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Abstract
In this paper, we establish the two weight commutator theorem of Calderón–Zygmund
operators in the sense of Coifman–Weiss on spaces of homogeneous type, by studying
the weighted Hardy and BMO space for A2 weights and by proving the sparse operator
domination of commutators. The main tool here is the Haar basis, the adjacent dyadic
systems on spaces of homogeneous type, and the construction of a suitable version
of a sparse operator on spaces of homogeneous type. As applications, we provide
a two weight commutator theorem (including the high order commutators) for the
following Calderón–Zygmund operators: Cauchy integral operator on R, Cauchy–
Szegö projection operator on Heisenberg groups, Szegö projection operators on a
family of unbounded weakly pseudoconvex domains, the Riesz transform associated
with the sub-Laplacian on stratified Lie groups, as well as the Bessel Riesz transforms
(in one and several dimensions).

Keywords BMO · Commutator · Two weights · Hardy space · Factorization

Mathematics Subject Classification 42B30 · 42B20 · 42B35

1 Introduction and Statement of Main Results

It is well-known that Coifman et al. [8] characterized the boundedness of the commu-
tator [b, R j ] acting on Lebesgue spaces in terms of BMO, where R j = ∂

∂x j
�−1/2 is

the j th Riesz transform on the Euclidean space R
n . Their result extended the work of

Nehari [40] about Hankel operators from complex setting to the real setting R
n . Later,

Bloom [3] established the characterisation of weighted BMO in terms of boundedness

B Dongyong Yang
dyyang@xmu.edu.cn

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-019-00308-x&domain=pdf


TwoWeight Commutators on Spaces of Homogeneous Type 981

of commutators [b, H ] in the two weight setting, where H is the Hilbert transform on
R.

Recent remarkable results were achieved by Holmes–Lacey–Wick [21] giving the
characterisation of weighted BMO space on R

n in terms of boundedness of com-
mutators of Riesz transforms, and by Lerner–Ombrosi–Rivera-Ríos [32,33] in terms
of boundedness of commutators of Calderón–Zygmund operators with homogeneous
kernels �( x

|x | )
1

|x |n , and Hytönen [25] in terms of boundedness of commutators of a
more general version of Calderón–Zygmund operators and weighted BMO functions
on R

n . Meanwhile, the two weight commutator has also been studied extensively in
different settings, see for example [13,15,20].

We note that to get the lower bound of the two weight commutator for Riesz trans-
forms (or theHilbert transform in one dimension) in terms of theweightedBMOspace,
the first proofs used spherical harmonics to expand the Riesz (Hilbert) kernels, which
relies on properties of the Fourier transform of the Riesz (Hilbert) kernels. A similar
method of expansion of the Riesz transform associated with Neumann Laplacian was
used in [13] for a larger class of Ap weights and for the BMO space associated with
Neumann Laplacian which is strictly larger than classical BMO. In [32], concerning
the two weight commutator for Calderón–Zygmund operators associated with homo-
geneous kernel �( x

|x | )
1

|x |n , the proof of the lower bound was obtained by assuming
suitable conditions on the homogeneous function �, see also [19,20]. More recently,
Hytönen [25] studied the two weight commutator for Calderón–Zygmund operators
and proposed a condition denoted by the “non-degenerate Calderón–Zygmund ker-
nel”, then he proved the lower bound of the commutator by constructing a factorisation.
Also, in [14,15], they established a version of a pointwise kernel lower bound for the
Riesz transform associated to the sub-Laplacian on stratified Lie groups, which cov-
ers the Heisenberg group, and used this kernel lower bound to obtain the two weight
commutator result following the idea in [32].

However, there are other important Calderón–Zygmund operators (not built on
the Euclidean space setting) whose kernels do not have a connection to the Fourier
transform and are not of homogeneous type such as �( x

|x | )
1

|x |n . Moreover, whether
the kernels fall into Hytönen’s “non-degenerate Calderón–Zygmund kernel” has not
been studied before and hence the two weight commutator estimates and higher order
commutator are unknown.

For example, the Riesz transform from Muckenhoupt–Stein [39]: Rλ := − d
dx

(�λ)
− 1

2 , associated with the Bessel operator on R+:

�λ := − d2

dx2
− 2λ

x

d

dx
, x > 0, λ > −1

2
,

and the Riesz transform Rλ, j = d
dx j

(�
(n+1)
λ )− 1

2 , j = 1, . . . , n + 1, associated with

the Bessel operator �
(n+1)
λ on R

n+1+ studied in Huber [23]:

�
(n+1)
λ = − d2

dx21
· · · − d2

dx2n
− d2

dx2n+1

− 2λ

xn+1

d

dxn+1
.
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982 X. T. Duong et al.

Another example is the Cauchy–Szegö projection operator C (for all the notation
below we refer to Section 2 in Chapter XII in Stein [43]), which is the orthogonal
projection from L2(bUn) to the subspace of functions {Fb} that are boundary values
of functions F ∈ H2(Un). The associated Cauchy–Szegö kernel is as follows:

C( f )(x) =
∫

Hn
K (y−1 ◦ x) f (y)dy,

where K (x) = − ∂
∂t

(
c
n [t + i |ζ |2]−n

)
for x = [ζ, t] ∈ H

n = C
n × R.

Then, it is natural to study the following question: Can one establish the character-
isation of boundedness of two weight commutators in terms of the related weighted
BMO space for Calderón–Zygmund operators T in a more general setting such that
many examples, including the Bessel Riesz transform, the Cauchy–Szegö projection
operator on Heisenberg groups and others, can be covered?

To address this question we work in a general setting: spaces of homogeneous type
introduced by Coifman and Weiss in the early 1970s, in [9], see also [10]. We say that
(X , d, μ) is a space of homogeneous type in the sense of Coifman and Weiss if d is
a quasi-metric on X and μ is a nonzero measure satisfying the doubling condition.
A quasi-metric d on a set X is a function d : X × X −→ [0,∞) satisfying (i)
d(x, y) = d(y, x) ≥ 0 for all x , y ∈ X ; (ii) d(x, y) = 0 if and only if x = y; and
(iii) the quasi-triangle inequality: there is a constant A0 ∈ [1,∞) such that for all x ,
y, z ∈ X ,

d(x, y) ≤ A0[d(x, z) + d(z, y)]. (1.1)

We say that a nonzero measure μ satisfies the doubling condition if there is a constant
Cμ such that for all x ∈ X and r > 0,

μ(B(x, 2r)) ≤ Cμμ(B(x, r)) < ∞, (1.2)

where B(x, r) is the quasi-metric ball by B(x, r) := {y ∈ X : d(x, y) < r} for x ∈ X
and r > 0. We point out that the doubling condition (1.2) implies that there exists a
positive constant n (the upper dimension of μ) such that for all x ∈ X , λ ≥ 1 and
r > 0,

μ(B(x, λr)) ≤ Cμλnμ(B(x, r)). (1.3)

Throughout this paper we assume that μ(X) = ∞ and that μ({x0}) = 0 for every
x0 ∈ X .

We now recall the singular integral operator on spaces of homogeneous type in the
sense of Coifman and Weiss.

Definition 1.1 We say that T is a Calderón–Zygmund operator on (X , d, μ) if T
is bounded on L2(X) and has the associated kernel K (x, y) such that T ( f )(x) =

123



TwoWeight Commutators on Spaces of Homogeneous Type 983

∫
X K (x, y) f (y)dμ(y) for any x /∈ supp f , and K (x, y) satisfies the following esti-

mates: for all x �= y,

|K (x, y)| ≤ C

V (x, y)
, (1.4)

and for d(x, x ′) ≤ (2A0)
−1d(x, y),

|K (x, y) − K (x ′, y)| + |K (y, x) − K (y, x ′)| ≤ C

V (x, y)
ω
(d(x, x ′)

d(x, y)

)
, (1.5)

where V (x, y) = μ(B(x, d(x, y))) and by the doubling condition we have that
V (x, y) ≈ V (y, x), ω : [0, 1] → [0,∞) is continuous, increasing, subadditive,
ω(0) = 0.

We say that ω satisfies the Dini condition if
∫ 1
0 ω(t) dt

t < ∞.
Let T be a Calderón–Zygmund operator on X . Suppose b ∈ L1

loc(X) and f ∈
L p(X). Let [b, T ] be the commutator defined by

[b, T ] f (x) := b(x)T ( f )(x) − T (b f )(x).

The iterated commutators T m
b , m ∈ N, are defined inductively by

T m
b f (x) := [b, T m−1

b ] f (x), T 1
b f (x) := [b, T ] f (x).

Next, we use Ap, 1 ≤ p ≤ ∞, to denote the Muckenhoupt weighted class on X
(see the precise definition of Ap in Sect. 2), and the weighted BMO on X is defined as
follows (theEuclidean version ofweightedBMOwasfirst introduced byMuckenhoupt
and Wheeden [38]).

Definition 1.2 Suppose w ∈ A∞. A function b ∈ L1
loc(X) belongs to BMOw(X) if

‖b‖BMOw(X) := sup
B

1

w(B)

∫
B
|b(x) − bB | dμ(x) < ∞,

where bB := 1
μ(B)

∫
B b(x)dμ(x) and the supremum is taken over all balls B ⊂ X .

Our first main result is the following theorem.

Theorem 1.3 Suppose 1 < p < ∞, λ1, λ2 ∈ Ap, ν := λ
1
p
1 λ

− 1
p

2 and m ∈ N. Suppose
b ∈ BMO

ν
1
m

(X). Then for any Calderón–Zygmund operator T as in Definition 1.1
with ω satisfying the Dini condition, there exists a positive constant C1 such that

‖T m
b : L p

λ1
(X) → L p

λ2
(X)‖ ≤ C1‖b‖m

BMO
ν
1
m

(X)

(
[λ1]Ap [λ2]Ap

)m+1
2 ·max{1, 1

p−1 }
.
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984 X. T. Duong et al.

To obtain the upper bound, we characterise the sparse system and then use the idea
from [32] to build a suitable version of a sparse operator on a space of homogeneous
type. Here, we apply the tool of adjacent dyadic systems from [26], the explicit con-
struction of Haar basis from [28], and we have to allow suitable overlapping for the
sparse sets due to the partition and covering of the whole space via quasi-metric balls.

To consider the lower bound of the commutator, we assume that the Calderón–
Zygmund operator T , as given in Definition 1.1 with ω satisfying ω(t) → 0 as t → 0,
satisfies the following “non-degenerate” condition:

There exist positive constants c0 and C such that for every x ∈ X and r > 0, there
exists y ∈ B(x, Cr)\B(x, r) satisfying

|K (x, y)| ≥ 1

c0μ(B(x, r))
. (1.6)

Note that in R
n , this “non-degenerate” condition was first proposed in [24], and a

similar assumption on the behaviour of the kernel lower bound was proposed in [32].
On stratified Lie groups, a similar condition of the Riesz transform kernel lower bound
was verified in [14].

Then, we have the following lower bound.

Theorem 1.4 Suppose 1 < p < ∞, λ1, λ2 ∈ Ap, ν := λ
1
p
1 λ

− 1
p

2 and m ∈ N. Suppose
b ∈ L1

loc(X) and that T is a Calderón–Zygmund operator as in Definition 1.1 and
satisfies the non-degenerate condition (1.6). Also suppose that T m

b is bounded from
L p

λ1
(X) to L p

λ2
(X). Then b ∈ BMO

ν
1
m

(X), and there exists a positive constant C2

such that

‖b‖m
BMO

ν
1
m

(X) ≤ C2‖T m
b : L p

λ1
(X) → L p

λ2
(X)‖.

Based on the characterisation of BMOν(X) via commutators T 1
b = [b, T ], we

further have the weak factorisation for the weighted Hardy space H1
ν (X) as follows.

Theorem 1.5 Suppose 1 < p < ∞, λ1, λ2 ∈ Ap and ν := λ
1
p
1 λ

− 1
p

2 . Let p′ be the

conjugate of p and λ′
2 := λ

− 1
p−1

2 . For any f ∈ H1
ν (X), there exist numbers {αk

j }k, j ,

functions {gk
j }k, j ⊂ L p

λ1
(X) and {hk

j }k, j ⊂ L p′
λ′
2
(X) such that

f =
∞∑

k=1

∞∑
j=1

αk
j 

(
gk

j , hk
j

)
(1.7)

in H1
ν (X), where the operator 
 is defined as follows: for g ∈ L p

λ1
(X) and h ∈

L p′
λ′
2
(X),


(g, h) := gT h − hT ∗g,
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TwoWeight Commutators on Spaces of Homogeneous Type 985

where T is a Calderón–Zygmund operator as in Definition 1.1 and satisfies the non-
degenerate condition (1.6) and T ∗ is the conjugate of T in the sense that

∫
X

T f (x)g(x)dμ(x) =
∫

X
f (x)T ∗g(x)dμ(x), f , g ∈ L2(X).

Moreover, we have

‖ f ‖H1
ν (X) ≈ inf

⎧⎨
⎩

∞∑
k=1

∞∑
j=1

∣∣∣αk
j

∣∣∣
∥∥∥gk

j

∥∥∥
L p

λ1
(X)

∥∥∥hk
j

∥∥∥
L p′

λ′2
(X)

: f =
∞∑

k=1

∞∑
j=1

αk
j 

(

gk
j , hk

j

)⎫⎬
⎭ ,

(1.8)

where the implicit constants are independent of f .

As applications, besides the classical Hilbert transform, Riesz transform and the
Calderón–Zygmund operators with homogeneous kernels �( x

|x | )
1

|x |n on R
n (studied

in [21,32]), we use our main theorems to obtain the two weight commutator result of
the following operators:

1. the Cauchy integral operator CA along a Lipschitz curve z := x + i A(x), x ∈
(−∞,∞) and A′ ∈ L∞(R);

2. The Cauchy–Szegö projection operator on Heisenberg group H
n ;

3. The Szegö projection operator on a family of weakly pseudoconvex domains;
4. Riesz transforms associated to the sub-Laplacian on stratified Lie groups G;
5. Riesz transforms associated to the Bessel operator �λ on R+ for λ > −1/2;
6. Riesz transforms associated to the higher order Bessel operator �n,λ on R

n+1+ for
λ > −1/2.

The definitions of the above operators will be given in Sect. 7. We have the following
result.

Theorem 1.6 Let T be one of the operators listed above and let (X , d, μ) be the

underlying space adapted to T . Suppose 1 < p < ∞, λ1, λ2 ∈ Ap, ν := λ
1
p
1 λ

− 1
p

2 and
m ∈ N. Suppose that b ∈ L1

loc(X). Then, we have

‖b‖m
BMO

ν
1
m

(X) ≈ ‖T m
b : L p

λ1
(X) → L p

λ2
(X)‖.

Moreover, based on the result above for m = 1 and on the duality, the corresponding
weighted Hardy space H1

ν (X) has a weak factorisation as in (1.7).

To prove this theorem, the key step is to verify that all these operators listed above
satisfy the conditions as in Definition 1.1 and the non-degenerate condition as in (1.6).
We point out that such verification for Cauchy integral operator CA is direct. The
verifications of Cauchy–Szegö projection operator on Heisenberg group, the Szegö
projection operator on a family of weakly pseudoconvex domains and the Riesz trans-
forms associated with the sub-Laplacian on stratified Lie groups can be derived based

123



986 X. T. Duong et al.

on the results in [43, Chapter XII], [18] and [14], respectively. The verification for
Riesz transforms associated with the Bessel operator �λ on R+ for λ > 0 can be
derived from the result in [39], while for λ ∈ (−1/2, 0) is new here. The verifica-
tion for Riesz transforms associated with higher order Bessel operator is totally new,
especially the pointwise kernel lower bound of this Riesz transform.

We now address our result Theorem 1.6 with respect to the 6 examples above,
respectively:

1. The unweighted result was obtained in [34] whenm = 1, and the twoweight result
is new here for m ≥ 1;

2. This result is new, even the unweighted version is unknown;
3. This result is new, even the unweighted version is unknown;
4. This result was obtained in [15] when m = 1 and is new here when m > 1.
5. The unweighted result was obtained in [16] when λ > 0 and m = 1, the two

weight result is new here for m ≥ 1 and for all λ > −1/2;
6. This result is new, even the unweighted version is unknown;

This paper is organised as follows. In Sect. 2 we recall the necessary preliminaries
on spaces of homogeneous type. In Sect. 3, we first characterise the sparse system
equivalently via the �-Carleson packing condition and the η-sparse condition, and
then borrowing the idea from [32], we study the sparse operators and its domination
of commutator on spaces of homogeneous type, and using this as amain tool, in Sect. 4
we obtain the upper bound of two weight commutator, i.e., Theorem 1.3. In Sect. 5 we
provide the lower bound of two weight commutator, i.e., Theorem 1.4, by combining
the ideas in [25,33]. In Sect. 6 we provide a study of weighted Hardy spaces and its
duality on spaces of homogeneous type, and provide the proof of Theorem 1.5. In Sect.
7 we provide the applications where we address the new points in this paper. In the last
section we also provide a new proof of the lower bound of two weight commutators
in the product setting for little bmo space on spaces of homogeneous type. Note that
in R

n ×R
m , this was first studied by [22] by using the Fourier transform for the Riesz

transform kernel.
Throughout the paper, we denote by C and C̃ positive constants which are indepen-

dent of themain parameters, but theymay vary from line to line. For every p ∈ (1,∞),
we denote by p′ the conjugate of p, i.e., 1

p′ + 1
p = 1. If f ≤ Cg or f ≥ Cg, we then

write f � g or f � g; and if f � g � f , we write f ≈ g.

