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COMPACTNESS OF OPERATORS ON THE BERGMAN SPACE OF THE
THULLEN DOMAIN

ZHENGHUI HUO AND BRETT D. WICK

ABSTRACT. We study compact operators on the Bergman space of the Thullen domain
defined by {(21,22) € C? : |21|*" + |22|? < 1} with p > 0 and p # 1. The domain need not
be smooth nor have a transitive automorphism group. We give a sufficient condition for the
boundedness of various operators on the Bergman space. Under this boundedness condition,
we characterize the compactness of operators on the Bergman space of the Thullen domain.
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1. INTRODUCTION

Let €2 be a domain in complex Euclidean space C™ and let do be the Lebesgue measure.
We use the symbol (-, -) and || - || to denote the inner product and the norm on L?(Q):

(£.9) = | F(©)9(CYdor() (L)

L1l = /(s ) (1.2)

The Bergman projection P is the orthogonal projection from L?*(2) onto A?(2), the closed
subspace of square-integrable holomorphic functions on €2. The kernel function associated
to the projection P is called the Bergman kernel and is denoted by K. For fixed z € Q, we
use K, to denote the function Kq(+; 2) in A*(Q2) and use k. to denote the normalized kernel
function K,/|K.]||. For a function a € L>(Q), let M, : L*(Q) — L?*(2) be the multiplication
operator by a. Then the operator T, := PM, is called the Toeplitz operator with symbol a.
Let L(A%(Q)) denote the space of bounded linear operators on A?(Q2). The Toeplitz algebra
T1~ is the closed subalgebra of £L(A%(€2)) generated by Toeplitz operators with L> symbols

K J
T = Closure {Z II7,, uxeL®() and J K € N} :
k=1j=1
where the closure is in the operator norm on A%().

In a variety of classical function spaces, the compactness of a given operator can be
determined by examining only its behavior on k,. A well-known result of Sudrez [Sua07]
showed that when  is the unit ball B" in C", an operator T in L£(A?(B")) is compact if
and only if 7" is in Tz and limy, -, [|[Tk[| = 0. Sudrez’s results were later extended to
various different function spaces and settings. Namely, the same results were shown to be
true for the Bargmann-Fock space [BI12], Bergman spaces on the disc and unit ball with
classical weights [MSW13|, and the weighted Bergman spaces on the polydisc [MW14al.
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By introducing the notion of the Bergman-type space, a unified approach to many of these

results was given in [MWI14b]. Among these results, one of the key properties been used

was that the domain () has a transitive automorphism group. It is worth noting that using

the 0-Neumann operator technique, versions of the Theorem 5.1 for T in some subalgebra of

Ty~ have also been proved on more general domains in C™. See for example [(V}Sl?), éSZl?].
The Thullen domain we consider in this paper is defined by,

U* ={z=(21,2) € C*: |z1|% + |2]? < 1}, where a > 0, # 1. (1.3)
In 1931, Thullen [Thu31] showed that the holomorphic automorphism ¢ on U® is of the

form:
JI=TwP\"
. — W . _
o(21,20) = | €12 (7) ,6292710 =

1—22’&] 1—2’2121

where |w| < 1 and 6y, 0, € R. The same result was also obtained by Cartan [Car32] using the
Lie group approach. It’s easy to see from the formula that the holomorphic automorphism
group on U® is not transitive. Therefore the Bergman space A*(U%) does not fall into
the category of Bergman-type spaces in [MW14b]. However, a suitable modification of the
technique in [MW14Dh] will work to study compactness of operators on A%(U?).

The results in this paper are twofold. We give a sufficient condition for the boundedness
of an operator whose adjoint and itself are defined a priori only on the linear span of the
normalized reproducing kernels {k.}. See Theorem 3.1. As a consequence, sufficient con-
ditions for the boundedness of Toeplitz operators and Hankel operators can be obtained.
See Corollaries 3.2 and 3.3. Then under the same sufficient condition we characterize the
compact operators. One of the main results (Theorem 5.3) in this paper shows that if the
sufficient condition for the boundedness result is satisfied, then

T is compact <= ||T'k,|| tends to 0 as the point z approaches the boundary of U*.
As a consequence, we also have

If T is a Toeplitz operator with a L* symbol, then
T is compact <= ||Tk,|| — 0 as the point z approaches the boundary of U*.

See Corollary 5.2.

In Section 2, we recall the explicit formula for the Bergman kernel function Ky« on U“,
and define two families of automorphisms {¢,,} and {p,,} on U*. We collect some basic
properties of these automorphisms and then give some key lemmas. Using these automor-
phisms, we state and prove the boundedness results in Section 3. In Section 4, we give a
geometric decomposition of U®. See Proposition 4.1. With such a decomposition, we further
show that an operator can be approximated by a series of compact operators. See Proposi-
tion 4.4. We state and prove the compactness results in Section 5. We give some remarks
and possible directions to generalize our results in Section 6.

2. PRELIMINARIES

From now on, we let U be the domain €2 and let (-,-) and || - || denote the corresponding
L? inner product and L? norm respectively. We define the weighted measure d\(w) on U
to be || Ky||?do(w). Let D denote the unit disc in C. Given functions of several variables f
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and g, we use f < g to denote that f < Cg for a constant C. If f < g and g < f, then we
say f is comparable to g and write f ~ g.
The explicit formula for the Bergman kernel function on the Thullen domain was obtained
by Bergman [Ber36] and D’Angelo [D’A78[D’A94]. Recall that the Thullen domain
U* = {z = (21,2) € C*: |z1|% + |2]? < 1}, where a > 0, # 1.
For (z1, z2), (w1, we) € U®, the Bergman kernel Ky« is given by
(v + 1)(1 — zowq)* + (@ — 1) 2y

K o y 3 0 y 0 = 21
U ((21 22) (UJ1 w2)) 71'2(1 —221172)2_0‘ ((1 —221172)0‘ —21?171)3 ( )
On the diagonal of U* x U?,
o a+1)(1 = |weH)* + (a — 1)|wy |?
Kype (wy, wy: 0y, @) = (a+ DA — wa)* + (a —1)| 1|2 = (2.2)
(1 = Jwa[2)? (1 = |wa]?)* — Jun|*)
w 2

m2(1 — |wq|?)2te (1 S 1 )a)3

(1—|wa|?

For (wy,wy) € U%, we have (\w71|2 < 1. Therefore (a4 1) + (o — 1)% ~ 1 and

1—[|wz|?)> (I=|wz[?)> —
_ 1
Kyo (w1, we; Wy, wy) ~ o T (2.4)
(1= fwal?)+ (1= i)
Similarly, we can obtain an estimate for the absolute value of Ky« off the diagonal:
|KUa (21,22;@1,@2) | ~ 1 - 3 (25)
R e T

We will use these estimates to simplify the computations that involves K.

