

1 **The Role of Biaxial Loading on Smooth Muscle Contractility in the Nulliparous**
2 **Murine Cervix**

3 **Conway, Cassandra K.**

4 Department of Biomedical Engineering, Tulane University

5 6823 St. Charles Ave, New Orleans, LA 70118 USA

6 cconway2@tulane.edu

7

8 **Varghese, Asha**

9 Obstetrics and Gynecology and Green Center for Reproductive Sciences

10 University of Texas Southwestern Medical Center

11 Dallas, TX 75390 USA

12 Asha.Varghese@UTSouthwestern.edu

13

14 **Mahendroo, Mala**

15 Obstetrics and Gynecology and Green Center for Reproductive Sciences

16 University of Texas Southwestern Medical Center

17 Dallas, TX 75390 USA

18 Mala.Mahendroo@utsouthwestern.edu

19

20 **Miller, Kristin S.***

21 Department of Biomedical Engineering, Tulane University

22 6823 St. Charles Ave, New Orleans, LA 70118 USA

23 504 988-9324

24 kmille11@tulane.edu

25

26

27

28

29

30

31 **Abstract**

32 Throughout the estrus cycle, the extracellular matrix (ECM) and cervical smooth
33 muscle cells (cSMC) coordinate to accomplish normal physiologic function in the non-
34 pregnant cervix. While previous uniaxial experiments provide fundamental knowledge
35 about cervical contractility and biomechanics, the specimen preparation is disruptive to
36 native organ geometry and does not permit simultaneous assessment of circumferential
37 and axial properties. Thus, a need remains to investigate cervical contractility and passive
38 biomechanics within physiologic multiaxial loading. Biaxial inflation-extension
39 experiments overcome these limitations by preserving geometry, ECM-cell interactions,
40 and multiaxially loading the cervix. Utilizing *in vivo* pressure measurements and inflation-
41 extension testing, this study presented methodology and examined maximum biaxial
42 contractility and biomechanics in the nulliparous murine cervix. The study showed that
43 increased pressure resulted in decreased contractile potential in the circumferential
44 direction, however, axial contractility remained unaffected. Additionally, total change in
45 axial stress (ΔT_{zz}) increased significantly ($p<0.05$) compared to circumferential stress
46 ($\Delta T_{\theta\theta}$) with maximum contraction. However, passive stiffness was significantly greater
47 ($p<0.01$) in the circumferential direction. Overall, axial cSMC may have a critical function
48 in maintaining cervical homeostasis during normal function. Potentially, a loss of axial
49 contractility in the cervix during pregnancy may result in maladaptive remodeling such as
50 cervical insufficiency.

51

52 **Keywords:** Cervix, Reproductive Health, Contractility, Biomechanics

53

54

55

56

57

58

59

60

61 **Introduction**

62 The coordination of smooth muscle cells (SMC) and extracellular matrix (ECM)
63 components impart function to the female reproductive system²². Altered contractility and
64 passive mechanical properties, in response to mechanical loading and hormonal
65 signaling, bestow the reproductive system with the ability to undergo dramatic changes
66 in geometry and function during physiological processes, such as pregnancy^{4, 13, 15, 16, 24-}
67 ^{26, 33, 39}. Determining contractile and passive biomechanical properties of the female
68 reproductive organs could provide crucial information about physiologic reproductive
69 function. Specifically, the cervix functions to protect the uterine cavity from external
70 factors, facilitate fertilization, and dilate to allow for the passage of menstrual contents in
71 the non-pregnant state through regular phasic contractions^{13, 22}. However, the role and
72 behavior of cervical SMC (cSMC) in reproductive function is contradictory and remains
73 poorly understood^{12, 51, 52}.

74 While uterine contractility and passive mechanical properties during the
75 estrous/menstrual cycle and pregnancy garnered focus in prior research, the
76 demonstration that SMCs are present in the human and rodent cervix warrants further
77 understanding of their role in the non-pregnant state^{6, 10, 14, 27, 34, 35, 40, 41, 43, 49, 57}. In 1947,
78 Danforth described the human cervix as a primarily collagenous organ with limited SMC
79 and contractile ability¹². The research proposed a significant active SMC contribution from
80 the uterus and a passive role of the cervix during pregnancy and labor¹². However, recent
81 research emphasizes the independent role of cervical contractile function and mechanical
82 behavior in the non-pregnant and pregnant states^{10, 13, 16, 22, 51, 52}. Prior work, to a limited
83 extent, investigated *in vitro* cervical contractility utilizing strips, rings, or individual cSMCs

84 in human^{51, 52} and rodent models^{13, 16, 22}. Although the experimental methods provided
85 fundamental information about the contractile behavior of the cervix, the experiments
86 require disruptive specimen preparation techniques and assess circumferential and axial
87 properties independently^{13, 16, 22, 25, 38, 56}. The cervix is anisotropic and loaded multiaxially
88 within the body, thus, there is a need to utilize testing methods that retain cervical
89 geometry, native ECM-cSMC interactions, and simultaneously quantify circumferential
90 and axial contractility within a physiologic loading environment^{9, 10, 19, 54}.

91 Biaxial inflation-extension testing overcomes limitations imposed by uniaxial
92 configurations by simultaneously loading tissues circumferentially via pressurizing the
93 organ within a physiologic range and longitudinally by axially extending the organ²¹.
94 Previously, biaxial inflation-extension testing quantified mechanical properties of
95 vasculature^{5, 19-21, 44}, the GI tract^{45, 46}, and reproductive organs^{2, 9, 10, 42, 54}. Additionally,
96 research determined contractile behavior in vasculature^{30, 36, 58} and the vagina⁹ utilizing
97 inflation-extension testing. However, there is a need to describe the *in vivo* cervical
98 loading environment to permit assessment of contractility and passive biomechanics
99 within a physiologically relevant range *ex vivo*. Therefore, this study seeks to introduce
100 methods to determine the *in vivo* cervical pressure environment and utilize the information
101 to design a protocol to determine the biaxial maximum contractility and passive
102 mechanics of the murine cervix.

103 **Materials and Methods**

104 **Animal Care**

105 Mechanical testing experiments herein were conducted on a total of $n=10$
106 nulliparous CD-1 female mice aged 8-12 weeks (Charles River, Houston, TX). The Tulane
107 University Institutional Animal Care and Use Committee (IACUC) approved of care and
108 the conducted experiments. Immunofluorescence experiments were conducted on a total
109 of $n=2$ nulliparous C57Bl6/SvEv female mice aged 12-24 weeks with approval from the
110 University of Texas Southwestern IACUC. These mice were bred and maintained within
111 a breeder colony at The University of Texas Southwestern Medical Center (Dallas, TX).
112 Mice were provided a normal chow diet and housed in a 12-hour light/dark cycle. All mice
113 were cycle matched at estrus via visual determination⁷.

114 ***In Vivo* Pressure Measurements**

115 Attempting to recapitulate the key aspects of the *in vivo* loading environment during
116 mechanical testing can provide important information about the mechanical behavior and
117 contractility at an estimated physiologic state. Therefore, transcervical pressure
118 measurements were taken from ($n = 5$) mice at estrus to determine the estimated loading
119 environment for the murine cervix during mechanical testing (**Fig. 1**)⁴³. A 2F Millar Mikro-
120 tip® Catheter (ADInstruments, Colorado, USA) was connected to ADInstruments Bridge
121 Amplifier and PowerLab (ADInstruments, Colorado, USA) and allowed to equilibrate in a
122 water bath filled with physiologic saline at 37°C for 30 minutes. Utilizing a Y connection
123 tube, the catheter was calibrated with a pressure gauge after the 30-minute equilibration.

124 Mice were anesthetized with 1%-1.5% isoflurane mixed with 100% O₂ and placed on
125 a heating pad⁴³. Using blunt forceps and a disposable plastic tube acting as a speculum,
126 the vagina was gently spread laterally. Next, a directed light source aligned down the
127 plastic tube allowed for the cervical centered within the vaginal fornix to be visualized.

128 Following, the pressure catheter was inserted into the cervical canal. Appropriate
129 placement of the catheter was confirmed with a marking approximately 6 mm from the
130 probe based on the length of the vagina from prior studies^{9, 42}, an increase in pressure⁴³,
131 and phasic contractions^{13, 22}. Upon confirmation of appropriate placement, the catheter
132 equilibrated for 5 minutes followed by 5 minutes of recorded data on LabChart Pro
133 software (ADIInstruments, Colorado, USA). Recorded data measured baseline pressure,
134 pressure with contraction, and frequency of contraction (**Fig. 1**). After data recording, the
135 catheter was removed and soaked in Terg-A-Zyme®, an enzymatic cleaning solution, for
136 15 minutes. Between each procedure the catheter was cleaned with the enzymatic
137 cleaning solution, equilibrated for 30 minutes, and calibrated. Mice were monitored and
138 allowed to recover in a separate clean cage before returned to littermates.

139 **Specimen Preparation**

140 A total of ($n=10$) CD-1 female mice cycle matched at estrus were utilized for dose
141 response and contractility protocols. Wherein, recovered mice from the *in vivo* pressure
142 procedure ($n=5$) were assigned to the dose response study at the following estrus phase.
143 Additionally, a separate cohort of CD-1 mice ($n=5$) were utilized for the maximum
144 contractility and passive mechanics protocol⁷. The following sample preparation
145 techniques applied to both protocols listed below. All mice were euthanatized via guillotine
146 to preserve SMC viability⁹. The reproductive systems were excised from mice
147 immediately and submersed in 4°C Hanks Balanced Saline Solution (HBSS). The cervical
148 complex was isolated from the reproductive tract by singular cuts superior to the distal
149 vaginal and inferior to the uterine body (**Supplemental Figure 1**). Next, the cervix was
150 cannulated with 6-0 silk suture within a biaxial inflation-extension device (Danish

151 MyoTechnologies, Aarhus, Denmark). HBSS was replaced with 37°C Kreb's Ringer
152 Buffer (Kreb's Buffer) aerated with 95% O₂ and 5% CO₂.

153 During excision, the reproductive organs retract from the original position following
154 dislocation of the pubic synthesis and subsequent removal of fascial tetherings^{10, 42, 54}.
155 Due to the retraction, the cervix was extended to an estimated unloaded length in which
156 the organ was neither in tension nor buckled and pressurized with a tare pressure of P=
157 3.0 mmHg to prevent collapse of the organ at P= 0 mmHg^{2, 10, 42}. Unloaded length and
158 unloaded outer diameter at the tare pressure was recorded with digital calipers and a
159 Nikon Eclipse TS100 inverted microscope (Nikon®, Melville, NY, U.S.A.), respectively.
160 Utilizing the mean *in vivo* baseline pressure measurements from the *in vivo* pressure
161 measurement experiments (**Fig. 1**), the mean physiological pressure for mechanical
162 testing protocols was determined as P= 9.0 mmHg. To maintain SMC viability, the
163 maximum pressure extended to one standard deviation below the mean maximum
164 contractile pressure (P= 22.0±4.0 mmHg). Cervices were preconditioned circumferentially
165 at the unloaded length for 5 cycles of increasing and decreasing pressure (P= 0-18
166 mmHg). Following, an estimated physiological (EP) length was determined first by using
167 the measured retraction following dissection, followed by leveraging the theoretical
168 assumption that axial force will be maintained with increasing pressure over the
169 physiologic range to preserve energy as described previously⁵⁰. Additional circumferential
170 preconditioning (P= 0-18 mmHg) was performed at the EP length for 5 cycles and axial
171 preconditioning performed by cyclically stretching cervices axially ±1% the EP length at
172 1/3 max pressure (P= 6.0 mmHg)^{5, 10}. Following preconditioning, the unloaded length was
173 re-determined⁹. To acclimate cSMCs to potassium chloride (KCl), the cervical complex

174 was pressurized to the mean physiologic pressure (P= 9.0 mmHg) at the unloaded length,
175 axially extended until the axial force held constant at 0mN, and dosed with 20mM KCl for
176 5 minutes^{9, 36}. Following, the bath was replaced with fresh Kreb's buffer and the cervix
177 elongated to the EP length. The cervix at the EP length and mean physiologic pressure
178 equilibrated for 10 minutes^{10, 42}.