2 Preliminaries on Spaces of Homogeneous Type

Let (X , d, μ) be a space of homogeneous type as mentioned in Sect. 1.

2.1 A System of Dyadic Cubes

In (X , d, μ), a countable family D := ∪k∈ZDk, Dk := {Qk
α : α ∈ Ak}, of Borel

sets Qk
α ⊆ X is called a system of dyadic cubes with parameters δ ∈ (0, 1) and

0 < a1 ≤ A1 < ∞ if it has the following properties:

123



TwoWeight Commutators on Spaces of Homogeneous Type 987

X =
⋃

α∈Ak

Qk
α (disjoint union) for all k ∈ Z;

if � ≥ k, then either Q�
β ⊆ Qk

α or Qk
α ∩ Q�

β = ∅;
for each (k, α) and each � ≤ k, there exists a unique β such that Qk

α ⊆ Q�
β;

for each (k, α) there exists at most M(a fixed geometric constant)β such that

Qk+1
β ⊆ Qk

α, and Qk
α =

⋃
Q∈Dk+1,Q⊆Qk

α

Q;

B(xk
α, a1δ

k) ⊆ Qk
α ⊆ B(xk

α, A1δ
k) =: B(Qk

α);
if � ≥ k and Q�

β ⊆ Qk
α , then B(Q�

β) ⊆ B(Qk
α). (2.1)

The set Qk
α is called a dyadic cube of generation k with centre point xk

α ∈ Qk
α and

sidelength δk .
From the properties of the dyadic system above and from the doubling measure,

we can deduce that there exists a constant Cμ,0 depending only on Cμ as in (1.2) and
a1, A1 as above, such that for any Qk

α and Qk+1
β with Qk+1

β ⊂ Qk
α ,

μ(Qk+1
β ) ≤ μ(Qk

α) ≤ Cμ,0μ(Qk+1
β ). (2.2)

We recall from [26] the following construction, which is a slight elaboration of
seminal work by Christ [5], as well as Sawyer–Wheeden [42].

Theorem 2.1 On (X , d, μ), there exists a system of dyadic cubes with parameters
0 < δ ≤ (12A3

0)
−1 and a1 := (3A2

0)
−1, A1 := 2A0. The construction only depends

on some fixed set of countably many centre points xk
α , having the properties that

d(xk
α, xk

β) ≥ δk with α �= β, minα d(x, xk
α) < δk for all x ∈ X , and a certain partial

order “≤” among their index pairs (k, α). In fact, this system can be constructed in
such a way that

Q
k
α = {x�

β : (�, β) ≤ (k, α)}, Q̃k
α := int Q

k
α =

( ⋃
γ �=α

Q
k
γ

)c
, Q̃k

α ⊆ Qk
α ⊆ Q

k
α,

where Qk
α are obtained from the closed sets Q

k
α and the open sets Q̃k

α by finitely many
set operations.

We also recall the following remark from [28, Section 2.3]. The construction of
dyadic cubes requires their centre points and an associated partial order be fixed a
priori. However, if either the centre points or the partial order is not given, their
existence already follows from the assumptions; any given system of points and partial
order can be used as a starting point. Moreover, if we are allowed to choose the centre
points for the cubes, the collection can be chosen to satisfy the additional property
that a fixed point becomes a centre point at all levels:

given a fixed point x0 ∈ X , for every k ∈ Z, there exists α such that

x0 = xk
α, the centre point of Qk

α ∈ Dk .
(2.3)

123



988 X. T. Duong et al.

2.2 Adjacent Systems of Dyadic Cubes

On (X , d, μ), a finite collection {D t : t = 1, 2, . . . , T } of the dyadic families is called
a collection of adjacent systems of dyadic cubes with parameters δ ∈ (0, 1), 0 < a1 ≤
A1 < ∞ and 1 ≤ Cad j < ∞ if it has the following properties: individually, each
D t is a system of dyadic cubes with parameters δ ∈ (0, 1) and 0 < a1 ≤ A1 < ∞;
collectively, for each ball B(x, r) ⊆ X with δk+3 < r ≤ δk+2, k ∈ Z, there exist
t ∈ {1, 2, . . . , T } and Q ∈ D t of generation k and with centre point t xk

α such that
d(x, t xk

α) < 2A0δ
k and

B(x, r) ⊆ Q ⊆ B(x, Cad jr). (2.4)

We recall from [26] the following construction.

Theorem 2.2 Let (X , d, μ) be a space of homogeneous type. Then, there exists a
collection {D t : t = 1, 2, . . . , T } of adjacent systems of dyadic cubes with parameters
δ ∈ (0, (96A6

0)
−1), a1 := (12A4

0)
−1, A1 := 4A2

0 and C := 8A3
0δ

−3. The centre points
t xk

α of the cubes Q ∈ D t
k have, for each t ∈ {1, 2, . . . , T }, the two properties

d(t xk
α, t xk

β) ≥ (4A2
0)

−1δk (α �= β), min
α

d(x, t xk
α) < 2A0δ

k for all x ∈ X .

Moreover, these adjacent systems can be constructed in such a way that each D t

satisfies the distinguished centre point property (2.3).

We recall from [28, Remark 2.8] that the number T of the adjacent systems of
dyadic cubes as in the theorem above satisfies the estimate

T = T (A0, Ã1, δ) ≤ Ã6
1(A4

0/δ)
log2 Ã1 ,

where Ã1 is the geometrically doubling constant, see [28, Section 2].

2.3 An Explicit Haar Basis on Spaces of Homogeneous Type

Next, we recall the explicit construction in [28] of a Haar basis {hε
Q : Q ∈ D, ε =

1, . . . , MQ − 1} for L p(X , μ), 1 < p < ∞, associated to the dyadic cubes Q ∈ D
as follows. Here, MQ := #H(Q) = #{R ∈ Dk+1 : R ⊆ Q} denotes the number of
dyadic sub-cubes (“children”) the cube Q ∈ Dk has; namely H(Q) is the collection
of dyadic children of Q.

Theorem 2.3 ([28]) Let (X , d, μ) be a space of homogeneous type and suppose μ is
a positive Borel measure on X with the property that μ(B) < ∞ for all balls B ⊆ X.
For 1 < p < ∞, for each f ∈ L p(X , μ), we have

f (x) =
∑
Q∈D

MQ−1∑
ε=1

〈 f , hε
Q〉hε

Q(x),

123



TwoWeight Commutators on Spaces of Homogeneous Type 989

where the sum converges (unconditionally) both in the L p(X , μ)-norm and pointwise
μ-almost everywhere.

The following theorem collects several basic properties of the functions hε
Q .

Theorem 2.4 ([28]) The Haar functions hε
Q, Q ∈ D , ε = 1, . . . , MQ − 1, have the

following properties:

(i) hε
Q is a simple Borel-measurable real function on X;

(ii) hε
Q is supported on Q;

(iii) hε
Q is constant on each R ∈ H(Q);

(iv)
∫

hε
Q dμ = 0 (cancellation);

(v) 〈hε
Q, hε′

Q〉 = 0 for ε �= ε′, ε, ε′ ∈ {1, . . . , MQ − 1};
(vi) the collection

{
μ(Q)−1/21Q

} ∪ {hε
Q : ε = 1, . . . , MQ − 1} is an orthogonal

basis for the vector space V (Q) of all functions on Q that are constant on each
sub-cube R ∈ H(Q);

(vii) if hε
Q �≡ 0 then ‖hε

Q‖L p(X ,μ) ≈ μ(Qε)
1
p − 1

2 for 1 ≤ p ≤ ∞;
(viii) ‖hε

Q‖L1(X ,μ) · ‖hε
Q‖L∞(X ,μ) ≈ 1.

As stated in [28], we also have h0
Q := μ(Q)−1/21Q which is a non-cancellative

Haar function. Moreover, the martingale associated with the Haar functions are as
follows: for Q ∈ Dk ,

EQ f = 〈 f , h0
Q〉h0

Q and DQ f =
MQ−1∑
ε=1

D
ε
Q f ,

where D
ε
Q = 〈 f , hε

Q〉hε
Q is the martingale operator associated with the εth subcube

of Q. Also we have

Ek f =
∑

Q∈Dk

EQ f and Dk f = Ek+1 f − Ek f .

Hence, based on the construction of Haar system {hε
Q} in [28] we obtain that for each

R ∈ D ,

∑
Q: R⊂Q

MQ−1∑
ε=1

〈 f , hε
Q〉hε

Qhη
R =

∑
Q: R⊂Q

DQ f · hη
R = ER f · hη

R = 〈 f , h0
R〉h0

Rhη
R .

2.4 Muckenhoupt ApWeights

Definition 2.5 Let w(x) be a nonnegative locally integrable function on X . For 1 <

p < ∞, we say w is an Ap weight, written w ∈ Ap, if

[w]Ap := sup
B

(
−
∫

B
w

)(
−
∫

B

(
1

w

)1/(p−1)
)p−1

< ∞.
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Here, the supremum is taken over all balls B ⊂ X and −∫B w := 1
μ(B)

∫
B w(x)dμ(x).

The quantity [w]Ap is called the Ap constant of w. For p = 1, we say w is an A1
weight, written w ∈ A1, if M(w)(x) ≤ w(x) for μ-almost every x ∈ X , and let
A∞ := ∪1≤p<∞ Ap and we have [w]A∞ := supB

(−∫B w
)
exp
(−∫B log

( 1
w

))
< ∞.

Next, we note that for w ∈ Ap the measure w(x)dμ(x) is a doubling measure on
X . To be more precise, we have that for all λ > 1 and all balls B ⊂ X ,

w(λB) ≤ λnp[w]Apw(B),

where n is the upper dimension of the measure μ, as in (1.3).
We also point out that for w ∈ A∞, there exists γ > 0 such that for every ball B,

μ
({

x ∈ B : w(x) ≥ γ −
∫

B
w
})

≥ 1

2
μ(B).

And this implies that for every ball B and for all δ ∈ (0, 1),

−
∫

B
w ≤ C

(
−
∫

B
wδ

)1/δ

; (2.5)

see also [33].

3 Sparse Operators and Domination of Commutators on Spaces of
Homogeneous Type

Let D be a system of dyadic cubes on X as in Sect. 2.1. As in the Euclidean setting,
we have two competing versions of sparsity for a collection of sets, one geometric and
the other a Carleson measure condition.

Definition 3.1 Given 0 < η < 1, a collection S ⊂ D of dyadic cubes is said to be
η-sparse provided that for every Q ∈ S, there is a measurable subset EQ ⊂ Q such
that μ(EQ) ≥ ημ(Q) and the sets {EQ}Q∈S have only finite overlap. That is, there
exists a constant c ≥ 1 such that

∑
Q χEQ (x) ≤ c for all x ∈ X .

The reason for the extra constant c in the above, is that for our arguments in Theorem
3.7, to control the commutator, we need to allow the sets EQ to have finite overlap.
If the sets EQ were exactly disjoint then one could take c = 1 in the above and the
statement would be cleaner and more in line with that in [31].

We note that in [29], Karagulyan introduced a more general family of sets, called
ball-basis, and then defined the sparse family based on these ball-basis, using the
geometric version of sparsity, which is similar to our Definition 3.1. However, the
ball-basis in [29] is pairwise disjoint, which does not seem well fit for our proof for
upper bound of the commutator.

We now provide the Carleson measure condition for the sparse family, which was
not studied in [29].
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Definition 3.2 Given � > 1, a collection S ⊂ D of dyadic cubes is said to be �-
Carleson if for every cube Q ∈ D,

∑
P∈S,P⊆Q

μ(P) ≤ �μ(Q).

We first show that the above two definitions are equivalent in a space of homo-
geneous type. The proof closely follows the original idea in [31] with modifications,
especially on the replacement of using of translation in [31].

Theorem 3.3 Given 0 < η < 1 and a collection S ⊂ D of dyadic cubes, the following
statements hold:

• If S is η-sparse, then S is c
η

-Carleson, where c is the constant in Definition 3.1;

• If S is 1
η

-Carleson, then S is η-sparse.

Proof Note that if a collection S ⊂ D of dyadic cubes is η-sparse, that is for every
Q ∈ S, there is a measurable subset EQ ⊂ Q such that μ(EQ) ≥ ημ(Q) and the sets
{EQ}Q∈S have only finite overlap, we will have that S is cη−1-Carleson according to
Definition 3.2 (following from the standard computation).

Thus, it suffices to show that for � > 1, if a collection S ⊂ D of dyadic cubes is
�-Carleson, then it is �−1-sparse. To see this, we first point out that if the collection
S ⊂ D of dyadic cubes {Q} has a bottom layer DK for some fixed integer K , then it
is direct to construct the set EQ . We begin with considering all dyadic cubes {Q} ⊂
S ∩DK and choose any measurable set EQ ⊂ Q of measure �−1μ(Q) for them. We
now just repeat this choice for each dyadic cube in upper layers one by one. To be
more specific, for each Q ∈ S ∩Dk with k ≤ K , choose a set

EQ ⊂ Q
∖ ⋃

R∈S,R�Q

ER

such that μ(EQ) = �−1μ(Q). We now show that such choice of EQ is possible. In
fact, note that for every Q ∈ S, we have

μ

( ⋃
R∈S,R�Q

ER

)
≤ �−1

∑
R∈S,R�Q

μ(R) ≤ �−1(� − 1)μ(Q) = (1− �−1)μ(Q),

where the last inequality follows from the�-Carleson condition and from the fact that
R � Q. This shows that

μ

(
Q
∖ ⋃

R∈S,R�Q

ER

)
≥ μ(Q) − (1− �−1)μ(Q) = �−1μ(Q)

and so the choice of the top set EQ is always possible.
Next, we consider the case that there is no fixed bottom layer. We run the above

construction with a particular choice for each K = 0, 1, 2, . . . and then pass to the
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limit. To begin with, fix K ≥ 0. For each Q ∈ S ∩ (∪k≤KDk), we define the sets Ê (K )
Q

inductively as follows.
First, for each Q ∈ S ∩Dk with k ≤ K , we consider the auxiliary set

Q(t, Q) := B(xQ, tδk) ∩ Q, t ∈ (0, A1),

where xQ is the centre point of Q and A1, δ are the constants as introduced in Sect.
2.1. From property (2.1), it is clear that when 0 < t < a1, then B(xQ, tδk) ⊂ Q
and when t > A1, then Q ⊂ B(xQ, tδk); moreover, we have μ(B(xQ, tδk)) → 0 as
t → 0+.

Now for Q ∈ S ∩ DK , from the above observations together with the continuity
and monotonicity of the function t �→ Q(t, Q) = μ(B(xQ, tδK )) ∩ Q, we conclude
that there must be some t�,K ,K ∈ (0, A1) such that μ(B(xQ, t�,K ,K δK ) ∩ Q) =
�−1μ(Q). Here and in what follows, we use the triple (�, k, K ) for the subscript of
t , where � denotes that the value of such t depends on �, k denotes that Q is in the
layer k and the last K denotes that we start at the layer K . We set

Ê (K )
Q := Q(t�,K ,K , Q) = B(xQ, t�,K ,K δK ) ∩ Q.

Suppose now Ê (K )
R are already defined for every R ∈ S ∩ (∪k+1≤i≤KDi ). We now

define Ê (K )
Q for Q ∈ S ∩Dk in the following manner. We set

Ê (K )
Q := Q(t�,k,K , Q)

⋃
F (K )

Q ,

where

F (K )
Q :=

⋃
R∈S∩(∪k+1≤i≤KDi ),R�Q

Ê (K )
R

and t�,k,K ∈ (0, A1) is chosen such that the set

E (K )
Q := Q(t�,k,K , Q)\F (K )

Q

satisfies μ(E (K )
Q ) = �−1μ(Q).

Now, we claim that Ê (K )
Q ⊂ Ê (K+1)

Q for every Q ∈ S ∩ (∪k≤KDk). To see this,

we note that for each Q ∈ S ∩ DK , Ê (K )
Q is just the set Q(t�,K ,K , Q). On the other

hand, Ê (K+1)
Q contains the set Q(t�,K ,K+1, Q) which has the same centre point as

Q(t�,K ,K , Q), but with t�,K ,K+1 ≥ t�,K ,K since

μ

⎛
⎝Q(t�,K ,K+1, Q)\

⋃
R∈S∩DK+1,R�Q

Ê (K+1)
R

⎞
⎠ = �−1μ(Q) = μ(Q(t�,K ,K , Q)).
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Hence, we see that for each Q ∈ S ∩DK , we have Ê (K )
Q ⊆ Ê (K+1)

Q . Then, we proceed

via backward induction. Assume that Ê (K )
Q ⊆ Ê (K+1)

Q for every Q ∈ S∩(∪k<i≤KDi ).

Take any Q ∈ S ∩ Dk . Then, the inductive hypothesis implies that F (K )
Q ⊆ F (K+1)

Q .

Let Q(t�,k,K , Q) be the set added to F (K )
Q when constructing Ê (K )

Q . Then, we have

μ
(

Q(t�,k,K , Q)\F (K+1)
Q

)
≤ μ

(
Q(t�,k,K , Q)\F (K )

Q

)
= �−1μ(Q),

which implies that t�,k,K+1 ≥ t�,k,K . Thus,wehave Q(t�,k,K , Q) ⊂ Q(t�,k,K+1, Q),
which yields Ê (K )

Q ⊆ Ê (K+1)
Q , and hence the claim follows.