As mentioned in Section 1, the holomorphic automorphism group on U® is not transitive.
Still, for each point z in U®, an (in general not holomorphic) automorphism of U that sends
z to the origin can be constructed and used to estimate the Bergman kernel Kya(+; z). Our
construction of such a mapping are as follows. For (z1,29) € U%, we define two mappings
., and ¢,, on U

1 — |z ) 29 — W2
Pz (W1, wa) = wl( a-| |)> , (2.6)

— 9 —
1— Z29W2 1-— Z29W2o

")

n—w L=z | (L= o)1 = |50
¢21(w1>w2) = 11 — ! , W2 1 - 2 =2 5 (27)
TN R TP T e

For simplicity, we let ¢(!)(w) and ¢? (w) denote the first and second coordinates of ¢., (w).
Then ¢ (w) can also be expressed as

(=12 | (1= Jw]?)(1 = [ (w)[*)
(2 w) = wy _ > 5
¢ (w) ( 11—z, ) (1 — [wi[2)(1 = |6 (w)]?)

(2.8)
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Both ¢, and ¢, are involutions on U®. ¢, is a holomorphic automorphism while ¢,, is not
holomorphic unless a = 1. When « = 1, the domain U! is the unit ball B2
By the biholomorphic transformation formula for the Bergman kernel (See [Kra01]),

Kya(w; ) = Kya(02(w); 2 (w))| Tz, (w)[. (2.9)

An analogue of formula (2.9]) is not true for ¢,, in general since ¢,, is not biholomorphic.
Instead, we have the following estimate:

Lemma 2.1. Let z and w be in U* and let ¢, (w) be as in (27). Then

( . ‘¢(2 } a 1
Kya(w; @) 2= Kya (42, (w); ¢, (w))|J -, (w) [ s (2.10)
(1 — |waf?)
Proof. Since 1 — ‘gb(l)( ’ %, we have
BO@E sl P = )= [0 w)])
(L= oM ()]=) 1= Zun2(1 = Jwn])(1 = 6D (w)]*)(L = oD (w)[%)
|wo?
S L (2.11)
(1= fwl=)
or equivalently, |63 (w)[? = |ws|?(1 — ¢ (w)]2)(1 — |wy|&) 7!
By (Z4) we have
wr? 7
KUO‘ (w1>w27w1>w2) (1 - |w2|2)—2—a <1 - (1 _ |’L1U2|2)O‘>
) 3
~ (1 2nN-2-a [ 1 _ |wi|a
= {1~ Jeal) (1 (- |w2|2>)
= (1= wal)' 2 (1= faf* — un|#)
-3
_ (1 N |w |2)1—a <1 |w2|2 2) (1 . |w1|a)_
1-— |’LU1|E
(1 Nl-a (1 |wa]? - _ 2\-3
~ (= e (1= 2 ) A (212)
1 — fwsa
i::i ~ 1 for any
r € [0,1) and p > 0. Similarly, we obtain
Ko (62 ()i 3a(@) = (1 - [6¥(@)P)'~ (1—M)_3<1—|¢<”<w>\2>-3
B 1= [0 (w)f?

(2.13)
Applying (ZI7) to the right hand side of (2ZI3]) then yields:

R (620 ) = 1= [0 )Py (1~
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We turn to compute J¢,, (w). Since Q%ng(l)(w) = 0, we have

Ty (w) = a%&”(w)ﬂcb@ (w)

0w2

2
o

_ (=-laP) <1z12>J<1w12><1¢<1><w> )
T Zw)? 1= am \ (1w 3)(1 |60 (w))

3
L]z \?
>~ . 2.1
<(1 — 21w1)2 ( 5)
Combining (ZI4)) and (ZI5)) gives the desired estimate (Z.10):
600 (0) P Ko (6, (10); 5 ()

~ <‘1_#1|2> (1 o |¢(2)(w)|2)1—a <1 _ ﬂ>_ (1 _ |¢(1)(w)|2)—3

1 — Zyw |? 1—|w1\%

~ (1~ 6 (w)]2)' (1 - &) (1= )

1 — |wy |«
(A= e w) )
o (= fwg)te

KUa ('UJ, 71])

O

We need a Forelli-Rudin type estimate on the domain U®. Such an estimate can be proved
using the following lemma. See for example [Zhu05].

Lemma 2.2. Let 0 denote Lebesque measure on the unit sphere S* € CF. For e < 1 and

w € B*, et
(1—1|n*)~
= 2.1
CI,E,(;('LU) /]Bk |1 — <w’n>|1+k_5_5d0(77)a ( 6)
and let
1
= . 2.1

Then

(1) for § >0, both a.; and bs are bounded on BF.
(2) for 6 =0, both as(w) and bs(w) are comparable to the function —log(1 — |w|?).
(3) for 6 <0, both a.s(w) and bs(w) are comparable to the function (1 — |w|?)°.

Here we state a Forelli-Rudin type estimate on U®:

Lemma 2.3. Fore; <a+1,ea<1,e3 >0, and z € U%, let

2 2
(1— |wa?) 2 (1 — Al o)—a (1 — ke
L5, 5,(2) :/Ua (el - 3(_61LZL_)51 do(w). (2.18)
]_ _ Z1Wwi

1 —Z 24+a—ea—0o

Then for 61 > 0,09 > 0, I5, 5, is bounded on U“.
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Proof. We first transform I3, 5,(z) into an integral on the polydisc D?:

wy |2 —€ z1|? €
(1= o)~ (1 — i)~ (1 — i)™

]51,52(Z> :/Ua - 3—e1te3—01 dO'(’UJ)
|1 _ 22w2|2+°‘_52_52 1— a Z|1w|12)7
—|29 :
2
(1 = )21 = 1) (1 = e
(I—[z2]*)
_/ 3261-1—63 51d (tl’w2)

1 - Aatd- |w2\2)

]__Z'UJ 24+a—ea—0o
22| (1—|22[2) %

3—€e1+e3—01

(1= waf?)e= (1= |0 (1~ )
_/|1 ) / U=ToPI o6 Y dor ().

2 -9 a
J— Z2w2| +a—ezx—02 _ 21t1(1_|w2|2)g

(<3
(1-]22?)2

We consider two cases: 6; > 1, and 1 > §; > 0.
If 9y > 1, then Lemma 2.2 implies that

2
(1 - |t1|2)_61(1 - (1_“2"2)(1 )63
/D Lo (t) < Gy

o

_ Aati(l-|ws]?)?
[e]
(1-]22]%)2

(2.19)

(2.20)

for some constant C. Then substituting inequality (2:20) into (219) and applying Lemma

2.2 again yield

(1 — Juwyf?)o

D |1 — ZQ’LU2|2+Q_€2_62

[51752(2) < Cl dO’(wg) < 0102,

for some constant C5.
If 1 > 9; > 0, then Lemma 2.2 implies that

—€ E ‘2 € a\ 01—
/ Lo (1—|z12|2)a) Sda(tl) ~[1- 21 (1 = Jwy*)*\™ '
D 3—€1+€e3—01 (1 _ |Z2|2)o¢ :

_ aiti(I-|wa|?)e/?
o
(1—]22|?)2

Substituting (2.2I)) into (2.19)) yields:

1_,w20c—52 Z2l_w2o¢51_1
[51,52(2) ~ ( | 2| ) (1_ | 1| ( | 2| ) ) dO'(wg).