179 **Dose Response**

180 To determine the optimal dose of the agonist potassium chloride (KCl) to induce
181 maximum contraction, an isometric-isobaric dose response protocol was performed at the
182 EP length and the mean physiologic pressure (P = 9.0 mmHg) for the first cohort of
183 animals (n=5). Following the equilibration period, tissues were subjected to increasing
184 concentrations of KCl (4.7-100mM)⁸ at the EP length and mean physiologic pressure.
185 Between each dosing, the cervix was washed and submerged in fresh Kreb's solution
186 and equilibrated for 5 minutes. Circumferential and axial contractions were measured via
187 diameter changes tracked at the mid-cervix and changes in measured axial force with a
188 camera and force transducer, respectively (**Fig. 2**).

189 **Biaxial Contractility and Passive Mechanics**

190 *Maximum Contractility*

191 Utilizing the second cohort of mice (n=5), cervices underwent a contractility protocol
192 with nine combinations of physiologic lengths and pressures to assess the role of
193 circumferential and axial loading on contractility following the equilibration period ³⁶ (**Fig.**
194 **3**). Each combination randomized the length (the EP length and $\pm 1\%$ EP length) and
195 pressure (mean \pm standard deviation of the physiologic pressure; P= 9.0 \pm 3.0 mmHg).

196 Data was recorded for 5 minutes after 20mM KCl dosing followed by a resting period for
197 5 minutes after buffer replacement or after pressure and axial length change³⁶. Then, the
198 cervices were returned to the unloaded geometry and B-mode ultrasound images
199 (Vevo2100; 40MHz transducer) of cervical thickness were taken at the unloaded state⁹,
200 ¹⁰.

201 ***Passive Mechanics***

202 Returned to the EP length of the maximum contractility experiment, cervices were
203 bathed in calcium-free Kreb's and dosed with 2mM egtazic acid (EGTA) for 30 minutes
204 to remove active SMC contribution. Abiding by the steps outlined in *Specimen*
205 *Preparation*, passive unloaded geometry measurements, unloaded circumferential
206 preconditioning, determination of the passive EP length, and circumferential and axial
207 preconditioning were performed followed by 10 minutes of equilibration. Three cycles of
208 a pressure-inflation protocol were performed at the EP length and $\pm 1\%$ the EP length from
209 $P= 0-18 \text{ mmHg}$ ^{10, 42, 54}. Following, axial force-elongation protocols $\pm 1\%$ EP length over a
210 range of pressures ($P= 3, 6, 12, \text{ and } 18 \text{ mmHg}$) were performed^{10, 42, 54}. The cervix was
211 returned to the unloaded geometry and the thickness recorded with ultrasound.

212 ***Immunofluorescence***

213 Transverse and longitudinal sections (5 μm) of the cervix at estrus ($n=2$) were
214 deparaffinized, blocked, and co-stained with primary and secondary antibodies. Markers
215 targeted included α SMA (Anti-Mouse 1:300, Monoclonal Anti-Actin, α -Smooth Muscle,
216 A2547, Sigma-Aldrich) and Vimentin (Anti-Rabbit 1:250, Recombinant Anti-Vimentin
217 antibody [EPR3776]-Cytoskeleton Marker, ab92547, Abcam). After overnight primary

218 antibody incubation at 4°C, the slides were washed and incubated with secondary
219 antibody (Goat anti-Rabbit 1:500 (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor
220 488,A-11008, and Goat anti-Mouse 1:500 (H+L) Highly Cross-Adsorbed Secondary
221 Antibody, Alexa Fluor 546, A-11030, Invitrogen-ThermoFisher Scientific) for 30 minutes
222 at room temperature. After PBS washes, slides were mounted with ProLong™ Gold
223 Antifade Mountant with DAPI (P36935, ThermoFisher Scientific) and viewed on a Zeiss
224 LSM-880 Confocal Microscope (Zeiss International, New York, USA) at 20X
225 magnification. For each transverse and longitudinal tissue section, both the sub-epithelial
226 and mid-stromal regions were imaged in at least four locations at 20X and 40X.

227 αSMA and Vim positive area fractions for the mid-stroma and subepithelium in the
228 transverse and longitudinal sections were calculated utilizing ImageJ (National Institutes
229 of Health, Bethesda, MD, U.S.A.) and GIMP, an open source image manipulation
230 program. Images from the red (αSMA) and green (Vim) color channels were inverted and
231 converted to gray scale in ImageJ. The inverted images were opened in GIMP and a
232 histogram tool within the software was adjusted to represent the range of intensities of
233 the positive cell staining. The area fraction was determined as the number of pixels within
234 the boundaries of the threshold divided by the total number of pixels in the image.

235 **Data Analysis**

236 *Thickness, Area, and Volume Calculation*

237 Utilizing ultrasound images and ImageJ (National Institutes of Health, Bethesda,
238 MD, U.S.A.) software, the inner canal and outer circumference excluding the vaginal
239 fornix were traced and lines drawn between the inner and outer perimeters were used to

240 measure thickness. To determine cross sectional area and volume, cervical geometry
 241 was simplified to a hollow cylinder. Applying unloaded geometry (length, diameter, and
 242 thickness), cross-sectional area (A), and volume (V) were determined using the following
 243 equations (**Eq. 1,2**):

244
$$A = \pi(R_o^2 - R_i^2) \quad (1)$$

245
$$V = \pi(R_o^2 - R_i^2)L, \quad (2)$$

246 where R_o is the undeformed outer radii, R_i the undeformed inner radii, and L the unloaded
 247 length.

248 Circumferential stretch (λ_θ) and axial stretch (λ_z) were determined by (**Eq. 3, 4**)¹⁹:

249
$$\lambda_\theta = r_{mid}/R_{mid} \quad (3)$$

250 and

251
$$\lambda_z = l/L \quad (4)$$

252 wherein $r_{mid} = (r_o - r_i)/2$ is the deformed mid-wall radius, $R_{mid} = (R_o - R_i)/2$ is the
 253 unloaded mid-wall radius, and l is the deformed length.

254 *Contractility*

255 Circumferential and axial contraction were determined via changes in diameter and
 256 axial force, respectively (**Fig. 4**). Additionally, circumferential ($T_{\theta\theta}$) and axial (T_{zz}) 1st
 257 Piola-Kirchhoff stress with maximum contraction were determined (**Eq. 5, 6**)^{28, 30}.

258
$$T_{\theta\theta} = \frac{Pr_i}{\lambda_\theta(r_o - r_i)}, \quad (5)$$

259
$$T_{zz} = \frac{F_t}{\lambda_z \pi (r_o^2 - r_i^2)} + \frac{P r_i^2}{\lambda_z (r_o - r_i) (r_o + r_i)}, \quad (6)$$

260 Wherein P is intraluminal pressure, , $r_i = \sqrt{r_o^2 - \frac{A}{\pi \lambda_z}}$ is the deformed inner radius, r_o is the
 261 deformed outer radius, and F_t is the force from the axial force transducer^{10, 19, 30}.
 262 Contribution of the active SMC to the change in stress with contraction (ΔT) was
 263 calculated by subtracting the relaxed or passive state stress ($T_{passive}$) from the contracted
 264 stress ($T_{contracted}$) at matching axial-extensions and pressures (Eq. 7, 8)^{1, 9, 30, 36, 58}:

265
$$\Delta T_{\theta\theta} = T_{\theta\theta}^{contracted} - T_{\theta\theta}^{passive} \quad (6)$$

266
$$\Delta T_{zz} = T_{zz}^{contracted} - T_{zz}^{passive} \quad (7)$$

267 **Material Stiffness**

268 Material stiffness in the circumferential and axial loading directions were
 269 determined by calculating the slope of the stress-stretch curves at a physiologic range of
 270 pressures ($P = 9.0 \pm 3.0$ mmHg).

271 **Statistics**

272 Paired t-tests were utilized to determine differences between *in vivo* baseline and
 273 maximum pressure and differences in passive and active geometry. One-way ANOVA
 274 with respect to dose determined changes in circumferential and axial contractility. Two-
 275 way ANOVAs (axial-stretch, pressure) were utilized to determine differences in
 276 circumferential and axial contractility. Further, a two-way ANOVA with respect to axial-
 277 stretch and loading direction was used to determine differences in circumferential and
 278 axial material stiffness. Posthoc t-tests with Bonferroni corrections were utilized when
 279 appropriate ($p < 0.05/2$).

280 **Results**

281 All results presented herein are represented as mean \pm SEM apart from the *in vivo*
282 data which is presented as the mean \pm sd. *In vivo* pressure data are represented as
283 mean \pm sd to provide a larger margin of error to better capture the contractile response
284 within the *in vivo* pressure range.

285 *In vivo Pressure and Dose Response*

286 *In vivo* transcervical pressure measurements at estrus revealed an average *in vivo*
287 baseline pressure of 9.00 ± 3.00 mmHg (mean \pm sd), maximum contractile pressure of
288 22.0 ± 4.00 mmHg (mean \pm sd), and a frequency of one contraction per 23.5 ± 5.64 seconds
289 (mean \pm sd) (**Fig. 1**). Paired t-tests confirmed a significant increase ($p<0.01$) in cervical
290 pressure from baseline to maximum amplitude with contraction *in vivo*.

291 Dose response curves of KCl at the EP length and mean physiologic pressure
292 identified 20mM as the optimal dose to induce maximum contraction (**Fig. 2**). Axial force
293 with contraction with dose increased significantly ($p<0.05$) at 20mM compared to all doses
294 followed by a plateau of axial force during contraction at higher doses (30mM-100mM) of
295 KCl. Change in diameter with contraction decreased maximally at 20mM-100mM
296 compared to 4.7mM, 10 mM KCl, and 60mM dosing. Further, phasic behavior abated with
297 increasing dose (30-100 mM) of KCl and the axial force and outer diameter transitioned
298 into a tonic contractile behavior (**Fig. 2**).

299 *Geometry*

300 Passive physiologic diameter ($p<0.05$), EP length ($p<0.01$), and volume ($p<0.005$)
301 significantly increased compared to active geometry. However, thickness did not differ
302 significantly between the active and passive state (**Fig. 5**).