Now for Q ∈ S ∩Dk , we define

ÊQ := lim
K→∞ Ê (K )

Q ,

which, by using the claim above, equals

∞⋃
K=k

Ê (K )
Q ⊂ Q.

Moreover, for each K we have

μ(E (K )
Q ) = μ

(
Ê (K )

Q \F (K )
Q

) = �−1μ(Q).

Note that the sets F (K )
Q also form an increasing sequence (with respect to K ), so for

each Q ∈ S, the limit set

EQ := lim
K→∞ E (K )

Q = ÊQ\( lim
K→∞ F (K )

Q

) = ÊQ
∖( ⋃

R∈S,R�Q

ÊR

)

exists, and is contained in Q and has the required measure. Moreover, all EQ are
disjoint. The proof of Theorem 3.3 is complete. ��

We now recall the well-known definition for sparse operators.

Definition 3.4 Given 0 < η < 1 and an η-sparse family S ⊂ D of dyadic cubes. The
sparse operator AS is defined by

AS f (x) :=
∑
Q∈S

fQχQ(x).

Following the proof of [37, Theorem 3.1], we obtain that

‖AS f ‖L p
w(X) ≤ Cη,n,p[w]max{1, 1

p−1 }
Ap

‖ f ‖L p
w(X), 1 < p < ∞.
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Denote by �(b, B) the standard mean oscillation

�(b, B) := 1

μ(B)

∫
B
|b(x) − bB |dμ(x). (3.1)

Lemma 3.5 Given 0 < γ < 1. Let D be a dyadic system in X and let S ⊂ D be a
γ -sparse family. Assume that b ∈ L1

loc(X). Then there exists a γ
2(γ+1) -sparse family

S̃ ⊂ D such that S ⊂ S̃ and for every cube Q ∈ S̃ ,

|b(x) − bQ | ≤ C
∑

R∈S̃,R⊂Q

�(b, R)χR(x) (3.2)

for μ-almost every x ∈ Q.

Proof Fix a dyadic cube Q ∈ D. We now show that there exists a family of pairwise
disjoint cubes {Pj } ⊂ D(Q) such that

∑
j μ(Pj ) ≤ 1

2μ(Q) and for μ-almost every
x ∈ Q,

|b(x) − bQ | ≤ C · Cμ,0�(b, Q) +
∑

j

|b(x) − bPj |χPj (x). (3.3)

Let Md
Q be the standard dyadic local maximal operator restricted toD(Q) andCMd

Q

be the weak type (1, 1)-norm of Md
Q . Then one can choose a constant C depending

on CMd
Q
such that the set E := {x ∈ Q : Md

Q(b − bQ)(x) > 4Cμ,0 · C · �(b, Q)}
satisfies that μ(E) ≤ 1

4Cμ,0
μ(Q), where Cμ,0 is the constant as in (2.2).

If μ(E) = 0, then (3.3) holds trivially with the empty family {Pj } j . If μ(E) > 0,
then we now apply the Calderón–Zygmund decomposition to the function h(x) :=
χE (x) on Q at height λ := 1

2Cμ,0
as follows: we begin by considering the descendants

of Q in D(Q) since

∫
Q
|h(x)|dμ(x) < λμ(Q).

Let {Q(1)
j } ⊂ D(Q) be the children of Q. If

∫
Q(1)

j

|h(x)|dμ(x) > λμ(Q(1)
j ) (3.4)

then we select it as our candidate cube. If

∫
Q(1)

j

|h(x)|dμ(x) ≤ λμ(Q(1)
j )
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then we keep looking at the children of Q(1)
j in D(Q) and then repeat the above

selection criteria and we will stop only when we find some descendant of Q(1)
j in

D(Q) such that it meets the criteria (3.4).
Then, it is direct to see that this produces pairwise disjoint cubes {Pj } ⊂ D(Q)

such that

1

2Cμ,0
μ(Pj ) < μ(Pj ∩ E) ≤ 1

2
μ(Pj )

and μ(E\ ∪ j Pj ) = 0. It follows that
∑

j μ(Pj ) ≤ 1
2μ(Q) and Pj ∩ Ec �= ∅.

Therefore, we get

|bPj − bQ | ≤ 1

μ(Pj )

∫
Pj

|b(x) − bQ |dμ(x) ≤ 4Cμ,0 · C · �(b, Q) (3.5)

and for μ-almost every x ∈ Q, |b(x) − bQ |χQ\∪ j Pj ≤ 4Cμ,0 · C�(b, Q).
Then, we have

|b(x) − bQ |χQ(x) ≤ |b(x) − bQ |χQ\∪ j Pj (x)

+
∑

j

|bPj − bQ |χPj (x) +
∑

j

|b(x) − bPj |χPj (x)

≤ 4Cμ,0 · C�(b, Q) +
∑

j

|b(x) − bPj |χPj (x),

which gives (3.3).
We observe that if Pj ⊂ R, where R ∈ D(Q), then R ∩ Ec �= ∅. Hence Pj in (3.5)

can be replaced by R, namely, we have |bR − bQ | ≤ 4Cμ,0 · C�(b, Q). Therefore, if
∪ j Pj ⊂ ∪i Ri , where Ri ∈ D(Q), and the cubes {Ri } are pairwise disjoint, then we
have

|b(x) − bQ | ≤ 4Cμ,0 · C�(b, Q) +
∑

i

|b(x) − bRi |χRi (x). (3.6)

Iterating (3.3), from the selection of {Pj } and from Definition 3.2, we obtain that
there exists a 1

2 -sparse family F(Q) ⊂ D(Q) such that for μ-almost every x ∈ Q,

|b(x) − bQ |χQ(x) ≤ 4Cμ,0 · C
∑

P∈F(Q)

�(b, P)χP (x).

Now for eachF(Q), let F̃(Q) be the family that consists of all cubes {P} ⊂ F(Q)

that are not contained in any cube R ∈ S with R � Q. Then, we define

S̃ :=
⋃
Q∈S

F̃(Q).

123



996 X. T. Duong et al.

It is clear, by construction, that the augmented family S̃ contains the original family
S. Furthermore, if S and each F(Q) are sparse families, then the augmented family
S̃ is also sparse.

To be specific, we have that if S ⊂ D is an γ -sparse family then the augmented
family S̃ built upon 1

2 -sparse family F(Q), Q ∈ S, is an γ
2(γ+1) -sparse family.

We now show (3.2). Take an arbitrary cube Q ∈ S. Let Pj be the cubes appearing
in (3.3). Denote by M(Q) the family of the maximal pairwise disjoint cubes from
S̃ which are strictly contained in Q. Then by the augmentation process, ∪ j Pj ⊂
∪P∈M(Q) P . Therefore, by (3.6), we have

|b(x) − bQ |χQ(x) ≤ 4Cμ,0 · C�(b, Q) +
∑

P∈M(Q)

|b(x) − bP |χP (x). (3.7)

Now split S̃(Q) := {P ∈ S : P ⊂ Q} into the layers S̃(Q) = ∪∞
k=0Mk , where

M0 := {Q},M1 := M(Q) andMk is the family of the maximal elements ofMk−1.
Iterating (3.7) k times, we get that

|b(x) − bQ |χQ(x) ≤ 4Cμ,0 · C
∑

P∈S̃(Q)

�(b, P)χP (x) +
∑

P∈Mk

|b(x) − bP |χP (x).

(3.8)

Now, we observe that since S̃ is γ
2(γ+1) -sparse,

∑
P∈Mk

μ(P) ≤ 1

k + 1

k∑
i=0

∑
P∈Mi

μ(P) ≤ 1

k + 1

∑
P∈S̃(Q)

μ(P) ≤ 2(γ + 1)

γ (k + 1)
μ(Q).

By letting k → ∞ in (3.8), we obtain (3.2). ��
Let T be a Calderón–Zygmund operator as in Definition 1.1. We now have the

maximal truncated operator T∗ defined by

T∗ f (x) := sup
ε>0

∣∣∣∣
∫

d(x,y)>ε

K (x, y) f (y)dμ(y)

∣∣∣∣.

We recall the standard Hardy–Littlewood maximal functionM f (x) on X , defined as

M f (x) := sup
B�x

1

μ(B)

∫
B
| f (y)| dμ(y),

where the supremum is taken over all balls B ⊂ X . We now have the grand maximal
truncated operator MT defined by

MT f (x) := sup
B�x

ess sup
ξ∈B

∣∣∣T ( f χX\C j̃0
B
)
(ξ)

∣∣∣,
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where the supremum is taken over all balls B ⊂ X containing x , j̃0 is the smallest
integer such that

2 j̃0 > max{3A0, 2A0 · Cad j } (3.9)

and C j̃0 := 2 j̃0+2A0, where Cad j is an absolute constant as mentioned in Sect. 2.2.
Given a ball B0 ⊂ X , for x ∈ B0 we define a local grand maximal truncated operator
MT ,B0 as follows:

MT ,B0 f (x) := sup
B�x, B⊂B0

ess sup
ξ∈B

∣∣∣T ( f χC j̃0
B0\C j̃0

B
)
(ξ)

∣∣∣.

Then, we first claim that the following lemma holds.

Lemma 3.6 The following pointwise estimates hold:

(i) for μ-almost every x ∈ B0,

|T ( f χC j̃0
B0)(x)| ≤ C‖T ‖L1→L1,∞| f (x)| +MT ,B0 f (x).

(ii) for all x ∈ X, MT f (x) ≤ CM f (x) + T∗ f (x).

Proof The result in the Euclidean setting is from [30, Lemma 3.2]. Here, we can adapt
the proof in [30] to our setting of spaces of homogeneous type. ��

Next, we have the sparse domination for the higher order commutator.

Theorem 3.7 Let T be the Calderón–Zygmund operator as in Definition 1.1 and let
b ∈ L1

loc(X). For every f ∈ L∞(X) with bounded support, there exist T dyadic
systems Dt , t = 1, 2, . . . , T and η-sparse families St ⊂ Dt such that for μ-almost
every x ∈ X,

|T m
b ( f )(x)| ≤ C

T∑
t=1

m∑
k=0

Ck
m

∑
Q∈St

|b(x) − bQ |m−k

×
(

1

μ(Q)

∫
Q
|b(z) − bQ |k | f (z)|dμ(z)

)
χQ(x), (3.10)

where Ck
m := m!

(m−k)!·k! .

Proof We follow the idea as in [33] for the domination, and adapt it to our setting of
space of homogeneous type.

Suppose f is supported in a ball B0 := B(x0, r) ⊂ X . We now consider a decom-
position of X with respect to this ball B0. We define the annuli U j := 2 j+1B0\2 j B0,
j ≥ 0 and we choose j0 to be the smallest integer such that

j0 > j̃0 and 2 j0 > 4A0. (3.11)
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Next, for each U j , we choose the balls

{B̃ j,�}L j
�=1 (3.12)

centred in U j and with radius 2 j− j̃0r to cover U j . From the geometric doubling
property [9, p. 67], it is direct to see that

sup
j

L j ≤ CA0,μ, j̃0 , (3.13)

where CA0,μ, j̃0 is an absolute constant depending only on A0, j̃0 and Cμ.

We now first study the properties of these B̃ j,�. Denote B̃ j,� := B(x j,�, 2 j− j̃0r),

where j̃0 is defined as in (3.9). Thenwe haveCad j B̃ j,� := B(x j,�, Cad j2 j− j̃0r), where
Cad j is an absolute constant as mentioned in Sect. 2.2. We claim that

Cad j B̃ j,� ∩ U j+ j0 = ∅, ∀ j ≥ 0 and ∀� = 1, 2, . . . , L j ; (3.14)

and that

Cad j B̃ j,� ∩ U j− j0 = ∅, ∀ j ≥ j0 and ∀� = 1, 2, . . . , L j . (3.15)

Assume (3.14) and (3.15) at themoment. Now combining the properties as in (3.14)
and (3.15), we see that each Cad j B̃ j,� only intersects with at most 2 j0+ 1 annuli U j s.
Moreover, for every j and �, C j̃0 B̃ j,� covers B0.

Now, for the given ball B0 as above, we point out that from (2.4) we have that there
exist an integer t0 ∈ {1, 2, . . . , T } and Q0 ∈ D t0 such that B0 ⊆ Q0 ⊆ Cad j B0.
Moreover, for this Q0, as in (2.1) we use B(Q0) to denote the ball that contains Q0
and has measure comparable to Q0. Then it is easy to see that B(Q0) covers B0 and
μ(B(Q0)) � μ(B0), where the implicit constant depends only on Cad j , Cμ and A1
as in (2.1).

We show that there exists a 1
2 -sparse family F t0 ⊂ Dt0(Q0), the set of all dyadic

cubes in t0th dyadic system that are contained in Q0, such that for μ-almost every
x ∈ B0,

|T m
b ( f χC j̃0

B(Q0))(x)|

≤ C
m∑

k=0

Ck
m

∑
Q∈F t0

(
|b(x) − bRQ |m−k

∣∣∣| f | |b − bRQ |k
∣∣∣
C j̃0

B(Q)

)
χQ(x). (3.16)

Here, RQ is the dyadic cube in D t for some t ∈ {1, 2, . . . , T } such that C j̃0 B(Q) ⊂
RQ ⊂ Cad j · C j̃0 B(Q), where B(Q) is defined as in (2.1), j0 defined as in (3.11) and

j̃0 defined as in (3.9).
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To prove the claim it suffices to prove the following recursive estimate: there exist
pairwise disjoint cubes Pj ∈ D t0(Q0) such that

∑
j μ(Pj ) ≤ 1

2μ(Q0) and

|T m
b ( f χC j̃0

B(Q0))(x)|χQ0(x)

≤ C
m∑

k=0

Ck
m

(
|b(x) − bRQ0

|m−k
∣∣∣| f | |b − bRQ0

|k
∣∣∣
C j̃0

B0

)
χQ0(x)

+
∑

j

∣∣T m
b ( f χC j̃0

B(Pj ))(x)
∣∣χPj (x) (3.17)

for μ-almost every x ∈ B0.
Iterating this estimate we obtain (3.16) with F t0 being the union of all the families

{Pk
j } where {P0

j } = {Q0}, {P1
j } = {Q j } as mentioned above, and {Pk

j } are the cubes
obtained at the kth stage of the iterative process. It is also clear thatF t0 is a 1/2-sparse
family.

Let us prove then the recursive estimate. We observe that for any arbitrary family
of disjoint cubes {Pj } ⊂ Dt0(Q0), we have that

|T m
b ( f χC j̃0

B(Q0))(x)|χQ0(x)

≤ |T m
b ( f χC j̃0

B(Q0))(x)|χQ0\∪ j Pj (x) +
∑

j

|T m
b ( f χC j̃0

B(Q0))(x)|χPj (x)

≤ |T m
b ( f χC j̃0

B(Q0))(x)|χQ0\∪ j Pj (x) +
∑

j

|T m
b ( f χC j̃0

B(Q0)\C j̃0
B(Pj ))(x)|χPj (x)

+
∑

j

|T m
b ( f χC j̃0

B(Pj ))(x)|χPj (x).

So it suffices to show that we can choose a family of pairwise disjoint cubes {Pj } ⊂
Dt0(Q0) with

∑
j μ(Pj ) ≤ 1

2μ(Q0) and such that for μ-almost every x ∈ B0,

|T m
b ( f χC j̃0

B(Q0))(x)|χQ0\∪ j Pj (x) +
∑

j

|T m
b ( f χC j̃0

B(Q0)\C j̃0
B(Pj ))(x)|χPj (x)

≤ C
m∑

k=0

Ck
m |b(x) − bRQ0

|m−k
∣∣∣| f | |b − bRQ0

|k
∣∣∣
C j̃0

B(Q0)
.

To see this, using the fact that

T m
b f = T m

b−bRQ0
f =

m∑
k=0

(−1)kCk
m T
(
(b − bRQ0

)k f
)
(b − bRQ0

)m−k,

123



1000 X. T. Duong et al.

we obtain that

|T m
b ( f χC j̃0

B(Q0))(x)|χQ0\∪ j Pj (x) +
∑

j

|T m
b ( f χC j̃0

B(Q0)\C j̃0
B(Pj ))(x)|χPj (x)

≤
m∑

k=0

Ck
m |T ((b − bRQ0

)k f χC j̃0
B(Q0)

)
(x)||b(x) − bRQ0

|m−kχQ0\∪ j Pj (x)

+
m∑

k=0

Ck
m |T ((b − bRQ0

)k f χC j̃0
B(Q0)\C j̃0

B(Pj )

)
(x)||b(x) − bRQ0

|m−kχPj (x)

=: I1 + I2.

Now, for k = 0, 1, . . . , m, we define the set Ek as

Ek :=
{

x ∈ B0 : |b(x) − bRQ0
|k | f (x)| > α

∣∣∣|b − bRQ0
|k | f |

∣∣∣
C j̃0

B(Q0)

}

⋃{
x ∈ B0 : MT ,B0

(
(b − bRQ0

)k f
)
(x) > αCT

∣∣∣|b − bRQ0
|k | f |

∣∣∣
C j̃0

B(Q0)

}

and E := ∪m
k=0Ek . Then, choosing α big enough (depending on C j̃0 , Cad j , Cμ and

A1 as in (2.1)), we have that

μ(E) ≤ 1

4Cμ,0
μ(B0),

where Cμ,0 is the constant in (2.2). We now apply the Calderón–Zygmund decompo-
sition to the function χE on B0 at the height λ := 1

2Cμ,0
, to obtain pairwise disjoint

cubes {Pj } ⊂ Dt0(Q0) such that

1

2Cμ,0
μ(Pj ) ≤ μ(Pj ∩ E) ≤ 1

2
μ(Pj )

and μ(E\ ∪ j Pj ) = 0. It follows that

∑
j

μ(Pj ) ≤ 1

2
μ(B0) and Pj ∩ Ec �= ∅.