D ‘1 — 22’(1]2‘2—’_0_62_62 (1 — |ZQ‘2>O‘

Using polar coordinates to = rn for r € [0,1) and n € S, we have

_ a—eo 2 AT 01—1
I, 6,(2 / r(l—r?) —_df(n) <1 _ M) dr.

st [1 —227”77|2+a i (1 = [z[)"

(2.21)

(2.22)

(2.23)
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Applying Lemma 2.2 and the substitution s = 72 to the inner integral gives

1 1 — a—eg 2 1— a\ 91—1
Ins(e) = [ 120 T nam I
) 0 (1 _ |Z2|2S>1+a—62—52 (1 _ |Z2|2)a
C\z—ez 2 1 1—1
N/ — ) ) s
1 _ |2’2|2$ 1+a—52—62 1— |22|2

_ a €2
(1—s) s s
N 1 _ |Z2|2 1+Oc—52—(52

1/2 (1 —s)o—e il 1 (1—s) -
- d s, (2.24
/ (1— |22|2 )i+a—e— P s+ e (1= |2’2|2$)1+0‘_52_628 s ( )

Since f01/2 (1_|Z(21\2_38))1i;2€2752 s 1ds < fol/2 s9171ds < 1, it suffices to show that

1 (1 _ S)a_€2 -1
ds S 1. 2.25
/1/2 (1 — |2o|2s)tHa—ca—02 5 5 (2.25)
When |22| € [07 1/2]a (1 - |Z2|25) ~ 1. We have
LT P e

ds S 1—5)""2ds <1, 2.26
/1/2 (1 — |zo[?s)tHomea02 ’ e 1/2 (1=s) 7 (2.26)

When |z| € [1/2,1), we have

1 _ g)a—¢€2
/ (]' S) sél—lds
1

/2 (1 _ |2’2|2$)1+ —ea—02

1 1— a—e€2
5/ ( 28)1+ o5 18
1/2 (1 — |zo?s) om0

U I R L ) L
N(l _ ‘z2‘28)1+a_62_52 % + 1/ (1 _ |Z2‘2S)2+a—62—52 S
<4 [ Gl ds =14 0711 — |=[2)%] <1 (2.27)
M Sy (U= [Pt ’ R '
Therefore I, 5,(2) <1 on U”. O

To obtain the boundedness results for the operators on A*(U®), we also need Schur’s
lemma. See [Zhu05] for a proof.

Lemma 2.4 (Schur’s Lemma). Let (X, pu) and (X,v) be measure spaces, R(x,y) a non-
negative measurable function on X x X, 1 <p < oo and % + % = 1. Suppose h is a positive

function on X that is measurable with respect to p and v and C, and C, are positive constants
such that

/X R(x,y)h(y)ldv(y) < C,h(z)? for p-almost every x ; (2.28)
/X R(x,y)h(y)Pdv(z) < Cyh(y)? for v-almost every y . (2.29)

Then Tf(x) = [x R(z,y)f(y)dv(y) defines a bounded operator T' : LP(X;v) — LP(X;p)
i1
wlth ||T||LP(X;I/)D—>LP(X;M) S quC;.



8 ZHENGHUI HUO AND BRETT D. WICK

3. A SUFFICIENT CONDITION FOR THE BOUNDEDNESS

In this section we give and prove a sufficient condition for the boundedness of various
operators on the the Bergman space of the Thullen domain. See (3.3) and (B.4]). These
two inequalities are stronger conditions for L? boundedness. In fact, they imply the LP
boundedness for a range of p. See the Remark after the proof of Theorem 3.1. As one will
see soon, when the operator 7" is a Toeplitz operator with bounded symbol (Corollary 3.2),
a Hankel operator with bounded symbol (Corollary 3.3), T satisfies this condition.

We begin by defining two translation operators on L*(U%) using ¢, and ¢.,:

Usf(w) = f(pz(w)) ] 2y (w); (3.1)
Vo f(w) = f(¢2 (w))J$2 (w).
Here J is the holomorphic Jacobian determinant. Since ¢,, is a biholomorphism on U, the

induced U, is an isometry on L?(U?). Since ¢™ (w) is a holomorphic function and ¢® (w)
is holomorphic in wsy, we have

do(z,(w)) = |J¢., (w)[do(w).
Therefore the induced operator V,, is also an isometry on L*(U*).

Theorem 3.1. Let T : A*(U%) — A*(U?%) be a linear operator defined on the linear span
of the normalized reproducing kernels of A*(U®). Assume that there exists an operator T*
defined on the same span such that the duality relation (Tk,, ky) = (k.,T*ky) holds for all
z,2we U If

qup Vi) U:Tk.(w) || Lre)y < 00; (3.3)
zeU>

sul}) ||Vfa(z)UzT*kz(w>HLp(Ua) < 00, (34)
zeUe

for p >4, then T can be extended to a bounded operator on A?(U?).

Proof. Since the linear span of all normalized reproducing kernels is dense in A%(U?) it
suffices to show that ||T'f|| < f for all f that are in the linear span of the reproducing
kernels. Note that for any such f we have

ITSIE = [ NTF K Fdo(=) = [ (£, T ) do ()

</

< [ T E ()] do ()

Set Rf(2) := [a |[{Kw, T*K.,)|f(w)do(w). Then the L? regularity of R will imply the L?
regularity of 7. By Lemma 2.4, we need to prove that there exists an € > 0 such that:

i do(z) (3.5)

[ B (o T K dor ()

i do(z). (3.6)

/Ua (T K, K)o || do(w) S |l (3.7)

/Ua (TR, Ko)| [ Ko do(w) S [l (3.8)
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Here we give the proof for inequality ([B.7). Inequality (3.8]) follows by the same argument.
Recall that d\(w) = || K,||?do(w). Then

[T K KKl dotw) = ] [ T ke k)| [ dAw). (3.9)

Substituting w = ¢, (t) into (3:9) yields

e—1

(LS [ ST} ) (oY ERO)E (3.10)

By (23), we have dA(¢.,(t)) = dA(t) and || K, ¢ |l|Jp=,(t)] = || K¢||. Therefore

« e—1
I [ TRy )| [ K| dAoa(®)
|Tk 9022 | e—1
=l [ | Kool ax®)
||KW [ Koo
|T* ‘Pz JQOZ )| e=1
) f | |2K|| S YE) (3.11)

Recall fo(2) = 21/(1—|22|?)2/2. Substituting ¢ = ¢y, (.)(w) into the integral above then gives

(1) (2 () T2, (62, ()|
K, K w d\ . . 3.12
|5 / o] |Esomn|” dNSrm()). (3.12)
By Lemma 2.1, we have
(1 — [waf?)*~
d\ 2 = d\(w); 1
((bfa( )(w)) ( |¢(2( )| )a 1 (w) (3 3)
(1= [P (w)P)
K| = . .
Iull = 1oy 602 e (3.14)
Thus (B:12]) becomes
22 J 22 z J 21 1_ 2 aTil w !
| / AP (61 () (W) Ty (D1 () ¢2<w>\<2 a_1|w2\> ERURED) H
[Kwl[(1 = @) (w)[?) "=
(3.15)

Recall that U, f(w) = f(@., (w))Jp.,(w) and V,, f(w) = f(p,, (w))J¢p,, (w). Then (BI3]) can

be expressed as follows:

Vi UT k. (w)] (1 = |wo]?) T || K. K|
HKZHE/U\M (w)] (1= [ws]?) ARG ol I D G0

(1= 6@ (w)[2) 7 || K|
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Applying Holder’s inequality to (B.16) yields:

a—1 e—1
K ||e/ ‘Vf“(z)UZT*kz(w)’ (1= wal*) = [ Koy g0y 0)) HKZHl_ed)\(w)
o Joe (1—|¢(2>(w)|2)%||K I
P Rl Ll L L RN
<||K| /U = 10 () do (w) (3.17)
— 2
< (ViU k() Pdow)) (3.15)
U&

We claim by choosing appropriate p and ¢, the integral in (3:17)) is bounded as a function of
z on U®. Substituting t = ¢y, »)(w) into [BIT) gives

q(a 1 ale=1 c
[ (1= o) 5 [ Ky | IE09) 5, I o)
: (1= 6@ (w)|) 5
CES)) q(e=1) c
(1= 1D T | K| NN 0111 T (1)
:/ q(a 1) da(t)
* (L—t») =
e—1 —€ —e) _
:/Ua | [Ty ()T K| || K9] T g ()P (2)
5(2+a) ‘t1|2 —3qe ‘le2 3(27q)+3q(€71)
(1_|t2|) - (1_ 1—|t 2a) 2 (1_ 1—Z2a) 2 2
_ 3 (2+a)g(1—¢) _ zZ1ty
|1 — Zots| q 1 TIE:

By Lemma 2.3, the integral above is bounded for z € U® if the following inequalities hold:
3qe

<L (3.20)
w <l+a; (3.21)
3<22_ @ 3q<€2_ DS (3.22)
(2+a)g(l—e) + w <24a (3.23)
3(2—q) + % - ?’(22_ Q) _ 3‘1(62_ Dy (3.24)

The last inequality is trivial. Since a > 0, inequality (8.20) implies (3.21]). Both (3.22)) and
(B23) are equivalent to the € > 2 — 2. Thus we have 2 — 2 < e < Z. Note that 2 — 2 < 2

q q q q q
when ¢ < %. Hence for ¢ < %, or equivalently for p > 4, an € can be chosen from (2 — %, 32—(1)
Therefore for z € U® the following integral is bounded:

Q(a D)
1—lw Kz y K, q(l—¢ K, ||
/< jws?) !mfa(zmqm Un N < (3.25)
. (1= |6 (w)?) 5
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For such p and ¢, we have
/UQ (T K, K[| Eoull*do(w) S sup [V o) Uk (w)l| oo [N (3.26)
Similarly we obtain

/Ua (TE: Kl Kulldo(w) S sup [V, o) U:Th:(w)l o) | K" (3.27)

Lemma 2.4 then implies that 7' can be extended to a bounded operator on A*(U®) if

Sup Vi) U:Tk.(w)|| Loy < 00, (3.28)
zeU«>
sul}) ||Vfa(z)UzT*kz(w>HLp(Ua) < 00. (329)
zeU«
U
Remark. It is worth noting that when p > 4, the inequalities (3:26) and ([3.27) hold for all
€€ (%, 2 3%) Using a variant of Schur’s lemma in [EM16], one can extend 7" to a bounded
operator on AY (U®) for p' € (;%f, 2£2) Here we focus only on the L2-boundedness of 7.

In the case when T in the above theorem is a Toeplitz operator or a Hankel operator,
the conditions (B.3]) and (B.4]) have simpler forms. For the Toeplitz operator, we have the
following corollary:

Corollary 3.2. Let T, be a Toeplitz operator whose symbol u satisfies

SUP ([P, (Do) (W) oy < 00, (3.30)

forp > 4. Then T, is L*-bounded.

Proof. Recall the Bergman projection P on U®. Notice first that for g € L*(U?),

T.g(=) = Plug)() = [ ulw)g(w)(K, K.)do(w). (331)

Therefore, it is enough to show that
/Ua |u(w)[[ (K, K[ Kol *do(w) S (K| (3.32)

By the same argument as in the proof of Theorem 3.1, the integral on the left hand side
above was controlled from above by

=

10 ([ Vi@ Uskstwyulen(én,e @) drw))" (3.33)

for p > 4. We claim |V, ,)U.k.(w)| S 1. Then

/Ua |u(w) (Ko, K[| Ko | “dor(w) S [ K| sup 1022 (P 1u i) (W) | o), (3.34)
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and by Lemma 2.4 the proof is complete. The biholomorphic transformation formula gives
Usk(w) = K (92 (w); 2) |7 oz, (w)

K pn(2)T9a0)
1|

K <w; (=P)E O> 7=(2)
1Ko, |l 02 (2)]
3
BN by ey
(1 - rpE) o)
. .
_ zZiwi
<1 (1—zz2>%) 1= (2)]

Let ¢V(w) denote the first coordinate of ¢y, () (w). Note that ¢¥)(w) is the Mobius map of
wy that sends the origin to f,(z). Hence

(3.35)

|21

P U ) Il = 1 (3.36)
-~ 1- 2oy |
(1=[z2*)Z

Therefore

1_ _|Zl‘22a
Voo Uskes (w)] = (- rhom )3 1T 1. () (w)]

'1 zZ16) w()l
(1-|22]2)2
} _ 3 5 3
Ziwq 2
T ent| (- e
LT et 3( (==l )3 1 (3.37)
(1 — %)5 - A,
(1—]22]2) (1—|22]2)2
0

Similarly, we treat the case of Hankel operators. Hankel operator H, : A2(U%) — L*(U%)
with symbol w is defined by H,f = (I — P)M,f, where P is the Bergman projection. A
similar argument gives us the following result about H,.

Corollary 3.3. Let H, be a Hankel operator whose symbol u satisfies
sup [|u(z) — u(z (1. (w))) || Lowey < o0, (3.38)

zeU«

or p > 4 then H, is L?-bounded.
f

4. A GEOMETRIC DECOMPOSITION OF U

A geometric decomposition of U“ plays an important role in the proof the compactness
theorem. Our decomposition result uses the Skwarczynski distance [Skw80]. We recall its
definition here.

Let Q2 be a bounded domain in C" and let K be the Bergman kernel on 2. Then the
Skwarczynski distance d(-, ) on € is defined by

d(z,w) = (1 — |<kz>kw>|)% = <1 - Ko(z;
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By its definition 0 < d(z,w) < 1. On the Thullen domain U®, the kernel function Ky« does
not vanish on U®, and Kya(z;2)™' = 0 only when 2z € bU®. Hence the the Skwarczynski
distance d(-,-) on U® satisfies the following: for w € U?, the distance d(z,w) = 1 if and only
if z is a boundary point of U“.

Our decomposition result for U* are as follows:

Proposition 4.1. The metric space (U%,d) satisfies the following property. For r that is
sufficiently close to 1, there exists an integer N(r) and a constant C(r) such that there is
covering F, = {F;} of U* by disjoint Borel sets satisfying

(1) every point of Q2 belongs to at most N(r) of sets Gj :={z € U~ : d(z, Fj) < r}.

(2) sup diamy F; < C(r) for every j.

