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1. Introduction

Let Ω ⊆ Cn be a bounded domain. Let L2(Ω) denote the space of square-integrable 
functions with respect to the Lebesgue measure dV on Ω. Let A2(Ω) denote the subspace 
of square-integrable holomorphic functions. The Bergman projection P is the orthogonal 
projection from L2(Ω) onto A2(Ω). Associated with P , there is a unique function KΩ on 
Ω × Ω such that for any f ∈ L2(Ω):

P (f)(z) =
∫
Ω

KΩ(z; w̄)f(w)dV (w). (1.1)

Let P+ denote the positive Bergman projection defined by:

P+(f)(z) :=
∫
Ω

|KΩ(z; w̄)|f(w)dV (w). (1.2)

A question of importance in analytic function theory and harmonic analysis is to under-
stand the boundedness of P or P+ on the space Lp(Ω, μdV ), where μ is some non-negative 
locally integrable function on Ω.

For the unweighted case (μ ≡ 1), the Lp boundedness for the Bergman projection has 
been studied in various settings. On a wide class of domains, the Bergman projection 
is Lp regularity for all 1 < p < ∞. See for instance [16,27,21,22,26,22–24,7,15,3]. In all 
these results, the domain needs to satisfy certain boundary conditions. On some other 
domains, the projection has only a finite range of mapping regularity. See for example 
[30,6,13,14,9]. One important example is the Hartogs triangle H. In [6], Chakrabarti and 
Zeytuncu showed that the Bergman projection on the Hartogs triangle is Lp-regular if 
and only if 4

3 < p < 4.
Less is known about the situation when the weight μ �≡ 1, and results and progress 

depend upon the domains being studied. For the case of the unit ball in Cn, the bound-
edness of P and P+ in the weighted Lp space was studied by Bekollé and Bonami in [5]
and [4]. Let Tz denote the Carleson tent over z in the unit ball Bn defined as below:

• Tz :=
{
w ∈ Bn :

∣∣∣1 − w̄ z
|z|

∣∣∣ < 1 − |z|
}

for z �= 0, and
• Tz := Bn for z = 0.

Then the result of Bekollé and Bonami can be stated as follows:

Theorem 1.1. (Bekollé-Bonami) Let the weight μ(w) be a positive, locally integrable func-
tion on the unit ball Bn. Let 1 < p < ∞. Then the following conditions are equivalent:

(1) P : Lp(Bn, μ) �→ Lp(Bn, μ) is bounded.
(2) P+ : Lp(Bn, μ) �→ Lp(Bn, μ) is bounded.
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(3) The Bekollé-Bonami constant

Bp(μ) := sup
z∈Bn

∫
Tz

μ(w)dV (w)∫
Tz

dV (w)

(∫
Tz

μ− 1
p−1 (w)dV (w)∫
Tz

dV (w)

)p−1

is finite.

Motivated by recent developments on the A2-Conjecture [18] for singular integrals 
in the setting of Muckenhoupt weighted Lp spaces, people have made progress on the 
dependence of the operator norm ‖P‖Lp(Bn,μ) on Bp(μ). In [28], Pott and Reguera gave a 
weighted Lp estimate for the Bergman projection on the upper half plane. Their estimates 
are in terms of the Bekollé-Bonami constant and the upper bound estimate is sharp. 
Later, Rahm, Tchoundja, and Wick [29] generalized the results of Pott and Reguera to 
the unit ball case and also obtained estimates for the Berezin transform.

The purpose of this paper is to establish sharp weighted inequalities for the Bergman 
projection on the Hartogs triangle H. The Hartogs triangle is a bounded pseudoconvex 
domain defined by H = {(z1, z2) ∈ C2 : |z1| < |z2| < 1}. The boundary bH of H has 
a serious singularity at the origin, where bH cannot be represented as a graph of a 
continuous function. Partially because of this, H exhibits many interesting phenomena 
unseen on smooth domains and serves as a source of counterexamples to many conjectures 
in several complex variables. The closure H̄ does not have a Stein neighborhood basis. 
The ∂̄ problem on H is not global regular [8], i.e. there exists a ∂̄-closed (0, 1) form 
h ∈ C∞

0,1(H̄) such that no solution u of the equation ∂̄u = h is in C∞(H̄). The Bergman 
projection on H has only limited Lp regularity for p ∈ (3/4, 4) [6]. This makes even the 
unweighted Lp norm estimate of the projection interesting.

We give a Bekollé-Bonami type constant and obtain weighted Lp-norm estimates for 
P and P+. Recall that the Hartogs triangle H is defined by

H = {(z1, z2) ∈ C2 : |z1| < |z2| < 1}.

H is biholomorphic to the product domain of the disc and the punctured disc. By the 
biholomorphic transformation formula, the kernel KH(z1, z2; w̄1, w̄2) has the following 
form:

KH(z1, z2; w̄1, w̄2) = 1
π2z2w̄2(1 − z1w̄1

z2w̄2
)2(1 − z2w̄2)2

.

Detailed computation for KH is provided in the next section. Given functions of several 
variables f and g, we use f � g to denote that f ≤ Cg for a constant C. If f � g and 
g � f , then we say f is comparable to g and write f ≈ g. For a weight μ and a subset U
in a domain Ω, we set μ(U) :=

∫
U
μdV and let 〈f〉μdVU denote the average of the function 

|f | with respect to the measure μdV on the set U :
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〈f〉μdVU =
∫
U
|f(w1, w2)|μdV

μ(U) . (1.3)

The main result obtained in this paper is:

Theorem 1.2. Let 1 < p < ∞, and p′ denote the Hölder conjugate to p. Let μ be a 
positive, locally integrable weight on H of the form

μ(z1, z2) = μ1(z1/z2)μ2(z2). (1.4)

Set ν = |z2|−p′
μ

−p′
p and du = |z2|−2dV . Then the Bergman projection P is bounded on 

the weighted function space Lp(H, μdV ) if and only if [μ, ν]p < ∞.
Moreover, the following quantitative estimate is provided:

[μ, ν]
1
2p
p � ‖P‖Lp(H,μdV ) ≤ ‖P+‖Lp(H,μdV ) �([μ, ν]0,0p )

1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p )+

(pp′)2([μ, ν]1,1p )max{1, 1
p−1}. (1.5)

Here

[μ, ν]p = sup
z1,z2∈D

〈μ|w2|2−p〉duT ′
z1,z2

(
〈|w2|2ν〉duT ′

z1,z2

)p−1
; (1.6)

[μ, ν]0,0p = 〈|w2|2−pμ〉duH
(
〈ν|w2|2〉duH

)p−1 ; (1.7)

[μ, ν]1,0p =
(
〈|w2|2−pμ2〉dVD (〈|w2|2ν2〉dVD )p−1) 1

p

⎛
⎜⎝ sup

z∈D,
|z|>1/2

〈μ1〉dVTz

(
〈ν1〉dVTz

)p−1

⎞
⎟⎠

max{1, 1
p−1}

;

(1.8)

[μ, ν]0,1p =

⎛
⎜⎝ sup

z∈D,
|z|>1/2

〈|w2|2−pμ2〉dVTz
(〈|w2|2ν2〉dVTz

)p−1

⎞
⎟⎠

max{1, 1
p−1} (

〈μ1〉dVD
(
〈ν1〉dVD

)p−1) 1
p ;

(1.9)

[μ, ν]1,1p = sup
z1,z2∈D

|z1|>1/2,|z2|>1/2

〈μ|w2|2−p〉duT ′
z1,z2

(
〈|w2|2ν〉duT ′

z1,z2

)p−1
. (1.10)

For the definitions of the induced Carleson tents T ′
z1,z2 of the Hartogs triangle, see 

Section 2.