Then, we have

ess sup
ξ∈Pj

∣∣∣∣T
(
|b − bRQ0

|k | f |χC j̃0
B(Q0)\C j̃0

B(Pj )

)
(ξ)

∣∣∣∣ ≤ C
∣∣∣| f | |b − bRQ0

|k
∣∣∣
C j̃0

B(Q0)
,

which allows us to control the summation in the term I2 above.

123
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Now, from (i) in Lemma 3.6, we obtain that for μ-almost every x ∈ B0,

∣∣∣T ((b − bRQ0
)k f χC j̃0

B(Q0)

)
(x)

∣∣∣
≤ C |b(x) − bRQ0

|k | f (x)| +MT ,B0

(
(b − bRQ0

)k f χC j̃0
B(Q0)

)
(x).

Since μ(E\ ∪ j Pj ) = 0, we have that from the definition of the set E , the following
estimate

|b(x) − bRQ0
|k | f (x)| ≤ α

∣∣∣| f | |b − bRQ0
|k
∣∣∣
C j̃0

B(Q0)

holds for μ-almost every x ∈ B0\ ∪ j Pj , and also

MT ,B0

(
(b − bRQ0

)k f χC j̃0
B0

)
(x) ≤ αCT

∣∣∣| f | |b − bRQ0
|k
∣∣∣
C j̃0

B(Q0)

holds for μ-almost every x ∈ B0\ ∪ j Pj . These estimates allow us to control the
summation in the term I1 above. Thus, we obtain that (3.17) holds, which yields that
(3.16) holds.

We now consider the partition of the space as follows. Suppose f is supported in a
ball B0 ⊂ X . We have

X =
∞⋃
j=0

2 j B0.

We now consider the annuli U j := 2 j+1B0\2 j B0 for j ≥ 0 and the covering

{B̃ j,�}L j
�=1 ofU j as in (3.12).We note that for each B̃ j,�, there exist t j,� ∈ {1, 2, . . . , T }

and Q̃ j,� ∈ D t j,� such that B̃ j,� ⊆ Q̃ j,� ⊆ Cad j B̃ j,�. Moreover, we note that for each
such B̃ j,�, the enlargement C j̃0 B(Q̃ j,�) covers B0 since C j̃0 B̃ j,� covers B0.

We now apply (3.16) to each B̃ j,�, then we obtain a 1
2 -sparse family F̃ j,� ⊂

D t j,� (Q̃ j,�) such that (3.16) holds for μ-almost every x ∈ B̃ j,�.
Now we set F := ∪ j,�F̃ j,�. Note that the balls Cad j B̃ j,� are overlapping at most

CA0,μ, j̃0(2 j0+1) times, where CA0,μ, j̃0 is the constant in (3.13). Then, we obtain that

F is a 1
2CA0,μ, j̃0

(2 j0+1) -sparse family and for μ-almost every x ∈ X ,

|T m
b ( f )(x)| ≤ C

m∑
k=0

Ck
m

∑
Q∈F

(
|b(x) − bRQ |m−k

∣∣∣| f | |b − bRQ |k
∣∣∣
C j̃0

B(Q)

)
χQ(x).

Since C j̃0 B(Q) ⊂ RQ , and it is clear that μ(RQ) ≤ Cμ(C j̃0 B(Q)) (C depends

only on Cμ and Cad j ), we obtain that | f |C j̃0
B(Q) ≤ C | f |RQ . Next, we further set

St := {RQ ∈ Dt : Q ∈ F}, t ∈ {1, 2, . . . , T }, and from the fact that F is
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1002 X. T. Duong et al.

1
2CA0,μ, j̃0

(2 j0+1) -sparse, we can obtain that each family St is 1
2CA0,μ, j̃0

(2 j0+1)c -sparse.

Now, we let

η := 1

2CA0,μ, j̃0(2 j0 + 1)c
,

where c is a constant depending only on C , C j̃0 and the doubling constant Cμ. Then
it follows that (3.10) holds, which finishes the proof.

In the end, we show (3.14) and (3.15).
We first show (3.14) by contradiction. Suppose there exists some B̃ j,� =

B(x j,�, 2 j− j̃0r) such that Cad j B̃ j,� ∩ U j+ j0 �= ∅. Then there exists at least one
y0 ∈ Cad j B̃ j,� ∩ U j+ j0 . Then from the definition of U j+ j0 we see that

d(x0, y0) ≥ 2 j+ j0r .

Moreover, from the definition of x j,� and the quasi triangular inequality (1.1) we get
that

d(x0, y0) ≤ A0
(
d(x0, x j,�) + d(x j,�, y0)

)
< A0

(
2 j+1r + Cad j2

j− j̃0r
)
,

which, together with the previous inequality, shows that 2 j+ j0r ≤ A0
(
2 j+1r +

Cad j2 j− j̃0r
)
. And hence we have

2 j0 ≤ A0
(
2+ Cad j2

− j̃0
)

< 3A0,

which contradicts to (3.11). Hence, we see that (3.14) holds.
We now show (3.15), and again we will prove it by contradiction. Suppose there

exists some B̃ j,� = B(x j,�, 2 j− j̃0r) such that Cad j B̃ j,� ∩ U j− j0 �= ∅, where j ≥ j0.
Then there exists at least one y0 ∈ Cad j B̃ j,� ∩ U j− j0 . From the definition of x j,� and
the quasi triangular inequality (1.1), we see that

2 j r ≤ d(x0, x j,�) ≤ A0
(
d(x0, y0) + d(y0, x j,�)

)
< A0

(
2 j− j0+1r + Cad j2

j− j̃0r
)
,

which implies that

1 ≤ A0(2
− j0+1 + Cad j2

− j̃0).

This contradicts to (3.11) and (3.9). Hence, we see that (3.15) holds. ��

4 Upper Bound of the Commutator Tm
b : Proof of Theorem 1.3

In this section we provide the proof of Theorem 1.3 following the idea in [33].
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TwoWeight Commutators on Spaces of Homogeneous Type 1003

Let D be a dyadic system in (X , d, μ) and let S be a sparse family from D. We
now define

Am,k
b f (x) :=

∑
Q∈S

|b(x) − bQ |m−k
(

1

μ(Q)

∫
Q
|b(z) − bQ |k | f (z)|dμ(z)

)
χQ(x).

By duality, we have that

‖Am,k
b f ‖L p

λ2
(X) ≤ sup

g:‖g‖
L

p′
λ2

(X)
=1

∑
Q∈S

(∫
Q
|g(x)λ2(x)||b(x) − bQ |m−kdμ(x)

)

×
(

1

μ(Q)

∫
Q
|b(z) − bQ |k | f (z)|dμ(z)

)
. (4.1)

Now, by Lemma 3.5, there exists a sparse family S̃ ⊂ D such that S ⊂ S̃ and for
every cube Q ∈ S̃ , for μ-almost every x ∈ Q,

|b(x) − bQ | ≤ C
∑

P∈S̃,P⊂Q

�(b, P)χP (x).

Since b is in BMO
ν

1
m

(X), then we have for μ-almost every x ∈ Q

|b(x) − bQ | ≤ C‖b‖BMO
ν
1
m

(X)

∑
P∈S̃,P⊂Q

ν
1
m (P)

μ(P)
χP (x).

Then, combining this estimate and inequality (4.1), we further have

‖Am,k
b f ‖L p

λ2
(X)

≤ C‖b‖m
BMO

ν
1
m

(X) sup
g:‖g‖

L
p′
λ2

(X)
=1

∑
Q∈S

(
1

μ(Q)

∫
Q
|g(x)λ2(x)|

×
( ∑

P∈S̃,P⊂Q

ν
1
m (P)

μ(P)
χP (x)

)m−k

dμ(x)

)

×
(

1

μ(Q)

∫
Q

( ∑
P∈S̃,P⊂Q

ν
1
m (P)

μ(P)
χP (z)

)k

| f (z)|dμ(z)

)
μ(Q).
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1004 X. T. Duong et al.

Next, note that for each � ∈ N, we have

( ∑
P∈S̃,P⊂Q

ν
1
m (P)

μ(P)
χP (x)

)�

=
∑

P1,P2,...,P�∈S̃,P1,P2,...,P�⊂Q

ν
1
m (P1)

μ(P1)
· · · ν

1
m (P�)

μ(P�)
χ{P1∩···∩P�}(x)

≤ �!
∑

P1,...,P�∈S̃,P�⊂P�−1···⊂P1⊂Q

ν
1
m (P1)

μ(P1)
· · · ν

1
m (P�)

μ(P�)
χP�

(x).

Therefore, for an arbitrary function h, we have

∫
Q
|h(x)|

( ∑
P∈S̃,P⊂Q

ν
1
m (P)

μ(P)
χP (x)

)�

dμ(x)

≤ �!
∑

P1,...,P�∈S̃,P�⊂P�−1···⊂P1⊂Q

ν
1
m (P1)

μ(P1)
· · · ν

1
m (P�)

μ(P�)
|h|P�

μ(P�)

≤ C
∑

P1,...,P�−1∈S̃,P�−1⊂P�−2···⊂P1⊂Q

ν
1
m (P1)

μ(P1)
· · · ν

1
m (P�−1)

μ(P�−1)

×
∑

P�⊂P�−1,P�∈S̃
|h|P�

ν
1
m (P�)

≤ C
∑

P1,...,P�−1∈S̃,P�−1⊂P�−2···⊂P1⊂Q

ν
1
m (P1)

μ(P1)
· · · ν

1
m (P�−1)

μ(P�−1)

∫
P�−1

× AS̃(|h|)(x)ν
1
m (x)dμ(x)

= C
∑

P1,...,P�−1∈S̃,P�−1⊂P�−2···⊂P1⊂Q

ν
1
m (P1)

μ(P1)
· · · ν

1
m (P�−1)

μ(P�−1)

×
(

AS̃,ν
1
m

(|h|)
)

P�−1
μ(P�−1),

where AS̃,ν
1
m

(|h|)(x) := AS̃(|h|)(x)ν
1
m (x) and AS̃(h) :=∑Q∈S̃ hQχQ .

By iteration, we obtain that

∫
Q
|h(x)|

( ∑
P∈S̃,P⊂Q

ν
1
m (P)

μ(P)
χP (x)

)�

dμ(x) ≤ C
∫

Q
A�

S̃,ν
1
m

(|h|)(x) dμ(x),
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TwoWeight Commutators on Spaces of Homogeneous Type 1005

where A�

S̃,ν
1
m
denotes the �-fold iteration of AS̃,ν

1
m
. Then we have

‖Am,k
b f ‖L p

λ2
(X) ≤ C‖b‖m

BMO
ν
1
m

(X) sup
g:‖g‖

L
p′
λ2

(X)
=1

×
∑
Q∈S

(
1

μ(Q)

∫
Q

Am−k

S̃,ν
1
m

(|g| λ2)(x)dμ(x)

)

×
(

1

μ(Q)

∫
Q

Ak

S̃,ν
1
m

(| f |)(z)dμ(z)

)
μ(Q)

≤ C‖b‖m
BMO

ν
1
m

(X) sup
g:‖g‖

L
p′
λ2

(X)
=1

×
(∫

X
AS̃
(

Ak

S̃,ν
1
m

(| f |)
)
(x)Am−k

S̃,ν
1
m

(|g| λ2)(x)dμ(x)

)
.

Observe that AS̃ is self-adjoint. We have

∫
X

AS̃
(

Ak

S̃,ν
1
m

(| f |)
)
(x)Am−k

S̃,ν
1
m

(|g| λ2)(x)dμ(x)

=
∫

X
AS̃

(
AS̃
(

Ak

S̃,ν
1
m

(| f |)
))

(x)Am−k−1

S̃,ν
1
m

(|g| λ2)(x)dμ(x)

= · · ·
=
∫

X
AS̃
(

Am

S̃,ν
1
m

(| f |)
)
(x)|g(x)| λ2(x)dμ(x).

‘Then from Hölder’s inequality, we further have

‖Am,k
b f ‖L p

λ2
(X)

≤ C‖b‖m
BMO

ν
1
m

(X) sup
g:‖g‖

L
p′
λ2

(X)
=1

×
(∫

X

[
AS̃
(

Am

S̃,ν
1
m

(| f |)
)
(x)

]p

λ2(x)dμ(x)

) 1
p

‖g‖
L p′

λ2
(X)

≤ C‖b‖m
BMO

ν
1
m

(X)[λ2]
max{1, 1

p−1 }
Ap

∥∥Am

S̃,ν
1
m

(| f |)∥∥L p
λ2

(X)

= C‖b‖m
BMO

ν
1
m

(X)[λ2]
max{1, 1

p−1 }
Ap

∥∥∥AS̃
(

Am−1

S̃,ν
1
m

(| f |)
)∥∥∥

L p

λ2 ·ν
p
m

(X)

≤ C‖b‖m
BMO

ν
1
m

(X)

(
[λ2]Ap [λ2 · ν

p
m ]Ap

)max{1, 1
p−1 }∥∥∥Am−1

S̃,ν
1
m

(| f |)
∥∥∥

L p

λ2 ·ν
p
m

(X)
.
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Then, by iteration we have that

‖Am,k
b f ‖L p

λ2
(X) ≤ C‖b‖m

BMO
ν
1
m

(X)

×
(
[λ2]Ap [λ2 · ν

p
m ]Ap · · · [λ2 · ν

mp
m ]Ap

)max{1, 1
p−1 }‖ f ‖L p

λ2 ·ν
mp
m

(X)

≤ C‖b‖m
BMO

ν
1
m

(X)

×
(
[λ2]Ap [λ1]Ap

m−1∏
i=1

[λ1−
i
m

2 · ν i
m ]Ap

)max{1, 1
p−1 }‖ f ‖L p

ν (X).

By Hölder’s inequality, we have

m−1∏
i=1

[λ21− i
m · ν i

m ]Ap ≤
(
[λ2]Ap [λ1]Ap

)m−1
2

.

As a consequence, we have that

‖Am,k
b f ‖L p

λ2
(X) ≤ C‖b‖m

BMO
ν
1
m

(X)

(
[λ2]Ap [λ1]Ap

)m+1
2 ·max{1, 1

p−1 }‖ f ‖L p
ν (X).

5 Lower Bound of the Commutator Tm
b : Proof of Theorem 1.4

In this section,we use some ideas from [25,32,33] and adapt them to our general setting
with the aim to prove Theorem 1.4. To begin with, let T be the Calderón–Zygmund
operator as in Definition 1.1 with the kernel K and ω satisfying ω(t) → 0 as t → 0,
and satisfying the homogeneous condition as in (1.6).

We first introduce another version of the homogeneous condition: There exist pos-
itive constants 3 ≤ A1 ≤ A2 such that for any ball B := B(x0, r) ⊂ X , there exist
balls B̃ := B(y0, r) such that A1r ≤ d(x0, y0) ≤ A2r , and for all (x, y) ∈ (B × B̃),
K (x, y) does not change sign and

|K (x, y)| � 1

μ(B)
. (5.1)

If the kernel K (x, y) := K1(x, y) + i K2(x, y) is complex-valued, where i2 = −1,
then at least one of Ki satisfies (5.1).

Then, we first point out that the homogeneous condition (1.6) implies (5.1).

Proposition 5.1 Let T be the Calderón–Zygmund operator as in Definition 1.1 with
the kernel K and ω satisfying ω(t) → 0 as t → 0, and satisfy the homogeneous
condition as in (1.6). Then T satisfies (5.1).
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TwoWeight Commutators on Spaces of Homogeneous Type 1007

Proof Since ω(t) → 0 as t → 0, there exists δ ∈ (0, 1) such that when 0 < t < δ,

ω(t) <
1

20 · 3n · C · Cμ · c0
,

where c0 is from (1.6), C is from Definition 1.1 and Cμ is from (1.3).
For all numbers A with

A > max
{
3, 2+ 1

δ
, 2A0

}
, (5.2)

and for any ball B := B(x0, r) ⊂ X , according to the homogeneous condition (1.6),
there exists a point y0 ∈ B(x0, C Ar)\B(x0, Ar) such that

|K (x0, y0)| ≥ 1

c0μ(B(x0, Ar))
. (5.3)

Next, from the smoothness condition (1.5), we have that for every x ∈ B(x0, r)

and y ∈ B(y0, r),

|K (x, y) − K (x0, y0)| ≤ |K (x, y) − K (x, y0)| + |K (x, y0) − K (x0, y0)|
≤ C

V (x, y)
ω
(d(y, y0)

d(x, y)

)
+ C

V (x0, y0)
ω
( d(x, x0)

d(x0, y0)

)

≤ C

μ(B(x0, (A − 2)r))
ω
( r

(A − 2)r

)

+ C

μ(B(x0, Ar))
ω
( r

Ar

)

≤ 2C

μ(B(x0, (A − 2)r))
ω
( 1

A − 2

)
,

where we use the fact that ω(t) is increasing. Next, by (1.3), we obtain that

|K (x, y) − K (x0, y0)| ≤ 2CCμ

( A

A − 2

)n
ω
( 1

A − 2

) 1

μ(B(x0, Ar))

≤ 1

10c0μ(B(x0, Ar))
,

where the last inequality follows from the choice of A as in (5.2).
We now fix a positive number A1 satisfying (5.2) and set A2 := C A1.
We first consider the kernel K (x, y) to be a real-valued function. If K (x0, y0) > 0,

then for every x ∈ B(x0, r) and y ∈ B(y0, r) we have that

K (x, y) = K (x0, y0) − (K (x0, y0) − K (x, y))

≥ K (x0, y0) − |K (x, y) − K (x0, y0)|
≥ 1

c0μ(B(x0, Ar))
− 1

10c0μ(B(x0, Ar))
>

1

2c0μ(B(x0, Ar))
.
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Similarly, if K (x0, y0) < 0, then every x ∈ B(x0, r) and y ∈ B(y0, r) we have that

K (x, y) < − 1

2c0μ(B(x0, Ar))
.