Remark. In general, if a metric space satisfies Proposition 4.1 and the constant N(r) above
does not depend on r, i.e. N(r) < 1, then the metric space is said to have finite asymptotic
dimension in the sense of Gromov [Gro87]. The finiteness of the asymptotic dimension is
satisfied for nice domains equipped with the Bergman metric such as the unit ball [Sua07] and
polydisc [MW14a] in C". We are able to show that Proposition 4.1 holds for the domain U®
equipped with Skwarczynski distance. However the finiteness of the asymptotic dimension
for the metric space (U%, d) is unclear to us.

Let s(z,w) denote [(k,,k,)| and set p(x) := /1 —x. Then the Skwarczynski distance
d(z,w) = p(s(z,w)). Let D(z,r) denote the ball centered at point z of radius r under this
metric. If the distance between z and w is fixed, then we simply use s to denote s(z, w) and
use D(z,p(s)) to denote the ball D(z,r) with radius r = p(s).

The next lemma below shows that for any point z € U® the image of the ball D(z, p(s))
under the mapping ¢y, (.)0¢., has a size that is comparable to the size of the ball D(0, p(cs?))
for some constants ¢, 5 > 0.

Lemma 4.2. Let z and w be two points in U“. If —logs(z,w) is sufficiently large, then
—log s(z,w) ~ —log 5(dy,(z) 0= (w),0). Moreover, for sufficiently large —log s, there exists
constants Cy,Cy, a,b (independent of s) and a constant c(s) such that the weighted measure
of the ball D(z,p(s)) satisfies the following two properties:

(1) D(0,p(C15%) C by, () © 92, (D(2,p(s))) € D(0, p(Ces")), and
(2) c(s)MD(0,p(C15%))) S MD(2,p(s))) < c(s)AD(0, p(C25"))).
Proof. Let z and w be two points in U* such that —log s(z,w) > |log «|. Then — log s(z, w)

is large when it compares to for all r € [0,1). By the definition of s(-,-),

.2
1Ogu7
l-ra

Kyo(z,w
—log s(z,w) ~ —log | _Ul(Z,U))| —
Kpa(z;2)2 Kya (w; w) 2
_ 3
1— _221111}3 _ |1 _ Z2w2|2+a
~log 5 (1-z2w2)

3
21]2 2 a w12 5 a
(1~ )" (U= 1228 (1= ipge) * (1= )3

1 - oy P\ () )
g - :
|1 — Zyws|?

— log (1 _—
S 1 1 — |ws|2)
(1 - ) (1= lezf?)

~ log

(4.1)
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By the definition of ¢, and ¢.,, we have

. 2
l - 2ss wy |? 1 — |222)(1 = |ws|?
log} < \z21|22) } — log <1—7(1_“;| |2)a> —log( }12|_)Z(w ‘2‘ 2)
(1 - &) ’ 22

BT =160 (o, (w))]? (1= [22 ) T — Zows]?

1—Zzowo

1_w(1 ‘22‘ a(/¥22 ’U](l |Z2| a222 1_ 2 1_ 2
4 | (1—Zz2w2) ‘ “log |1 - | (1—Zz2w2) | —log( ‘22‘ >( |w2‘ ) (4.2)

Since d(z,w) > |log 25| for all r € [0, 1), we have d(z,w) ~ d(z, w) £ log 1=r> | Therefore

—T‘Q -

BT 160 (o, (w)) P (1 — |2z 2)e 1 — Zows]?

1—Zow2

1 — |, Uslzl “222 w, Gzl “222 1 — 1212)(1 — 2
g L ey P S ) (0 () )

(1—5211)2)“ |

<t 1~ g 0) 1o (1 - L)
8 (1 1 on () = low (1= 0 T

~ —1og (1= [ (0 () [~ |62 (02, (w)) )

~—_1o _ ) (2, (w ))‘% — 1o ) w2
~ 1g<1 - (%(ww) log (1~ |6 (i, (w)) ")
< )|

Zzth |2
= - lOg (1 - ‘¢(1)((pz2 (w))P) - 10g (1 - 1 | 1_(1Zil‘uzz‘ 2)a/2 2 )
— w ~_ 1 = /J

(e, ()2
T _|¢|¢(2()f;zz( (BU) 3 a) — log (1 - |¢(2)(<Pz2(w))|2)

]

3 60, () o D

== o (1= AL ) - (14 o (1 - 00w P)
s

~ —10g5(¢fa(2) © Pz (), 0). (4.3)

Hence the inequality —logs(z,w) ~ —logs(¢y.(z) © ., (w),0) is proved. As a consequence,
there exists constants C7, Cs, a, and b such that

C15" > 5(Pf.(2) © P (w),0) > Cys®.
This inequality then implies Property (1) of Lemma 4.2
D(O,p(018a> - ¢fa(z) © 3022(D(Z7p<8))) - D(O,p(Cng)>

We turn to prove Property (1) of Lemma 4.2 by first showing that

MD(z,p(5))) < c(s)MD(0,p(Cs"))).
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For sufficiently small s, it is shown from above that there exists a constant Cy > 0 and b > 0
such that the set ¢y, () © ¢, (D(z,p(s))) € D(0,p(Css")). Therefore

AD(p(s) = [ Kue(w; @)do(w)

D(z,p(s))

= Ka@z¢azt;mjgpzo¢azt2do_t
Sre o) (0o (D(zp()) (922 (D10 () (1)); 22 (D12 (D) (P25 © Ppae) (D) P (1)

<

[ I CHCIREIO) S YRR ) [ ERETOREIDI LD

< Kpe(@1a(2)(1); Oty (D) T (D1, 2 (8) [Pdor (1)

~ JD(0,p(C2sY))
S (1= [p@ (@)

S Kya(t;t) P

~

do(t). 4.4
/D(Ovp((hsb)) ( ) ( )

We claim that % ~ ¢(s) for some constant that depends only on s. Then we

have AM(D(z, p(s))) < c(s)A(D(0, p(Cys))), which completes the proof.
For t € D(0, p(Cys®)), we have

t 2
—log s(0,t) ~ —log <1 — el = |t2\2> < —log Cys” ~ —log s. (4.5)

(1= [tof?

Hence there exists a constant c¢;(s) > 0, such that (1 — % — \tg\z) > ¢1(s). Since

1— |t > (1 — % — |t2|2), we also have 1 > 1 — [t5]* > ¢;(s). By (211)),
P =g (@©)7)
(1 = [ta]*)
P
- 1 — [ty ¥
> 1 — [ta* — |t/

_ [t > 2
= (1_1—7|t2\2> (1 —[ta]")
P 2
2 (1 ) 0 )
(4 |t [? 12 S (s
_ (1 A ome ) > aifs). (4.6)

1>1- 1?1 =1

Therefore, we conclude that

(1= Jo® @)
(ETBE < c(s) (4.7)

for some constant that depends only on s.
Starting with a constant C such that D(0,p(C15%)) C ¢y.(2) © ¢=(D(2,p(s))) and then a
similar argument yields the inequality A(D(z,p(s))) 2 c(s)A(D(0, p(C15%))). O

The following well-known decomposition of a separable metric space in our proof of Propo-
sition 4.1. The proof of this lemma can be found in [ARS06].
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Lemma 4.3. Let (X,d) be a separable metric space and r > 0. For x € U®, let D(x,d)
denote the open ball with center x and radius v > 0 in the metric space (X,d). There is a
countable set of points {x;} and a corresponding set of Borel subsets {Q;} of X that satisfy

(1) XZUij?
(2) QiNQr =0 forj #k;
(3) D(z;,r) C Q; C {z € X : d(D(x;,7),2) <r}.