Remark 1.3. The constant [μ, ν]p serves as a natural generalization of the Bp constant 
for the Hartogs triangle case. It is not hard to see that [μ, ν]p and the upper bound in 
Theorem 1.2 are qualitatively equivalent, i.e. [μ, ν]p is finite if and only if the sum
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([μ, ν]0,0p )
1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1

p−1}

is finite. But they are not quantitatively equivalent. More specifically, [μ, ν]p and the 
upper bound satisfy the following inequalities:

([μ, ν]p)
1
p �([μ, ν]0,0p )

1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1

p−1}

�(pp′)2([μ, ν]p)max{1, 1
p−1} (1.11)

As one will see in the proof of Theorem 1.2, the products of averages of μ and ν over 
different tents will have different impacts on the estimate for the weighted norm of the 
projection P . The constant [μ, ν]p above fails to reflect such a difference, and hence is 
unable to give the sharp upper bound. This issue did not occur in the upper half plane 
case [28] since the average over the whole upper half plane is not included in the Bp

constant there.

Remark 1.4. In Theorem 1.2, we consider the weight μ of the form as in (1.4) so that 
the boundedness of the weighted maximal operator in Lemma 2.6 follows by the Fubini’s 
theorem. See Section 5 for further discussion on this assumption. The measure du on H
is induced by the Lebesgue measure on D2. The weight ν is chosen to be the dual weight 
of |z2|−pμ with respect to the measure du so that a similar argument as in [28] and [29]
works for the Hartogs triangle case.

There has been some recent interest in analyzing the Lp regularity properties of the 
projection via characteristics of the weight. In [10], Chen considered an A+

p condition, 
which is equivalent to the Bekollé-Bonami condition in the upper half plane setting, and 
obtained the Lp regularity of the weighted Bergman projection with some special weights 
on the Hartogs triangle. Using the A+

p condition, Chen, Krantz, and Yuan [11] obtained 
the Lp regularity results for the Bergman projections on domains covered by the polydisc 
through a rational proper holomorphic map. The result of Chakrabarti and Zeytuncu 
in [6] can be recovered from [10] by showing that the A+

p constant of the weight μ ≡ 1
blows up for p /∈ (4

3 , 4). Similarly, Theorem 1.2 provides another proof for this result.
The approach we employ in this paper is similar to the ones in [28] and [29]. The 

lower bound estimate follows from a weak-type inequality argument. To obtain the upper 
bound estimate, we show that P and P+ are controlled by a positive dyadic operator. 
Then an analysis on the weighted Lp norm of the dyadic operator yields the desired 
estimate. Here we use harmonic analysis strategy from [25] and [20]. In particular, we 
build the dyadic structure on the Hartogs triangle induced by the dyadic structure on 
the unit disc via the biholomorphism between H and D × D∗. We also use techniques 
from multi-parameter harmonic analysis to control the induced product structure on the 
Hartogs triangle. See also the last remark in Section 5. Our upper bound is sharp. In 
Section 4.1, we provide an example of weights and functions where the sharp bound is 
attained. As applications of our results, we recover the Lp-regularity results in [6] and 
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[14] and give upper bound estimates for the Lp-norm of the Bergman projections on the 
Hartogs triangle H and the generalized Hartogs triangle Hm/n. See Sections 4.2 and 4.4. 
It is worth noting that the construction of the positive dyadic operator relies on a dyadic 
structure on the unit disc where the measure of the set in the structure can be used to 
estimate the Bergman kernel function. Since the dyadic structures on the disc D and the 
ball Bn are well understood, the approach we use in this paper can also be applied to 
the setting where the domain is related to the unit disc or ball, such as the polydisc, the 
product of unit balls, and domains that are biholomorphically equivalent to them.

The paper is organized as follows: In Section 2, we introduce a dyadic structure on the 
unit disc and a corresponding structure on the Hartogs triangle and provide the results 
that will be used throughout the paper. In Section 3, we present the dyadic operator 
Q+

m,n,ν and prove Theorem 1.2. In Section 4, we give a sharp example for our upper 
bound estimate. We also provide some examples where the upper bound estimates can 
be explicitly computed. In Section 5, we make several remarks and possible directions 
for generalization.

Acknowledgments. B.D. Wick’s research is partially supported by National Science Foun-
dation grants DMS # 1560955 and DMS # 1800057 and Australian Research Council 
grant DP 190100970. We would like acknowledge Liwei Chen, John D’Angelo, and the 
referee for their suggestions and comments.

2. Preliminaries

Let D denote the unit disc in C. Let D∗ denote the punctured disc D\{0}. The Hartogs 
triangle H is defined by

H = {(z1, z2) ∈ C2 : |z1| < |z2| < 1}. (2.1)

Note that the mapping (z1, z2) �→ ( z1z2 , z2) is a biholomorphism from H onto D × D∗. 
The biholomorphic transformation formula (see [19]) then implies that

KH(z1, z2; w̄1, w̄2) = 1
z2w̄2

KD×D∗

(
z1

z2
, z2;

w̄1

w̄2
, w̄2

)

= 1
z2w̄2

KD×D

(
z1

z2
, z2;

w̄1

w̄2
, w̄2

)

= 1
π2z2w̄2(1 − z1w̄1

z2w̄2
)2(1 − z2w̄2)2

. (2.2)

Hence, the Bergman projection P and the absolute Bergman projection P+ on the Har-
togs triangle can be expressed as follows

P (f)(z) =
∫

f(w)
π2z2w̄2(1 − z1w̄1

z2w̄2
)2(1 − z2w̄2)2

dV (w); (2.3)

H
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P+(f)(z) =
∫
H

f(w)
π2|z2w2||1 − z1w̄1

z2w̄2
|2|1 − z2w̄2|2

dV (w). (2.4)

We next introduce a dyadic structure on the unit disk. A related construction appears 
in [2]. Let D = {Dk

j } be a dyadic system on the unit circle with

Dk
j = {e2πiθ : (j − 1)2−k ≤ θ < j2−k}, for j = 1, . . . , 2k.

Let d(·, ·) denote the Bergman metric on the unit disc D. For z ∈ D, let B(z, r) denote 
the ball centered at point z with radius r under this metric. Set r = 2−1 ln 2. For k ∈ N, 
let Skr denote the circle centered at the origin with radius kr in the Bergman metric. 
Let Pkrz be the radial projection of z onto the sphere SNr. By the proof of [29, Lemma 
9], {PkθD

k
j } satisfy the following three properties:

(1) Skr = ∪2k

j=1PkrD
k
j ;

(2) PkrD
k
j ∩ PkrD

k
i = ∅ for i �= j;

(3) For wk
j = Pkre

2πi(j− 1
2 )2−k , Skr ∩B(wk

j , λ) ⊆ PkrD
k
j ⊆ Skr ∩B(wk

j , Cλ).

Define subsets, Kk
j of D to be:

K0
1 := {z ∈ D : d(0, z) < r};

Kk
j := {z ∈ D : kr ≤ d(0, z) < (k + 1)r and Pkrz ∈ PkrD

k
j }, k ≥ 1, j ≥ 1.

For k = 0 and j = 1, set c01 ∈ K0
1 to be the origin. For k ≥ 1, set ckj ∈ Kk

j to be the point 
P(k+ 1

2 )rw
k
j . For α = ckj , the set Kα := Kk

j is referred to as a kube and the point α = ckj
is the center of the kube. We define a Bergman tree structure T := {ckj } on centers of 
the kubes. We say that ck+1

i is a child of ckj if PkrD
k+1
i ⊆ PkrD

k
j . We say cmi ≥ ckj if 

m ≥ k and Pkrc
m
i ∈ PkrD

k
j . We define K̂α to be the dyadic tent under Kα:

K̂α :=
⋃

β∈T :β≥α

Kβ . (2.5)

For z ∈ D, we say the generation gen(z) = N if z ∈ KN
j for some j.

Using shifted dyadic systems Dl = {Dk
j (l)} on the unit circle with

Dk
j (l) = {e2πiθ : (j − 1)2−k + l ≤ θ < j2−k + l}, for j = 1, . . . , 2k and l ∈ R,

one can obtain different dyadic structures on D with their corresponding Bergman trees 
Tl. Recall the Carleson tent Tz over z ∈ D:

• Tz :=
{
w ∈ D :

∣∣∣1 − w̄ z
|z|

∣∣∣ < 1 − |z|
}

for z �= 0, and
• Tz := D for z = 0.
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For a subset U , we use the notation |U | to denote the Lebesgue measure of U . The fol-
lowing three lemmas relate the Carleson tent Tz to the dyadic tent K̂α and the Bergman 
kernel function on D.