303 *Biaxial Contractility*

304 Induction of maximum contraction with 20mM KCl induced phasic contractions that
305 resulted in a decrease in diameter and increase in axial force (**Fig. 3, 6**). Additionally, all
306 samples contracted spontaneously without an agonist introduced to the bath as seen
307 previously in nulliparous mice at estrus²². Two-Way ANOVA (axial-stretch, pressure) did
308 not detect differences with axial-extension ($p=0.60$) or between interactions ($p=0.90$).
309 However, ANOVA detected significance ($p<0.001$) with respect to pressure for
310 circumferential contractility. Posthoc t-tests with Bonferroni corrections ($p<0.05/2$)
311 determined significant effects on change in outer diameter with increased pressure
312 ($p<0.001$). Specifically, total change in diameter at high pressure (P= 12 mmHg)
313 diminished significantly ($p<0.001$) compared to total change in diameter at low pressure
314 (P=6 mmHg) (**Fig. 6**). However, Two-Way ANOVAs (axial-stretch and pressure)
315 determined no significant differences with axial-extension ($p=0.40$), pressure ($p=1.00$), or
316 interactions ($p=1.00$) with the change in axial force with maximum contraction.
317 Additionally, frequency and wavelength of contractions during the maximum contractility
318 protocol did not differ with alterations to pressure ($p=0.90$), axial-stretch ($p=0.20$), or
319 interactions ($p=0.95$) (**Fig. 6**).

320 The contracted SMCs and passive ECM contribute to the overall cervical
321 biomechanical properties, including wall stress (force over oriented area). Subtracting the
322 passive stresses from the active contractile stresses at matching pressures and axial-

323 stretches quantifies the contribution of the active SMC during contraction^{30, 36}. Maximum
324 contraction induced a decrease in the change in circumferential stress ($\Delta T_{\theta\theta}$) and
325 increase in axial stress (ΔT_{zz}) at all pressures and axial-stretches (**Fig. 7**). Two-Way
326 ANOVA (axial-stretch, pressure) did not detect significant differences for $\Delta T_{\theta\theta}$ or ΔT_{zz}
327 with change of pressure or axial-stretch. Total ΔT_{zz} increased significantly with maximum
328 contraction compared to $\Delta T_{\theta\theta}$ ($p<0.05$) at the EP length and pressure (**Fig. 7**).

329 ***Biaxial Passive Mechanics***

330 Passive material stiffness calculated from the slope of stress-stretch curves over
331 a range of physiologic pressures (P= 9.0±3.0 mmHg) was significantly greater ($p<0.01$)
332 in the circumferential direction compared to the axial direction (**Fig. 7**)^{9, 47}. Circumferential
333 stiffness at the physiologic length measured 327± 142 kPa and axial stiffness measured
334 136 ± 51.2 kPa (**Fig. 7**). Further, no significant differences in circumferential or axial
335 stress were identified with axial-extension (**Supplemental Figure 2**).

336 **Immunofluorescence**

337 Immunofluorescence of transverse and longitudinal cervical sections identified
338 fibroblast (α SMA⁻, Vim⁺) and cSMC (α SMA⁺, Vim⁻) cell types within the stroma and the
339 stromal region adjacent to the epithelia, termed the sub-epithelial layer. Within the mid-
340 stroma, cSMC (α SMA⁺, Vim⁻) and fibroblast (α SMA⁻, Vim⁺) populations are identified (**Fig.**
341 **8**). Within the transverse sections, α SMA⁺ cells comprised 9.49±3.69% of the area and
342 Vim⁺ cells filled 14.2±0.94% of the area. Longitudinal section area fractions calculated
343 11.2±3.30% α SMA⁺ cells and 17.7±3.80% Vim⁺ cells. In contrast, the sub-epithelial layer
344 contains only fibroblast (α SMA⁻, Vim⁺) cells in the estrus cervix with an area fractions of

345 16.45 \pm 3.45% and 13.4 \pm 2.07% in the circumferential and axial directions, respectively
346 (**Fig. 8**). Interestingly, a subpopulation of (α SMA $^+$, Vim $^+$) cells reside within the mid-
347 stroma.

348 **Discussion**

349 This study, for the first time, presented methods to determine biaxial maximum
350 contractility within a physiologic loading environment in the murine cervix utilizing
351 inflation-extension techniques. Additionally, transcervical pressure catheter experiments
352 described the *in vivo* baseline pressure and contractile amplitude and frequency in the
353 murine cervix.

354 Historically, research considered the cervix as an extension of the uterus with
355 minimal or no independent contractile ability¹². However, recent studies emphasized the
356 importance and individual nature of the cSMC microstructure and behavior compared to
357 the other reproductive organs^{13, 16, 22, 51, 52}. Further, Vink *et al.* described an altered
358 contractile response of cSMC with respect to ECM stiffness suggesting that mechanical
359 loading may dictate cervical contractile behavior⁵¹. While prior work investigated the
360 uniaxial contractile behavior of the cervix, the methods did not preserve the native ECM-
361 cell interactions and did not account for multiaxial loading of the cervix *in vivo*^{13, 16, 22}.
362 Biaxial inflation-extension active and passive mechanical testing methods well-
363 established in vasculature^{8, 19, 28, 30, 36, 58} provide a blueprint for determining protocols to
364 assess biaxial contractility in hollow organs, such as the cervix. Through adapting
365 maximum contractility protocols from vasculature³⁶ and the vagina⁹, this study fulfills a
366 need to determine experimental procedures to describe the multiaxial contractility of the
367 cervix within a physiologically relevant mechanical loading environment.

368 Herein, we described biaxial maximum contractility and passive biomechanics
369 within a physiologic loading environment motivated by *in vivo* pressure measurements of
370 the murine cervix. Interestingly, axial contractility increased ($p<0.001$) compared to
371 circumferential contractility for all axial-extensions and pressures (**Fig. 7C**). However, in
372 the passive state, circumferential stress and stiffness increased ($p<0.01$) compared to
373 axial stress and stiffness at matching pressures and axial-extensions (**Fig. 7F**). Further,
374 circumferential contractility decreased with increasing pressure, yet, axial force with
375 contraction did not change with increasing pressure (**Fig. 6**). Moreover, axial active stress
376 contributed $54.7\pm9.19\%$ to the total axial stress while circumferential active stress only
377 contributed $35.0\pm6.09\%$ to the total circumferential stress. This may suggest a
378 predominant role of axial SMC to resist loading in the axial direction whereas
379 circumferentially aligned collagen within the cervix may function to resist circumferential
380 loading^{10, 55, 59}. Supplementing contractility and passive biomechanical data,
381 immunofluorescent imaging demonstrated populations of cSMCs (α SMA⁺ cells) within the
382 mid-stroma in both the circumferential and axial planes (**Fig. 8**). cSMC populations
383 existed only within the mid-stroma suggesting the stroma to be the primary active
384 component of the cervix. Remodeling of ECM and cSMCs within this region may be critical
385 to maintain normal function during pregnancy^{16, 48, 55}. Further, analysis identified a larger
386 area fraction of cSMCs within the longitudinal mid-stroma compared to the transverse
387 sections. A larger population of axially aligned cSMCs may prescribe the increased axial
388 contractility within the murine cervix. However, due to the small change in percentage
389 between transverse and longitudinal sections there may be additional cellular
390 mechanisms contributing to axial contractility. Furthermore, rat vaginal tissue under

391 biaxial loading exhibited a stronger axial contraction in the presence of KCl, however,
392 electrical field stimulation induced increased circumferential contractility ²⁹. The exact
393 biological mechanisms driving contractility and normal cSMC pacemaker activity within
394 the cervix remain relatively understudied and further investigation into the cholinergic
395 nervous stimulation for cSMC with respect to direction is needed ²³.

396 Cervical insufficiency (CI), a condition in pregnancy in which the cervix prematurely
397 shortens and dilates releasing the uterine contents in the absence of contractions,
398 remains a challenge to diagnose and treat clinically^{17, 32, 37}. Prior CI research investigated
399 the role of changing extracellular matrix (ECM) constituents and mechanical loading as
400 potential factors of CI^{18, 31, 32, 53}. Interestingly, elastic fiber integrity and content decreases
401 in cases of CI suggesting altered ECM integrity during pregnancy may lead to cervical
402 failure³². However, the role of cervical SMC and SMC-ECM interactions remains
403 unknown. Potentially, a loss of axial SMC contractility in response to maladaptive ECM
404 remodeling may result in cervical shortening and dilation characteristic of cervical
405 insufficiency ^{32, 51}. Future research in pregnancy to describe the dynamic passive
406 biomechanical and contractile behavior of the cervix is needed. The customized
407 methodology described in the current study sets a foundation for future studies in which
408 to explore contraction potential in the cervix through normal pregnancy.

409 Prior research on the mechanical properties of the murine cervix in uniaxial tension
410 reported similar values of circumferential stiffness (229.74 ± 133.20 kPa/mm) to the values
411 calculated herein (307 ± 133 kPa)⁵⁵. Compared to biaxial active and passive data from the
412 murine vagina, the cervix exhibited similar anisotropic behavior and increased axial
413 contractility. Cervical circumferential stiffness and axial contractility increased compared

414 to the murine vagina in the biaxial inflation-extension configuration⁹. Interestingly, while
415 cervical circumferential stiffness exceeded vaginal measurements, vaginal and cervical
416 axial stiffness were similar in magnitude. Similarly, increased axial contractility with KCl
417 dose was observed in the rat and mouse vagina ^{9, 29}. Further, the anisotropic behavior of
418 the passive murine cervix with a preference for the circumferential loading direction was
419 observed in the rat and murine vagina and the murine uterus ^{9, 10, 29}.

420 The study did not evaluate potential changes in cervical contractility and passive
421 biomechanics throughout the estrus cycle. However, samples were evaluated at a single
422 stage of the 5-day cycle (estrus) to prevent variability in results. Further, Gravina *et al.*
423 determined the highest contractile potential of the murine cervix at estrus and metestrus²².
424 Additionally, pilot studies of the passive biomechanics of the murine cervix and uterus
425 revealed no significant differences with estrous phase¹⁰. The inclusion of the lower uterine
426 and upper vaginal segments may introduce variability into the results. To reduce
427 variability, we tied silk suture over the vaginal and uterine segments during cannulation
428 to prevent contribution to cervical contractility. The dosage of 20 mM diminished
429 contribution of the vaginal segment as the rodent vagina responds to doses greater than
430 30 mM and optimally at 40 mM with tonic contractions^{3, 9}. This study assumed
431 conservation of volume, incompressibility, of the cervix in the active and passive
432 protocols, respectively. The estrus cervix may be compressible and the tissue swelled
433 throughout the experiment as glycosaminoglycans sequestered water resulting in a larger
434 passive diameter¹¹. However, cervical thickness could not be tracked real-time
435 throughout the experiment due the thickness of the cervical wall preventing light
436 penetration through the tissue and prolonged compression from the ultrasound

437 transducer resulted in a loss of contractility. Further investigation on isochoric motion
438 during biaxial mechanical testing of the reproductive organs is needed ^{9, 36}.

439 In summary, the study introduced methods to determine *in vivo* cervical pressure
440 loading environment and apply the *in vivo* pressure to design a protocol to assess biaxial
441 maximum contractility and passive biomechanics of the murine cervix. Determining
442 relationships between cervical SMC contractility and passive function will provide critical
443 information to develop fundamental understanding of physiological cervical function.
444 Further, applying the methods herein throughout pregnancy may provide crucial data
445 about normal remodeling and provide clinically relevant insights into potential
446 mechanisms by which the cervix fails in premature birth induced by cervical insufficiency.