Proof of Proposition 4.1. We know that (U%, d) is a separable metric space. We choose s as
in Lemma 4.2 and then r = p(s) will be close to 1. By Lemma 4.3, there is a collection of
points {z;} € U* and Borel sets F; := Q); C U so that F, := {F;} is a disjoint covering of
U®. We first prove that diamy F; < C(r) < 1. Since F; C {z € U* : d(D(zj,r),x) <}, it
suffices to show that

diamg{z € U® : d(D(xj,7),xz) <r} < C(r) < 1. (4.8)

Let z = (z1, 22),w = (w1, we), and t = (¢1,t2) be three points in U* such that the distances
d(z,w) = d(w,t) = p(s) = r. We claim that d(z,t) < C(s) < 1. Then (48] holds. Note
that the Skwarczynski distance is invariant under the holomorphic automorphism and ¢,,
sends (z1, 22) to (fa(2),0). It is enough to show that d(z,t) < C(r) when z = (z1,0). For
z = (2,0),

1— 2zt 3
—log s(z,t) ~ log : | 212 1 3 o
(1= | )% (1= 82 ) (1 [ty
1— 2t 3
~ log L= =t =1 (4.9)

N

3 2 3
(1= laP)? (1 - e ) * (1= [t2)?)3
Similarly, we have

|1 — 21@1|3

—log s(z,w) =~ log : o 1 o= Is. (4.10)
2 w 2 2
(1= 2% (1 gl ) (1 = Jwsf?)?
and
11— towo (1 — s ?
—log s(t,w) ~ log — (1t 22) 5
a PEERY: horf2 )2 a
(U= 105 (1= i) T (1= i) (1 o)
11— towa?|l — Zhise
~ log (1~izB2) =1 (4.11)

3 3
3 t1)2 2 w1 |2 2 3
(=102 (1= i) (1= ) (1= Juaf?)
Since d(z,w) = d(t,w) = p(s), we have I, ~ I3 ~ —log s. Consider I} — I, — I3:

— w12 3
1=z (1- Z22) (10— Jwsf?)?

(1—Jws|?

11— 201 P[1 — toa |1 — s [

11—12—13210g (412)

By the triangle inequality of the Bergman distance on the unit disk, we have

11— 28,3 < 11— wity |
1=z [* ™ (1= |wi[?)?
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Applying this inequality to (£I2)) yields
— w2 3
1=l (1= ) 1= oy

(L~ [wrPY[L — tawaP 1 — P

]1—]2—13510g (413)

Further applying the estimate that % ~ 1 to the right hand side of (£13) gives

— w12 3
11— wity P (1= 2l )" (1= unf?)?

log 1—|iv2\2 -
(1= [un PP — toaP 1 = e
— 2 3
<] 11— w2 (1 — 110111'12|2> (1= Jwaf?)?
~ 1o

)3

(1 - ‘w1|%)3‘1 — tglsz‘g (1 — }(tliml

l—tgﬁ)g)a
_ 3
‘1 — wltl\?’ (1 — 7'1”2‘22 )

<1o 1_|w1\33
(I = tots| — [ty] )
3
‘1 — w1£1‘3 (1 - —|w222)
<10g len]® 3
1 — |t 3(1_ [towa| )
|1 — w151|3

<lpg ————MM .
SO )P

When [t5105| > 53, we have 1 — [¢110|a > |tas| > s3. Then

1—wity 3 1 —wity|? 1 —wity?
(1 — [ty ) (1 — [ty [=)3 5
Hence d(z,t) = /1 — s(z,t) < v/1 — sb for some constant b.

When |taws| < sé, we write 1 — tyty = 71 where r; = |1 — tyws|. Using trigonometric
geometry, we have
|01 >~ | sin 6;] < |taws| < 53,
We also write the function B
tiwn

=ty
Thus tyw, = rf‘rgei(ae“r(’?). We claim there is a constant ¢ > 0 such that
|1 — tywq| < s7¢(1 — [tyw]). (4.14)
Assuming the claim, we have
11— wity]? s7¢(1 — |tywy|)

— = Slo
(1= [han))? ~ % (1 — |ty |=)
which implies that d(z,t) < C(s) < 1, and the proof for Part (2) of Proposition 4.1 is

complete. We show the claim by contradiction. Suppose (£I4]) is not true. Then for any
large constant ¢, there exists points ¢ = (t1, ) and w = (wy, wy) in U* such that

|1 — t1@1| Z S_C(l — |t1’LIJ1|).

1
log < log— < —clog s,
SC
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Thus we have

(1 — [ty ])?

_ L+ riry — 2riry cos(ab + 6)
- 1+ 7r2r? —2riry
2r175(1 — cos(ab; + 65))

1+ 7213 — 2rimy
2( af1+02
(=257)

=1+

47"1 T2 sin

=1
+ 1+ 7213 — 2rimy

14 Ariro(sin(29) cos(%) + cos(2%L) sin(%))?
1+ 7"1’/"2 — 27’1’/"2
< T2 sin? (O‘T) N T sm(ael)|| s1n(622)| ro sinz(%z) ' (4.15)
(1= [tw])? (1 — [ty ])? (1 — [ty ])?
Since 0] ~ [sin 6] < [taws| < s3 for sufficient small s, we have sin (0‘291) < M and
hence
79 sin (0‘31) r2|51n(ael)|| s1n(%2)| N 79 sin (62)
(1 — [tyn])? (1 — [tyw])? (1 — [tywy])?
Tg‘t2w2|2 T2|t2w2|| Slﬂ(%)‘ T2 Sll’l2(92)
~(1 = [tws])? (1 — |tywy])? (1 — |tywy])?
02 2>
ol sin r9 sin
_nlsin($) | rasi(%) o

Y= ftw]) (= [f])*
Note that s(w,t) = |(ky, k)| = s. There exists a constant b > 0 such that
u—f%FP_@4ﬁ+%mﬂ%
(lesly T
(1 —173)% + 4ry sin2(%2)
=)

’1 _ t1w1 2

< e (4.17)
1 ] )
( (1=[tawz )™

Therefore
. ) . 2] : [
e < (7‘12|Sl|ﬂ(72)||) (Iz 81|n?(72|))2 o rasin®(%) S <. (4.18)
~ (- hw — Tt )? i _\2 ™
1 . (1~ )

Since s is chosen to be sufficiently small, the inequality above implies that 2¢ < b which
contradicts the assumption that ¢ can be arbitrarily large. Hence (L8]) is proved.
It remains to show that every point of U® belongs to at most N(r) of sets

Gj={2ze€U”:d(z,F;) <r}.
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Since F; C {x € U* : d(D(zj,r),z) < r}, we clearly have G; C D(z;,p(s)) for some
constant b > 1. It suffices to prove that the corresponding balls D(x;,p(s?)) have a finite
intersection property. Our argument about diam, F;; also implies that the set

{z € U* +d(D(z;,p(s")),2) < p(s")}
is contained in D(x;,p(s”’)). Suppose that z € N, D(x;, p(s?)). Then we have

U D(xz1,p(s?)) C D(z, p(s*)),

where we have fixed one of the N balls, the one centered at zx. Since D(x;, p(s)) are disjoint,

Z)\ (21, p(5))) < MD (i, p(s*)).