Lemma 2.1. Let T be a Bergman tree constructed as above. For α ∈ T ,

|Tα| ≈ |K̂α| ≈ |Kα| ≈ (1 − |α|)2.

Proof. Suppose gen(α) = k. Let Rkr denote the Euclidean distance between Skr and 
the origin. Then |K̂α| = π2−k(1 − R2

kr) and |Kα| = π2−k(R2
(k+1)r − R2

kr). Recall that 
r = 2−1 ln 2. By the definition of the Bergman distance, 1 − Rkr ≈ e−2kr = 2−k. Thus 
|K̂α| ≈ |Kα| ≈ 2−2k. Since α is the center of the kube Kα, the Bergman distance 
d(0, α) = (k + 1

2 )r. Hence we obtain

(1 − |α|)2 = (1 −R(k+ 1
2 )r)2 ≈ 2−2(k+ 1

2 ) ≈ |K̂α| ≈ |Kα|.

Notice that the Carleson tent Tα is the intersection set of the unit disc D and the disc 
centered at the point z

|z| with Euclidean radius 1 − |α|. A geometric consideration then 
yields

|Tα| ≈ (1 − |α|)2. �
Lemma 2.2 ([29, Lemma 9]). There is a finite collection of Bergman trees {Tl}Nl=1 such 
that for all α ∈ D, there is a tree T from the finite collection and an β ∈ T such that 
the dyadic tent K̂β contains the tent Tα and σ(K̂β) ≈ |Tα|.

Lemma 2.3 ([29, Lemma 15]). For z, w ∈ D, there is a Carleson tent, Tα, containing z
and w such that

|Tα| ≈ |1 − zw̄|2 = π−1|KD(z, w̄)|−1. (2.6)

Lemma 2.4. For any dyadic tent K̂β with β ∈ Tl for some l, there exists a Carleson tent 
Tz such that K̂β ⊆ Tz and |K̂β | ≈ |Tz|.

Proof. Given a dyadic tent K̂β, we can find a Carleson tent Tz such that K̂β is a largest 
dyadic tent in Tz. Without loss of generality, we may assume that z is a positive real 
number. By Lemma 2.1, |K̂α| ≈ |Kα|. It suffices to show that the top kube Kβ of the 
tent K̂β satisfies the inequality |Kβ | ≈ |Tz|. Since Kβ is a largest kube contained in 
Tz, all of its ancestors are not contained in Tz. Let k be the generation gen(β) of β. 
Then Tz intersects with at most two of the Borel subsets {Qk−1

j }2k−1

j=1 of S(k−1)θ. Let 
R(k−1)r denote the Euclidean distance between S(k−1)r and the origin. The arc length of 
the set P(k−1)rD

k−1
j equals R(k−1)r2π21−k. Thus the arc length of the intersection set 

S(k−1)r ∩Tt is less than 2R(k−1)r2π21−k. Note that the point z is a positive real number. 
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Tz is symmetric about the real number axis. Therefore the point R(k−1)re
2πi21−k is not 

in Tz, i.e.

|1 −R(k−1)re
2πi21−k | ≥ 1 − z.

Since 1 −RNt ≈ e−2Nt and |1 − e2πit| ≈ t for t ∈ R, we have

|1 −R(k−1)re
2πi21−k | ≤ |1 −R(k−1)r| + |R(k−1)r − r(k−1)θe

2πi21−k |
≈ e−2(k−1)r(1 + 21−k) = e−(k−1) ln 2(1 + 21−k) ≈ 2−(k−1).

Hence 2−(k−1) � 1 − z = 1 − |z|. Lemma 2.1 then implies that |Tz| � 2−2(k−1). Since 
gen(β) = k, the Bergman distance d(β, 0) equals (k + 1

2 )r. Recall that r = 2−1 ln 2. We 
have

1 − |β| ≈ e−2(k+ 1
2 )θ = 2−(k+ 1

2 ).

Applying Lemma 2.1 again yields |Kβ | ≈ 2−2(k+ 1
2 ) � |Tz|. By the containment Kβ ⊆ Tz, 

there holds |Kβ| ≤ |Tz|. Combining these inequalities, we conclude that |Kβ| ≈ |Tz| and 
the proof is complete. �

Combining Lemmas 2.2 and 2.3, we obtain the following estimate for arbitrary 
z, w ∈ D:

|1 − zw̄|−2 ≈ |Tα|−1 ≈ |K̂β |−1 ≤
M∑

m=1

∑
γ∈Tm

1K̂γ
(z)1K̂γ

(w)

|K̂γ |
. (2.7)

Here {Tm}Mm=1 is the finite collection in Lemma 2.2.
Similarly, on the bidisk, D2, we have:

|1 − z1w̄1|−2|1 − z2w̄2|−2

≈|Tα1 |−1|Tα2 |−1

≈|K̂β1 |−1|K̂β2 |−1

≤
M∑

m,n=1

∑
γ∈Tm,η∈Tn

1K̂γ×K̂η
(z1, z2)1K̂γ×K̂η

(w1, w2)

|K̂γ × K̂η|
. (2.8)

Given a tree structure Tm×Tn on D2 and a dyadic tent K̂β1 ×K̂β2 we define the induced 
tree structure T ′

m,n and dyadic tent K̂ ′
β1,β2

on H to be:

T ′
m,n :=

{
(c1, c2) ∈ H :

(
c1
c2

, c2

)
∈ Tm × Tn

}
, (2.9)

K̂ ′
β1,β2

:=
{

(z1, z2) ∈ H :
(
z1

z2
, z2

)
∈ K̂β1 × K̂β2

}
. (2.10)
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Similarly the induced Carleson tent T ′
z1,z2 on H can be defined by

T ′
z1,z2 := {(w1, w2) ∈ H :

(
w1

w2
, w2

)
∈ Tz1 × Tz2}. (2.11)

Set du = |w2|−2dV . For a weight μ and a subset U ⊆ H, we set μ(U) :=
∫
U
μdV and let 

〈f〉μdVU denote the average of the function |f | with respect to the measure μdV on the 
set U :

〈f〉μdVU =
∫
U
|f(w1, w2)|μdV

μ(U) . (2.12)

Given weights μ on H and ν = |z2|−p′
μ−p′/p, we define the characteristic of two weights 

μ, ν to be

[μ, ν]p := sup
z1,z2∈D

〈μ|w2|2−p〉duT ′
z1,z2

(
〈|w2|2ν〉duT ′

z1,z2

)p−1
. (2.13)

By Lemmas 2.2 and 2.4, we can replace T ′
z1,z2 by K̂ ′

γ,η to obtain a quantity of comparable 
size:

[μ, ν]p ≈ sup
1≤m,n≤M

sup
(γ,η)∈T ′

m,n

〈μ|w2|2−p〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
. (2.14)

From now on, we will abuse the notations [μ, ν]p and [μ, ν]i,jp for i, j = 0, 1 to represent 
both the supremum in T ′

z1,z2 and the supremum in the corresponding K̂ ′
γ,η of similar 

size.
The proof of Theorem 1.2 will use the weighted strong maximal function on H.

Definition 2.5. For a weight μ, and a Bergman tree T ′
m,n, we define the following maximal 

function:

MT ′
m,n,μf(w1, w2) := sup

(β1,β2)∈Tm×Tn

1K̂′
β1,β2

(w1, w2)

μ(K̂ ′
β1,β2

)

∫
K̂′

β1,β2

|f(z1, z2)|μ(z1, z2)dV (z1, z2).

(2.15)

We set 〈f〉Q,μ :=
∫
Q

|f |dμ
μ(Q) , then we also have:

MT ′
m,n,μ

f(w1, w2) = sup
(β1,β2)∈Tm×Tn

1K̂′
β1,β2

(w1, w2)〈f〉K̂′
β1,β2

,μ. (2.16)

We have the following Lp regularity result for MT ′
m,n,μ

.