447

448 **Acknowledgements**

449 The authors wish to thank Gabrielle L. Clark-Patterson, ShanmugaPriyaa Madhukaran,
450 Dylan J. Lawrence, and Carolyn L. Bayer for technical assistance and support.

451 **Funding**

452 This work was supported by NIH R01-HD088481 (MM), NSF CMMI 1751050 (KSM),
453 and the Louisiana Board of Regents Support Fund Fellowship (CKC).

454 **Conflicts of Interest**

455 None to be declared.

456

457

458 **References**

459 1. Agianniotis A., A. Rachev and N. Stergiopoulos. Active axial stress in mouse
460 aorta. *Journal of Biomechanics* 45: 1924-1927, 2012.

461 2. Akintunde A., K. M. Robison, D. Capone, L. Desrosiers, L. R. Knoepp and K. S.
462 Miller. Effects of elastase digestion on the murine vaginal wall biaxial mechanical
463 response. *Journal of biomechanical engineering* 2018.

464 3. Barone W. R., Z. Allah, P. M. Mollie and S. D. Abramowitch. Effect of Active
465 Smooth Muscle Contraction on the Planar Biaxial Mechanical Properties of the Rat
466 Vagina. In: *Midwest American Society of Biomechanics Regional Meeting*. Akron, OH.
467 February 16-17th, 2015: 2015.

468 4. Barone W. R., A. J. Feola, P. A. Moalli and S. D. Abramowitch. THE EFFECT OF
469 PREGNANCY AND POSTPARTUM RECOVERY ON THE VISCOELASTIC BEHAVIOR
470 OF THE RAT CERVIX. *J Mech Med Biol* 12: 12500091-125000917, 2012.

471 5. Bersi M., J. Ferruzzi, J. Eberth, R. Gleason and J. Humphrey. Consistent
472 Biomechanical Phenotyping of Common Carotid Arteries from Seven Genetic,
473 Pharmacological, and Surgical Mouse Models. *The Journal of the Biomedical
474 Engineering Society* 42: 1207-1223, 2014.

475 6. Bulletti C., D. de Ziegler, V. Polli, L. Diotallevi, E. Del Ferro and C. Flamigni.
476 Uterine contractility during the menstrual cycle. *Hum. Reprod.* 15: 81-89, 2000.

477 7. Byers S. L., M. V. Wiles, S. L. Dunn and R. A. Taft. Mouse estrous cycle
478 identification tool and images. *PLoS one* 7: e35538, 2012.

479 8. Caulk A. W., J. D. Humphrey and S.-I. Murtada. Fundamental Roles of Axial
480 Stretch in Isometric and Isobaric Evaluations of Vascular Contractility. *Journal of*
481 *biomechanical engineering* 141: 2019.

482 9. Clark G. L., A. P. Pokutta-Paskaleva, D. J. Lawrence, S. H. Lindsey, L.
483 Desrosiers, L. R. Knoepp, C. L. Bayer, R. L. Gleason and K. S. Miller. Smooth muscle
484 regional contribution to vaginal wall function. *Interface focus* 9: 20190025, 2019.

485 10. Conway C. K., H. J. Qureshi, V. L. Morris, E. K. Danso, L. Desrosiers, L. R.
486 Knoepp, C. J. Goergen and K. S. Miller. Biaxial biomechanical properties of the
487 nonpregnant murine cervix and uterus. *Journal of Biomechanics* 94: 2019.

488 11. Cubas J. J. M., R. S. Simões, R. M. Oliveira-Filho, M. J. Simões, E. C. Baracat
489 and J. M. Soares-Jr. Glycosaminoglycan distribution in the rat uterine cervix during the
490 estrous cycle. *Clinics* 65: 703-708, 2010.

491 12. Danforth D. N. The fibrous nature of the human cervix, and its relation to the
492 isthmic segment in gravid and nongravid uteri. *American Journal of Obstetrics and*
493 *Gynecology* 53: 541-560, 1947.

494 13. Darios E. S., B. Seitz and S. W. Watts. Smooth muscle pharmacology in the
495 isolated virgin and pregnant rat uterus and cervix. *The Journal of pharmacology and*
496 *experimental therapeutics* 341: 587, 2012.

497 14. de Ziegler D., C. Bulletti, R. Fanchin, M. Epiney and P. A. Brioschi. Contractility
498 of the nonpregnant uterus: the follicular phase. *Annals of the New York Academy of*
499 *Sciences* 943: 172, 2001.

500 15. Feola A., P. Moalli, M. Alperin, R. Duerr, R. E. Gandley and S. Abramowitch.

501 Impact of pregnancy and vaginal delivery on the passive and active mechanics of the

502 rat vagina. *Ann Biomed Eng* 39: 549-558, 2011.

503 16. Ferland D. J., E. S. Darios and S. W. Watts. The persistence of active smooth

504 muscle in the female rat cervix through pregnancy. *American Journal of Obstetrics and*

505 *Gynecology* 212: 244.e241-244.e248, 2015.

506 17. Fernandez M. Direct measurement of the permeability of human cervical tissue.

507 *Journal of biomechanical engineering* 135: 021024, 2013.

508 18. Fernandez M., M. House, S. Jambawalikar, N. Zork, J. Vink, R. Wapner and K.

509 Myers. Investigating the mechanical function of the cervix during pregnancy using finite

510 element models derived from high-resolution 3D MRI. *Computer Methods in*

511 *Biomechanics and Biomedical Engineering* 19: 404-417, 2016.

512 19. Ferruzzi J., M. Bersi and J. Humphrey. Biomechanical Phenotyping of Central

513 Arteries in Health and Disease: Advantages of and Methods for Murine Models. *Ann*

514 *Biomed Eng* 41: 1311-1330, 2013.

515 20. Ferruzzi J., M. J. Collins, A. T. Yeh and J. D. Humphrey. Mechanical assessment

516 of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan

517 syndrome. *Cardiovascular Research* 92: 287-295, 2011.

518 21. Gleason R. L., S. P. Gray, E. Wilson and J. D. Humphrey. A Multiaxial Computer-

519 Controlled Organ Culture and Biomechanical Device for Mouse Carotid Arteries. *Journal*

520 *of biomechanical engineering* 126: 787, 2004.

521 22. Gravina F. S., D. F. van Helden, K. P. Kerr, R. B. de Oliveira and P. Jobling.

522 Phasic contractions of the mouse vagina and cervix at different phases of the estrus

523 cycle and during late pregnancy. *PLoS One* 9: e111307, 2014.

524 23. Gravina F. S., D. F. van Helden, K. P. Kerr, R. B. de Oliveira and P. Jobling.

525 Phasic Contractions of the Mouse Vagina and Cervix at Different Phases of the Estrus

526 Cycle and during Late Pregnancy.(Research Article). *PLoS ONE* 9: 2014.

527 24. Harkness M. L. and R. D. Harkness. Changes in the physical properties of the

528 uterine cervix of the rat during pregnancy. *The Journal of physiology* 148: 524, 1959.

529 25. Harkness M. L. and R. D. Harkness. The mechanical properties of the uterine

530 cervix of the rat during involution after parturition. *The Journal of physiology* 156: 112,

531 1961.

532 26. Harkness R. D. and B. E. Moralee. The time- course and route of loss of collagen

533 from the rat's uterus during post- partum involution. *The Journal of physiology* 132: 502,

534 1956.

535 27. Herington J. L., C. O'Brien, M. F. Robuck, W. Lei, N. Brown, J. C. Slaughter, B.

536 C. Paria, A. Mahadevan-Jansen and J. Reese. Prostaglandin- Endoperoxide Synthase

537 1 Mediates the Timing of Parturition in Mice Despite Unhindered Uterine Contractility.

538 *Endocrinology* 159: 490, 2018.

539 28. Humphrey J. D. *Cardiovascular Solid Mechanics Cells Tissues and Organs*. New

540 York: Springer-Verlag New York Inc., 2002.

541 29. Huntington A., E. Rizzuto, S. Abramowitch, Z. Del Prete and R. De Vita.

542 Anisotropy of the Passive and Active Rat Vagina Under Biaxial Loading. *Annals of*

543 *Biomedical Engineering* 2018.

544 30. Huo Y., Y. Cheng, X. Zhao, X. Lu and G. S. Kassab. Biaxial vasoactivity of
545 porcine coronary artery. *American journal of physiology. Heart and circulatory*
546 *physiology* 302: H2058, 2012.

547 31. Leppert P. C., J. M. Cerreta and I. Mandl. Orientation of elastic fibers in the
548 human cervix. *American Journal of Obstetrics and Gynecology* 155: 219, 1986.

549 32. Leppert P. C., S. Y. Yu, S. Keller, J. Cerreta and I. Mandl. Decreased elastic
550 fibers and desmosine content in incompetent cervix. *American Journal of Obstetrics and*
551 *Gynecology* 157: 1134, 1987.

552 33. Lowder J. L., K. M. Debes, D. K. Moon, N. Howden, S. D. Abramowitch and P. A.
553 Moalli. Biomechanical adaptations of the rat vagina and supportive tissues in pregnancy
554 to accommodate delivery. *Obstet Gynecol* 109: 136-143, 2007.

555 34. Manoogian S. J., C. McNally, J. D. Stitzel and S. M. Duma. Dynamic biaxial
556 tissue properties of pregnant porcine uterine tissue. *Stapp car crash journal* 52: 167,
557 2008.

558 35. Milsom I., B. Andersch and G. Sundell. The Effect Of Flurbiprofen And Naproxen
559 Sodium On Intra-Uterine Pressure And Menstrual Pain In Patients With Primary
560 Dysmenorrhea. *Acta Obstetricia et Gynecologica Scandinavica* 67: 711-716, 1988.

561 36. Murtada S.-I., J. Ferruzzi, H. Yanagisawa and J. Humphrey. Reduced Biaxial
562 Contractility in the Descending Thoracic Aorta of Fibulin-5 Deficient Mice. *Journal of*
563 *biomechanical engineering* 138: 051008, 2016.

564 37. Myers K. M., H. Feltovich, E. Mazza, J. Vink, M. Bajka, R. J. Wapner, T. J. Hall
565 and M. House. The mechanical role of the cervix in pregnancy. *Journal of Biomechanics*
566 48: 1511-1523, 2015.

567 38. Myers K. M., S. Socrate, A. Paskaleva and M. House. A study of the anisotropy
568 and tension/compression behavior of human cervical tissue. *Journal of biomechanical*
569 *engineering* 132: 021003, 2010.

570 39. Nallasamy S. and M. Mahendroo. Distinct Roles of Cervical Epithelia and Stroma
571 in Pregnancy and Parturition. 35: 190-200, 2017.

572 40. Omari E. A., T. Varghese, M. A. Kliewer, J. Harter and E. M. Hartenbach.
573 Dynamic and quasi- static mechanical testing for characterization of the viscoelastic
574 properties of human uterine tissue. *Journal of Biomechanics* 48: 1730-1736, 2015.

575 41. Pearsall G. W. and V. L. Roberts. Passive mechanical properties of uterine
576 muscle (myometrium) tested in vitro. *Journal of Biomechanics* 11: 167,173-171,176,
577 1978.