Thus, combining these two cases we obtain that (5.1) holds.
Next, we consider the kernel K (x, y) to be a complex function.Wewrite K (x, y) =

K1(x, y) + i K2(x, y), with i2 = −1. Then (5.3) implies that

either |K1(x0, y0)| ≥
√
2

2c0μ(B(x0, Ar))
or |K2(x0, y0)| ≥

√
2

2c0μ(B(x0, Ar))
.

Suppose |K j (x0, y0)| ≥
√
2

2c0μ(B(x0,Ar))
for some j ∈ {1, 2}. If K j (x0, y0) > 0, then

every x ∈ B(x0, r) and y ∈ B(y0, r) we have that

K j (x, y) = K j (x0, y0) − (K j (x0, y0) − K j (x, y))

≥ K j (x0, y0) − |K (x, y) − K (x0, y0)|

≥
√
2

2c0μ(B(x0, Ar))
− 1

10c0μ(B(x0, Ar))
>

1

2c0μ(B(x0, Ar))
.

Similarly, if K j (x0, y0) < 0 for some j ∈ {1, 2}, then for every x ∈ B(x0, r) and
y ∈ B(y0, r) we have that

K j (x, y) < − 1

2c0μ(B(x0, Ar))
.

Thus, (5.1) holds for K j (x, y).
The proof of Proposition 5.1 is complete. ��

Definition 5.2 By a median value of a real-valued measurable function f over a ball
B we mean a possibly non-unique, real number αB( f ) such that

μ({x ∈ B : f (x) > αB( f )}) ≤ 1

2
μ(B) and μ({x ∈ B : f (x) < αB( f )}) ≤ 1

2
μ(B).

It is known that for a given function f and ball B, the median value exists and may
not be unique; see, for example, [27].

Lemma 5.3 Let b be a real-valued measurable function. For any ball B, let B̃ be as
in (5.1). Then there exist measurable sets E1, E2 ⊂ B, and F1, F2 ⊂ B̃, such that

(i) B = E1 ∪ E2, B̃ = F1 ∪ F2 and μ(Fi ) ≥ 1
2μ(B̃), i = 1, 2;

(ii) b(x) − b(y) does not change sign for all (x, y) in Ei × Fi , i = 1, 2;
(iii) |b(x) − αB̃(b)| ≤ |b(x) − b(y)| for all (x, y) in Ei × Fi , i = 1, 2.
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Proof For the given balls B and B̃, following the idea in [33, Proposition 3.1] we set

F1 := {y ∈ B̃ : b(y) ≤ αB̃(b)} and F2 := {y ∈ B̃ : b(y) ≥ αB̃(b)}.

Moreover, we define

E1 := {x ∈ B : b(x) ≥ αB̃(b)} and E2 := {x ∈ B : b(x) ≤ αB̃(b)}.

Then, by Definition 5.2, we see that μ(Fi ) ≥ 1
2μ(B̃), i = 1, 2. Moreover, for (x, y) ∈

Ei × Fi , i = 1, 2,

|b(x) − b(y)| = ∣∣b(x) − αB̃(b) + αB̃(b) − b(y)
∣∣

= ∣∣b(x) − αB̃(b)
∣∣+ ∣∣αB̃(b) − b(y)

∣∣ ≥ ∣∣b(x) − αB̃(b)
∣∣ .

This finishes the proof of Lemma 5.3. ��
We now return to the proof of Theorem 1.4, following the approach and method in

[33].

Proof of Theorem 1.4 For given b ∈ L1
loc(X) and for any ball B, let �(b, B) be the

oscillation as in (3.1). Under the assumptions of Theorem 1.4, we will show that for
any ball B,

�(b, B) � ν
1
m (B)

μ(B)
. (5.4)

Without loss of generality, we assume that K (x, y) is real-valued. Let B be a ball.
We apply the assumption (5.1) and Lemma 5.3 to get sets Ei , Fi , i = 1, 2.

On the one hand, by Lemma 5.3 and (5.1), we have that for fi := χFi , i = 1, 2,

1

μ(B)

2∑
i=1

∫
B

∣∣T m
b fi (x)

∣∣ dμ(x)

≥ 1

μ(B)

2∑
i=1

∫
Ei

∣∣T m
b fi (x)

∣∣ dμ(x)

= 1

μ(B)

2∑
i=1

∫
Ei

∫
Fi

|b(x) − b(y)|m |K (x, y)| dμ(y) dμ(x)

� 1

μ(B)

2∑
i=1

∫
Ei

∫
Fi

|b(x) − αB̃(b)|m
μ(B)

dμ(y) dμ(x)

� 1

μ(B)

∫
B

∣∣b(x) − αB̃(b)
∣∣m dμ(x)

� �(b; B)m .
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On the other hand, fromHölder’s inequality and the boundedness of T m
b , we deduce

that

1

μ(B)

2∑
i=1

∫
B

∣∣T m
b fi (x)

∣∣ dμ(x)

≤ 1

μ(B)

2∑
i=1

[∫
B

∣∣T m
b fi (x)

∣∣p λ2(x) dμ(x)

]1/p (∫
B

λ2(x)
− 1

p−1 dμ(x)

)1/p′

� 1

μ(B)

2∑
i=1

[λ1(Fi )]1/p
(∫

B
λ2(x)

− 1
p−1 dμ(x)

)1/p′

� 1

μ(B)
[λ1(B̃)]1/p

(∫
B

λ2(x)
− 1

p−1 dμ(x)

)1/p′

� 1

μ(B)
[λ1(B)]1/p

(∫
B

λ2(x)
− 1

p−1 dμ(x)

)1/p′

,

where in the last inequality, we use the fact that K1rB ≤ d(xB, xB̃) ≤ K2rB and
λ1 ∈ Ap.

Combining the two inequalities above and invoking λi ∈ Ap, we conclude that

�(b, B)m � 1

μ(B)
[λ1(B)]1/p

(∫
B

λ2(x)
− 1

p−1 dμ(x)

)1/p′

�
(

ν
1
m (B)

μ(B)

)m

,

where the last inequality follows from the argument as in the proof of Theorem 1.1 in
[33], by using (2.5). Thus, (5.4) holds and hence, the proof of Theorem 1.4 is complete.

��

6 Weighted Hardy Space, Duality andWeak Factorisation: Proof of
Theorem 1.5

In this section, we study the weighted Hardy, BMO spaces and duality, as well as their
dyadic versions on spaces of homogeneous type.

6.1 Dyadic Littlewood–Paley Square Function

Following the form in [21], we now introduce the dyadic Littlewood–Paley square
function on spaces of homogeneous type.

Definition 6.1 Given a dyadic grid D on X , the dyadic square function SD is defined
by
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SD f :=
[ ∑

Q∈D

MQ−1∑
ε=1

|〈 f , hε
Q〉|2 χQ

μ(Q)

] 1
2

.

Our main result in this subsection is:

Theorem 6.2 Suppose 1 < p < ∞ and w ∈ Ap. Then we have

‖SD f ‖L p
w(X) ≤ C p[w]max{1, 1

p−1 }
Ap

‖ f ‖L p
w(X).

We prove this theorem by following the idea in [41, Theorem 3.1 and Corollary
3.2]. We would like to remark that there are additional Euclidean proofs that one could
adapt to this setting to achieve this result (e.g. a sparse domination). We don’t pursue
those additional proofs, but instead give one that utilizes Carleson Embedding and
extrapolation. To begin with, we first introduce an auxiliary lemma.

Lemma 6.3 Let w be an A2 weight in (X , d, μ). Then

∑
Q∈D

MQ−1∑
ε=1

|〈 f , hε
Q〉|2 1

〈w〉Q
� [w]A2‖ f ‖2

L2
w−1 (X)

for all f ∈ L2
w−1(X),

where 〈w〉Q := 1
μ(Q)

∫
Q w(x)dμ(x).

Proof Recall from [28], we have hε
Q = aεχQε − bεχEε+1 , where

aε :=
√

μ(Eε+1)

μ(Qε)μ(Eε)
, bε :=

√
μ(Qε)

μ(Eε)μ(Eε+1)
and Eε = Qε ∪ Eε+1,

where Qε and Eε+1 are disjoint. Now we introduce the weighted Haar system
{hw,ε

Q }1≤ε≤MQ−1,Q∈D in L2
w(X), where

hw,ε
Q := 1√

w(Eε)

(√
w(Eε+1)√
w(Qε)

χQε −
√

w(Qε)√
w(Eε+1)

χEε+1

)
.

Note that when w = 1, we have

h1,ε
Q := hε

Q = 1√
μ(Eε)

(√
μ(Eε+1)√
μ(Qε)

χQε −
√

μ(Qε)√
μ(Eε+1)

χEε+1

)
.

We set

h1
Eε

:= χEε

μ(Eε)
,

and write hε
Q = CQ(w, ε)hw,ε

Q + DQ(w, ε)h1
Eε

.
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1012 X. T. Duong et al.

It is easy to see that
∫

Q hw,ε
Q dw = 0 and

∫
Q(hw,ε

Q )2dw = 1. This implies

DQ(w, ε) = ŵ(Q, ε)

〈w〉Eε

, where ŵ(Q, ε) := 〈w, hε
Q〉

and, after some computation,

CQ(w, ε)2 =μ(Eε+1)

μ(Eε)
〈w〉Qε + μ(Qε)

μ(Eε)
〈w〉Eε+1 −

μ(Eε+1)

μ(Eε)

w(Qε)

w(Eε)
〈w〉Qε

− μ(Qε)

μ(Eε)

w(Eε+1)

w(Eε)
〈w〉Eε+1 + 2

w(Eε+1)

w(Eε)

w(Qε)

μ(Eε)
.

Note that it does not really matter what CQ(w, ε) really is as long as we have some
nice bound for it. In fact, from Lemma 4.6 in [28], we have that

CQ(w, ε)2 ≤ μ(Eε+1)

μ(Eε)
〈w〉Qε + μ(Qε)

μ(Eε)
〈w〉Eε+1

� w(Qε) + w(Eε+1)

μ(Eε)
= 〈w〉Eε � 〈w〉Q,

which implies that CQ(w, ε)2〈w〉−1
Q � 1.

Now,

∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q |〈 f , hε

Q〉|2

=
∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q |〈 f , CQ(w, ε)hw,ε

Q + DQ(w, ε)h1
Eε
〉|2

=
∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q |CQ(w, ε)〈 f , hw,ε

Q 〉 + DQ(w, ε)〈 f , h1
Eε
〉|2

=
∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q CQ(w, ε)2|〈 f , hw,ε

Q 〉|2

+ 2
∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q CQ(w, ε) DQ(w, ε) 〈 f , hw,ε

Q 〉 〈 f , h1
Eε
〉

+
∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q DQ(w, ε)2|〈 f , h1

Eε
〉|2

=: S1 + S2 + S3.
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S2 can be bounded by
√

S1
√

S3, so it suffices to bound S1 and S3. By using the bound
on CQ(w, ε), we have

S1 �
∑
Q∈D

MQ−1∑
ε=1

|〈 f , hw,ε
Q 〉|2 =

∑
Q∈D

MQ−1∑
ε=1

|〈w−1 f , hw,ε
Q 〉L2

w(X)|2 ≤ ‖ f ‖2
L2

w−1 (X)
.

On the other hand,

S3 =
∑
Q∈D

MQ−1∑
ε=1

〈w〉−1
Q DQ(w, ε)2|〈 f , h1

Eε
〉|2 =

∑
Q∈D

MQ−1∑
ε=1

DQ(w, ε)2〈 f 〉2Eε
〈w〉−1

Q .

Now,

1

μ(Eε)

∑
R⊆Q

∑
η:Eη⊆Eε

DR(w, η)2〈w〉−1
R 〈w〉2Eη

= 1

μ(Eε)

∑
R⊆Q

∑
η:Eη⊆Eε

ŵ(R, η)2

〈w〉2Eη

〈w〉−1
R 〈w〉2Eη

� 1

μ(Eε)

∑
R⊆Q

∑
η:Eη⊆Eε

ŵ(R, η)2〈w〉−1
R

� [w]A2〈w〉Eε ,

where the last inequality follows from a Bellman function technique that can be found
in [6]. Thus, by adopting the remark of Treil in [45, Section 5] on the dyadic Carleson
Embedding Theorem on a general space of homogeneous type, we get:

S3 =
∑
Q∈D

MQ−1∑
ε=1

DQ(w, ε)2〈 f 〉2Eε
〈w〉−1

Q � [w]A2‖ f w− 1
2 ‖2L2(X)

.

The proof of Lemma 6.3 is complete. ��
Proof of Theorem 6.2 Suppose w ∈ A2. Following the argument in the proof of Theo-
rem 3.1 in [41], we obtain that the Lemma 6.3 above implies that

‖ f ‖L2
w(X) � [w]

1
2
A2
‖SD f ‖L2

w(X),

where the implicit constant is independent of f and w.
Then following the argument in the proof of Corollary 3.2 in [41], we obtain that

‖SD f ‖L2
w(X) � [w]A2‖ f ‖L2

w(X).
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1014 X. T. Duong et al.

Next, by the sharp form of Rubio de Francia’s extrapolation theorem (due to
Dragiĉević, Grafakos, Pereyra and Petermichl [12] in the Euclidean space and due
to Anderson and Damián [1] on spaces of homogeneous type), this implies the corre-
sponding weighted L p bound

‖SD f ‖L p
w(X) ≤ C p[w]max{1, 1

p−1 }
Ap

‖ f ‖L p
w(X).

The proof of Theorem 6.2 is complete. ��

6.2 Weighted Hardy Spaces, Duality andWeak Factorisation

We now introduce the atoms for the weighted Hardy space.

Definition 6.4 Suppose w ∈ A2. A function a is called a (1, 2)-atom, if there exists a
ball B ⊂ X such that

(1) supp(a) ⊂ B; (2)
∫

B
a(x) dμ(x) = 0; (3) ‖a‖L2

w(B) ≤ [w(B)]−
1
2 .

Definition 6.5 Suppose w ∈ A2. A function f is said to belong to the Hardy space
H1

w,2(X), if f =∑∞
j=1 λ j a j with

∑∞
j=1 |λ j | < ∞ and a j is a (1, 2)-atom for each j .

Moreover, the norm of f on H1
w,2(X) is defined by ‖ f ‖H1

w,2(X) = inf
{∑∞

j=1 |λ j |
}
,

where the infimum is taken over all possible decompositions of f as above.

We then have the duality between the weighted Hardy space and weighted BMO.
We point out that for the sake of simplicity, we obtain this result for p = 2. For the
Euclidean version of duality of weighted Hardy and BMO spaces, we refer to [13,
Section 4] for the full range of p ∈ [1, 2].

Theorem 6.6 Suppose w ∈ A2. Then we have
(
H1

w,2(X)
)′ = BMOw(X).

Proof To prove BMOw(X) ⊂ (H1
w,2(X)

)′
, for any g ∈ BMOw(X), let

�g(a) =
∫

X
a(x)g(x)dμ(x),

where a is an atom as in Definition 6.4.
Assume that a is supported in a ball B ⊂ X . Then by Hölder’s inequality and

w ∈ A2, we see that
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∣∣∣∣
∫

X
g(x)a(x) dμ(x)

∣∣∣∣ =
∣∣∣∣
∫

B
[g(x) − gB ]a(x) dμ(x)

∣∣∣∣

≤
[∫

B
|g(x) − gB |2w−1(x) dμ(x)

] 1
2
[∫

B
|a(x)|2w(x) dμ(x)

] 1
2

≤
[

1

w(B)

∫
B
|g(x) − gB |2w−1(x) dμ(x)

] 1
2

≤ C‖g‖BMOw(X).

Thus �g can be extended to a bounded linear functional on H1
w,2(X).

Conversely, assume that � ∈ (H1
w,2(X)

)′. For any ball B ⊂ X , let

L2
0, w(B) =

{
f ∈ L2

w(B) : supp( f ) ⊂ B,

∫
B

f (x) dμ(x) = 0

}
.

Then we see that for any f ∈ L2
0, w(B), a := 1

[w(B)] 12 ‖ f ‖
L2w(B)

f is an atom as in

Definition 6.4. This implies that

|�(a)| ≤ ‖�‖‖a‖H1
w,2(X) ≤ ‖�‖.

Moreover, we see that

|�( f )| ≤ ‖�‖[w(B)] 12 ‖ f ‖L2
w(B).

From the Riesz Representation theorem, there exists [ϕ] ∈ [L2
0, w(B)]∗ =

L2
w−1(B)/C, and ϕ ∈ [ϕ], such that for any f ∈ L2

0, w(B),

�( f ) =
∫

B
f (x)ϕ(x) dμ(x)

and

‖[ϕ]‖ = inf
c

‖ϕ + c‖L2
w−1 (B) ≤ ‖�‖[w(B)] 12 .

