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Abstract

Throughout the estrus cycle, the extracellular matrix (ECM) and cervical smooth
muscle cells (cSMC) coordinate to accomplish normal physiologic function in the non-
pregnant cervix. While previous uniaxial experiments provide fundamental knowledge
about cervical contractility and biomechanics, the specimen preparation is disruptive to
native organ geometry and does not permit simultaneous assessment of circumferential
and axial properties. Thus, a need remains to investigate cervical contractility and passive
biomechanics within physiologic multiaxial loading. Biaxial inflation-extension
experiments overcome these limitations by preserving geometry, ECM-cell interactions,
and multiaxially loading the cervix. Utilizing in vivo pressure measurements and inflation-
extension testing, this study presented methodology and examined maximum biaxial
contractility and biomechanics in the nulliparous murine cervix. The study showed that
increased pressure resulted in decreased contractile potential in the circumferential
direction, however, axial contractility remained unaffected. Additionally, total change in
axial stress (AT,,) increased significantly (p<0.05) compared to circumferential stress
(ATge) with maximum contraction. However, passive stiffness was significantly greater
(p<0.01) in the circumferential direction. Overall, axial cSMC may have a critical function
in maintaining cervical homeostasis during normal function. Potentially, a loss of axial
contractility in the cervix during pregnancy may result in maladaptive remodeling such as
cervical insufficiency.

Keywords: Cervix, Reproductive Health, Contractility, Biomechanics
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Introduction

The coordination of smooth muscle cells (SMC) and extracellular matrix (ECM)
components impart function to the female reproductive system?2. Altered contractility and
passive mechanical properties, in response to mechanical loading and hormonal
signaling, bestow the reproductive system with the ability to undergo dramatic changes
in geometry and function during physiological processes, such as pregnancy# 13. 15 16, 24-
26, 33, 39 Determining contractile and passive biomechanical properties of the female
reproductive organs could provide crucial information about physiologic reproductive
function. Specifically, the cervix functions to protect the uterine cavity from external
factors, facilitate fertilization, and dilate to allow for the passage of menstrual contents in
the non-pregnant state through regular phasic contractions'® 2. However, the role and
behavior of cervical SMC (cSMC) in reproductive function is contradictory and remains

poorly understood'? %152,

While uterine contractility and passive mechanical properties during the
estrous/menstrual cycle and pregnancy garnered focus in prior research, the
demonstration that SMCs are present in the human and rodent cervix warrants further
understanding of their role in the non-pregnant state® 10. 14, 27, 34,35, 40, 41, 43,49, 57 '|n 1947,
Danforth described the human cervix as a primarily collagenous organ with limited SMC
and contractile ability'2. The research proposed a significant active SMC contribution from
the uterus and a passive role of the cervix during pregnancy and labor'2. However, recent
research emphasizes the independent role of cervical contractile function and mechanical
behavior in the non-pregnant and pregnant states'®: 3. 16.22. 51,52 Prior work, to a limited

extent, investigated in vitro cervical contractility utilizing strips, rings, or individual cSMCs
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in human®' %2 and rodent models'® 16 22, Although the experimental methods provided
fundamental information about the contractile behavior of the cervix, the experiments
require disruptive specimen preparation techniques and assess circumferential and axial
properties independently'3. 16.22.25. 38,56 The cervix is anisotropic and loaded multiaxially
within the body, thus, there is a need to utilize testing methods that retain cervical
geometry, native ECM-cSMC interactions, and simultaneously quantify circumferential

and axial contractility within a physiologic loading environment® 10 19, 54,

Biaxial inflation-extension testing overcomes limitations imposed by uniaxial
configurations by simultaneously loading tissues circumferentially via pressurizing the
organ within a physiologic range and longitudinally by axially extending the organ?'.
Previously, biaxial inflation-extension testing quantified mechanical properties of
vasculature® 1921, 44 the Gl tract*> 46, and reproductive organs? 9 10. 42,54 Additionally,
research determined contractile behavior in vasculature3® 36 %8 and the vagina® utilizing
inflation-extension testing. However, there is a need to describe the in vivo cervical
loading environment to permit assessment of contractility and passive biomechanics
within a physiologically relevant range ex vivo. Therefore, this study seeks to introduce
methods to determine the in vivo cervical pressure environment and utilize the information
to design a protocol to determine the biaxial maximum contractility and passive

mechanics of the murine cervix.
Materials and Methods

Animal Care
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Mechanical testing experiments herein were conducted on a total of n=710
nulliparous CD-1 female mice aged 8-12 weeks (Charles River, Houston, TX). The Tulane
University Institutional Animal Care and Use Committee (IACUC) approved of care and
the conducted experiments. Immunofluorescence experiments were conducted on a total
of n=2 nulliparous C57BI6/SvEv female mice aged 12-24 weeks with approval from the
University of Texas Southwestern IACUC. These mice were bred and maintained within
a breeder colony at The University of Texas Southwestern Medical Center (Dallas, TX).
Mice were provided a normal chow diet and housed in a 12-hour light/dark cycle. All mice

were cycle matched at estrus via visual determination’.
In Vivo Pressure Measurements