578 42. Robison K. M., C. K. Conway, L. Desrosiers, L. R. Knoepp and K. S. Miller.
579 Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension-Inflation
580 Testing. *Journal of biomechanical engineering* 139: 2017.

581 43. Robuck M. F., C. M. O'Brien, K. M. Knapp, S. D. Shay, J. D. West, J. M. Newton,
582 J. C. Slaughter, B. C. Paria, J. Reese and J. L. Herington. Monitoring uterine
583 contractility in mice using a transcervical intrauterine pressure catheter. *Reproduction*
584 (*Cambridge, England*) 155: 447, 2018.

585 44. Sokolis D. P. Experimental investigation and constitutive modeling of the 3D
586 histomechanical properties of vein tissue. *Biomechanics and modeling in*
587 *mechanobiology* 12: 431-451, 2013.

588 45. Sokolis D. P. Strain-energy function and three-dimensional stress distribution in
589 esophageal biomechanics. *Journal of Biomechanics* 43: 2753-2764, 2010.

590 46. Stavropoulou E. A., Y. F. Dafalias and D. P. Sokolis. Biomechanical behavior and
591 histological organization of the three-layered passive esophagus as a function of
592 topography. *Proceedings of the Institution of Mechanical Engineers, Part H: Journal of*
593 *Engineering in Medicine* 226: 477-490, 2012.

594 47. Stoka K. V., J. A. Maedeker, L. Bennett, S. A. Bhayani, W. S. Gardner, J. D.
595 Procknow, A. J. Coccilone, T. A. Walji, C. S. Craft and J. E. Wagenseil. Effects of
596 Increased Arterial Stiffness on Atherosclerotic Plaque Amounts. *Journal of*
597 *biomechanical engineering* 140: 2018.

598 48. Tantengco O. A. G. and R. Menon. Contractile function of the cervix plays a role
599 in normal and pathological pregnancy and parturition. *Medical hypotheses* 145: 2020.

600 49. Toner J. P. and N. T. Adler. The role of uterine luminal fluid in uterine
601 contractions, sperm transport and fertility of rats. *Journal of Reproduction and Fertility*
602 74: 295-302, 1985.

603 50. Van Loon P. Length-force and volume-pressure relationships of arteries.
604 *Biorheology* 14: 181-201, 1976.

605 51. Vink J., V. Yu, S. Dahal, J. Lohner, C. Stern-Asher, M. Mourad, G. Davis, Z. Xue,
606 S. Wang, K. Myers, J. Kitajewski, X. Chen, R. J. Wapner, C. V. Ananth, M. Sheetz and
607 G. Gallos. Extracellular Matrix Rigidity Modulates Human Cervical Smooth Muscle
608 Contractility-New Insights into Premature Cervical Failure and Spontaneous Preterm
609 Birth. *Reproductive sciences (Thousand Oaks, Calif.)* 2020.

610 52. Vink J. Y., S. Qin, C. O. Brock, N. M. Zork, H. M. Feltovich, X. Chen, P. Uriel, K.
611 M. Myers, T. J. Hall, R. Wapner, J. K. Kitajewski, C. J. Shawber and G. Gallos. A new

612 paradigm for the role of smooth muscle cells in the human cervix. *American Journal of*
613 *Obstetrics and Gynecology* 2016.

614 53. Westervelt A. R., M. Fernandez, M. House, J. Vink, C.-L. Nhan-Chang, R.
615 Wapner and K. M. Myers. A Parameterized Ultrasound-Based Finite Element Analysis
616 of the Mechanical Environment of Pregnancy. *Journal of biomechanical engineering*
617 139: 2017.

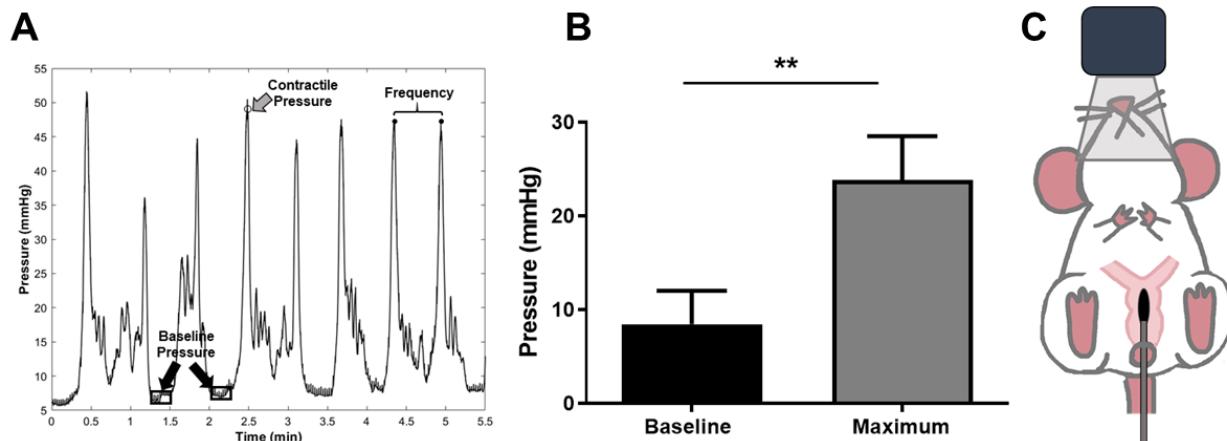
618 54. White S. E., C. K. Conway, G. L. Clark, D. J. Lawrence, C. L. Bayer and K. S.
619 Miller. Biaxial Basal Tone and Passive Testing of the Murine Reproductive System
620 Using a Pressure Myograph. *Jove-Journal of Visualized Experiments* 2019.

621 55. Yoshida K., H. Jiang, M. Kim, J. Vink, S. Cremers, D. Paik, R. Wapner, M.
622 Mahendroo and K. Myers. Quantitative evaluation of collagen crosslinks and
623 corresponding tensile mechanical properties in mouse cervical tissue during normal
624 pregnancy. *PLoS ONE* 9: e112391, 2014.

625 56. Yoshida K., M. Mahendroo, J. Vink, R. Wapner and K. Myers. Material properties
626 of mouse cervical tissue in normal gestation. *Acta Biomaterialia* 36: 195-209, 2016.

627 57. Yoshii A., S. Kitahara, H. Ueta, K. Matsuno and T. Ezaki. Role of Uterine
628 Contraction in Regeneration of the Murine Postpartum Endometrium 1. *Biology of*
629 *Reproduction* 91: 2014.

630 58. Zhou B., A. Rachev and T. Shazly. The biaxial active mechanical properties of
631 the porcine primary renal artery. *Journal of the Mechanical Behavior of Biomedical*
632 *Materials* 48: 28-37, 2015.

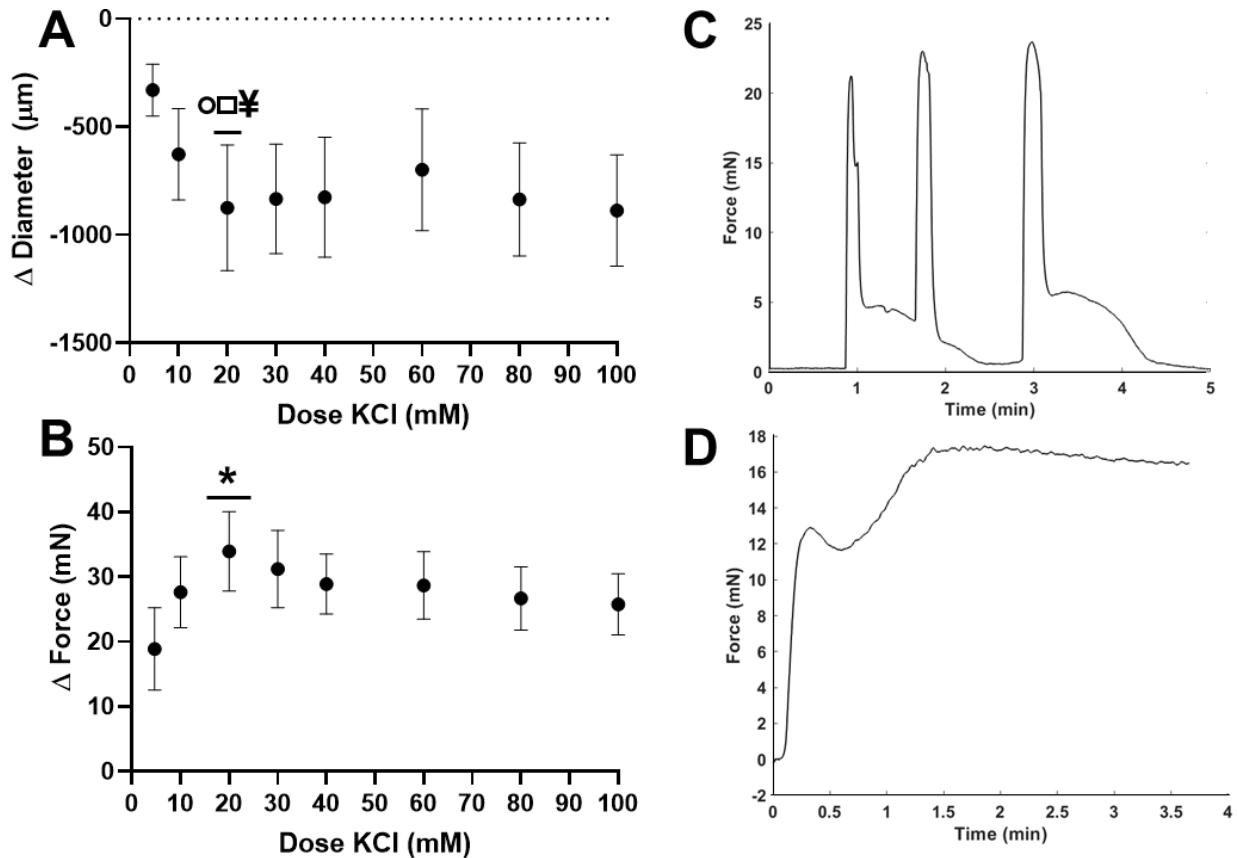

633 59. Zork N. M., K. M. Myers, K. Yoshida, S. Cremers, H. Jiang, C. V. Ananth, R. J.
634 Wapner, J. Kitajewski and J. Vink. A systematic evaluation of collagen cross-links in the

635 human cervix. *American Journal of Obstetrics and Gynecology* 212: 321.e321-
636 321.e328, 2015.