Now, for a fixed ball B, we define B j = 2 j B, j ∈ N. And for B0, we mean the ball
B itself. Then, we have that for all f ∈ L2

0, w(B) and j ∈ N,

∫
B

f (x)ϕB(x) dμ(x) =
∫

B
f (x)ϕB j (x) dμ(x).

It follows that forμ-almost every x ∈ B, ϕB j (x)−ϕB0(x) = C j for some constantC j .
From this we further deduce that for all j, l ∈ N, j ≤ l and μ-almost every x ∈ B j ,

123



1016 X. T. Duong et al.

ϕB j (x) − C j = ϕB0(x) = ϕBl (x) − Cl .

Define ϕ(x) = ϕ j (x)−C j on B j for j ∈ N. Then, ϕ is well defined. Moreover, since
X = ∪ j B j , by Hölder’s inequality and w ∈ A2, we see that for any c and any ball
B ⊂ X ,

[∫
B
|ϕ(x) − ϕB |2w−1(x) dμ(x)

] 1
2 = sup

‖ f ‖
L2w(B)

≤1
|〈 f , ϕ − ϕB〉|

= sup
‖ f ‖

L2w(B)
≤1

∣∣∣∣
∫

B
f (x)[ϕ(x) − ϕB] dμ(x)

∣∣∣∣

= sup
‖ f ‖

L2w(B)
≤1

∣∣∣∣
∫

B
[ f (x) − fB][ϕ(x) + c] dμ(x)

∣∣∣∣
≤ sup

‖ f ‖
L2w(B)

≤1

[
‖ f ‖L2

w(B) + | fB |[w(B)] 12
]
‖[ϕ(x) + c]χB‖L2

w−1 (B)

≤ ‖[ϕ(x) + c]χB‖L2
w−1 (B).

Taking the infimum over c, we have that ϕ ∈ BMOw(X) and ‖ϕ‖BMOw(X) ≤ C‖�‖.
��

We now provide a sketch of the proof of Theorem 1.5, the details are similar to the
weak factorisation result obtained in [8].

Proof of Theorem 1.5 Similar to [8] (see also Corollary 1.4 in [21] and its proof), as a
consequence of the duality of weighted Hardy space H1

ν (X) and BMOν(X) (Theorem
6.6 above), we see that if f is of the form (1.7), then f is in H1

ν (X) with the H1
ν (X)-

norm controlled by the right-hand side of (1.8). Conversely, based the characterisation
of BMOν(X) via the commutator [b, T ] as in Theorem 1.4 (the case of m = 1) and
the linear functional analysis argument as in [7], we get that every f ∈ H1

ν (X) admits
an factorisation as in (1.7). Hence, we obtain that Theorem 1.5 holds. ��

7 Applications

The aim of this section is to show that Theorem 1.6 holds for each of the six operators
listed in the introduction.

7.1 Cauchy’s Integral Operator

Let A(x) be a Lipschitz function onR. Consider the Lipschitz curve as z = x + i A(x),
x ∈ (−∞,∞). Recall that the Cauchy integral adapted to this Lipschitz curve is:

CA( f )(x) = p.v.
1

π

∫ ∞

−∞
f (y)dy

(x − y) + i(A(x) − A(y))
.
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The (unweighted version) commutator result was obtained in [34], see also [44].
Here we point out that the two weight commutator and high-order commutator results
also hold for Cauchy’s Integral Operator.

Proposition 7.1 Theorem 1.6 holds for the Cauchy integral operator CA with the
underlying setting (R, | · |, dx).

Proof To see this, we point out that this operator has the associated kernel

CA(x, y) = 1

π

1

(x − y) + i(A(x) − A(y))
,

which satisfies the size condition

|CA(x, y)| ≤ 1

|x − y|
and the smoothness condition

|CA(x, y) − CA(x, y′)| + |CA(y, x) − CA(y′, x)| ≤ 2(‖A′‖∞ + 1)
|y − y′|
|x − y|2

for every x, y, y′ such that |y − y′| ≤ |x − y|/2. Moreover, for any interval I :=
I (x0, r), we take y0 = x0 + 4r . Then we see that ReCA(x0, y0), the real part of
CA(x0, y0), satisfies that ReCA(x0, y0) < 0 and

|ReCA(x0, y0)| = 1

π

y0 − x0
(x0 − y0)2 + (A(x0) − A(y0))2

� y0 − x0
(‖A′‖2∞ + 1)(x0 − y0)2

� 1

|I | .

Therefore, (1.6) holds. As a consequence of this fact and Theorems 1.3 and 1.4, we
see that Theorem 1.6 holds. ��

7.2 The Cauchy–Szegö Projection Operator on the Heisenberg GroupHHH
n

We recall all the related definitions for the Heisenberg group in [43, Chapter XII].
Recall that H

n is the Lie group with underlying manifold C
n × R = {[z, t] : z =

(z1, · · · , zn) ∈ C
n, t ∈ R} and multiplication law

[z, t] ◦ [z′, t ′] :=
[
z1 + z′1, · · · , zn + z′n, t + t ′ + 2Im

( n∑
j=1

z j z̄
′
j

)]
.

The identity of H
n is the origin and the inverse is given by [z, t]−1 = [−z,−t].

Hereafter, we identify C
n with R

2n and use the following notation to denote the points
of C

n × R = R
2n+1: g = [z, t] = [x, y, t] = [x1, · · · , xn, y1, · · · , yn, t] with

123



1018 X. T. Duong et al.

z = [z1, · · · , zn], z j = x j + iy j and x j , y j , t ∈ R for j = 1, . . . , n. Then, the
composition law ◦ can be explicitly written as

g ◦ g′ = [x, y, t] ◦ [x ′, y′, t ′] = [x + x ′, y + y′, t + t ′ + 2〈y, x ′〉 − 2〈x, y′〉],

where 〈·, ·〉 denotes the usual inner product in R
n .

We recall the upper half-space Un and its boundary bUn as follows:

Un =
{

z ∈ C
n+1 : Im(zn+1) >

n∑
j=1

|z j |2
}
,

bUn =
{

z ∈ C
n+1 : Im(zn+1) =

n∑
j=1

|z j |2
}
.

For any function F defined on Un , we write Fε for its vertical translate: Fε(z) =
F(z + εi) with i = (0, . . . , 0, i). We also recall the Hardy space H2(Un), which
consists of all functions F holomorphic on Un for which

‖F‖H2(Un) =
(
sup
ε>0

∫
bUn

|Fε(z)|2dβ(z)
) 1

2
< ∞,

where dβ(z) is the surface measure on bUn .
TheCauchy–SzegöprojectionoperatorC is the orthogonal projection from L2(bUn)

to the subspace of functions {Fb} that are boundary values of functions F ∈ H2(Un).
According to [43, Section 2.3, Section 2.4, Chapter XII], we get that for f ∈ L2(Hn),

C( f )(x) =
∫

Hn
K (x, y) f (y)dy,

where K (x, y) = K (y−1 ◦ x) for x �= y and

K (x) = − ∂

∂t

(
c

n
[t + i |ζ |2]−n

)
for x = [ζ, t] ∈ H

n = C
n × R,

and c = 2n−1in+1n!π−n−1.

Proposition 7.2 Theorem 1.6 holds for the Cauchy–Szegö projection operator C with
the underlying setting (Hn, ρ, dx), where dx is the usual Lebesgue measure on C

n×R

and ρ is the norm on H
n defined by ρ(x) := max{|ζ |, |t | 12 } for x = [ζ, t] ∈ H

n =
C

n × R.

Proof We begin by recalling that with this norm ρ(x) as above, and we set ρ(x, y) :=
ρ(y−1 ◦ x). From [43, Section 2.5, Chapter XII] we obtain that the Cauchy–Szegö
kernel K (x, y) satisfies the following conditions:

123



TwoWeight Commutators on Spaces of Homogeneous Type 1019

|K (x, y)| ≈ ρ(x, y)−2n−2,

|K (x, y) − K (x, y0)| � ρ(y, y0)

ρ(x, y)

1

ρ(x, y)2n+2 whenever ρ(x, y) ≥ cρ(y, y0),

|K (x, y) − K (x0, y)| � ρ(x, x0)

ρ(x, y)

1

ρ(x, y)2n+2 whenever ρ(x, y) ≥ cρ(x, x0).

Thus, it is straightforward to see that K (x, y) satisfies (1.6). Hence, we see that
Theorem 1.6 holds for the Cauchy–Szegö projection operator C. ��

7.3 The Szegö Projection Operator on a Family of UnboundedWeakly
Pseudoconvex Domains

Wenow recall theweakly pseudoconvex domains�k and their boundary ∂�k , k ∈ Z+,
from Greiner and Stein [18]:

�k =
{
(z1, z2) ∈ C

2 : Im(z2) > |z1|2k
}
, ∂�k =

{
(z1, z2) ∈ C

2 : Im(z2) = |z1|2k
}
.

Recall that ∂�k is naturally parameterized by z1 and Rez2. We use the following
notation. Points in ∂�k are denoted by ζ, ω, ν etc.

ζ = (z1, z2) ∼ (z, t), z = z1 ∈ C, t = Re(z2) ∈ R;
ω = (w1, w2) ∼ (w, s), w = w1 ∈ C, s = Re(w2) ∈ R;
ν = (u1, u2) ∼ (u, r), u = u1 ∈ C, r = Re(u2) ∈ R.

The Szegö projection S on �k is the orthogonal projection from L2(∂�k) to the
Hardy space H2(�k) of holomorphic functions on �k with L2 boundary values. The
Szegö kernel S(ζ, ω) is the kernel for which

S( f )(ζ ) =
∫

∂�k

f (ω)S(ζ, ω)dV (ω),

where dV (ω) = dV (x, y, s) = dxdyds with ω = (w1, s) = (x + iy, s), which is
Lebesgue measure on the parameter space R

3. Greiner and Stein [18] have computed
the Szegö kernel with Lebesgue measure on the parameter space with the formula

S(ζ, ω) = 1

4π2

[(( i

2
[s − t] + |z1|2k + |w1|2k

2
+ μ + η

2

) 1
k − z1w̄1

)2

×
(

i

2
[s − t] + |z1|2k + |w1|2k

2
+ μ + η

2

) k−1
k
]−1

,

where μ = Im(z2) − |z1|2k and η = Im(w2) − |w1|2k .
In [11], Diaz defined and analyzed a pseudometric d(ζ, ω) globally suited to the

complex geometry of ∂�k , which was arrived at by the study of the Szegö kernel. This
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1020 X. T. Duong et al.

allows the treatment of the Szegö kernel as a singular integral kernel:

d(ζ, ω) =
∣∣∣∣
(

i

2
[s − t] + |z1|2k + |w1|2k

2

) 1
k − zw̄

∣∣∣∣
1
2

.

Then, the pseudometric balls are defined as

Bζ (δ) = Bd
ζ (δ) = {ω ∈ ∂�k : d(ζ, ω) < δ}

and the volume of the balls is

V (Bζ (δ)) = 4πδ2
(

(sin(π/k))2k−2

4
|z|2k−2δ2 + 1

2
δ2k
)

,

and it is shown that this measure is doubling.

Proposition 7.3 Theorem 1.6 holds for the Szegö projection S with the underlying
space of homogenous type (∂�k, d, dV ), where d and dV are as introduced above.

Proof We point out that it is proved in [11] that S(ζ, ω) satisfies the following size
and smoothness conditions:

|S(ζ, ω)| ≈ 1

V (Bζ (d(ζ, ω)))
,

|S(ζ, ω) − S(ζ ′, ω)| �
(

d(ζ, ζ ′)
d(ζ, ω)

)
1

V (Bζ (d(ζ, ω)))
, for cd(ζ, ζ ′) ≤ d(ζ, ω),

|S(ζ, ω) − S(ζ, ω′)| �
(

d(ω, ω′)
d(ζ, ω)

)
1

V (Bζ (d(ζ, ω)))
, for cd(ω, ω′) ≤ d(ζ, ω).

(7.1)

Thus, from (7.1) it is direct to see that S(ζ, ω) satisfies (1.6). Hence, we see that
Theorem 1.6 holds for the Szegö projection operator S on �k for k ∈ Z+. ��

7.4 Riesz Transforms Associated with Sub-Laplacian on Stratified Nilpotent Lie
Groups

Recall that a connected, simply connected nilpotent Lie group G is said to be stratified
if its left-invariant Lie algebra g (assumed real and of finite dimension) admits a direct
sum decomposition

g =
k⊕

i=1

Vi where [V1, Vi ] = Vi+1 for i ≤ k − 1.

One identifies g and G via the exponential map exp : g −→ G, which is a diffeomor-
phism. We fix once and for all a (bi-invariant) Haar measure dg on G (which is just
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the lift of Lebesgue measure on g via exp). There is a natural family of dilations on g
defined for r > 0 as follows:

δr

(
k∑

i=1

vi

)
=

k∑
i=1

r ivi , with vi ∈ Vi .

This allows the definition of dilation onG, whichwe still denote by δr .We choose once
and for all a basis {X1, · · · ,Xn} for V1 and consider the sub-Laplacian� =∑n

j=1 X
2
j .

Observe that X j (1 ≤ j ≤ n) is homogeneous of degree 1 and � of degree 2 with
respect to the dilations in the sense that: X j ( f ◦ δr ) = r

(
X j f

)◦δr , 1 ≤ j ≤ n, r >

0, f ∈ C1 and that δ 1
r
◦ � ◦ δr = r2 �, ∀r > 0.

Let Q denote the homogeneous dimension of G, namely, Q = ∑k
i=1 i dimVi .

And let ph (h > 0) be the heat kernel (that is, the integral kernel of eh�) on G.
For convenience, we set ph(g) = ph(g, o) (that is, in this article, for a convolution
operator, we will identify the integral kernel with the convolution kernel) and p(g) =
p1(g).

Recall that (c.f. for example [17]) ph(g) = h− Q
2 p(δ 1√

h
(g)), ∀h > 0, g ∈ G.

The kernel of the j th Riesz transform X j (−�)− 1
2 (1 ≤ j ≤ n) is written simply as

K j (g, g′) = K j (g′−1 ◦ g), where

K j (g) = 1√
π

∫ +∞

0
h− 1

2 X j ph(g) dh = 1√
π

∫ +∞

0
h− Q

2 −1 (X j p
)
(δ 1√

h
(g)) dh.

Proposition 7.4 Theorem 1.6 holds for the Riesz transform X j (−�)− 1
2 (1 ≤ j ≤ n)

with the underlying setting (G, ρ, dg), where ρ is the homogeneous norm on G (see
[14]).

Proof For the Riesz transform kernel, we have the following lower bound estimate,
obtained in [14]:

Fix j = 1, . . . , n. There exist 0 < εo � 1 and C > 0 such that for any 0 < η < εo

and for all g ∈ G and r > 0, we can find g∗ = g∗( j, g, r) ∈ G satisfying

ρ(g, g∗) = r , |K j (g1, g2)| ≥ Cr−Q, ∀g1 ∈ B(g, ηr), g2 ∈ B(g∗, ηr)

and all K j (g1, g2) have the same sign.
From this kernel lower bound estimate, it is direct to see that for each j , K j (g1, g2)

satisfies (1.6). Hence, Theorem 1.6 holds for X j (−�)− 1
2 (1 ≤ j ≤ n). ��
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7.5 Riesz Transform Associated with the Bessel Operator onR+R+R+

Consider R+ = (0,∞). For λ > − 1
2 , the Bessel operator �λ on R+ [39] is defined

by

�λ = − d2

dx2
− 2λ

x

d

dx
.

It is a formally self-adjoint operator in L2(R+, dmλ), where dmλ(x) = x2λdx . For
any x ∈ R+ and r > 0, let I (x, r) = (x − r , x + r) ∩ R+. Moreover, we assume
that r ≤ x without loss of generality. Observe that for any x ∈ R+ and r ∈ (0, x],
mλ(I (x, r)) ∼ x2λr . Thus, (R+, | · |, dmλ) is a space of homogeneous type.

The Bessel Riesz transform is defined as Rλ = d
dx (�λ)

− 1
2 . In [39], Muckenhoupt–

Stein introduced and obtained the L p(R+, dmλ)-boundedness of Rλ for λ ∈ (0,∞).
Under this condition, the unweighted version of commutator theorem for Rλ was
obtained in [16] viaweak factorisation.However, the twoweight commutator and high-
order commutator are unknown, and the case when λ ∈ (−1/2, 0) is totally unknown.
Here, we will establish the two weight commutator and high order commutator for Rλ

for all λ ∈ (−1/2,∞).

Proposition 7.5 Theorem 1.6 holds for the Bessel Riesz transform Rλ with the under-
lying setting (R+, | · |, dmλ).

Proof In [2], Betancor et al. further considered Rλ for the range λ ∈ (−1/2,∞). They
showed that for f ∈ C∞

c (R+) and x ∈ (0,∞),

Rλ f (x) = p.v.
∫ ∞

0
Rλ(x, y) f (y)dmλ(y)

with the kernel

Rλ(x, y) = 1√
π

∫ ∞

0

∂

∂x
W λ

t (x, y)
dt√

t

for x, y ∈ (0,∞) with x �= y. Here W λ
t (x, y) is the heat kernel associated to �λ

W λ
t (x, y) = (xy)−λ+1/2

2t
e−(x2+y2)/4t Iλ−1/2

( xy

2t

)
(7.2)

with Iν being the modified Bessel function of the first kind and order ν > −1. They
also showed that Rλ is bounded on the space L p(R+, xδdx) if and only if p > 1
and −1− p < δ < (2λ + 1)p − 1. Moreover, the kernel Rλ(x, y) has the following
estimates (see [2, Lemmas 4.3 and 4.4]):

(i) for x/2 < y < 2x and x �= y,

Rλ(x, y) = 1

π

(xy)−λ

y − x
+O

(
y−2λ−1

(
1+ log

xy

(y − x)2

))
;
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TwoWeight Commutators on Spaces of Homogeneous Type 1023

(ii) in the off-diagonal region,

|Rλ(x, y)| �
{

x−2λ−1, y ≤ x/2;
xy−2λ−2, 2x ≤ y.