Attempting to recapitulate the key aspects of the in vivo loading environment during
mechanical testing can provide important information about the mechanical behavior and
contractility at an estimated physiologic state. Therefore, transcervical pressure
measurements were taken from (n = 5) mice at estrus to determine the estimated loading
environment for the murine cervix during mechanical testing (Fig. 1)*3. A 2F Millar Mikro-
tip® Catheter (ADInstruments, Colorado, USA) was connected to ADInstruments Bridge
Amplifier and PowerLab (ADInstruments, Colorado, USA) and allowed to equilibrate in a
water bath filled with physiologic saline at 37°C for 30 minutes. Utilizing a Y connection

tube, the catheter was calibrated with a pressure gauge after the 30-minute equilibration.

Mice were anesthetized with 1%-1.5% isoflurane mixed with 100% O2 and placed on
a heating pad*3. Using blunt forceps and a disposable plastic tube acting as a speculum,
the vagina was gently spread laterally. Next, a directed light source aligned down the

plastic tube allowed for the cervical centered within the vaginal fornix to be visualized.

5
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Following, the pressure catheter was inserted into the cervical canal. Appropriate
placement of the catheter was confirmed with a marking approximately 6 mm from the
probe based on the length of the vagina from prior studies® 42, an increase in pressure*?,
and phasic contractions' 22, Upon confirmation of appropriate placement, the catheter
equilibrated for 5 minutes followed by 5 minutes of recorded data on LabChart Pro
software (ADInstruments, Colorado, USA). Recorded data measured baseline pressure,
pressure with contraction, and frequency of contraction (Fig. 1). After data recording, the
catheter was removed and soaked in Terg-A-Zyme®, an enzymatic cleaning solution, for
15 minutes. Between each procedure the catheter was cleaned with the enzymatic
cleaning solution, equilibrated for 30 minutes, and calibrated. Mice were monitored and

allowed to recover in a separate clean cage before returned to littermates.
Specimen Preparation

A total of (n=10) CD-1 female mice cycle matched at estrus were utilized for dose
response and contractility protocols. Wherein, recovered mice from the in vivo pressure
procedure (n=5) were assigned to the dose response study at the following estrus phase.
Additionally, a separate cohort of CD-1 mice (n=5) were utilized for the maximum
contractility and passive mechanics protocol’. The following sample preparation
techniques applied to both protocols listed below. All mice were euthanatized via guillotine
to preserve SMC viability®. The reproductive systems were excised from mice
immediately and submersed in 4°C Hanks Balanced Saline Solution (HBSS). The cervical
complex was isolated from the reproductive tract by singular cuts superior to the distal
vaginal and inferior to the uterine body (Supplemental Figure 1). Next, the cervix was

cannulated with 6-0 silk suture within a biaxial inflation-extension device (Danish
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MyoTechnologies, Aarhus, Denmark). HBSS was replaced with 37°C Kreb’s Ringer

Buffer (Kreb’s Buffer) aerated with 95% O2and 5% CO:a.

During excision, the reproductive organs retract from the original position following
dislocation of the pubic synthesis and subsequent removal of fascial tetherings'%- 42 54,
Due to the retraction, the cervix was extended to an estimated unloaded length in which
the organ was neither in tension nor buckled and pressurized with a tare pressure of P=
3.0 mmHg to prevent collapse of the organ at P= 0 mmHg? "% 42. Unloaded length and
unloaded outer diameter at the tare pressure was recorded with digital calipers and a
Nikon Eclipse TS100 inverted microscope (Nikone, Melville, NY, U.S.A.), respectively.
Utilizing the mean in vivo baseline pressure measurements from the in vivo pressure
measurement experiments (Fig. 1), the mean physiological pressure for mechanical
testing protocols was determined as P= 9.0 mmHg. To maintain SMC viability, the
maximum pressure extended to one standard deviation below the mean maximum
contractile pressure (P=22.0+4.0 mmHg). Cervices were preconditioned circumferentially
at the unloaded length for 5 cycles of increasing and decreasing pressure (P= 0-18
mmHg). Following, an estimated physiological (EP) length was determined first by using
the measured retraction following dissection, followed by leveraging the theoretical
assumption that axial force will be maintained with increasing pressure over the
physiologic range to preserve energy as described previously®°. Additional circumferential
preconditioning (P= 0-18 mmHg) was performed at the EP length for 5 cycles and axial
preconditioning performed by cyclically stretching cervices axially +1% the EP length at
1/3 max pressure (P= 6.0 mmHg)®> '°. Following preconditioning, the unloaded length was