Lemma 2.6. Let μ(z1, z2) the same as in Theorem 1.2, then MT ′
m,n,μ

is bounded on 
Lp(H, μ) for 1 < p ≤ ∞. Moreover, ‖MT ′ ,μ‖Lp(H,μ) � (p/(p − 1))2 for 1 < p < ∞.
m,n
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Proof. When p = ∞, the boundedness of MT ′
m,n,μ

is obvious. We turn to the case 1 <
p < ∞. Set μ′

2(w2) := |w2|2μ2(w2). Using the biholomorphism h : (w1, w2) �→ (w1w2, w2)
from D × D∗ onto H, we transform MT ′

m,n,μ
into the following maximal function on 

D ×D∗:

MTm,n,μf(w1, w2) := sup
(β1,β2)∈Tm×Tn

1K̂β1
(w1)1K̂β2

(w2)

μ1(K̂β1)μ′
2(K̂β2)

×
∫

K̂β1,β2

|f(z1, z2)|μ1(z1)μ′
2(z2)dV (z1, z2), (2.17)

and it suffices to show that MTm,n,μ is Lp bounded on Lp(D × D∗, |w2|2μ ◦ h) for 1 <
p ≤ ∞. Defining the following two 1-parameter maximal functions:

MTm,μ1f(w1, w2) := sup
β1∈Tm

1K̂β1
(w1)

μ1(K̂β1)

∫
K̂β1

|f(z1, w2)|μ1(z1)dV (z1); (2.18)

MTn,μ′
2
f(w1, w2) := sup

β2∈Tn

1K̂β2
(w2)

μ′
2(K̂β2)

∫
K̂β2

|f(w1, z2)|μ′
2(z2)dV (z2), (2.19)

we obtain that MTm,n,μf ≤ MTm,μ1 ◦ MTn,μ′
2
f . By Fubini’s Theorem, it is enough to 

show that MTm,μ1 is bounded on Lp(D, μ1dV ) and MTn,μ′
2

is bounded on Lp(D, μ′
2dV ). 

Here we show the Lp boundedness of MTm,μ1 . The boundedness of MTn,μ′
2

follows from 
an analogous argument.

Note that MTm,μ1 is bounded on L∞(D, μ1). By interpolation, the weak-type (1,1) 
estimate

μ1({z ∈ D : MTm,μ1f(z) > λ}) �
‖f‖L1(D,μ1)

λ
(2.20)

is sufficient to finish the proof. For a point w ∈ {z ∈ D : MTm,μ1f(z) > λ}, there exists 
a unique maximal tent K̂α that contains w and satisfies:

1K̂α
(w)

μ1(K̂α)

∫
K̂α

|f(z)|μ1(z)dV (z) > λ

2 . (2.21)

Let Aλ be the set of indices of all such maximal tents K̂α. The union of these maximal 
tents covers the set {z ∈ D : MTm,μ1f(z) > λ}. Since the tents K̂α are maximal, they 
are also pairwise disjoint and hence

μ1({z ∈ D : MTm,μ1f(z) > λ}) ≤
∑

μ1(K̂α)

α∈Aλ
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≤
∑

α∈Aλ

2
λ

∫
K̂α

f(z)μ1(z)dV (z) ≤
2‖f‖L1(D,μ1)

λ
.

Thus inequality (2.20) holds and MTm,μ1 is weak-type (1,1). Using a standard argument 
for the Hardy-Littlewood maximal function, we further have

‖MTm,μ1‖Lp(D×D∗,|w2|2μ◦h) � p

p− 1 .

Since the same inequality holds for MTn,μ′
2
,

‖MT ′
m,n,μ

‖Lp(H,μ) =‖MTm,n,μ‖Lp(D×D∗,|w2|2μ◦h)

≤‖MTm,μ1 ◦MTn,μ′
2
‖Lp(D×D∗,|w2|2μ◦h) �

(
p

p− 1

)2

. �
Finally, we define two operators Q and Q+. Let p′ be the conjugate index of p. We 

set

Q(f)(z1, z2) =
∫
H

1
π2z2(1 − z1w̄1

z2w̄2
)2(1 − z2w̄2)2

f(w1, w2)dV (w1, w2), (2.22)

Q+(f)(z1, z2) =
∫
H

1
π2|z2||1 − z1w̄1

z2w̄2
|2|1 − z2w̄2|2

f(w1, w2)dV (w1, w2). (2.23)

It is clear that P = QM1/w̄2 and P+ = Q+M1/|w2|. Moreover, the weighted Lp norm 
of the projection, ‖P+ : Lp(H, μdV ) → Lp(H, μdV )‖, is equal to the weighted norm of 
Q+Mν acting between two different weighted Lp spaces.

Lemma 2.7. Let μ be a weight on the Hartogs triangle. Set ν := μ
−p′
p |w2|−p′ . Then

‖P : Lp(H, μdV ) → Lp(H, μdV )‖ = ‖QMν : Lp(H, νdV ) → Lp(H, μdV )‖; (2.24)

‖P+ : Lp(H, μdV ) → Lp(H, μdV )‖ = ‖Q+Mν : Lp(H, νdV ) → Lp(H, μdV )‖.
(2.25)

Proof. We show (2.25) here as the proof for (2.24) is similar. Given f ∈ Lp(H, μ), we 
have
∫
H

|f |pμdV (w1, w2) =
∫
H

∣∣∣∣ fw2

∣∣∣∣
p

|w2|pμdV (w1, w2) =
∫
H

∣∣∣M 1
|w2|

f
∣∣∣p |w2|pμdV (w1, w2).

(2.26)
Thus ‖f‖Lp(μdV ) = ‖M1/|w2|f‖Lp(μ|w2|pdV ) and

‖P+ : Lp(H, μdV ) → Lp(H, μdV )‖ = ‖Q+ : Lp(H, |w2|pμdV ) → Lp(H, μdV )‖.
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We claim further that for f ∈ Lp(H, |w2|pμdV ), ‖f‖Lp(|w2|pμdV ) = ‖M1/νf‖Lp(νdV ). 
Then (2.25) holds. Recall that ν := μ

−p′
p |w2|−p′ . We have

∫
H

∣∣∣∣fν
∣∣∣∣
p

νdV =
∫
H

|f |pν1−pdV =
∫
H

|f |p(μ− p′
p |w2|−p′

)1−pdV =
∫
H

|f |p|w2|pμdV.

Hence the claim is shown and the proof is complete. �
3. Proof of Theorem 1.2

It is sufficient to prove that inequality (1.5) holds.

3.1. Proof for the upper bound

For the upper bound inequality

‖P+‖Lp(H,μdV ) � ([μ, ν]0,0p )
1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1

p−1},

we first consider the case p ≥ 2. The case 1 < p < 2 will follow from a duality argument.
Recall the tree structure {T ′

m,n}Mm=1 and the dyadic tent {K̂ ′
β1,β2

} from (2.9) and 
(2.10). Set the measure du := |w2|−2dV . By Lemma 2.2 and the inequality (2.8), there is 
a finite collection M such that for (z1, z2) and (w1, w2) in H, there exists K̂β1 and K̂β1

such that
∣∣∣∣1 − z1w̄1

z2w̄2

∣∣∣∣
−2

|1 − z2w̄2|−2 ≈|K̂β1 |−1|K̂β2 |−1

≤
M∑

m,n=1

∑
γ∈Tm,η∈Tn

1K̂γ×K̂η
(z1/z2, z2)1K̂γ×K̂η

(w1/w2, w2)

|K̂γ × K̂η|

=
M∑

m,n=1

∑
(γ,η)∈T ′

m,n

1K̂′
γ,η

(z1, z2)1K̂′
γ,η

(w1, w2)

u(K̂ ′
γ,η)

. (3.1)

Applying this inequality to the operator Q+Mν yields

∣∣Q+Mνf(z1, z2)
∣∣

=

∣∣∣∣∣∣
∫
H

|z2|−1Mνf(w1, w2)
π2|1 − z1w̄1

z2w̄2
|2|1 − z2w̄2|2

dV (w1, w2)