637

638

Figures and Tables:

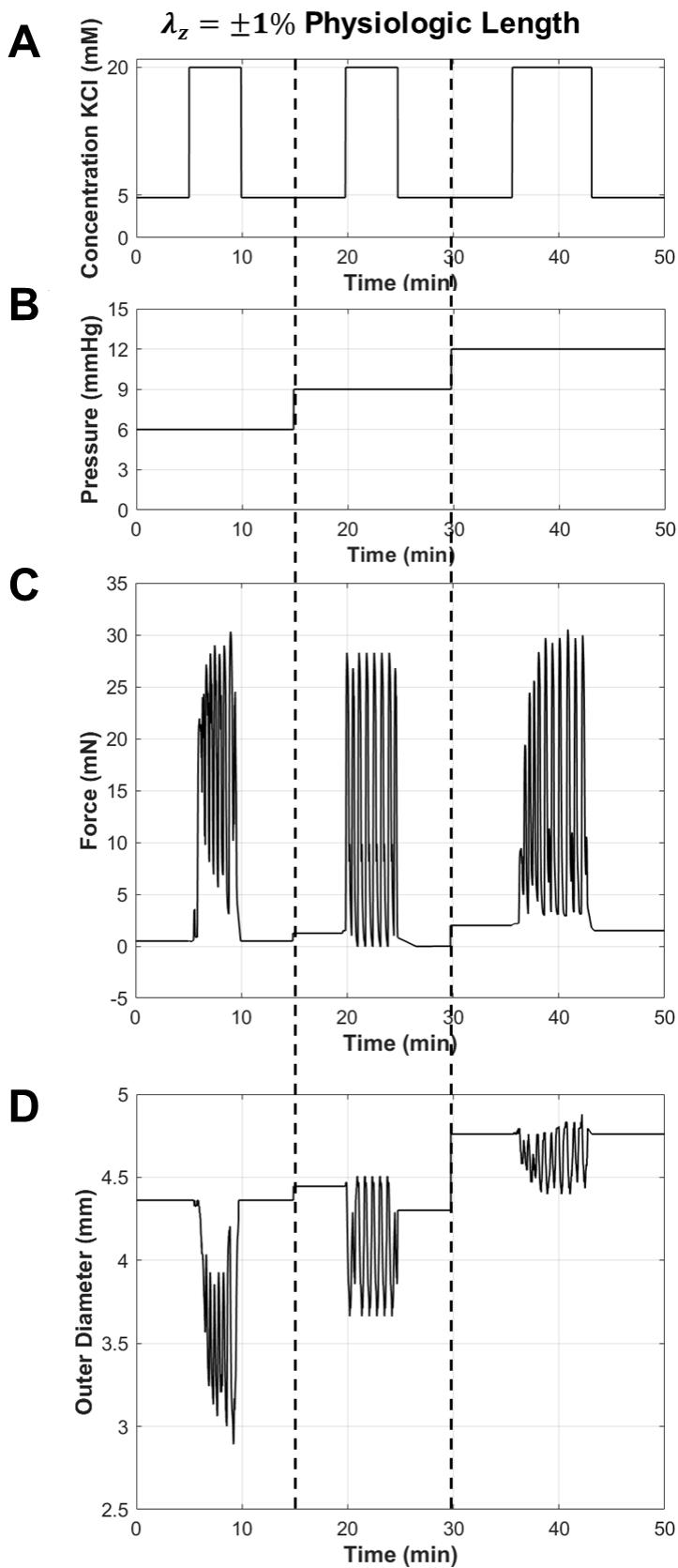

640

641

642 **Figure 1: (A)** Representative recording of *in vivo* pressure measurements utilizing
 643 ADInstruments Labchart software. *In vivo* cervical smooth muscle behavior exhibited a
 644 phasic response characterized by regular contractions throughout the recording. Average
 645 pressure between contractions, at the troughs of the waves, determined baseline
 646 pressure (black arrows and box). Contractile pressure (gray arrow and open circle) were
 647 taken at the peaks to determine average contracted pressure. Time from peak to peak
 648 determined the frequency (black closed circles) of contractions for each data set. **(B)**
 649 Average *in vivo* baseline (black) and maximum contractile (gray) pressure measurements
 650 in nulliparous mice at estrus (n=5). ADInstruments Labchart software determined the
 651 average baseline ($P= 9.00 \pm 3.00$ mmHg) and maximum ($P= 22.0 \pm 4.00$ mmHg) pressures.
 652 Pressure increased significantly ($p<0.01$; **) from the baseline to maximum amplitude
 653 during contraction. **(C)** Graphic representing the catheter placement within the cervix *in*
 654 *vivo* during data collection.

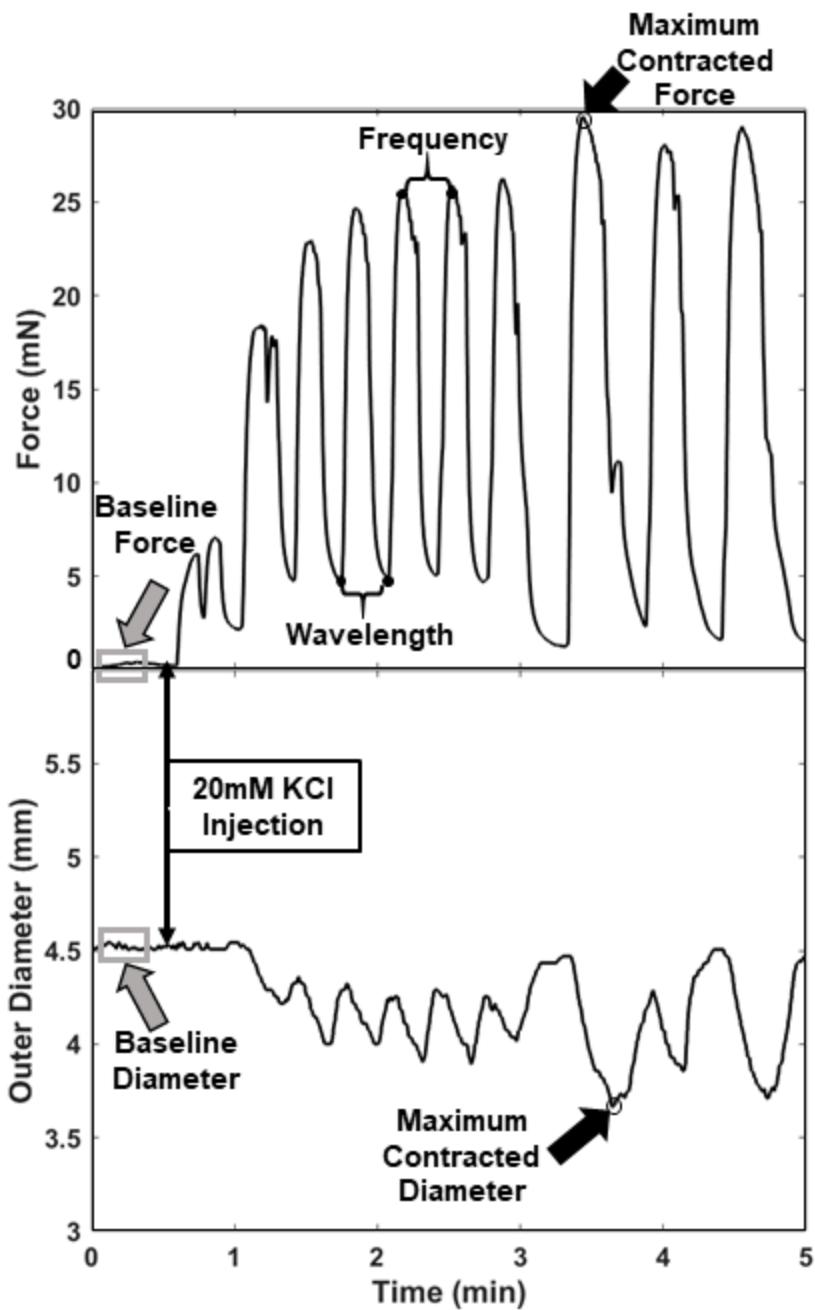
655

656

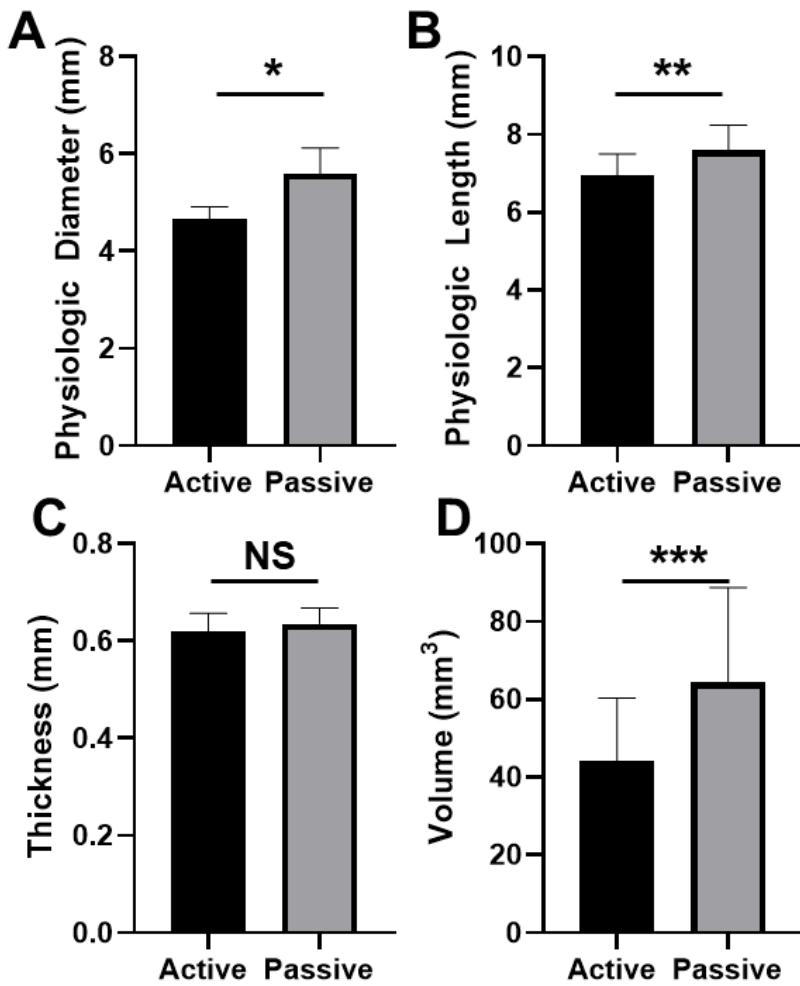

657

658 **Figure 2:** KCl dose response circumferential **(A)** and axial **(B)** contractility results with
 659 respect to the estimated physiologic (EP) length and mean physiologic pressure. **(A)**
 660 Change in diameter with contraction decreased from 4.7-20 mM KCl ($p<0.05$; 4.7 circle;
 661 10 square) compared to 20mM and plateaued from 20-100mM. However, total change in
 662 diameter with contraction at 60mM increased significantly ($p<0.05$; ¥) compared to 20mM.
 663 **(B)** Change in force with contraction increased significantly at 20mM compared to all
 664 doses ($p<0.05$; *). Further with increasing dose, contractile behavior altered from a phasic
 665 **(C)** to tonic **(D)** pattern as shown in the representative sample for 20mM **(C)** and 60 mM
 666 **(D)**. Phasic contractile behavior persisted through 20mM KCl **(C)**, and doses 40-100mM
 667 exhibited tonic contractile behavior resulting in plateaued force and outer diameter.
 668 Frequency of contractions increased non-significantly from the baseline concentration