re-determined®. To acclimate cSMCs to potassium chloride (KCI), the cervical complex
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was pressurized to the mean physiologic pressure (P= 9.0 mmHg) at the unloaded length,
axially extended until the axial force held constant at OmN, and dosed with 20mM KCI for
5 minutes® 36, Following, the bath was replaced with fresh Kreb’s buffer and the cervix
elongated to the EP length. The cervix at the EP length and mean physiologic pressure

equilibrated for 10 minutes'® 42,
Dose Response

To determine the optimal dose of the agonist potassium chloride (KCI) to induce
maximum contraction, an isometric-isobaric dose response protocol was performed at the
EP length and the mean physiologic pressure (P = 9.0 mmHg) for the first cohort of
animals (n=5). Following the equilibration period, tissues were subjected to increasing
concentrations of KCI (4.7-100mM)® at the EP length and mean physiologic pressure.
Between each dosing, the cervix was washed and submerged in fresh Kreb'’s solution
and equilibrated for 5 minutes. Circumferential and axial contractions were measured via
diameter changes tracked at the mid-cervix and changes in measured axial force with a

camera and force transducer, respectively (Fig. 2).
Biaxial Contractility and Passive Mechanics
Maximum Contractility

Utilizing the second cohort of mice (n=5), cervices underwent a contractility protocol
with nine combinations of physiologic lengths and pressures to assess the role of
circumferential and axial loading on contractility following the equilibration period 3¢ (Fig.
3). Each combination randomized the length (the EP length and +1% EP length) and

pressure (mean * standard deviation of the physiologic pressure; P= 9.0+3.0 mmHg).
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Data was recorded for 5 minutes after 20mM KCI dosing followed by a resting period for
5 minutes after buffer replacement or after pressure and axial length change®. Then, the
cervices were returned to the unloaded geometry and B-mode ultrasound images

(Vevo2100; 40MHz transducer) of cervical thickness were taken at the unloaded state®

10

Passive Mechanics

Returned to the EP length of the maximum contractility experiment, cervices were
bathed in calcium-free Kreb’s and dosed with 2mM egtazic acid (EGTA) for 30 minutes
to remove active SMC contribution. Abiding by the steps outlined in Specimen
Preparation, passive unloaded geometry measurements, unloaded circumferential
preconditioning, determination of the passive EP length, and circumferential and axial
preconditioning were performed followed by 10 minutes of equilibration. Three cycles of
a pressure-inflation protocol were performed at the EP length and +1% the EP length from
P= 0-18 mmHg'% 42 %4 Following, axial force-elongation protocols 1% EP length over a
range of pressures (P= 3, 6, 12, and 18 mmHg) were performed'® 42 54 The cervix was

returned to the unloaded geometry and the thickness recorded with ultrasound.
Immunofluorescence

Transverse and longitudinal sections (5um) of the cervix at estrus (n=2) were
deparaffinized, blocked, and co-stained with primary and secondary antibodies. Markers
targeted included aSMA (Anti-Mouse 1:300, Monoclonal Anti-Actin, a-Smooth Muscle,
A2547, Sigma-Aldrich) and Vimentin (Anti-Rabbit 1:250, Recombinant Anti-Vimentin

antibody [EPR3776]-Cytoskeleton Marker, ab92547, Abcam). After overnight primary
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antibody incubation at 4°C, the slides were washed and incubated with secondary
antibody (Goat anti-Rabbit 1:500 (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor
488,A-11008, and Goat anti-Mouse 1:500 (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor 546, A-11030, Invitrogen-ThermoFisher Scientific) for 30 minutes
at room temperature. After PBS washes, slides were mounted with ProLong™ Gold
Antifade Mountant with DAPI (P36935, ThermoFisher Scientific) and viewed on a Zeiss
LSM-880 Confocal Microscope (Zeiss International, New York, USA) at 20X
magnification. For each transverse and longitudinal tissue section, both the sub-epithelial

and mid-stromal regions were imaged in at least four locations at 20X and 40X.

aSMA and Vim positive area fractions for the mid-stroma and subepithelium in the
transverse and longitudinal sections were calculated utilizing Imaged (National Institutes
of Health, Bethesda, MD, U.S.A.) and GIMP, an open source image manipulation
program. Images from the red (aSMA) and green (Vim) color channels were inverted and
converted to gray scale in Imaged. The inverted images were opened in GIMP and a
histogram tool within the software was adjusted to represent the range of intensities of
the positive cell staining. The area fraction was determined as the number of pixels within

the boundaries of the threshold divided by the total number of pixels in the image.