∣∣∣∣∣∣
�
∫ M∑

m,n=1

∑
(γ,η)∈T ′

1K̂′
γ,η

(z1, z2)1K̂′
γ,η

(w1, w2) |Mνf(w1, w2)|

|z2|u(K̂ ′
γ,η)

dV (w1, w2)

H m,n
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=
M∑

m,n=1

∑
(γ,η)∈T ′

m,n

1K̂′
γ,η

(z1, z2)
|z2|

〈fν|w2|2〉duK̂′
γ,η

=I0,0 + I0,1 + I1,0 + I1,1, (3.2)

where

I0,0 =
M∑

m,n=1

1K̂′
0,0

(z1, z2)
|z2|

〈fν|w2|2〉duK′
0,0

= M2 1H(z1, z2)
|z2|

〈fν|w2|2〉duH ; (3.3)

I1,0 =
M∑

m,n=1

∑
(γ,0)∈T ′

m,n

1K̂′
γ,0

(z1, z2)
|z2|

〈fν|w2|2〉duK̂′
γ,0

; (3.4)

I0,1 =
M∑

m,n=1

∑
(0,η)∈T ′

m,n

1K̂′
0,η

(z1, z2)
|z2|

〈fν|w2|2〉duK̂′
0,η

; (3.5)

I1,1 =
M∑

m,n=1

∑
(γ,η)∈T ′

m,n

γ,η 	=0

1K̂′
γ,η

(z1, z2)|z2|−1〈fν|w2|2〉duK̂′
γ,η

. (3.6)

Set

Q0,0
m,n,νf(z1, z2) := 1H(z1, z2)

|z2|
〈fν|w2|2〉duH ;

Q1,0
m,n,νf(z1, z2) :=

∑
(γ,0)∈T ′

m,n

1K̂′
γ,0

(z1, z2)|z2|−1〈fν|w2|2〉duK̂′
γ,0

;

Q0,1
m,n,νf(z1, z2) :=

∑
(0,η)∈T ′

m,n

1K̂′
0,η

(z1, z2)|z2|−1〈fν|w2|2〉duK̂′
0,η

;

Q1,1
m,n,νf(z1, z2) :=

∑
(γ,η)∈T ′

m,n

γ,η 	=0

1K̂′
γ,η

(z1, z2)|z2|−1〈fν|w2|2〉duK̂′
γ,η

.

Then it suffices to estimate the Lp norm for each Qi,j
m,n,ν . The proof given below uses 

the idea of how to prove the linear bound for sparse operators in the weighted theory of 
harmonic analysis, see for example [25] and [20].

We first consider Q0,0
m,n,ν . For arbitrary g ∈ Lp′(H, μ),

〈
Q0,0

m,n,νf(z1, z2), g(z1, z2)μ
〉

=
∫
H

Q0,0
m,n,νf(z1, z2)g(z1, z2)μdV (z1, z2)

=
∫

1H(z1, z2)|z2|−1〈fν|w2|2〉duH g(z1, z2)μdV (z1, z2)

H
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=(u(H))−1
∫
H

f(z1, z2)νdV (z1, z2)
∫
H

g(z1, z2)|z2|−1μdV (z1, z2)

≤(u(H))−1

⎛
⎝∫

H

νdV

⎞
⎠

p−1
p

‖f‖Lp(H,ν)

⎛
⎝∫

H

|z2|−pμdV

⎞
⎠

1
p

‖g‖Lp′ (H,μ)

=
(
〈|w2|2−pμ〉duH

(
〈ν|w2|2〉duH

)p−1) 1
p ‖f‖Lp(H,ν)‖g‖Lp′ (H,μ). (3.7)

Therefore

‖Q0,0
m,n,ν‖Lp(H,ν)→Lp(H,μ) ≤

(
〈|w2|2−pμ〉duH

(
〈ν|w2|2〉duH

)p−1) 1
p = ([μ, ν]0,0p )

1
p . (3.8)

We turn to Q1,1
m,n,ν . For arbitrary g ∈ Lp′(H, μ),

〈
Q1,1

m,n,νf(z1, z2), g(z1, z2)μ
〉

=
∫
H

Q1,1
m,n,νf(z1, z2)g(z1, z2)μdV (z1, z2)

=
∫
H

∑
(γ,η)∈T ′

m,n

γ,η 	=0

1K̂′
γ,η

(z1, z2)|z2|−1〈fν|w2|2〉duK̂′
γ,η

g(z1, z2)μdV (z1, z2)

=
∑

(γ,η)∈T ′
m,n

γ,η 	=0

〈fν|w2|2〉duK̂′
γ,η

∫
K̂′

γ,η

g(z1, z2)|z2|−1μdV (z1, z2)

=
∑

(γ,η)∈T ′
m,n

γ,η 	=0

〈f〉νdV
K̂′

γ,η
〈ν|w2|2〉duK̂′

γ,η
〈g|w2|p−1〉|w2|2−pμdu

K̂′
γ,η

〈|w2|2−pμ〉du
K̂′

γ,η
u(K̂γ,η)

=
∑

(γ,η)∈T ′
m,n

γ,η 	=0

(
〈ν|w2|2〉duK̂′

γ,η

)p−1
〈|w2|2−pμ〉du

K̂′
γ,η

〈f〉νdV
K̂′

γ,η
〈g|w2|p−1〉|w2|−pμdV

K̂′
γ,η

× u(K̂ ′
γ,η)

(
〈ν|w2|2〉duK̂′

γ,η

)2−p

≤[μ, ν]1,1p

∑
(γ,η)∈T ′

m,n

γ,η 	=0

〈f〉νdV
K̂′

γ,η
〈g|w2|p−1〉|w2|−pμdV

K̂′
γ,η

(
u(K̂ ′

γ,η)
)p−1 (

ν(K̂ ′
γ,η)

)2−p

. (3.9)

Recall from Lemma 2.1 that |K̂α| ≈ |Kα| for the tree structure T with Lebesgue measure 
σ on the unit disc. Hence for the induced tree structure T ′

m,n with the induced weighted 
measure u on the Hartogs triangle, we also have u(K̂ ′

γ,η) ≈ u(K ′
γ,η). The facts that p ≥ 2

and K ′
γ,η ⊆ K̂ ′

γ,η gives the inequality 
(
ν(K̂ ′

γ,η)
)2−p

≤
(
ν(K ′

γ,η)
)2−p. Combining these 

facts, we have
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(
u(K̂ ′

γ,η)
)p−1 (

ν(K̂ ′
γ,η)

)2−p

�
(
u(K ′

γ,η)
)p−1 (

ν(K ′
γ,η)

)2−p
. (3.10)

By Hölder’s inequality,

u(K ′
γ,η) ≤

(
ν(K ′

γ,η)
) 1

p′

⎛
⎜⎝ ∫
K′

γ,η

|w2|−pμdV

⎞
⎟⎠

1
p

.

Therefore,

(
u(K ′

γ,η)
)p−1 (

ν(K ′
γ,η)

)2−p ≤
(
ν(K ′

γ,η)
) 1

p

⎛
⎜⎝ ∫
K′

γ,η

|w2|−pμdV

⎞
⎟⎠

1
p′

. (3.11)

Applying these inequalities to the last line of (3.9), we have

[μ, ν]1,1p

∑
(γ,η)∈T ′

m,n

〈f〉νdV
K̂′

γ,η
〈g|w2|p−1〉|w2|−pμdV

K̂′
γ,η

(
u(K̂ ′

γ,η)
)p−1 (

ν(K̂ ′
γ,η)

)2−p

�[μ, ν]1,1p

∑
(γ,η)∈T ′

m,n

〈f〉νdV
K̂′

γ,η
〈g|w2|p−1〉|w2|−pμdV

K̂′
γ,η

(
ν(K ′

γ,η)
) 1

p

⎛
⎜⎝ ∫
K′

γ,η

|w2|−pμdV

⎞
⎟⎠

1
p′

.

