y)di(xr, y)?

1
d 9 1 =< _d B 9
1(x1, x]) < 34, 1(x1, y1)

1
di(x1, x}) < —dj(x1, y1).
1(x1, x]) < 74, 1(x1, y1)

We only assume the above representation and a certain control over C(f2, g2) on the
diagonal, that is:

C(XQ21 XQz) + C(Xsz MQz) + C(”sz XQQ) =< C/'LZ(QZ)

for all cubes Q> C X5 and all “Q;-adapted zero-mean” functions ug,— that is,
suppug, C Q2, lug,| < 1 and szqu(xz)d;Lz(xz) = 0. We assume the sym-
metrical representation with kernel K 7, ¢, in the case supp f> N suppgz = @.

II Boundedness and Cancellation Assumptions:

1. Assume T'1, T*1, T 1, and Tl*l are in product BMO(;(), where T is the partial
adjoint of T defined by (7'1(f1 ® f2), 1 ® g2) = (T1(g1 ® f2), (f1 ® &2)).

2. Assume |{T1(x0, ® X0): X0: ® X0,)| < Ciu1(Q1)p2(Q>) forall cubes Q; € X;
(weak boundedness).

3. Diagonal BMO conditions: for all cubes Q; C X; and all non-zero functions ag,
and b, that are Q| — and Q,— adapted, respectively, assume:

(Ti(ag, ® x01)s X01 @ X0,)1 = Cr1(Q1)mn2(Q2),
KT1(x0, ® X0,),a0; ® x0,)| < Cu1(Q1u2(0Q2),
KT1(x0, ® bo,)s X0, ® X0,) < Cu1(Q1)p2(Q2),
KT1 (X0, ® X0,)s X0, ®bo,)| < Cui(Q1)12(Q2).

For the upper bound of the commutator of such operators 7 and b € bmo,, (f( ),
following the same approach as that in [22], and combining all necessary tools as
recalled in Sect. 2 on spaces of homogeneous type (such as the adjacent dyadic system,

Haar basis, et al), we obtain that
1

1 _1
Theorem8.3 Let 1 < p < ooand Ay, Ay € Ap(X), and definev = A{ 1, ”. Let T be
a bi-parameter Journé operator on X and b € bmo,, (X). Then we obtain that

16, 71 LY (X) — LL K S 18 llymo, -

We now provide a broader version of the lower bound. Note that in [22] the authors
only considered the lower bound of commutator with respect to double Riesz trans-
forms, and their proof relies on Fourier transform and hence can not be adapted to
spaces of homogeneous type.
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We assume that the bi-parameter Journé operator 7 satisfies the following “homo-
geneous” condition:
there exist positive constants co and C such that for every x1 € X1, xo € X» and
r1, rp > 0, there exist y; € B(x1, 61’1)\31 (x1,7r1) and y2 € By(x2, 6r2)\32(x2, )
satisfying

1
cop1(Bi(x1, r)pua(Ba(xa, r2))

|K (x1, y15 x2, y2)| = 8.1

Then, we have the following lower bound.

Theorem 8.4 Let T be a bi-parameter Journé operator on X and T satisfies the fol-

lowing “homogeneous” condition as above. Let 1 < p < 0o and A1, Ay € Ap()?),
1 1

and define v := L{ A, ”. Suppose that b L! (X) and that [, T : Lfl (X) —

loc

LY (X)|| < oo. Then we obtain that b € bmo, (X) with
16,z S 6. T1: LY (X) — LY (X))

To see this, we first point out that the homogeneous condition (8.1) implies the
following condition: there exist positive constants 3 < A; < Aj; such that for any
ball B; := B; (x(gi), ri) C X;, there exist balls §i = B; (y(gi), r;) such that Ajr; <
di(x(()i), y(()i)) < Ajr;. Moreover, for all (x1, y1; x2, y2) € (B1 X El) X (By X Ez),
K (x1, y1; x2, y2) does not change sign and

1
wi(B1) pa(Ba)

K (x1, y1; %2, y2)| 2

If K(x1, y15 %2, y2) := Ki(x1, y15 x2, y2) + i Ka(x1, y1; X2, y2) is complex-valued,
where i2 = —1, then at least one of K; satisfies the assumption above. .