Data Analysis

Thickness, Area, and Volume Calculation

Utilizing ultrasound images and ImagedJ (National Institutes of Health, Bethesda,
MD, U.S.A.) software, the inner canal and outer circumference excluding the vaginal

fornix were traced and lines drawn between the inner and outer perimeters were used to

10
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measure thickness. To determine cross sectional area and volume, cervical geometry
was simplified to a hollow cylinder. Applying unloaded geometry (length, diameter, and
thickness), cross-sectional area (4), and volume (V) were determined using the following

equations (Eq. 1,2):
A= m(RZ-RY) (1)
V=m(R2-R?)L, (2)

where R, is the undeformed outer radii, R; the undeformed inner radii, and L the unloaded

length.

Circumferential stretch (14) and axial stretch (1,) were determined by (Eq. 3, 4)°:

Ao = Tmia/Rmia (3)
and
=1 (4)

R

whereinrmid=r"_ri/2 is the deformed mid-wall radius, R4 = O_Ri/z is the

unloaded mid-wall radius, and [ is the deformed length.

Contractility

Circumferential and axial contraction were determined via changes in diameter and
axial force, respectively (Fig. 4). Additionally, circumferential (Tpe) and axial (T,,) 15t

Piola-Kirchhoff stress with maximum contraction were determined (Eq. 5, 6)%% 0.

_ Pr;
Ag(ro—1p’

()

Too

11
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Ft Pr?

T,, = . (6)

T Am(E-r?)  Ag(ro-T)(ro+Ty)’

Wherein P is intraluminal pressure, , r; = |12 — —is the deformed inner radius, 7, is the
4

deformed outer radius, and F, is the force from the axial force transducer’® 19 30,
Contribution of the active SMC to the change in stress with contraction (AT) was

calculated by subtracting the relaxed or passive state stress (T, 4ssive) from the contracted

stress (T,ontracteq) @t Matching axial-extensions and pressures (Eq. 7, 8)" 9 30. 36, 58:
_ mqcontracted passive

AToo = Tog — Tog (6)
— tracted passive

ATZZ — TZCZOTL ractea __ TZZ (7)

Material Stiffness

Material stiffness in the circumferential and axial loading directions were
determined by calculating the slope of the stress-stretch curves at a physiologic range of

pressures (P=9.0+£3.0 mmHg).
Statistics

Paired t-tests were utilized to determine differences between in vivo baseline and
maximum pressure and differences in passive and active geometry. One-way ANOVA
with respect to dose determined changes in circumferential and axial contractility. Two-
way ANOVAs (axial-stretch, pressure) were utilized to determine differences in
circumferential and axial contractility. Further, a two-way ANOVA with respect to axial-
stretch and loading direction was used to determine differences in circumferential and
axial material stiffness. Posthoc t-tests with Bonferroni corrections were utilized when

appropriate (p<0.05/2).
12
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Results

All results presented herein are represented as mean+SEM apart from the in vivo
data which is presented as the meanzsd. In vivo pressure data are represented as
meanzsd to provide a larger margin of error to better capture the contractile response

within the in vivo pressure range.

In vivo Pressure and Dose Response

In vivo transcervical pressure measurements at estrus revealed an average in vivo
baseline pressure of 9.00+3.00 mmHg (meantsd), maximum contractile pressure of
22.0+4.00 mmHg (meanzsd), and a frequency of one contraction per 23.5+5.64 seconds
(meantsd) (Fig. 1). Paired t-tests confirmed a significant increase (p<0.07) in cervical

pressure from baseline to maximum amplitude with contraction in vivo.

Dose response curves of KCI at the EP length and mean physiologic pressure
identified 20mM as the optimal dose to induce maximum contraction (Fig. 2). Axial force
with contraction with dose increased significantly (p<0.05) at 20mM compared to all doses
followed by a plateau of axial force during contraction at higher doses (30mM-100mM) of
KCIl. Change in diameter with contraction decreased maximally at 20mM-100mM
compared to 4.7mM, 10 mM KCI, and 60mM dosing. Further, phasic behavior abated with
increasing dose (30-100 mM) of KCI and the axial force and outer diameter transitioned

into a tonic contractile behavior (Fig. 2).