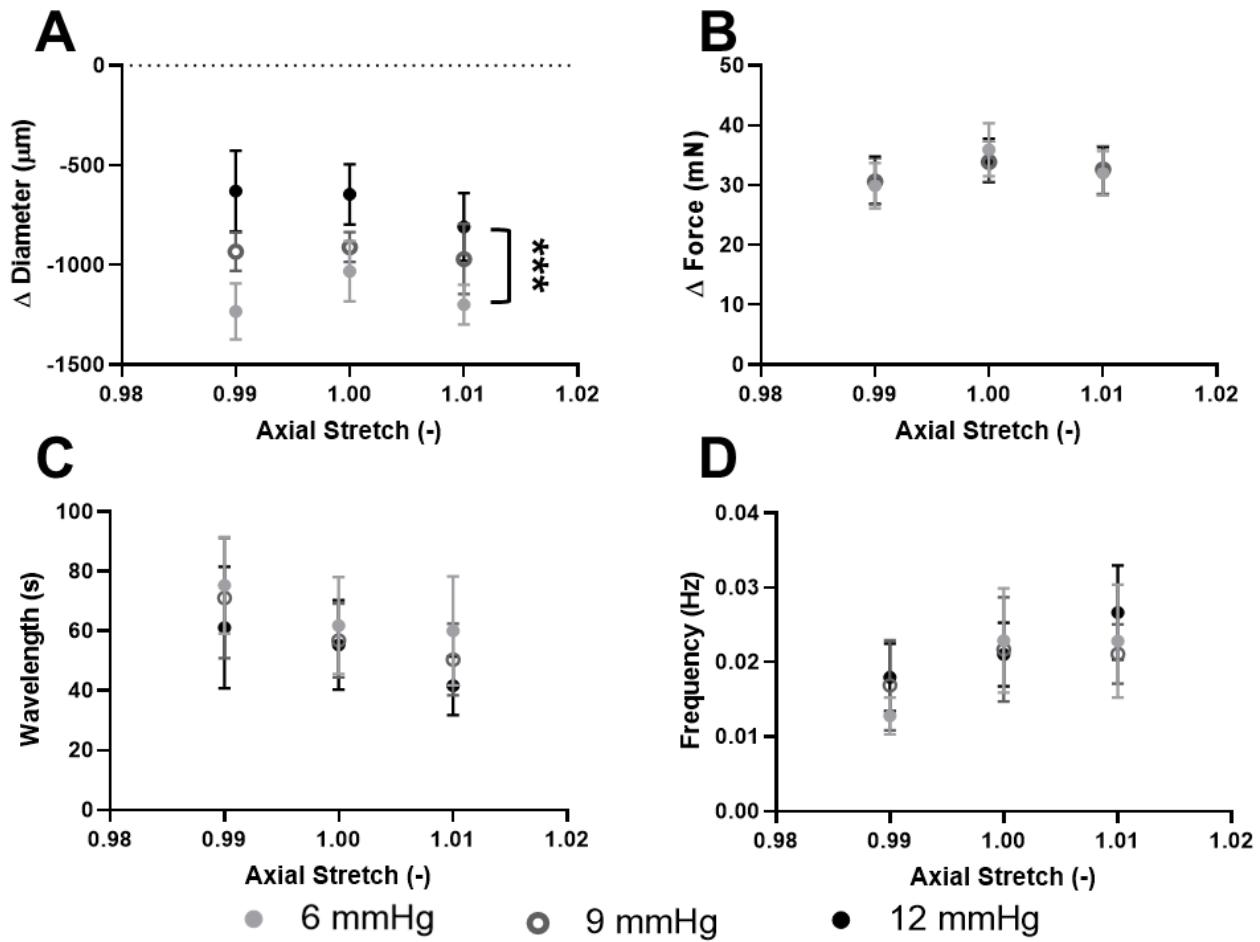
669 (4.7mM; 0.03±0.02Hz) up to 0.05±0.02 Hz at 20mM. Following 40 mM of KCl, the
670 concentration frequency decreased to 0Hz with tonic contraction.


671

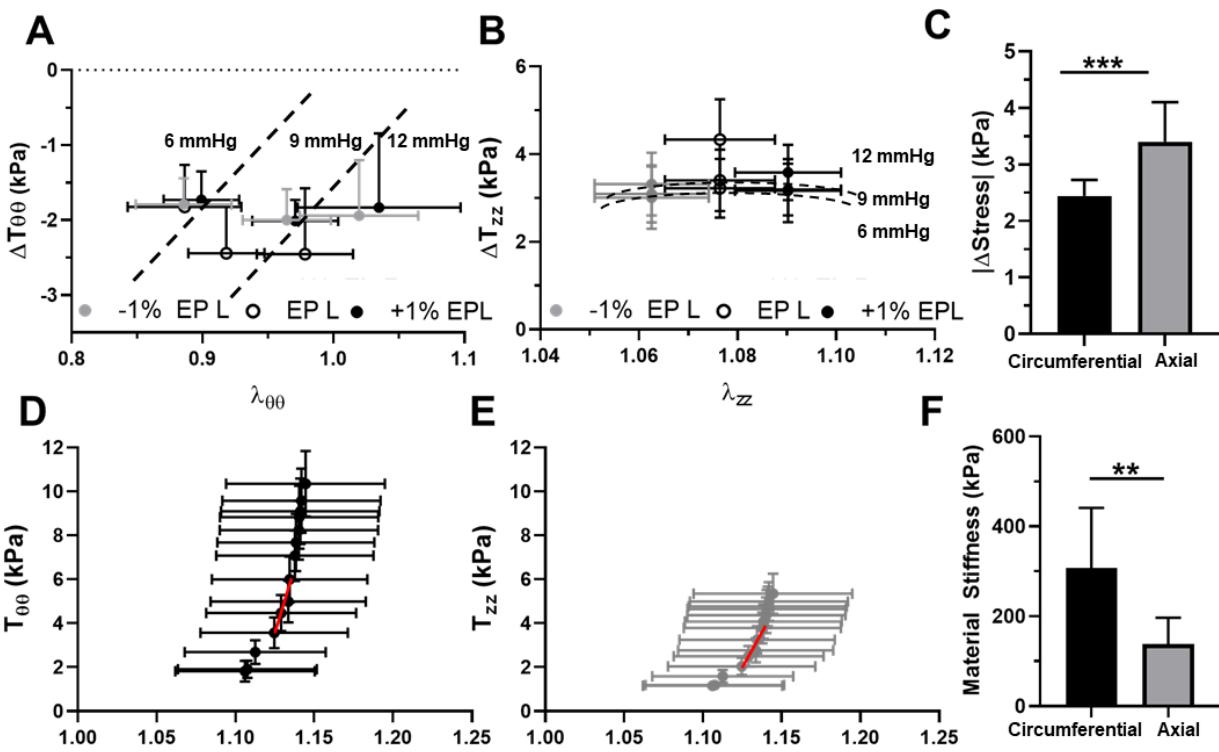
672


Figure 3: Maximum contractility testing protocol schematic for set axial-extension and alternating pressures. Cervices equilibrated after each test for five minutes followed by five minutes of equilibration with each change in pressure or axial-extension.

(A) Times and concentrations of KCl within the tissue bath. Wherein 20 mM induced maximum contraction and 4.7 mM acted as the baseline content in Kreb's solution. **(B)** Pressure throughout maximum contractility testing for one axial-extension. Maximum contractility was induced at the mean physiologic pressure ($P=9.0 \pm 3.0$ mmHg). Dashed lines represent the pressure change throughout the protocol. **(C, D)** Change in force and outer diameter with maximum contraction and during equilibration periods.


Figure 4: Representative schematic of testing data from a maximum contractility test executed at the estimated physiologic (EP) length and mean physiologic pressure. Baseline force and diameter (gray arrows and boxes) were recorded at the beginning of the test prior to KCl injection. Wavelength (closed circles at troughs) was measured as the time for a contraction to complete one cycle (trough to trough). Whereas frequency (closed circles at peak) was measured as the

715 number of contractions within a time frame (peak to peak). Maximum contracted force
 716 and diameter (black arrows and open circles) were identified as the maximal force at the
 717 inflection of a contraction and the corresponding diameter.


718 **Figure 5:** Geometry recorded during mechanical testing at the active (black) and passive
 719 (gray) states revealed a significant increase in passive geometry. **(A)** Physiologic
 720 diameter, the diameter at the physiologic length and mean physiologic pressure,
 721 increased significantly ($p<0.05$; *) from 4.67 ± 0.25 mm to 5.59 ± 0.53 mm. **(B)** Physiologic
 722 length significantly increased ($p<0.01$; **) from 6.96 ± 0.54 mm to 7.59 ± 0.66 mm between
 723 active and passive protocols. **(C)** Thickness did not significantly increase in the passive
 724 state (0.62 ± 0.04 mm vs 0.64 ± 0.03 mm). **(D)** Volume of the unloaded cervix increased
 725 significantly ($p<0.005$; ***) after smooth muscle relaxation where the active volume
 726 measured 44.2 ± 7.22 mm³ and the passive measured at 64.3 ± 11.0 mm³.