We next consider the median value on “rectangles” R = B} x By C X.Bya
median value of a real-valued measurable function f over R we mean a possibly
non-unique, real number a g (f) such that Z({(x1, x2) € R : f(x1,x2) > ar(f)}) <
JH1(BD2(Ba) and [i({(x1, x2) € R : f(x1,x2) < ar(N)]) < 3u1(BDp2(Ba).

Ngw, following the idea in Lemma 5.3, for the given rectangle R = By X By, El
and B», set

Ej:={(x1,x2) € Bi x By : b(x1,x2) = o . 5,(0)},

Es :={(x1,x2) € Bi X By : b(x1, x2) < o, 5, (D)},
and

Fi:={(y1.y2) € By x By : b(y1. y2) < g5, .5, (D)}
Fy:={(y1,y2) € B x By : b(y1, y2) > g <5, (D)}
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Then, by the definition of ag(f), we see that ji(F;) > }‘m(gl)uﬂﬁz) fori =1, 2.
Moreover, for (x1, x2) X (y1, y2) € (E1 X F1) U (E> X Fy),

Ib(x1, x2) = b(y1, y2)| = [b(x1, x2) — @5, 5,(b) + @5, 5,(B) — b(y1, y2)|
= |b(x1, x2) — ag, . 5, B)| + a5, 5 ®) — b(y1. y2)|

> [b(x1. x2) — g, o 5, B)] -

Proof of Theorem 8.4 For given b € Llloc(f( ) and for any rectangle R = Bj x By, let

1
Ob: R) = —— / IbCr1, x2) — brl dt en)da(xa).
AR I

Under the assumptions of Theorem 8.4, we will show that for any ball B,

V(R)

O®; R) < TR

(8.2)

Without loss of generality, we assume that K (x1, y1; x2, y2) is real-valued. Let
R = Bj x B; be arectangle. Then we have two rectangles By x B3, El X Ez and sets
E;, F;, i = 1,2, as above.

On the one hand, we have that for f; := xfr,,i =1, 2,

2

#Zf b, T Ger, x| dpey (e pa )
/:L(R) B1x By 5 i\A1, A2 M1Xp)au2(x2

> (R) / b, T1f, (r1. x2)| dpas (1) dpa(x2)

1
=— b(x1, x2) — b(y1,
M(R)[;/Ei /Fi| (x1,%2) — b(y1, y2)

[K (x1, y1; x2, y2) dpy (Y1) d 2 (y2) d g (x1)d pa (x2)

b1, %) — o, 3, 0]
2 2 q d d d
2 (R)Z/E,f, e By O (m) dy (1) ()

2 == b(x1, x2) —ag, 5, 0| dui(x)dp2(x2)
/‘L(R) B]XB2| ! BIXBZ | A

> O(b; R).

On the other hand, from Holder’s inequality and the boundedness of [b, T'], we
deduce that

2

=Y [T du eodus )
ll(R) P BIXBZ k] 1 1, X2 Ml 1 MZ 2
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2

1 1/p
) > [ /B b T1fi e )l B, X2)dM1(X1)dM2(xz)}
i=1 1X52

=<

1 1/p
X </ A2 (x1, x2) ”‘dﬂl(xl)duz(x2)>
Bix By

A

1 2 1 1/p
= A (F)1YP (f Aa(x1,x2) 7-1d d )
A(R) E[ 1(ED)] . 2(x1, x2) pi(x1)dpua(x2)

1 ~ o~ o 1/p
< =——[M(Br x B)1'/P ( / Aa(x1, X2) ”“dul(xl)duz(xz)>
H(R) B % B>
S 1/p
< —— [ (RVP ( f Aa(x1, x2) pldﬂl(xl)dﬂz(xz)) ,
H(R) R

where in the last inequality, we use the facts that Kyrp, < d(xp,, xgl) < Kjrp, and
Ar1(x1, x2) € Ap(X). _
Combining the two inequalities above and invoking A; € A,(X), we conclude that

1 _1 v V(R)

O B) S = a1 ([t ) P Tduendatn) S 50,
L(R) R w(R)

Thus, (8.2) holds and hence, the proof of Theorem 8.4 is complete. O
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