Geometry

13
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Passive physiologic diameter (p<0.05), EP length (p<0.01), and volume (p<0.005)
significantly increased compared to active geometry. However, thickness did not differ

significantly between the active and passive state (Fig. 5).
Biaxial Contractility

Induction of maximum contraction with 20mM KCI induced phasic contractions that
resulted in a decrease in diameter and increase in axial force (Fig. 3, 6). Additionally, all
samples contracted spontaneously without an agonist introduced to the bath as seen
previously in nulliparous mice at estrus?2. Two-Way ANOVA (axial-stretch, pressure) did
not detect differences with axial-extension (p=0.60) or between interactions (p=0.90).
However, ANOVA detected significance (p<0.001) with respect to pressure for
circumferential contractility. Posthoc t-tests with Bonferroni corrections (p<0.05/2)
determined significant effects on change in outer diameter with increased pressure
(p<0.001). Specifically, total change in diameter at high pressure (P= 12 mmHgQ)
diminished significantly (p<0.007) compared to total change in diameter at low pressure
(P=6 mmHg) (Fig. 6). However, Two-Way ANOVAs (axial-stretch and pressure)
determined no significant differences with axial-extension (p=0.40), pressure (p=1.00), or
interactions (p=1.00) with the change in axial force with maximum contraction.
Additionally, frequency and wavelength of contractions during the maximum contractility
protocol did not differ with alterations to pressure (p=0.90), axial-stretch (p=0.20), or

interactions (p=0.95) (Fig. 6).

The contracted SMCs and passive ECM contribute to the overall cervical
biomechanical properties, including wall stress (force over oriented area). Subtracting the

passive stresses from the active contractile stresses at matching pressures and axial-

14
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stretches quantifies the contribution of the active SMC during contraction3 3¢, Maximum
contraction induced a decrease in the change in circumferential stress (ATy) and
increase in axial stress (AT,,) at all pressures and axial-stretches (Fig. 7). Two-Way
ANOVA (axial-stretch, pressure) did not detect significant differences for ATy Or AT,
with change of pressure or axial-stretch. Total AT,, increased significantly with maximum

contraction compared to ATy (p<0.05) at the EP length and pressure (Fig. 7).
Biaxial Passive Mechanics

Passive material stiffness calculated from the slope of stress-stretch curves over
a range of physiologic pressures (P= 9.0+£3.0 mmHg) was significantly greater (p<0.01)
in the circumferential direction compared to the axial direction (Fig. 7)% 4. Circumferential
stiffness at the physiologic length measured 327+ 142 kPa and axial stiffness measured
136 £ 51.2 kPa (Fig. 7). Further, no significant differences in circumferential or axial

stress were identified with axial-extension (Supplemental Figure 2).
Immunofluorescence

Immunofluorescence of transverse and longitudinal cervical sections identified
fibroblast (aSMA-,Vim*) and cSMC (aSMA*, Vim") cell types within the stroma and the
stromal region adjacent to the epithelia, termed the sub-epithelial layer. Within the mid-
stroma, cSMC (aSMA*, Vim-) and fibroblast (aSMA-,Vim™*) populations are identified (Fig.
8). Within the transverse sections, aSMA* cells comprised 9.49+3.69% of the area and
Vim* cells filled 14.2+0.94% of the area. Longitudinal section area fractions calculated
11.2+3.30% aSMA* cells and 17.7+£3.80% Vim* cells. In contrast, the sub-epithelial layer

contains only fibroblast (aSMA-,Vim*) cells in the estrus cervix with an area fractions of

15
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16.45+3.45% and 13.4£2.07% in the circumferential and axial directions, respectively
(Fig. 8). Interestingly, a subpopulation of (aSMA* ,Vim*) cells reside within the mid-

stroma.
Discussion

This study, for the first time, presented methods to determine biaxial maximum
contractility within a physiologic loading environment in the murine cervix utilizing
inflation-extension techniques. Additionally, transcervical pressure catheter experiments
described the in vivo baseline pressure and contractile amplitude and frequency in the

murine cervix.

Historically, research considered the cervix as an extension of the uterus with
minimal or no independent contractile ability'?. However, recent studies emphasized the
importance and individual nature of the cSMC microstructure and behavior compared to
the other reproductive organs'3 16. 22, 51. 52 Further, Vink et al. described an altered
contractile response of cSMC with respect to ECM stiffness suggesting that mechanical
loading may dictate cervical contractile behavior®'. While prior work investigated the
uniaxial contractile behavior of the cervix, the methods did not preserve the native ECM-
cell interactions and did not account for multiaxial loading of the cervix in vivo'3 16 22,
Biaxial inflation-extension active and passive mechanical testing methods well-
established in vasculature® 19 28 30. 36,58 provide a blueprint for determining protocols to
assess biaxial contractility in hollow organs, such as the cervix. Through adapting
maximum contractility protocols from vasculature® and the vagina®, this study fulfills a
need to determine experimental procedures to describe the multiaxial contractility of the