Therefore Lemma 4.2 imphes that

c(s)MD(0, p(s)))N ~ Z M(D (1, p(5))) < MD (i, p(s™))) 2= e(s")AD(0, p(s”))),
and
c(s")AD(0,p(s™))) | .
S o)
Here C(s) is a constant depending only on s and the proof is complete. [l

With the decomposition from Proposition 4.1, we obtain the following localization property
which is a crucial step towards the compactness results.

Proposition 4.4. Let T : A2(U®) — A*(U?®) be a linear operator. If

sup Vi) U:Tk.(w) || Lrey < 00, and (4.19)
zeU“
Sup Vi) UT7 k(W) || Lo ey < 00. (4.20)
zeU«

for some p > 4, then for every e > 0 there exists r > 0 such that for the covering F, = {F}}
from Proposition 4.1

1T - ; M, TPMy, || <. (4.21)

Proof. We set R(z,w) = 3; 1p,(2)lge(w) (T" K>, Ku)l, h(z) = | K" Let {F;} and {G;}
be as in the proof of Lemma 4.2 and Proposition 4.1 provided the radius r = p(s). Since
{F;} form a covering for U® there exists a unique j such that z € Fj;. Then we have

[ Bew)lEultdotw) = [ 1)1 @) (T K., KKy do(w)

= | 1 T K, Ko [ Ko (w)

< i [T K)o (), (4.22)
z,p(s))°

By a same argument as in the proof of Theorem 3.1 and the following fact from Lemma 4.2
Dfa(z) © P2 (D(z,p(s))) 2 D(0, p(C1s")),
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we have

[ WK KKl do(w)
D(z,p(s))°

_ -1
Vi o UsT ks (w)] (1 = Jus)?) 7 ol K]
</ Vico (w)] (1= [ws|?) K ey 01 | I D), (429
02(C1%) (1= 6D w)P) 7 | K, |
and therefore for p > 4
| R w)lKoll'do(w)
Ua
1
Q(a 1) q
(1= o) [ Koy o [0 K
S| ] oot Hq(a 5 do(w) | (4.24)
v (1= 6@ (w))*
X Ve AU Tk, (w)Pdo(w
(i ViU ) ()
SR ([ Wi UT R C0Pto(a) ) (4.25
D(0,p(C15))°

A

Since sup Vi) U:Tko(w) | Loy < 00, the integral (fD(O,p(Clsa))c \Vfa(z)UzT*]gz(w)|Pda(w))
zeUe

approaches 0 when s — 0.
Next, we check the second condition. Fix w € U®. Let J be a subset of all indices 7 such
that w ¢ G;. Then Ujc;F; C D(w, )¢ and hence

| Rl do(z) = [ [(TK,, KK |'do(2)
U« Uje(]Fj

< [ K K o (2) (4.26)

Using the same estimates as above, we obtain that
| Bew)K.|'do () S COIKI, (427)
where C'(r) — 0 as r — 1. This proves the proposition. O

Proposition 4.4 together with the following lemma gives an approximation of the bounded
operator T using a series of compact operators. See [Eng92] for the proof of the lemma.

Lemma 4.5. Let G be a precompact Borel set G in U*. Then Ty is compact on A*(U?).

5. THE COMPACTNESS OF OPERATORS
Now we are ready to state and prove the main theorem for the compactness.

Theorem 5.1. Let T : A2(U*) — A%(U®) be a linear operator. If
SuUp ||Vfa(z)Uszz(w)||Lp(Ua) < Q5 (5.1)
zeU“

sup | Viux) U217k (w) || Loy < 00, (5.2)

for some p > 4, then limg(; 0)—1 ||Tk:|| = 0 if and only if T is compact.
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Proof. Suppose T is compact. Then T sends weakly convergent sequences to strongly con-
vergent sequences. To prove that limg(. )1 [|[Tk;| = 0, it suffices to show that the weak
limit of k, is zero as d(z,0) — 1. Since {k, } is dense in A%(U?), it is enough to prove that
for each fixed w € U®, (k., k,) — 0 as d(z,0) — 1. Note that

 Kieein)
bl = il )

By Formulas (24]) and (Z3)), both || K, || and |Ky«(z; w)| are bounded for fixed w. Therefore
(k,,ky) — 0as d(z,0) — 1.

We turn to prove the other direction of the statement. Fix a small ¢ > 0. By Proposition
4.4, there exists a large s such that for the covering F, = {F;} associated to s

|7~ 3 My, TPMy, | <. (5.4)
J

By Lemma 4.5, the Toeplitz operators PMlGj are compact. The sum >>;,, Mle TPMlGj is
compact for every m € N. So, it is enough to show that

lim_)sup 1y M, TPM,, | Se. (5.5)

j>m
Let f € A%2(U%) be arbitrary of norm no greater than 1. Then,
ITuf I = 3 M, TPMy, £

j>m
My TPM, f]?
WA
where N (s) is the number of overlaps when radius r = p(s) from Proposition 4.1 and
PM,, f

1My fIP < N(s) JSSEIIMleTW, (5.6)

l; = m (5.7)
Therefore,
[Tl < N(s) sup sup {||le|| = M}> (5.8)
i>m|f|=1 |PM, f
and hence
limsup || 7,,]| < N(s)limsup sup {||le|| i = Llcjf} . (5.9)
m—s00 oo [IfI=1 |PM, [l
Let € > 0. There exists a normalized sequence {f;} in A*(U®) such that
N(s)limsup sup {||le|| L9 = Llc”f} — e < N(s)limsup ||Tg;]|, (5.10)
joee |fll=1 [PMy fl] jroo
where
PN [ Jo, (fis kw)kwdA(w) (5.11)

1-
2

9 = B
1PM f] (Jo, 15> o) 2dA(w) )
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For each j pick z; = (z;,y;) € G; = {z € U* : d(#, F;) < r}. There exists s > 0 such that
G, C D(zj,s) for all j. By a change of variables, we have

95(t) = 5 (Py; (D 1) (W) Koy (6 0 ey ) (AN Py (Prazp (@), (5:12)

/¢fa<zj)wyj(Gj)
where a;(w) is defined to be
(£ kw)
(Jo, 1(£5: ) 2N ()
We claim that g; = UV}, (2, h;, where
3 (Py; (D fa(2) (W))Via(z)) Uz Koy (610 ) w)) (AN Py (D g () ()
(5.14)

(5.13)

1-
2

hj(t) == /
’ ‘z’fa(zj)o‘pyj (Gy)