(3.12)

Applying Hölder’s inequality again to the sum above yields:

∑
(γ,η)∈T ′

m,n

〈f〉νdV
K̂′

γ,η
〈g|w2|p−1〉|w2|−pμdV

K̂′
γ,η

(
ν(K ′

γ,η)
) 1

p

⎛
⎜⎝ ∫
K′

γ,η

|w2|−pμdV

⎞
⎟⎠

1
p′

≤

⎛
⎝ ∑

(γ,η)∈T ′
m,n

(
〈f〉νdV

K̂′
γ,η

)p

ν(K ′
γ,η)

⎞
⎠

1
p

×

⎛
⎜⎝ ∑

(γ,η)∈T ′
m,n

(
〈g|w2|p−1〉|w2|−pμdV

K′
γ,η

)p′ ∫
K′

γ,η

|w2|−pμdV

⎞
⎟⎠

1
p′

. (3.13)

By the disjointness of K ′
γ,η and Lemma 2.6, we have

∑
(γ,η)∈T ′

(
〈f〉νdV

K̂′
γ,η

)p

ν(K ′
γ,η) ≤

∫
(MT ′

m,n,ν
f)pνdV ≤ (p′)2p‖f‖2p

Lp(H,νdV ). (3.14)

m,n H
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Note that ‖g|w2|p−1‖Lp′ (H,|w2|−pμdV ) = ‖g‖Lp′ (H,μdV ). A similar argument using the 
maximal function MT ′

m,n,|w2|−pμ will also give the inequality

∑
(γ,η)∈T ′

m,n

(
〈g|w2|p−1〉|w2|−pμdV

K̂′
γ,η

)p ∫
K′

γ,η

|w2|−pμdV ≤ (p)2p′‖g‖p
′

Lp′ (H,μdV ). (3.15)

Substituting (3.14) and (3.15) into (3.13) and (3.9) finally yields

〈
Q1,1

m,n,νf, gμ
〉

� [μ, ν]1,1p (pp′)2‖f‖Lp(H,νdV )‖g‖Lp′ (H,μdV ). (3.16)

Therefore ‖Q1,1
m,n,ν‖Lp(H,νdV )→Lp(H,μdV ) � (pp′)2[μ, ν]1,1p .

For the case 1 < p < 2 and we claim that

〈
Q1,1

m,n,νf, gμ
〉

� ([μ, ν]1,1p )
1

p−1 ‖f‖Lp(H,νdV )‖g‖Lp′ (H,μdV ), (3.17)

for all f ∈ Lp(H, νdV ) and g ∈ Lp′(H, μdV ). By the definition of Q1,1
m,n,ν ,

〈
Q1,1

m,n,νf, gμ
〉

=
〈 ∑

(γ,η)∈T ′
m,n

1K̂′
γ,η

(w1, w2)|w2|−1〈fν|w2|2〉duK̂′
γ,η

, gμ

〉

=
∑

(γ,η)∈T ′
m,n

〈
1K̂′

γ,η
(w1, w2)〈fν|w2|2〉duK̂′

γ,η
, g|w2|−1μ

〉

=
∑

(γ,η)∈T ′
m,n

〈fν|w2|2〉duK′
γ,η

〈g|w2|μ〉duK̂′
γ,η

u(K̂ ′
γ,η)

=
∑

(γ,η)∈T ′
m,n

〈
1K̂′

γ,η
(w1, w2)|w2|−1〈g|w2|p−1|w2|−pμ|w2|2〉duK̂′

γ,η
|w2|, fν

〉

=
〈
M|z2|Q

1,1
m,n,|w2|−pμ(g|w2|p−1), fν

〉
. (3.18)

Set h = g|w2|p−1 and ψ = |w2|−pμ. Then ‖h‖Lp′ (H,ψdV ) = ‖g‖Lp′ (H,μdV ). Setting the 

weight ω to satisfies |w2|−pω
−p
−p′ = ψ, we have ω = μ

p′
p = ν|z2|p

′ . Replacing p by p′, μ
by ω, and ν by ψ and going through same argument for the case p ≥ 2 yields that

‖M|z2|Q
1,1
m,n,|w2|−pμ‖Lp′ (H,νdV )

= ‖Q1,1
m,n,|w2|−pμ‖Lp′ (H,|w2|p′νdV )

� (pp′)2 sup
(γ,η)∈T ′

m,n

(
〈μ|w2|2−p〉du

K̂′
γ,η

)p′−1
〈|w2|2−p′

ν|z2|p
′〉du

K̂′
γ,η

= (pp′)2
(

sup
(γ,η)∈T ′

〈μ|w2|2−p〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
) 1

p−1
m,n
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= (pp′)2([μ, ν]1,1p )
1

p−1 . (3.19)

Thus we have

〈
Q1,1

m,n,νf, gμ
〉

� (pp′)2([μ, ν]1,1p )
1

p−1 ‖g‖Lp′ (H,μdV )‖f‖Lp(H,νdV ),

and

‖Q1,1
m,n,ν‖Lp(H,μdV ) � (pp′)2([μ, ν]1,1p )

1
p−1 .

Combining the results for 1 < p < 2 and p ≥ 2 gives:

‖Q1,1
m,n,ν‖Lp(H,νdV )→Lp(H,μdV ) � (pp′)2([μ, ν]1,1p )max{1, 1

p−1}. (3.20)

To estimate ‖Q1,0
m,n,ν‖Lp(H,νdV )→Lp(H,μdV ), we combine the above arguments for 

Q0,0
m,n,ν and Q1,1

m,n,ν . For arbitrary g ∈ Lp′(H, μ),

〈
Q1,0

m,n,νf(z1, z2), g(z1, z2)μ
〉

=
∫
H

Q1,0
m,n,νf(z1, z2)g(z1, z2)μdV (z1, z2)

=
∫
H

∑
(γ,0)∈T ′

m,n

1K̂′
γ,0

(z1, z2)|z2|−1〈fν|w2|2〉duK̂′
γ,0

g(z1, z2)μdV (z1, z2)

=
∑

(γ,0)∈T ′
m,n

(u(K̂ ′
γ,0))−1

∫
K̂′

γ,0

|f(z1, z2)|νdV (z1, z2)
∫

K̂′
γ,0

|z2|−1|g(z1, z2)|μdV (z1, z2)

≈
∑

(γ,0)∈T ′
m,n

|K̂γ |−1
∫

K̂′
γ,0

|f(z1, z2)|νdV (z1, z2)
∫

K̂′
γ,0

|g(z1, z2)||z2|−1μdV (z1, z2). (3.21)

Recall that μ(z1, z2) = μ1(z1/z2)μ2(z2). There holds ν(z1, z2) = ν1(z1/z2)ν2(z2) by the 
definition of ν. Hence∫

K̂′
γ,0

|f(z1, z2)|νdV (z1, z2)

=
∫

K̂γ×D

|f(z2t, z2)|ν1(t)ν2(z2)|z2|2dV (t, z2)

≤

⎛
⎜⎝∫

D

∣∣∣∣∣∣∣
∫
ˆ

|f(z2t, z2)|ν1(t)dV (t)

∣∣∣∣∣∣∣
p

ν2(z2)|z2|2dV (z2)

⎞
⎟⎠

1
p ⎛
⎝∫

D

ν2(z2)|z2|2dV (z2)

⎞
⎠

1
p′
Kγ
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≈ν1(K̂γ)

⎛
⎝∫

D

|
∫
K̂γ

|f(z2t, z2)|ν1(t)dV (t)|p

(ν1(K̂γ))p
ν2(z2)|z2|2dV (z2)

⎞
⎠

1
p

×

⎛
⎝∫

D

ν2(z2)|z2|2dV (z2)

⎞
⎠

1
p′

. (3.22)

Similarly,
∫

K̂′
γ,0

|g(z1, z2)||z2|−1μdV (z1, z2)

�μ1(K̂γ)

⎛
⎝∫

D

|
∫
K̂γ

|g(z2t, z2)|μ1(t)dV (t)|p′

(μ1(K̂γ))p′ μ2(z2)|z2|2dV (z2)

⎞
⎠

1
p′

×

⎛
⎝∫

D

μ2(z2)|z2|2−pdV (z2)

⎞
⎠

1
p

. (3.23)