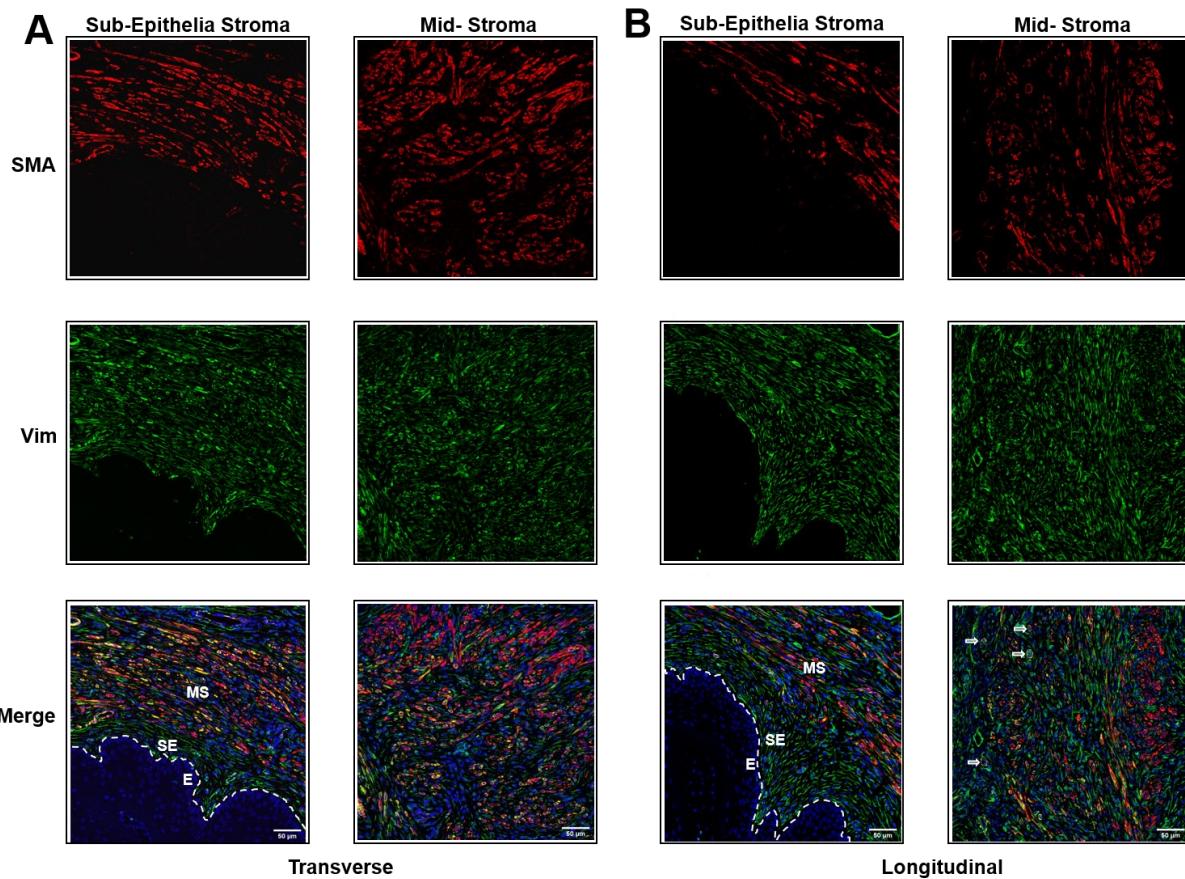
727

728

729 **Figure 6:** (A) Circumferential contraction measured by change in diameter during
 730 maximum contractility protocol at 9 combinations of pressures ($P=9.0\pm3.0$ mmHg) and
 731 axial-extensions $\pm 1\%$ EPL ($n=5$). Where 6 mmHg is represented by gray closed circles,
 732 9 mmHg by dark gray open circles, and 12 mmHg as black closed circles. Total change
 733 in diameter during contraction significantly decreased ($p<0.001$; ***) at the high pressure
 734 ($P= 12$ mmHg; black closed) compared to the low pressure ($P= 6$ mmHg; gray closed)
 735 loading for all axial-stretches. (B) Axial contraction measured by change in force did not
 736 significantly differ with axial-stretch or pressure. (C, D) Wavelength and frequency of
 737 contractions induced by 20 mM KCl did not significantly differ with increase pressure or
 738 axial-stretch.

739

740 **Figure 7: (A)** Isolated active mechanical contribution in circumferential stress against
 741 circumferential stretch during at the estimated physiologic length (EP L; dark gray open
 742 circles), -1% EP L (closed gray circles), and +1% EPL (closed black circles) for all
 743 pressures ($n=5$). Stresses within a pressure grouping are separated by dashed lines. **(B)**
 744 Isolated active contribution with respect to the axial stress plotted against axial stretch for
 745 all axial stretches and pressures. Where dashed lines separate the mean physiologic
 746 pressure ($P= 9.0$ mmHg) from the above ($P= 12$ mmHg) and below ($P= 6.0$ mmHg)
 747 pressure groupings. **(C)** Absolute change in circumferential (black) and axial (gray) stress
 748 at the EP length and pressure where axial stress (3.40 ± 0.70 kPa) significantly ($p < 0.001$;
 749 **) increased compared to circumferential stress (2.44 ± 0.28 kPa) during maximum
 750 contraction. **(D)** Circumferential (black) and **(E)** axial (gray) stress-stretch curves with
 751 respect to the circumferential stretch, respectively. The physiologic range of pressures

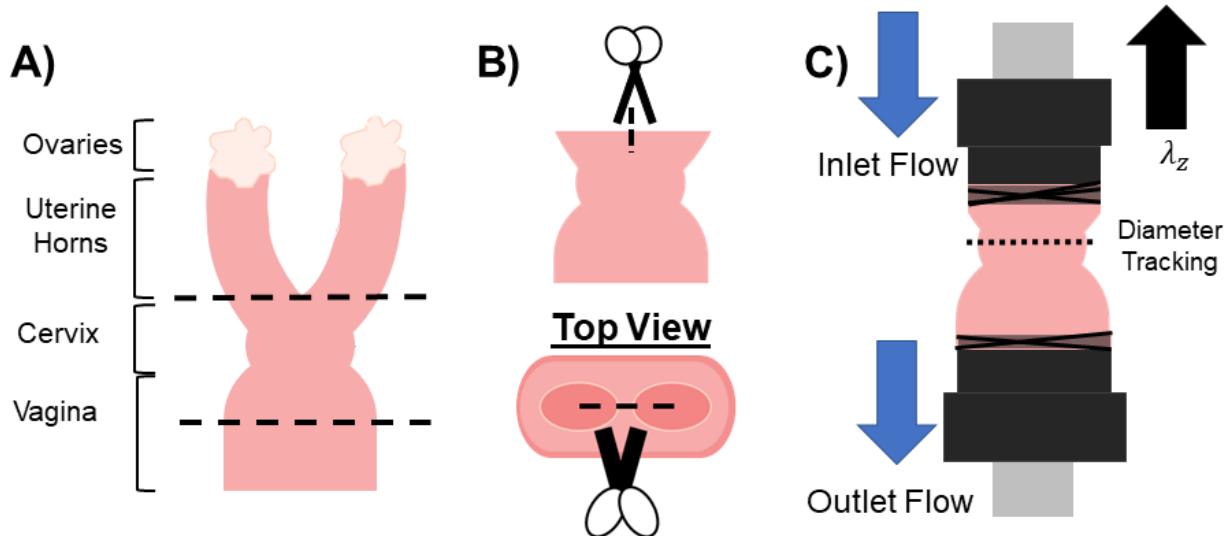

752 (P= 9.0±3.0 mmHg) during the passive mechanical test were mapped to corresponding
753 circumferential stretches and stresses. The lines denote the area of the stress-stretch
754 curves in which the slope was determined for material stiffness calculations. (F)
755 Circumferential (black) and axial (gray) material stiffness from the EP length. Two-way
756 ANOVA (axial-stretch, direction) and post-hoc t-tests confirmed a significant increase
757 (p<0.01) in circumferential stiffness (327± 142 kPa) compared to axial stiffness (136 ±
758 51.2 kPa).

759

760

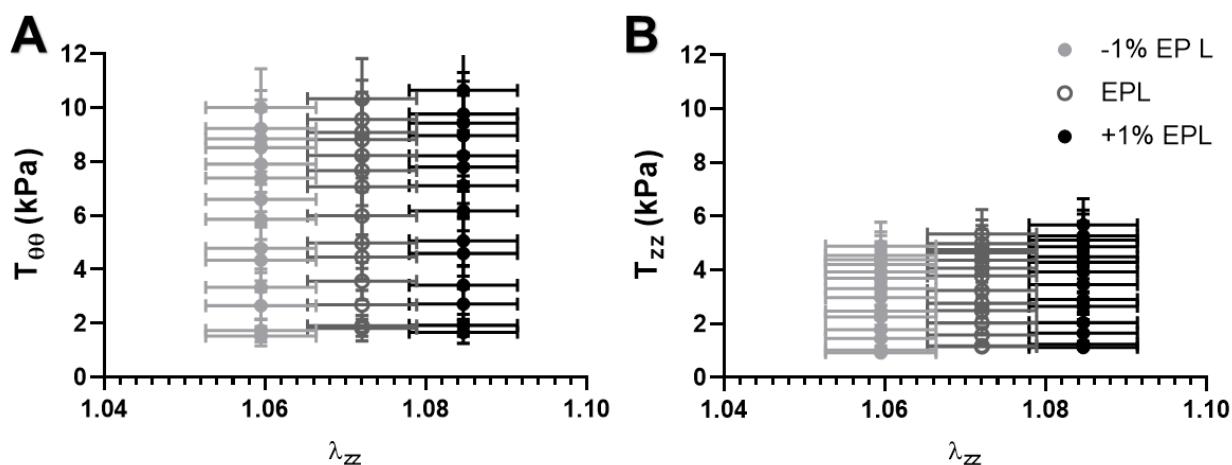
761

762



763

764 **Figure 8:** Dual immunofluorescent imaging taken at 20x of α SMA⁺ (SMA, red) and
 765 vimentin⁺ (Vim, green) cells in the (A) transverse and (B) longitudinal plane of the sub-
 766 epithelial stroma (SE) and mid-stroma (MS) from cervical sections taken from mice in
 767 estrus ($n=2$). Wherein the α SMA⁺ cells represent cSMCs, vimentin⁺ cells represent
 768 fibroblasts, cells co-stained with α SMA⁺ and vimentin⁺ (yellow) indicate myofibroblasts,
 769 and arrowheads indicate blood vessels. The SE stroma populations primarily contain
 770 vimentin⁺ cells, while the MS contains both vimentin⁺ and α SMA⁺ cells. Comparatively,
 771 fewer cells in the MS region co-stain for vimentin⁺ and α SMA⁺.


772

Supplemental Figures

773 **Supplemental Figure 1:** (A) Graphic of the murine reproductive tract highlighting the
 774 approximate geometry and location of the ovaries, uterine horns, cervix, and vagina.
 775 Where the dashed lines represent the location of cuts made during dissection to isolate
 776 the cervix. Contrastingly to the human reproductive system, the murine reproductive
 777 system includes two uterine horns that meet to form a single canal within the cervix. Prior
 778 research of the mouse reproductive tract reports approximate diameter values of 2.0 mm
 779 for the uterine horn [1], 3.25 mm for the cervix [1], 6.0 mm for the proximal vagina [2], and
 780 5.5 mm for the distal vagina [2]. (B) Graphic outlining specimen preparation of the cervix
 781 for cannulation. Due to the short length of the murine cervix, a small portion of uterine
 782 horn and vagina remain attached to be used as anchor points within the biaxial device
 783 without interfering with cervical geometry. To finalize preparation of the cervix for
 784 cannulation, the uterine horns are cut down to the bifurcation point (seen in the top view)
 785 and utilizing micro-scissors the wall separating the uterine canals was cut. (C) Schematic
 786 of the cervix cannulated within the biaxial inflation-extension device. The vaginal and
 787 uterine ends were pulled gently onto the cannula and secured with 6-0 silk suture. The
 788 Danish Myoview Technology software and an Olympus camera tracked the outer

789 diameter at the mid-cervix represented by the dashed line. Pressure transducers and a
 790 pump controlled the flow and pressure of the Kreb's Ringer Buffer through hollow tubes
 791 in the cannula into the tissue. The inlet flow was aligned with the uterine end and the
 792 outlet flow with the vaginal end to simulate the flow or labor or menstruation.
 793 Simultaneously, a manual axial micrometer controlled the axial length and stretch (λ_z) of
 794 the tissue at a rate of 0.01mm/sec.

795
 796 **Supplemental Figure 2: (A)** Circumferential ($T_{\theta\theta}$) and **(B)** axial (T_{zz}) stress with respect
 797 to axial-stretch (λ_z) from the pressure-inflation cycles at the estimated physiologic (EP)
 798 length (dark gray open circle), -1% EPL (light gray close circle), and +1% EPL (black
 799 closed circle). Neither circumferential nor axial stress changed significantly with axial-
 800 stretch.

801

802 [1] C.K. Conway, H.J. Qureshi, V.L. Morris, E.K. Danso, L. Desrosiers, L.R. Knoepp,
 803 C.J. Goergen, K.S. Miller, Biaxial biomechanical properties of the nonpregnant murine
 804 cervix and uterus, Journal of Biomechanics 94 (2019).

805 [2] G.L. Clark, A.P. Pokutta-Paskaleva, D.J. Lawrence, S.H. Lindsey, L. Desrosiers, L.R.
806 Knoepp, C.L. Bayer, R.L. Gleason, K.S. Miller, Smooth muscle regional contribution to
807 vaginal wall function, *Interface focus* 9(4) (2019) 20190025.
808