cervix within a physiologically relevant mechanical loading environment.
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Herein, we described biaxial maximum contractility and passive biomechanics
within a physiologic loading environment motivated by in vivo pressure measurements of
the murine cervix. Interestingly, axial contractility increased (p<0.001) compared to
circumferential contractility for all axial-extensions and pressures (Fig. 7C). However, in
the passive state, circumferential stress and stiffness increased (p<0.01) compared to
axial stress and stiffness at matching pressures and axial-extensions (Fig. 7F). Further,
circumferential contractility decreased with increasing pressure, yet, axial force with
contraction did not change with increasing pressure (Fig. 6). Moreover, axial active stress
contributed 54.7+£9.19% to the total axial stress while circumferential active stress only
contributed 35.0+6.09% to the total circumferential stress. This may suggest a
predominant role of axial SMC to resist loading in the axial direction whereas
circumferentially aligned collagen within the cervix may function to resist circumferential
loading™ % %9 Supplementing contractility and passive biomechanical data,
immunofluorescent imaging demonstrated populations of cSMCs (aSMA™ cells) within the
mid-stroma in both the circumferential and axial planes (Fig. 8). cSMC populations
existed only within the mid-stroma suggesting the stroma to be the primary active
component of the cervix. Remodeling of ECM and cSMCs within this region may be critical
to maintain normal function during pregnancy® 48 55 Further, analysis identified a larger
area fraction of cSMCs within the longitudinal mid-stroma compared to the transverse
sections. A larger population of axially aligned cSMCs may prescribe the increased axial
contractility within the murine cervix. However, due to the small change in percentage
between transverse and longitudinal sections there may be additional cellular

mechanisms contributing to axial contractility. Furthermore, rat vaginal tissue under

17



391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

biaxial loading exhibited a stronger axial contraction in the presence of KCI, however,
electrical field stimulation induced increased circumferential contractility 2°. The exact
biological mechanisms driving contractility and normal cSMC pacemaker activity within
the cervix remain relatively understudied and further investigation into the cholinergic

nervous stimulation for cSMC with respect to direction is needed 23.

Cervical insufficiency (Cl), a condition in pregnancy in which the cervix prematurely
shortens and dilates releasing the uterine contents in the absence of contractions,
remains a challenge to diagnose and treat clinically'”- 32 37 Prior Cl research investigated
the role of changing extracellular matrix (ECM) constituents and mechanical loading as
potential factors of CI'8 31.32.53_|nterestingly, elastic fiber integrity and content decreases
in cases of Cl suggesting altered ECM integrity during pregnancy may lead to cervical
failure®2. However, the role of cervical SMC and SMC-ECM interactions remains
unknown. Potentially, a loss of axial SMC contractility in response to maladaptive ECM
remodeling may result in cervical shortening and dilation characteristic of cervical
insufficiency 32 51, Future research in pregnancy to describe the dynamic passive
biomechanical and contractile behavior of the cervix is needed. The customized
methodology described in the current study sets a foundation for future studies in which

to explore contraction potential in the cervix through normal pregnancy.

Prior research on the mechanical properties of the murine cervix in uniaxial tension
reported similar values of circumferential stiffness (229.74+133.20 kPa/mm) to the values
calculated herein (307+133 kPa)>*. Compared to biaxial active and passive data from the
murine vagina, the cervix exhibited similar anisotropic behavior and increased axial

contractility. Cervical circumferential stiffness and axial contractility increased compared
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to the murine vagina in the biaxial inflation-extension configuration®. Interestingly, while
cervical circumferential stiffness exceeded vaginal measurements, vaginal and cervical
axial stiffness were similar in magnitude. Similarly, increased axial contractility with KCI
dose was observed in the rat and mouse vagina 2 2°. Further, the anisotropic behavior of
the passive murine cervix with a preference for the circumferential loading direction was

observed in the rat and murine vagina and the murine uterus %29,

The study did not evaluate potential changes in cervical contractility and passive
biomechanics throughout the estrus cycle. However, samples were evaluated at a single
stage of the 5-day cycle (estrus) to prevent variability in results. Further, Gravina et al.
determined the highest contractile potential of the murine cervix at estrus and metestrus?2.
Additionally, pilot studies of the passive biomechanics of the murine cervix and uterus
revealed no significant differences with estrous phase. The inclusion of the lower uterine
and upper vaginal segments may introduce variability into the results. To reduce
variability, we tied silk suture over the vaginal and uterine segments during cannulation
to prevent contribution to cervical contractility. The dosage of 20 mM diminished
contribution of the vaginal segment as the rodent vagina responds to doses greater than
30 mM and optimally at 40 mM with tonic contractions® °. This study assumed
conservation of volume, incompressibility, of the cervix in the active and passive
protocols, respectively. The estrus cervix may be compressible and the tissue swelled
throughout the experiment as glycosaminoglycans sequestered water resulting in a larger
passive diameter'’. However, cervical thickness could not be tracked real-time
throughout the experiment due the thickness of the cervical wall preventing light

penetration through the tissue and prolonged compression from the ultrasound
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transducer resulted in a loss of contractility. Further investigation on isochoric motion

during biaxial mechanical testing of the reproductive organs is needed % 36.