Set f∗(t, z2) = f(z2t, z2) and g∗(t, z2) = g(z2t, z2). Recall the boundedness of MTm,μ1

from the proof of Lemma 2.6 and the fact that (ν1(K̂γ))2−p ≤ (ν1(Kγ))2−p for p ≥
2. Applying these facts, substituting (3.22) and (3.23) into (3.21), and following the 
computation for the operator Q1,1

m,n,ν then yields that for p ≥ 2,

〈
Q1,0

m,n,νf(z1, z2), g(z1, z2)μ
〉

�
(
〈|z2|2−pμ2〉dVD (〈ν2〉dVD )p−1) 1

p sup
0	=γ∈Tm

〈μ1〉dVK̂γ

(
〈ν1〉dVK̂γ

)p−1
×

‖MTm,ν1(|f∗(·, z2)|)‖Lp(D2,|z2|2ν1ν2)‖MTm,μ1(|g∗(·, z2)|)‖Lp′ (D2,|z2|2μ1μ2)

�
(
〈|z2|2−pμ2〉dVD (〈ν2〉dVD )p−1) 1

p sup
0	=γ∈Tm

〈μ1〉dVK̂γ

(
〈ν1〉dVK̂γ

)p−1

× pp′‖f∗‖Lp(D2,|z2|2ν1ν2)‖g∗‖Lp′ (D2,|z2|2μ1μ2)

�
(
〈|z2|2−pμ2〉dVD (〈ν2〉dVD )p−1) 1

p sup
0	=γ∈Tm

〈μ1〉dVK̂γ

(
〈ν1〉dVK̂γ

)p−1
pp′‖f‖Lp(H,ν)‖g‖Lp′ (H,μ).

(3.24)

The same duality argument as in (3.18) implies that for 1 < p < 2,

〈
Q1,0

m,n,νf(z1, z2), g(z1, z2)μ
〉

�
(
〈|z2|2−pμ2〉dVD (〈ν2〉dVD )p−1) 1

p

(
sup

0	=γ∈T
〈μ1〉dVK̂γ

(
〈ν1〉dVK̂γ

)p−1
) 1

p−1
m
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× pp′‖f‖Lp(H,ν)‖g‖Lp′ (H,μ).

Combining these inequalities, we obtain

‖Q1,0
m,n,ν‖Lp(H,νdV )→Lp(H,μdV )

�pp′
(
〈|z2|2−pμ2〉dVD (〈ν2〉dVD )p−1) 1

p

(
sup

0	=γ∈Tm

〈μ1〉dVK̂γ

(
〈ν1〉dVK̂γ

)p−1
)max{1, 1

p−1}

=pp′[μ, ν]1,0p (3.25)

By a similar argument, one can obtain the estimate for ‖Q0,1
m,n,ν‖:

‖Q0,1
m,n,ν‖Lp(H,νdV )→Lp(H,μdV )

�pp′

(
sup

0	=η∈Tn

〈|z2|2−pμ2〉dVK̂η
(〈ν2〉dVK̂η

)p−1

)max{1, 1
p−1} (

〈μ1〉dVD
(
〈ν1〉dVD

)p−1) 1
p

=pp′[μ, ν]0,1p . (3.26)

Combining (3.8), (3.20), (3.25) and (3.26), we obtain the upper bound in Theorem 1.2:

‖P+‖Lp(H,μ) � ([μ, ν]0,0p )1/p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1
p−1}

3.2. Proof for the lower bound

Now we turn to show the lower bound

[μ, ν]
1
2p
p � ‖P‖Lp(H,μdV )

in Theorem 1.2. By the proof of Lemma 2.7,

‖P‖Lp(H,μdV ) = ‖Mz2QMν : Lp(H, νdV ) → Lp(H, μdV )‖. (3.27)

It suffices to show that [μ, ν]p ≤ ‖Mz2QMν : Lp(H, νdV ) → Lp(H, |z2|−pμdV )‖2p. For 
simplicity, we set A := ‖Mz2QMν : Lp(H, νdV ) → Lp(H, |z2|−pμdV )‖. Set |z2|−pμ = μp. 
If A < ∞, then we have a weak-type (p, p) estimate:

μp{(w1, w2) ∈ H : |Mz2QMνf(w1, w2)| > λ} � Ap

λp
‖f‖pLp(H,νdV ). (3.28)

We choose f(w1, w2) = 1K̂′ (w1, w2) with γ and η to be determined. Then

γ,η
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|Mz2QMν1K̂′
γ,η

(z1, z2)|

=

∣∣∣∣∣∣∣∣
∫

K̂′
γ,η

1
π2(1 − z1w̄1

z2w̄2
)2(1 − z2w̄2)2

ν(w1, w2)dV (w1, w2)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

K̂γ,η

1
π2(1 − z1

z2
t̄1)2(1 − z2w̄2)2

ν(t1w2, w2)|w2|2dV (t1, w2)

∣∣∣∣∣∣∣
=
∣∣∣PD2(|w2|2ν(t1w2, w2)1K̂γ×K̂η

(t1, w2))(z1/z2, z2)
∣∣∣ . (3.29)

Here PD2 is the Bergman projection on the polydisc D2.
Recall that for a point z ∈ D and a tree structure T , the generation gen(z) equals N

if z ∈ KN
j for some j. By [4, Lemma 5], there exists an integer N so that for γ ∈ Tm with 

gen(γ) > N , there is a γ′ ∈ Tm′ with gen(γ) = gen(γ′) such that for any fixed z ∈ K̂γ′

and all w ∈ K̂γ there holds,

(1 − zw̄)−2 = (1 − zγ̄)−2 + ((1 − zw̄)−2 − (1 − zγ̄)−2),

where |(1 − zw̄)−2 − (1 − zγ̄)−2| ≤ 2−1|1 − zγ̄|−2 and |1 − zγ̄|2 ≈ |K̂γ |. Moreover, an 
elementary geometric argument yields that arg((1 −zw̄)−2, (1 −zγ̄)−2) ≤ π/6 for all w ∈
K̂γ . Thus for (γ, η) ∈ Tm×Tn with gen(γ), gen(η) > N , there is a (γ′, η′) ∈ Tm′×Tn′ with 
gen(γ) = gen(γ′) and gen(η) = gen(η′) such that for any fixed (z1/z2, z2) ∈ K̂γ′ × K̂η′

there holds:

arg
((

1 − z1

z2
t̄1

)−2

(1 − z2w̄2)−2,

(
1 − z1

z2
γ̄

)−2

(1 − z2η̄)−2

)
≤ π/3,

for all (t1, w2) ∈ K̂γ × K̂η. Hence

|PD2(|w2|2ν(t1w2, w2)1K̂γ×K̂η
(t1, w2))(z1/z2, z2)|

=

∣∣∣∣∣∣∣
∫

K̂γ,η

1
π2(1 − z1

z2
t̄1)2(1 − z2w̄2)2

ν(t1w2, w2)|w2|2dV (t1, w2)

∣∣∣∣∣∣∣
≥16−1

∫
K̂γ,η

1
π2|1 − z1

z2
γ̄|2|1 − z2η̄|2

ν(t1w2, w2)|w2|2dV (t1, w2)

>c1〈|w2|2ν(t1w2, w2)〉dVK̂γ×K̂η
,

for some constant c1. Thus via the biholomorphism between D×D∗ and H, the following 
containment holds:
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K̂ ′
γ′,η′ ⊆ {(w1, w2) ∈ H : |Mz2QMνf(w1, w2)| > c1〈|w2|2ν(t1w2, w2)〉dVK̂γ×K̂η

}. (3.30)

By [4, Lemma 4], there holds that ν(H) < ∞. Hence

〈|w2|2ν(t1w2, w2)〉dVK̂γ×K̂η
= 〈|w2|2ν〉duK̂′

γ,η
< ∞.

Inequality (3.28) then implies

μp(K̂ ′
γ′,η′) ≤ Ap

(
〈|w2|2ν〉duK̂′

γ,η

)−p

ν(K̂ ′
γ,η), (3.31)

which is equivalent to 〈|w2|2−pμ〉du
K̂′

γ′,η′

(
〈|w2|2ν〉duK̂′

γ,η

)p−1

� Ap. Since one can inter-

change the roles of γ, η and γ′, η′ in the proof of [4, Lemma 5], there holds

〈|w2|2−pμ〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ′,η′

)p−1

� Ap.