From this fact, one deduces that Rλ(x, y) satisfies (1.4) and (1.5) (see [4, Theorem
2.2]). Moreover, there exist K1 ∈ (0, 1/2) small enough, K2 > 1 and Cλ > 0 such
that

(i) for any x, y ∈ R+ with 0 < y/x − 1 < K1,

Rλ(x, y) ≥ Cλ

1

xλyλ

1

y − x
; (7.3)

(ii) for any x, y ∈ R+ with 0 < K2x ≤ y,

Rλ(x, y) ≥ Cλxy−2λ−2. (7.4)

Then, an argument involving (7.3) and (7.4) shows that assumption (5.1) holds (see also
[36, Lemma2.3]). In fact, let I := I (x0, r)with x0 ≥ r and K0 := (K1+K2+2)/2K1.
We consider the following two cases.

Case (a): x0 ≤ 2K0r . In this case,mλ(I ) ∼ x2λ0 r ∼ K0x2λ+1
0 . Let y0 := x0+4K 2

0r .
Then (2K0 + 1)x0 ≤ y0 ≤ (4K 2

0 + 1)x0. This via (7.4) implies that

Rλ(x0, y0) � x0

y2λ+2
0

∼ 1

mλ(I )
.

Case (b): x0 > 2K0r . In this case, mλ(I ) ∼ x2λ0 r . Let y0 := x0 + K2r . Then
0 < y0/x0 − 1 < K1 and

Rλ(x0, y0) � 1

x2λ0 (y0 − x0)
∼ 1

mλ(I )
,

which implies that Theorem 1.6 holds for Rλ. ��

7.6 Riesz Transforms Associated with Bessel Operators onRRR
n+1
+

We now recall the Bessel operator and the Bessel Riesz transform in high dimension
from Huber [23]. Consider R

n+1+ = R
n × (0,∞). For λ > − 1

2 ,

�
(n+1)
λ = − d2

dx21
· · · − d2

dx2n
− d2

dx2n+1

− 2λ

xn+1

d

dxn+1
. (7.5)
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The operator�(n+1)
λ is symmetric and non-negative in C∞

c (Rn+1+ ) ⊂ L2(Rn+1, dμλ),
where

dμλ(x) :=
n∏

j=1

dx j x2λn+1dxn+1.

The j th Riesz transform is defined as

Rλ, j = d

dx j
(�

(n+1)
λ )−

1
2 , j = 1, . . . , n + 1.

We point out that there is no known results for the commutator of Rλ, j . Here we
provide an intensive study of the kernel of Rλ, j , especially for the lower bound, and
then we obtain the two weight commutator and higher order commutator for Rλ, j .

Proposition 7.6 Theorem 1.6 holds for the Bessel Riesz transform Rλ, j , j =
1, . . . , n + 1, with the underlying setting (Rn+1+ , | · |, dμλ).

Proof To begin with, note that (7.5) can be written as �
(n+1)
λ = �(n) + �λ, where

�(n) denotes the standard Laplacian on R
n , and �λ denotes the Bessel operator on

R+, which is one-dimensional as shown in Sect. 7.5. Then, it is clear that e−t�(n+1)
λ =

e−t(�(n)+�λ) and hence the heat kernel

p
t,�(n+1)

λ

(x, y) = p
t,�(n)

λ

(x ′, y′)W λ
t (xn+1, yn+1)

for x = (x ′, xn+1), y = (y′, yn+1) ∈ R
n × (0,∞), where W λ

t is the heat kernel of �λ

as in (7.2).
Then, it is direct that for 1 ≤ j ≤ n:

Rλ, j (x, y) = cn,λ

∂

∂x j

∫ ∞

0
p

t,�(n+1)
λ

(x, y)
dt√

t

= cn,λ

∂

∂x j

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′|2

4t W λ
t (xn+1, yn+1)

dt√
t

and for j = n + 1,

Rλ,n+1(x, y) = cn,λ

∂

∂xn+1

∫ ∞

0
p

t,�(n+1)
λ

(x, y)
dt√

t

= cn,λ

∂

∂xn+1

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′|2

4t W λ
t (xn+1, yn+1)

dt√
t
.

By [4, Theorem 2.2], {Rλ, j }n+1
j=1 are Calderón–Zygumnd operators with kernel satis-

fying (1.4) and (1.5).
Moreover, we have the following estimates on {Rλ, j (x, y)}n+1

j=1.
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Lemma 7.7 Let j ∈ {1, . . . , n}. The following statements hold:

(i) There exist positive constants C̃, c̃ > 1 such that for any (x, y) with 0 < xn+1 ≤
yn+1/̃c, Rλ, j (x, y) does not change sign and

|Rλ, j (x, y)| ≥ C̃
|x j − y j |

(y2n+1 + |x ′ − y′|2) n
2+λ+1

.

(ii) There exists a positive constant Cn such that for any (x, y),

Rλ, j (x, y) = Cn
y j − x j

xλ
n+1yλ

n+1|x − y|n+2
+O

(
1

xλ+1
n+1 yλ+1

n+1

|x j − y j |
|x − y|n

)
.

Proof By (7.2) and letting xn+1 = zyn+1 and u = 2t
y2n+1

, we see that

Rλ, j (x, y)

= cn,λ

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′|2

4t
x j − y j

−2t

(xn+1yn+1)
−λ+ 1

2

2t
Iλ− 1

2

×
( xn+1yn+1

2t

)
e−

x2n+1+y2n+1
4t

dt√
t

= cn,λ

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′|2

4t
x j − y j

−2t

(
y2n+1z

2t

)−λ+ 1
2

× Iλ− 1
2

(
y2n+1z

2t

)
(2t)−λe−

y2n+1(1+z2)

4t
dt√

t

= cn,λ(y j − x j )

∫ ∞

0
(uy2n+1)

− n
2−λ−1e

− |x ′−y′|2
2uy2n+1 e−

1+z2
2u

( z

u

)−λ+ 1
2

Iλ− 1
2

( z

u

) du

u
.

Recall that for any z > 0 and ν > −1,

lim
z→0+

z−ν Iν(z) = 1

2ν�(ν + 1)
, (7.6)

and for any z > 0, ν > −1 and n = 0, 1, 2, . . .,

Iν(z) = ez

√
2π z

(
n∑

k=0

(−1)k[ν, k](2z)−k +O(z−n−1)

)
, (7.7)

where [ν, 0] := 1 and for k ∈ N,

[ν, k] := (4ν2 − 1)(4ν2 − 32) · · · (4ν2 − (2k − 1)2)

22k�(k + 1)
;

123



1026 X. T. Duong et al.

see [2, p. 109].
Then, letting z → 0 and applying the Lebesgue Dominated Convergence Theorem,

we have

Rλ, j (x, y) → cn,λ(x j − y j )y−n−2λ−2
n+1

∫ ∞

0
u− n

2−λ−2e
− 1

2u (
|x ′−y′|2

y2n+1
+1)

du

= c
x j − y j

(y2n+1 + |x ′ − y′|2) n
2+1+λ

.

This shows (i).
Now, for j = 1, 2, . . . , n, let

R j (x, y) := cn,λ

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′|2

4t
x j − y j

−2t

1

xλ
n+1yλ

n+1

Wt (xn+1, yn+1)
dt√

t
,

where

Wt (xn+1, yn+1) := 1√
4π t

e−
(xn+1−yn+1)2

4t .

Then, we see that for any x, y ∈ R
n such that x j �= y j ,

R j (x, y) = Cn
y j − x j

xλ
n+1yλ

n+1|x − y|n+2
.

On the other hand, using (7.7) for n = 0, we conclude that

|Rλ, j (x, y) − R j (x, y)|
= cn,λ

∣∣∣∣
∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′ |2

4t
x j − y j

−2t

×
[
(xn+1yn+1)

−λ+ 1
2

2t

e
xn+1 yn+1

2t√
2π · xn+1yn+1

2t

(
1+ C

2t

xn+1yn+1

)
e−

x2n+1+y2n+1
4t

− 1

xλ
n+1yλ

n+1

1√
4π t

e−
(xn+1−yn+1)2

4t

]
dt√

t

∣∣∣∣
�
∫ ∞

0

1

(4π t)
n
2

e−
|x−y|2

4t
|x j − y j |
xλ+1

n+1 yλ+1
n+1

dt

t

� |x j − y j |
xλ+1

n+1 yλ+1
n+1

∫ ∞

0

1

t
n
2+1

e−
|x−y|2

4t dt

� |x j − y j |
xλ+1

n+1 yλ+1
n+1

1

|x − y|n .

The proof of Lemma 7.7 is complete. ��
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Similarly, for Rλ, n+1(x, y), we have show the following lemma.

Lemma 7.8 The following statements hold:

(i) There exist positive constants C̃, c̃ ≥ 1 such that for any (x, y) with 0 < xn+1 ≤
yn+1/̃c and

λ+ 1
2

λ+1 <
y2n+1

y2n+1+|x ′−y′|2 < 1, Rλ, n+1(x, y) does not change sign and

|Rλ, n+1(x, y)| ≥ C̃
xn+1

(y2n+1 + |x ′ − y′|2) n
2+λ+1

.

(ii) There exists a positive constant Cn such that for any (x, y),

Rλ, n+1(x, y) = Cn
yn+1 − xn+1

(xn+1yn+1)λ

1

|x − y|n+2 +O
(

1

xλ
n+1yλ+1

n+1

1

|x − y|n
)

.

Proof Observe that

∂

∂xn+1
W λ

t (xn+1, yn+1)

= 1

(2t)λ+ 1
2

[
xn+1

( yn+1

2t

)2 ( xn+1yn+1

2t

)−λ− 1
2

Iλ+ 1
2

( xn+1yn+1

2t

)

− xn+1

2t

( xn+1yn+1

2t

)−λ+ 1
2

Iλ− 1
2

( xn+1yn+1

2t

)]
e−

x2n+1+y2n+1
4t ;

see, [2]. Then we have

Rλ, n+1(x, y) = cn,λ

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′ |2

4t
1

(2t)λ+ 1
2

xn+1

( yn+1

2t

)2 ( xn+1yn+1

2t

)−λ− 1
2

× Iλ+ 1
2

( xn+1yn+1

2t

)
e−

x2n+1+y2n+1
4t

dt√
t

− cn,λ

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′|2

4t
1

(2t)λ+ 1
2

xn+1

2t

( xn+1yn+1

2t

)−λ+ 1
2

× Iλ− 1
2

( xn+1yn+1

2t

)
e−

x2n+1+y2n+1
4t

dt√
t
.

By change of variables, we have

Rλ, n+1(x, y) = cn,λ

[
xn+1

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′ |2

4t
1

(2t)λ+ 1
2

( yn+1

2t

)2 ( y2n+1z

2t

)−λ− 1
2

× Iλ+ 1
2

(
y2n+1z

2t

)
e−

y2n+1(1+z2)

4t
dt√

t
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1028 X. T. Duong et al.

− xn+1

∫ ∞

0

1

(4π t)
n
2

e−
|x ′−y′ |2

4t
1

(2t)λ+ 1
2

1

2t

(
y2n+1z

2t

)−λ+ 1
2

× Iλ− 1
2

(
y2n+1z

2t

)
e−

y2n+1(1+z2)

4t
dt√

t

]

= cn, λ

[
xn+1

yn+2+2λ
n+1

∫ ∞

0

1

u
n
2+λ+2

e
− |x ′−y′ |2

2uy2n+1

( z

u

)−λ− 1
2

Iλ+ 1
2

( z

u

)
e−

1+z2
2u

du

u

− xn+1

yn+2λ+2
n+1

∫ ∞

0

1

u
n
2+λ+1

e
− |x ′−y′ |2

2uy2n+1

( z

u

)−λ+ 1
2

Iλ− 1
2

( z

u

)
e−

1+z2
2u

du

u

]
.

By letting z → 0 and applying (7.6), we see that

Rλ, n+1(x, y)
yn+2λ+2

n+1

xn+1
→ Cn, λ

[
1

2λ+ 1
2 �(λ + 3

2 )

∫ ∞

0

1

u
n
2+λ+2

e
− 1

2u (1+ |x ′−y′|2
y2n+1

) du

u

− 1

2λ− 1
2 �(λ + 1

2 )

∫ ∞

0

1

u
n
2+λ+1

e
− 1

2u (1+ |x ′−y′ |2
y2n+1

) du

u

]

= Cn, λ2
n+3
2

yn+2λ+2
n+1

(y2n+1 + |x ′ − y′|2) n
2+λ+1

�(λ + n
2 − 1)

�(λ + 1
2 )

×
(

y2n+1

y2n+1 + |x ′ − y′|2
λ + n

2 − 1

λ + 1
2

− 1

)

= Cn, λ

yn+2λ+2
n+1

(y2n+1 + |x ′ − y′|2) n
2+λ+1

×
(

y2n+1

y2n+1 + |x ′ − y′|2
λ + n

2 + 1

λ + 1
2

− 1

)
.

Since

y2n+1

y2n+1 + |x ′ − y′|2
λ + n

2 + 1

λ + 1
2

− 1 > 0,

the conclusion (i) holds.
Let

H(x, y) := cn,λ

∫ ∞

0

1

(4π t)
n
2

e−
|x−y|2

4t
1

(2t)λ+ 1
2

( xn+1yn+1

2t

)−λ

×
[

xn+1

( yn+1

2t

)2 ( xn+1yn+1

2t

)−1 − xn+1

2t

]
dt√

t
.
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TwoWeight Commutators on Spaces of Homogeneous Type 1029

Then, observe that

∫ ∞

0

1

(4π t)
n
2

e−
|x−y|2

4t
1

(2t)λ+ 1
2

( xn+1yn+1

2t

)−λ

×
[

xn+1

( yn+1

2t

)2 ( xn+1yn+1

2t

)−1 − xn+1

2t

]
dt√

t

= Cn
yn+1 − xn+1

(xn+1yn+1)λ

∫ ∞

0

1

t
n
2+2

e−
|x−y|2

4t dt

= Cn
yn+1 − xn+1

(xn+1yn+1)λ

1

|x − y|n+2 .

By using (7.7) for n = 0,

∣∣Rλ, n+1(x, y) − H(x, y)
∣∣ �

∫ ∞

0

1

t
n
2+λ+1

e−
|x−y|2

4t

( xn+1yn+1

2t

)−λ 1

yn+1
dt

� 1

xλ
n+1yλ+1

n+1

1

|x − y|n .

We then see that (ii) holds. The proof of Lemma 7.8 is complete. ��
We now return to the proof of Proposition 7.6. Based on Lemmas 7.7 and 7.8, we

see that (5.1) holds. Indeed, For any x := (x1, . . . , xn+1) ∈ R
n+1+ and r ∈ (0,∞), let

Q(x, r) := {y := (y1, . . . , yn+1) ∈ R
n+1+ : |x j − y j | ≤ r/2, j ∈ {1, . . . , n + 1}}.

Then, we haveμλ(Q(x, r)) ∼ rn+1x2λn+1. Let C0 � c̃. For any x := (x1, . . . , xn+1) ∈
R

n+1+ and r ∈ (0,∞), if r > c̃−1
C0

xn+1, take y := (y1, . . . , yn+1) such that yi =
xi + C0r for i = j or i = n + 1 and yi := xi otherwise. Then by Lemma 7.7(i), we
see that yn+1 ≥ c̃xn+1 and

|Rλ, j (x, y)| � C0r

[y2n+1 + (C0r)2] n
2+λ+1

� 1

μλ(Q(x, r))
.

If r ≤ c̃−1
C0

xn+1, then there exists y ∈ R
n+1+ such that |yn+1 − xn+1| = |y j − x j | ∼

|y − x | and |yn+1 − xn+1| � xn+1. Then by Lemma 7.7(ii), we also have

|Rλ, j (x, y)| � |y j − x j |
xλ

n+1yλ
n+1|x − y|n+2

∼ 1

μλ(Q(x, r))
.

Therefore, (1.6) holds for Rλ, j (x, y), j ∈ {1, . . . , n}. The argument for Rλ, n+1(x, y)

is similar and omitted. Then Theorem 1.6 holds for the Bessel Riesz transform Rλ, j ,
j = 1, . . . , n + 1.
The proof of Proposition 7.6 is complete. ��
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1030 X. T. Duong et al.

8 A Digression to Product Setting: Little bmo Space

In this section, we consider the weighted little bmo space on product spaces of homo-
geneous type. To begin with, let (X1, d1, μ1) and (X2, d2, μ2) be two copies of spaces
of homogeneous type as stated in Sect. 2, and denote  X := X1 × X2,  μ := μ1 × μ2.
Moreover, for the points in  X , we denote  x := (x1, x2) ∈  X .