In summary, the study introduced methods to determine in vivo cervical pressure
loading environment and apply the in vivo pressure to design a protocol to assess biaxial
maximum contractility and passive biomechanics of the murine cervix. Determining
relationships between cervical SMC contractility and passive function will provide critical
information to develop fundamental understanding of physiological cervical function.
Further, applying the methods herein throughout pregnancy may provide crucial data
about normal remodeling and provide clinically relevant insights into potential

mechanisms by which the cervix fails in premature birth induced by cervical insufficiency.
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Figure 1: (A) Representative recording of in vivo pressure measurements utilizing
ADlInstruments Labchart software. In vivo cervical smooth muscle behavior exhibited a
phasic response characterized by regular contractions throughout the recording. Average
pressure between contractions, at the troughs of the waves, determined baseline
pressure (black arrows and box). Contractile pressure (gray arrow and open circle) were
taken at the peaks to determine average contracted pressure. Time from peak to peak
determined the frequency (black closed circles) of contractions for each data set. (B)
Average in vivo baseline (black) and maximum contractile (gray) pressure measurements
in nulliparous mice at estrus (n=5). ADInstruments Labchart software determined the
average baseline (P=9.00+3.00 mmHg) and maximum (P= 22.0+4.00 mmHg) pressures.
Pressure increased significantly (p<0.01; **) from the baseline to maximum amplitude
during contraction. (C) Graphic representing the catheter placement within the cervix in

vivo during data collection.
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Figure 2: KCI dose response circumferential (A) and axial (B) contractility results with
respect to the estimated physiologic (EP) length and mean physiologic pressure. (A)
Change in diameter with contraction decreased from 4.7-20 mM KCI (p<0.05; 4.7 circle;
10 square) compared to 20mM and plateaued from 20-100mM. However, total change in
diameter with contraction at 60mM increased significantly (p<0.05; ¥) compared to 20mM.
(B) Change in force with contraction increased significantly at 20mM compared to all
doses (p<0.05; *). Further with increasing dose, contractile behavior altered from a phasic
(C) to tonic (D) pattern as shown in the representative sample for 20mM (C) and 60 mM
(D). Phasic contractile behavior persisted through 20mM KCI (C), and doses 40-100mM
exhibited tonic contractile behavior resulting in plateaued force and outer diameter.

Frequency of contractions increased non-significantly from the baseline concentration
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Figure 3: Maximum contractility
testing protocol schematic for set
axial-extension and alternating
pressures. Cervices equilibrated after
each test for five minutes followed by
five minutes of equilibration with each
change in pressure or axial-extension.
(A) Times and concentrations of KCI
within the tissue bath. Wherein 20 mM

induced maximum contraction and 4.7

mM acted as the baseline content in

Kreb’s  solution. (B) Pressure
throughout maximum contractility
testing for one axial-extension.

Maximum contractility was induced at

the mean physiologic pressure (P=

9.0£3.0 mmHg). Dashed lines
represent the pressure change
throughout the protocol. (C, D)

Change in force and outer diameter
with maximum contraction and during

equilibration periods.
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Wavelength (closed circles
at troughs) was measured
as the time for a contraction
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peak) was measured as the
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and diameter (black arrows and open circles) were identified as the maximal force at the
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Figure 5: Geometry recorded during mechanical testing at the active (black) and passive
(gray) states revealed a significant increase in passive geometry. (A) Physiologic
diameter, the diameter at the physiologic length and mean physiologic pressure,
increased significantly (p<0.05; *) from 4.67+0.25 mm to 5.59+0.53 mm. (B) Physiologic
length significantly increased (p<0.01; **) from 6.96£0.54 mm to 7.59+0.66 mm between
active and passive protocols. (C) Thickness did not significantly increase in the passive
state (0.62+0.04 mm vs 0.64+0.03 mm). (D) Volume of the unloaded cervix increased
significantly (p<0.005;***) after smooth muscle relaxation where the active volume

measured 44.2+7.22 mm? and the passive measured at 64.3+11.0 mm3.
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Figure 6: (A) Circumferential contraction measured by change in diameter during
maximum contractility protocol at 9 combinations of pressures (P=9.0£3.0 mmHg) and
axial-extensions +1% EPL (n=5). Where 6 mmHg is represented by gray closed circles,
9 mmHg by dark gray open circles, and 12 mmHg as black closed circles. Total change
in diameter during contraction significantly decreased (p<0.001; ***) at the high pressure
(P= 12 mmHg; black closed) compared to the low pressure (P= 6 mmHg; gray closed)
loading for all axial-stretches. (B) Axial contraction measured by change in force did not
significantly differ with axial-stretch or pressure. (C, D) Wavelength and frequency of
contractions induced by 20 mM KCI did not significantly differ with increase pressure or