Notice that both U, and V}, ., are involutions, and h; € L*(U®). The claim can be proved
by showing that for each g € L*(U*) we have (g,9;) = (U, Vy.(z,)9, h;). This identity can
be obtained by a change of variables and using Fubini’s Theorem. Now we consider the
integrand in (B.14).
Vfa(zj)Uijsoyj(¢fa(zj)(ll)))(t)
_ Kua(py, (01,0 (1) @y, (@1 (W) T @y, © Dz (E)
a 1K gy (6 oy )]
:KUQ(¢fa(zj)(t)§W)J¢fa(zj)(t)
0y, (D fu(o) (WD Koy (81, 0y ()
Ky @1z ()5 Dfa(e) (W) T Dtz () [T Py; (D 1oz (W)
- 15, o Ty, (D1 (W)
~C (W) Ko (D1, () (1); () (W) T D fo () (1) T D o2 (W)
176 1u(:3) (0) T 04 (S (o (W))| (1 — Jawa]*) 7 (5.15)
T (o) (W) T2y, (8 ooy (W) 1K | (1 = [0 (w) )57

where C'(w) is a bounded continuous function on U®. For the simplicity of notations, we set

uzJ- (t; w) = KUQ (¢fa(2j)(t); ¢fa(2j)(w))J¢fa(Zj)(t)J¢fa(Zj)(w)’ (516)
C(W)|J G,y (W) Jipy, (D12 (W) |(1 = ws]?) *F
b (@y; (@fa(z = a;(Py, (Dfalz - - n a1-
uBrenl)) = alten et e e T Kull(1— 6@ w))
(5.17)
Then (5.I4) can be written as
h;(t) = /qua(zj)%j((;j) b (Py; (D (zy) (W) U, (8 W) AN (04 (D1 () (W) (5.18)

Recall from the proof of Proposition 4.1 that G; C D(z;, p(s%)) for some constant c¢. Hence
Lemma 4.2 implies ¢y, (z;) © ¢y, (G;) € D(0,p(Cas”)) for some constants Cy and b. Lemma



COMPACTNESS OF OPERATORS ON THE BERGMAN SPACE OF THE THULLEN DOMAIN 23

4.2 together with Lemma 2.1 also implies the total variation of each member of the sequence
of measures

{bj (Qoyj (¢fa(zj)(w>>>dA(90yj (¢fa(zj)(w>>>}7
as elements in the dual of C(D(0, p(Cys?))), satisfies

10 (90; (6 g2 (W) AN (@ (D1 oy (WD) | S €()A(D(0, p(Co5"))).- (5.19)

By its definition, U, (t;w) can be continuously extended to an open neighborhood of the
domain U* x D(0, p(Cas)). Thus U.,(t; w) is uniformly continuous on U* x D(0, p(Css®)).
For the same € as above, there exists finitely many disjoint subsets H Z(? in D(0, p(Css?)) and
finitely many points {(;} such that the following statements hold

(1) D(0,p(Cos")) = U HY.

(2) ¢ € Hg_) for each .

(3) |, (t;w)—Us, (t; Q)] < eN(s) " e(s)A(D(0, p(Cos”)))* forany t € U* and w € Hg_).

Therefore,

h;(t) — ;/Hg_) U, (t; Cl)bj(%j(¢fa(zj)(w)))d)\(<ﬁyj(¢fa(zj)(w)))|

€
- }; o (0 500 1) bj«oyj<¢fa<zj><w>>>dx<wyj<¢fa<zj><w>>>} <1 Ga)
Since U, V}, ;) preserves the Lebesgue L? norm, we have
N(SNTU, Viaephill S € + NITU, Vi) D all, (8.G), (5.21)
1

where ¢; = [0 b (©y; (Dfu(zy)(W))) AN @y, (Df, () (w))). Note that (A7) and (.I5) imply

Usy Vi (o) Uz, (85 Q) > Cr(w)kig, (67,0, ) (B) (5.22)
where |C}(w)]| is also controlled by s. (5.19) and (5.22) together with triangle inequality give

NG)NTU, Vinephill S € + N(s)e()MD(0,p(Ces")))  sup Tk, 5.0 nll- (5:23)
¢eD(0,p(C2s?))

Finally we have
lim sup [|T5,[| SN(s) limsup [|T'g;|| + €
m—00 j—o0
=N(s) lim [|TUz; V.o hill + €

SN(s)e()MD(0, p(Caos")) limsup  sup | Thy, o, onll +€ (5:24)
Jj—00  ¢eD(0,p(Casb)) J

Since d(z;,0) — 1 as j — oo and d(-, ) is invariant under ¢y, (.) o ¢, in the sense of Lemma
4.2, we have d(py,(¢1.(-;)(¢)),0) — 1 for all ¢ € D(0,p(Css")). Then limg. o)1 [|Tk.|| = 0
implies that lim sup,,_,. [|T|| < €, which completes the proof. O

By Corollary 3.2, Toeplitz operators with L symbols satisfy conditions (5.]) and (5.2)
in Theorem 5.1. Hence we also have the following result:
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Corollary 5.2. Let T is a Toeplitz operator with a L* symbol. Then T is compact if and
only if
lim ||Tk.|| = 0.

d(z,0)—1

6. GENERALIZATIONS AND REMARKS

In this section, we point out possible generalizations of our results along several directions.

1. It is natural to further ask if Corollary 5.2 holds when T' is a finite sum of finite prod-
ucts of Toeplitz operators with L symbols. In the classical cases like the Bergman space
on the unit ball, the corresponding conditions (5]) and (5.2) for such a 7" can be ob-
tained using the LP boundedness of the Bergman projection together with the biholomor-
phic transformation formula for the Bergman kernel function (off the diagonal). See for
instances [AZ98,[Sua07, MSW13,[MW14b]. In our case, the Bergman projection on U® is
indeed L? bounded. See for example [Huol7b|. On the other hand, the automorphism we
use is not holomorphic. Hence it’s not clear to us whether (B.)) and (5.2)) is still true when
T is a finite sum of finite products of Toeplitz operators with L symbols.

2. In the paper, we focus on the domain {(z1, 25) € C? : |21 + |2|?> < 1} with a > 0 for
the simplicity of the argument. Explicit formulas like (2I]) are available for the Bergman
kernel function on a large family of domains, including the generalized Thullen domain

{(zw) € C"x T« Jal]* + fJu]* < 1},
and the Fock-Bargmann-Hartogs domain
{(z,w) €C" x C™ : ||2|| < e~ MIP}.

See [D’AT8/D’A94BFS99.Yam13|[Huol7a]. It would be interesting to see if the boundedness
and compactness results can be generalized to those domains using similar techniques.

3. Our results focus on L? operators. LP analogues of Theorem 5.1 are obtained for the
Bargmann-Fock space [BI12], Bergman spaces on the disc and unit ball with classical weights
[IMSW13], and the weighted Bergman spaces on the polydisc [MW14a). It is also possible to
generalize our results in the LP setting for 1 < p < oc.

4. Another theme in this subject is to use weaker conditions that involves the Berezin trans-
form to determine the compactness of an operator on the Bergman space. For an operator
T € A%(Q), the Berezin transform of T is defined by B(S)(z) := (Tk.,k,). It is shown
in [Sua(7] that an operator on A*(B") is compact if and only if T € Tz~ and B(T)(z) van-
ishes as ||z|| goes to 1. One of the obstacles of relating || Tk, || to B(T")(z) in our setting is that
V.(»)U. is not an operator on A%(U®): to keep the range of the operator be in A*(U?), the
domain of Vy, ,)U, will not be A*(U®) and will vary for different z. It would be interesting
to see if limg(. 0)00 B(T)(2) = 0 also implies limg(; 0)—o0 || T'k-|| = 0.
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