Macías and Segovia [35] proved the following fundamental result on spaces of
homogeneous type. Suppose that (X , d) is a space endowed with a quasi-metric d that
may have no regularity. Then there exists a quasi-metric d ′ that is pointwise equivalent
to d such that d(x, y) ∼ d ′(x, y) for all x, y ∈ X and there exist constants θ ∈ (0, 1)
and C > 0 so that d ′ has the following regularity:

|d ′(x, y) − d ′(x ′, y)| ≤ C d ′(x, x ′)θ [d ′(x, y) + d ′(x ′, y)]1−θ

for all x , x ′, y ∈ X . Moreover, if the quasi-metric balls are defined by this new quasi-
metric d ′, that is, B ′(x, r) := {y ∈ X : d ′(x, y) < r} for r > 0, then these balls are
open in the topology induced by d ′. See [35, Theorem 2, p.259]. So, without lost of
generality, we assume that in our product setting, the quasi-metrics d1 and d2 have
regularity with constants θ1 and θ2, respectively.

We now recall the product Ap(  X)weights on product spaces of homogeneous type.

Definition 8.1 Let w(x1, x2) be a nonnegative locally integrable function on  X . For
1 < p < ∞, we say w is a product Ap weight, written as w ∈ Ap(  X), if

[w]Ap(  X)
:= sup

R

(
−
∫

R
w

)(
−
∫

R

(
1

w

)1/(p−1)
)p−1

< ∞.

Here, the supremum is taken over all “rectangles” R := B1 × B2 ⊂  X , where Bi are
balls in Xi for i = 1, 2. The quantity [w]Ap(  X)

is called the Ap constant of w.

Next, we recall the weighted little bmo space on product spaces of homogeneous
type.

Definition 8.2 For 1 < p < ∞ and w ∈ Ap(  X), the weighted little bmo space
bmow(  X) is the space of all locally integrable functions b on  X such that

‖b‖bmow(  X)
= sup

R

1

w(R)

∫
R
|b( x) − bR |d  μ( x) < ∞,

where the supremum is taken over all “rectangles” R = B1 × B2 ⊂  X , where Bi are
balls in Xi for i = 1, 2.

Similar to [22, Section 7.1], we introduce the bi-parameter Journé operator on  X as
follows. Let Cη1

0 (X1), η1 ∈ (0, θ1], denote the space of continuous functions f with
bounded support such that
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TwoWeight Commutators on Spaces of Homogeneous Type 1031

‖ f ‖C
η1
0 (X1)

:= sup
x,y∈X1,x �=y

| f (x) − f (y)|
d1(x, y)η1

< ∞.

Let Cη2
0 (X2), η2 ∈ (0, θ2] be defined similarly.

IStructuralAssumptions:Given f = f1⊗ f2 and g = g1⊗g2,where fi , gi : Xi → C,
fi , gi ∈ Cηi

0 (Xi ) satisfy supp fi ∩ supp gi = ∅ for i = 1, 2, we assume the kernel
representation

〈T f , g〉 =
∫

 X

∫
 X

K ( x,  y) f ( y)g( x)d  μ( y)d  μ( x).

The kernel K :  X ×  X\{( x,  y) ∈  X ×  X : x1 = y1, or x2 = y2} → C is assumed
to satisfy:

1. Size condition:

|K ( x,  y)| ≤ C
1

μ1(B(x1, d1(x1, y1)))μ2(B(x2, d2(x2, y2)))
.

2. Hölder conditions:

2a. if d1(y1, y′
1) ≤ 1

2A0
d1(x1, y1) and d2(y2, y′

2) ≤ 1
2A0

d2(x2, y2):

|K ( x,  y) − K ( x, (y1, y′
2)) − K ( x, (y′

1, y2)) + K ( x,  y′))|

≤ C
d1(y1, y′

1)
δd2(y2, y′

2)
δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δμ2(B(x2, d2(x2, y2)))d2(x2, y2)δ
.

2b. if d1(x1, x ′
1) ≤ 1

2A0
d1(x1, y1) and d2(x2, x ′

2) ≤ 1
2A0

d2(x2, y2):

|K ( x,  y) − K ((x1, x ′
2),  y) − K ((x ′

1, x2),  y) + K ( x ′,  y))|

≤ C
d1(x1, x ′

1)
δd2(x2, x ′

2)
δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δμ2(B(x2, d2(x2, y2)))d2(x2, y2)δ
.

2c. if d1(y1, y′
1) ≤ 1

2A0
d1(x1, y1) and d2(x2, x ′

2) ≤ 1
2A0

d2(x2, y2):

|K ( x,  y) − K ((x1, x ′
2),  y) − K ( x, (y′

1, y2)) + K ((x1, x ′
2), (y′

1, y2))|

≤ C
d1(y1, y′

1)
δd2(x2, x ′

2)
δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δμ2(B(x2, d2(x2, y2)))d2(x2, y2)δ
.

2d. if d1(x1, x ′
1) ≤ 1

2A0
d1(x1, y1) and d2(y2, y′

2) ≤ 1
2A0

d2(x2, y2):

|K ( x,  y) − K ( x, (y1, y′
2)) − K ((x ′

1, x2),  y) + K ((x ′
1, x2), (y1, y′

2))|

≤ C
d1(x1, x ′

1)
δd2(y2, y′

2)
δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δμ2(B(x2, d2(x2, y2)))d2(x2, y2)δ
.
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1032 X. T. Duong et al.

3. Mixed size and Hölder conditions:

3a. if d1(x1, x ′
1) ≤ 1

2A0
d1(x1, y1):

|K ( x,  y) − K ((x ′
1, x2),  y)|

≤ C
d1(x1, x ′

1)
δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δμ2(B(x2, d2(x2, y2)))
.

3b. if d1(y1, y′
1) ≤ 1

2A0
d1(x1, y1):

|K ( x,  y) − K ( x, (y′
1, y2))|

≤ C
d1(y1, y′

1)
δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δμ2(B(x2, d2(x2, y2)))
.

3c. if d2(x2, x ′
2) ≤ 1

2A0
d2(x2, y2):

|K ( x,  y) − K ((x1, x ′
2),  y)|

≤ C
d2(x2, x ′

2)
δ

μ1(B(x1, d1(x1, y1)))μ2(B(x2, d2(x2, y2)))d2(x2, y2)δ
.

3d. if d2(y2, y′
2) ≤ 1

2A0
d2(x2, y2):

|K ( x,  y) − K ( x, (y1, y′
2))|

≤ C
d2(y2, y′

2)
δ

μ1(B(x1, d1(x1, y1)))μ2(B(x2, d2(x2, y2)))d2(x2, y2)δ
.

4. Calderón–Zygmund structure in X1 and X2 separately: If f = f1 ⊗ f2 and g =
g1 ⊗ g2 with supp f1 ∩ suppg1 = ∅, we assume the kernel representation:

〈T f , g〉 =
∫

X1

∫
X1

K f2,g2(x1, y1) f1(y1)g1(x1)dμ1(x1)dμ1(y1),

where the kernel K f2,g2 : X1 × X1\{(x1, y1) ∈ X1 × X1 : x1 = y1} satisfies the
following size condition:

|K f2,g2(x1, y1)| ≤ C( f2, g2)
1

μ1(B(x1, d1(x1, y1)))
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and Hölder conditions:

|K f2,g2(x1, y1) − K f2,g2(x ′
1, y1)|

≤ C( f2, g2) d1(x1, x ′
1)

δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δ
, d1(x1, x ′

1) ≤ 1

2A0
d1(x1, y1),

|K f2,g2(x1, y1) − K f2,g2(x1, y′
1)|

≤ C( f2, g2)d1(y1, y′
1)

δ

μ1(B(x1, d1(x1, y1)))d1(x1, y1)δ
, d1(x1, x ′

1) ≤ 1

2A0
d1(x1, y1).

We only assume the above representation and a certain control over C( f2, g2) on the
diagonal, that is:

C(χQ2 , χQ2) + C(χQ2 , uQ2) + C(uQ2 , χQ2) ≤ Cμ2(Q2)

for all cubes Q2 ⊂ X2 and all “Q2-adapted zero-mean” functions uQ2– that is,
supp uQ2 ⊂ Q2, |uQ2 | ≤ 1 and

∫
X2

uQ2(x2)dμ2(x2) = 0. We assume the sym-
metrical representation with kernel K f1,g1 in the case supp f2 ∩ suppg2 = ∅.
II Boundedness and Cancellation Assumptions:

1. Assume T 1, T ∗1, T11, and T ∗
1 1 are in product BMO(  X), where T1 is the partial

adjoint of T defined by 〈T1( f1 ⊗ f2), g1 ⊗ g2〉 = 〈T1(g1 ⊗ f2), ( f1 ⊗ g2)〉.
2. Assume |〈T1(χQ1⊗χQ2), χQ1⊗χQ2〉| ≤ Cμ1(Q1)μ2(Q2) for all cubes Qi ∈ Xi

(weak boundedness).
3. Diagonal BMO conditions: for all cubes Qi ⊂ Xi and all non-zero functions aQ1

and bQ2 that are Q1− and Q2− adapted, respectively, assume:

|〈T1(aQ1 ⊗ χQ2), χQ1 ⊗ χQ2〉| ≤ Cμ1(Q1)μ2(Q2),

|〈T1(χQ1 ⊗ χQ2), aQ1 ⊗ χQ2〉| ≤ Cμ1(Q1)μ2(Q2),

|〈T1(χQ1 ⊗ bQ2), χQ1 ⊗ χQ2〉| ≤ Cμ1(Q1)μ2(Q2),

|〈T1(χQ1 ⊗ χQ2), χQ1 ⊗ bQ2〉| ≤ Cμ1(Q1)μ2(Q2).

For the upper bound of the commutator of such operators T and b ∈ bmow(  X),
following the same approach as that in [22], and combining all necessary tools as
recalled in Sect. 2 on spaces of homogeneous type (such as the adjacent dyadic system,
Haar basis, et al), we obtain that

Theorem 8.3 Let 1 < p < ∞ and λ1, λ2 ∈ Ap(  X), and define ν = λ
1
p
1 λ

− 1
p

2 . Let T be
a bi-parameter Journé operator on  X and b ∈ bmoν(  X). Then we obtain that

‖[b, T ] : L p
λ1

(  X) → L p
λ2

(  X)‖ � ‖b‖bmoν (  X)
.

We now provide a broader version of the lower bound. Note that in [22] the authors
only considered the lower bound of commutator with respect to double Riesz trans-
forms, and their proof relies on Fourier transform and hence can not be adapted to
spaces of homogeneous type.
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1034 X. T. Duong et al.

We assume that the bi-parameter Journé operator T satisfies the following “homo-
geneous” condition:
there exist positive constants c0 and C such that for every x1 ∈ X1, x2 ∈ X2 and
r1, r2 > 0, there exist y1 ∈ B1(x1, Cr1)\B1(x1, r1) and y2 ∈ B2(x2, Cr2)\B2(x2, r2)
satisfying

|K (x1, y1; x2, y2)| ≥ 1

c0μ1(B1(x1, r1))μ2(B2(x2, r2))
. (8.1)

Then, we have the following lower bound.

Theorem 8.4 Let T be a bi-parameter Journé operator on  X and T satisfies the fol-
lowing “homogeneous” condition as above. Let 1 < p < ∞ and λ1, λ2 ∈ Ap(  X),

and define ν := λ
1
p
1 λ

− 1
p

2 . Suppose that b ∈ L1
loc(

 X) and that ‖[b, T ] : L p
λ1

(  X) →
L p

λ2
(  X)‖ < ∞. Then we obtain that b ∈ bmoν(  X) with

‖b‖bmoν (  X)
� ‖[b, T ] : L p

λ1
(  X) → L p

λ2
(  X)‖.

To see this, we first point out that the homogeneous condition (8.1) implies the
following condition: there exist positive constants 3 ≤ A1 ≤ A2 such that for any
ball Bi := Bi (x (i)

0 , ri ) ⊂ Xi , there exist balls B̃i := Bi (y(i)
0 , ri ) such that A1ri ≤

di (x (i)
0 , y(i)

0 ) ≤ A2ri . Moreover, for all (x1, y1; x2, y2) ∈ (B1 × B̃1) × (B2 × B̃2),
K (x1, y1; x2, y2) does not change sign and

|K (x1, y1; x2, y2)| � 1

μ1(B1)

1

μ2(B2)
.

If K (x1, y1; x2, y2) := K1(x1, y1; x2, y2) + i K2(x1, y1; x2, y2) is complex-valued,
where i2 = −1, then at least one of Ki satisfies the assumption above.

We next consider the median value on “rectangles” R = B1 × B2 ⊂  X . By a
median value of a real-valued measurable function f over R we mean a possibly
non-unique, real number αR( f ) such that  μ({(x1, x2) ∈ R : f (x1, x2) > αR( f )}) ≤
1
2μ1(B1)μ2(B2) and  μ({(x1, x2) ∈ R : f (x1, x2) < αR( f )}) ≤ 1

2μ1(B1)μ2(B2).

Now, following the idea in Lemma 5.3, for the given rectangle R = B1 × B2, B̃1
and B̃2, set

E1 := {(x1, x2) ∈ B1 × B2 : b(x1, x2) ≥ αB̃1×B̃2
(b)},

E2 := {(x1, x2) ∈ B1 × B2 : b(x1, x2) ≤ αB̃1×B̃2
(b)},

and

F1 := {(y1, y2) ∈ B̃1 × B̃2 : b(y1, y2) ≤ αB̃1×B̃2
(b)},

F2 := {(y1, y2) ∈ B̃1 × B̃2 : b(y1, y2) ≥ αB̃1×B̃2
(b)}.
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TwoWeight Commutators on Spaces of Homogeneous Type 1035

Then, by the definition of αR( f ), we see that  μ(Fi ) ≥ 1
4μ1(B̃1)μ2(B̃2) for i = 1, 2.

Moreover, for (x1, x2) × (y1, y2) ∈ (E1 × F1) ∪ (E2 × F2),

|b(x1, x2) − b(y1, y2)| =
∣∣b(x1, x2) − αB̃1×B̃2

(b) + αB̃1×B̃2
(b) − b(y1, y2)

∣∣
= ∣∣b(x1, x2) − αB̃1×B̃2

(b)
∣∣+ ∣∣αB̃1×B̃2

(b) − b(y1, y2)
∣∣

≥ ∣∣b(x1, x2) − αB̃1×B̃2
(b)
∣∣ .

Proof of Theorem 8.4 For given b ∈ L1
loc(

 X) and for any rectangle R = B1 × B2, let

O(b; R) := 1

 μ(R)

∫
R
|b(x1, x2) − bR | dμ1(x1)dμ2(x2).

Under the assumptions of Theorem 8.4, we will show that for any ball B,

O(b; R) � ν(R)

 μ(R)
. (8.2)

Without loss of generality, we assume that K (x1, y1; x2, y2) is real-valued. Let
R = B1 × B2 be a rectangle. Then we have two rectangles B1 × B2, B̃1 × B̃2 and sets
Ei , Fi , i = 1, 2, as above.

On the one hand, we have that for fi := χFi , i = 1, 2,

1

 μ(R)

2∑
i=1

∫
B1×B2

|[b, T ] fi (x1, x2)| dμ1(x1)dμ2(x2)

≥ 1

 μ(R)

2∑
i=1

∫
Ei

|[b, T ] fi (x1, x2)| dμ1(x1)dμ2(x2)

= 1

 μ(R)

2∑
i=1

∫
Ei

∫
Fi

|b(x1, x2) − b(y1, y2)|

|K (x1, y1; x2, y2)| dμ1(y1)dμ2(y2) dμ1(x1)dμ2(x2)

� 1

 μ(R)

2∑
i=1

∫
Ei

∫
Fi

|b(x1, x2) − αB̃1×B̃2
(b)|

μ1(B1)μ2(B2)
dμ1(y1)dμ2(y2) dμ1(x1)dμ2(x2)

� 1

 μ(R)

∫
B1×B2

∣∣b(x1, x2) − αB̃1×B̃2
(b)
∣∣ dμ1(x1)dμ2(x2)

� O(b; R).

On the other hand, from Hölder’s inequality and the boundedness of [b, T ], we
deduce that

1

 μ(R)

2∑
i=1

∫
B1×B2

|[b, T ] fi (x1, x2)| dμ1(x1)dμ2(x2)
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≤ 1

 μ(R)

2∑
i=1

[∫
B1×B2

|[b, T ] fi (x1, x2)|p λ2(x1, x2) dμ1(x1)dμ2(x2)

]1/p

×
(∫

B1×B2

λ2(x1, x2)
− 1

p−1 dμ1(x1)dμ2(x2)

)1/p′

� 1

 μ(R)

2∑
i=1

[λ1(Fi )]1/p
(∫

B1×B2

λ2(x1, x2)
− 1

p−1 dμ1(x1)dμ2(x2)

)1/p′

� 1

 μ(R)
[λ1(B̃1 × B̃2)]1/p

(∫
B1×B2

λ2(x1, x2)
− 1

p−1 dμ1(x1)dμ2(x2)

)1/p′

� 1

 μ(R)
[λ1(R)]1/p

(∫
R

λ2(x1, x2)
− 1

p−1 dμ1(x1)dμ2(x2)

)1/p′

,

where in the last inequality, we use the facts that K1rB1 ≤ d(xB1 , xB̃1
) ≤ K2rB1 and

λ1(x1, x2) ∈ Ap(  X).
Combining the two inequalities above and invoking λi ∈ Ap(  X), we conclude that

O(b; R) � 1

 μ(R)
[λ1(R)]1/p

(∫
R

λ2(x1, x2)
− 1

p−1 dμ1(x1)dμ2(x2)

)1/p′

� ν(R)

 μ(R)
.

Thus, (8.2) holds and hence, the proof of Theorem 8.4 is complete. ��
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