axial-stretch.
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Figure 7: (A) Isolated active mechanical contribution in circumferential stress against
circumferential stretch during at the estimated physiologic length (EP L; dark gray open
circles), -1% EP L (closed gray circles), and +1% EPL (closed black circles) for all
pressures (n=5). Stresses within a pressure grouping are separated by dashed lines. (B)
Isolated active contribution with respect to the axial stress plotted against axial stretch for
all axial stretches and pressures. Where dashed lines separate the mean physiologic
pressure (P= 9.0 mmHg) from the above (P= 12 mmHg) and below (P= 6.0 mmHg)
pressure groupings. (C) Absolute change in circumferential (black) and axial (gray) stress
at the EP length and pressure where axial stress (3.40+0.70 kPa) significantly (p<0.001;
**) increased compared to circumferential stress (2.44+0.28 kPa) during maximum
contraction. (D) Circumferential (black) and (E) axial (gray) stress-stretch curves with

respect to the circumferential stretch, respectively. The physiologic range of pressures
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(P=9.0£3.0 mmHg) during the passive mechanical test were mapped to corresponding
circumferential stretches and stresses. The lines denote the area of the stress-stretch
curves in which the slope was determined for material stiffness calculations. (F)
Circumferential (black) and axial (gray) material stiffness from the EP length. Two-way
ANOVA (axial-stretch, direction) and post-hoc t-tests confirmed a significant increase
(p<0.01) in circumferential stiffness (327+ 142 kPa) compared to axial stiffness (136 +

51.2 kPa).

38



763

764

765

766

767

768

769

770

771

772

A Sub-Epithelia Stroma Mid- Stroma B Sub-Epithelia Stroma Mid- Stroma

SMA

Vim

Merge |3

Transverse Longitudinal

Figure 8: Dual immunofluorescent imaging taken at 20x of aSMA* (SMA, red) and
vimentin® (Vim, green) cells in the (A) transverse and (B) longitudinal plane of the sub-
epithelial stroma (SE) and mid-stroma (MS) from cervical sections taken from mice in
estrus (n=2). Wherein the aSMA* cells represent cSMCs, vimentin* cells represent
fibroblasts, cells co-stained with aSMA* and vimentin* (yellow) indicate myofibroblasts,
and arrowheads indicate blood vessels. The SE stroma populations primarily contain
vimentin* cells, while the MS contains both vimentin* and aSMA* cells. Comparatively,

fewer cells in the MS region co-stain for vimentin* and aSMA®*.

Supplemental Figures
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Supplemental Figure 1: (A) Graphic of the murine reproductive tract highlighting the

approximate geometry and location of the ovaries, uterine horns, cervix, and vagina.
Where the dashed lines represent the location of cuts made during dissection to isolate
the cervix. Contrastingly to the human reproductive system, the murine reproductive
system includes two uterine horns that meet to form a single canal within the cervix. Prior
research of the mouse reproductive tract reports approximate diameter values of 2.0 mm
for the uterine horn [1], 3.25 mm for the cervix [1], 6.0 mm for the proximal vagina [2], and
5.5 mm for the distal vagina [2]. (B) Graphic outlining specimen preparation of the cervix
for cannulation. Due to the short length of the murine cervix, a small portion of uterine
horn and vagina remain attached to be used as anchor points within the biaxial device
without interfering with cervical geometry. To finalize preparation of the cervix for
cannulation, the uterine horns are cut down to the bifurcation point (seen in the top view)
and utilizing micro-scissors the wall separating the uterine canals was cut. (C) Schematic
of the cervix cannulated within the biaxial inflation-extension device. The vaginal and
uterine ends were pulled gently onto the cannula and secured with 6-0 silk suture. The

Danish Myoview Technology software and an Olympus camera tracked the outer
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diameter at the mid-cervix represented by the dashed line. Pressure transducers and a
pump controlled the flow and pressure of the Kreb’s Ringer Buffer through hollow tubes
in the cannula into the tissue. The inlet flow was aligned with the uterine end and the
outlet flow with the vaginal end to simulate the flow or labor or menstruation.
Simultaneously, a manual axial micrometer controlled the axial length and stretch (1,) of

the tissue at a rate of 0.01mm/sec.
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Supplemental Figure 2: (A) Circumferential (Tyg) and (B) axial (T,,) stress with respect
to axial-stretch (1,,) from the pressure-inflation cycles at the estimated physiologic (EP)
length (dark gray open circle), -1% EPL (light gray close circle), and +1% EPL (black
closed circle). Neither circumferential nor axial stress changed significantly with axial-

stretch.
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