Combining these two inequalities, we have

(
〈|w2|2−pμ〉du

K̂′
γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
)(

〈|w2|2−pμ〉du
K̂′

γ′,η′

(
〈|w2|2ν〉duK̂′

γ′,η′

)p−1
)

� A2p.

(3.32)
By Hölder’s inequality,

u(K̂ ′
γ,η)p ≤

∫
K̂′

γ,η

|w2|2−pμdu

⎛
⎜⎜⎝

∫
K̂′

γ,η

|w2|2νdu

⎞
⎟⎟⎠

p−1

(3.33)

for any (γ, η) ∈ Tm,n. Therefore 〈|w2|2−pμ〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1

� 1 for all γ, η ∈
Tm,n. Applying this to (3.32) and taking the supremum of the left side of (3.32) for 
gen(γ) > N and gen(η) > N , there holds

sup
(γ,η)∈Tm,n,

gen(γ),gen(η)>N

〈|w2|2−pμ〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
� A2p. (3.34)

We turn to show that (3.34) also holds when the supremum is taken over tents where 
either gen(γ) ≤ N or gen(η) ≤ N .

Suppose that both gen(γ) ≤ N and gen(η) ≤ N . Then K̂γ and K̂η are big tents on 
the unit disk D and |K̂γ | = |K̂η| ≈ 1. Set B1/4 = {z ∈ C : |z| < 1/4}. Then for any 
given z ∈ D, |zw̄| < 1/4 for w ∈ B1/4. Therefore Arg((1 − zw̄)2) ⊆ [−π

6 , 
π
6 ]. Applying 

this fact, we obtain
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∣∣∣∣PD2(|w2|2ν(t1w2, w2)1B1/4×B1/4(t1, w2))
(
z1

z2
, z2

)∣∣∣∣
=

∣∣∣∣∣∣∣
∫

B1/4×B1/4

|w2|2
π2(1 − z1

z2
t̄1)2(1 − z2w̄2)2

ν(t1w2, w2)dV (t1, w2)

∣∣∣∣∣∣∣
≥16−1

∣∣∣∣∣∣∣
∫

B1/4×B1/4

π−2|w2|2ν(t1w2, w2)dV (t1, w2)

∣∣∣∣∣∣∣ ≥ c2〈|w2|2ν(t1w2, w2)〉dVB1/4×B1/4

(3.35)

for some constant c2. Therefore,

D2 =
{
(z1, z2) ∈ D2 :|PD(|w2|2ν(t1w2, w2)1B1/4×B1/4)(z1, z2)|

> c2〈|z2|2ν(t1z2, z2)〉dVB1/4×B1/4

}
.

Let B′
1/4,1/4 denote the set {(w1, w2) ∈ H : (w1

w2
, w2) ∈ B1/4 × B1/4}. Via the bihomo-

morphism between D ×D∗ and H, we obtain

μp(H) = μp

{
(z1, z2) ∈ H : |PH(ν1B′

1/4
)(z1, z2)| > c2〈|z2|2ν〉duB′

1/4,1/4

}

≤
Ap‖1B′

1/4
‖pLp(H,νdV )

cp2

(
〈|z2|2ν〉duB′

1/4,1/4

)p .

Thus

〈|w2|2−pμ〉duH
(
〈|w2|2ν〉duB′

1/4,1/4

)p−1
� Ap.

Interchanging the role of variables z and w, we also have

μp(B′
1/4,1/4) = μp

{
(w1, w2) ∈ B′

1/4,1/4 : |PH(ν1H)(w1, w2)| > c2〈|w2|2ν〉duH
}

≤
Ap‖1‖pLp(H,νdV )

cp2
(
〈|w2|2ν〉duH

)p .
Thus

〈|w2|2−pμ〉duB′
1/4,1/4

(〈|w2|2ν〉duH )p−1 � Ap.

By Hölder’s inequality

〈|w2|2−pμ〉duB′
1/4,1/4

(
〈|w2|2ν〉duB′

1/4,1/4

)p−1
≥ 1.

Combining these inequalities yields that
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〈|w2|2−pμ〉duH (〈|w2|2ν〉duH )p−1

�〈|w2|2−pμ〉duB′
1/4,1/4

(〈|w2|2ν〉duH )p−1〈|w2|2−pμ〉duH
(
〈|w2|2ν〉duB′

1/4,1/4

)p−1
� A2p (3.36)

Therefore, |K̂ ′
γ,η| ≈ 1 implies

〈|w2|2−pμ〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
� 〈|w2|2−pμ〉duH (〈|w2|2ν〉duH )p−1 � A2p. (3.37)

For the case gen(γ) ≤ N and gen(η) > N , we combine the arguments for both the 
big tents and the small tents. There exists an η′ with gen(η) = gen(η′) such that for all 
z1
z2

∈ D and z2 ∈ K̂η′ , there holds:

|PD2(|w2|2ν(t1w2, w2)1B1/4×K̂η
(t1, w2))(z1/z2, z2)|

=

∣∣∣∣∣∣∣
∫

B1/4×K̂η

|w2|2ν(t1w2, w2)
π2(1 − z1

z2
t̄1)2(1 − z2w̄2)2

dV (t1, w2)

∣∣∣∣∣∣∣
≥16−1

∫
B1/4×K̂η

|w2|2ν(t1w2, w2)
π2|1 − z2η̄|2

dV (t1, w2) > c3〈|w2|2ν(t1w2, w2)〉dVK̂0×K̂η
,

for some constant c3. Set B′
1/4,η = {(w1, w2) ∈ H : (w1

w2
, w2) ∈ B1/4 × K̂η}. Via the 

biholomorphism between D ×D∗ and H again, the following containment holds:

K̂ ′
0,η′ ⊆

{
(w1, w2) ∈ H : |Mz2QMν1B′

1/4,η
(w1, w2)| >

c3
32 〈|w2|2ν(t1w2, w2)〉dVK̂0×K̂η

}
.

(3.38)
Applying the proof for inequalities (3.34) and (3.37) to (3.38) gives

〈|w2|2−pμ〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
� 〈|w2|2−pμ〉du

K̂′
0,η

(
〈|w2|2ν〉duK̂′

0,η

)p−1
� A2p. (3.39)

The last case gen(η) ≤ Nn and gen(γ) > Nm follows from a similar argument with the 
role of γ and η interchanged. Combining all these estimates, we obtain the desired lower 
bound:

[μ, ν]p = sup
(γ,η)∈Tm,n

〈|w2|2−pμ〉du
K̂′

γ,η

(
〈|w2|2ν〉duK̂′

γ,η

)p−1
� A2p, (3.40)

which completes the proof of Theorem 1.2.

4. Examples

We begin by providing a sharp example for the upper bound estimate in Theorem 1.2.
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4.1. A sharp example for the upper bound

We give an example for the case 1 < p ≤ 2 here. The case p > 2 follows from a duality 
argument. The idea is based on the construction of the sharp examples in [28] and [29]. 
Recall B1/4 = {z ∈ C : |z| < 1/4}. Given a number 1 > s > 0, we set

μ(w1, w2) = |w2|p−2 |(1 − w1/w2)(1 − w2)|2(p−1)(1−s)

|w1/w2|2−s|w2|2−s
, (4.1)

f(w1, w2) = w̄2μ
1

1−p (w1, w2)1T 1
2
(w1/w2)1T 1

2
(w2). (4.2)

Then for (t1, t2) ∈ D2 with T ′
t1,t2 not intersecting the tent T ′

|t1|,|t2| and away from the 

point (0, 0), there holds μ(w1, w2) ≈ 1 and hence 〈μ|w2|2−p〉duT ′
t1,t2

(
〈|w2|2ν〉duT ′

t1,t2

)p−1
≈ 1.

When T ′
t1,t2 intersects the tent T ′

|t1|,|t2| with |t1|, |t2| ≥ 1/2, there exists a positive 
constant c > 0 such that T ′

t1,t2 ⊆ T ′
c|t1|,c|t2| and u(T ′

t1,t2) ≈ u(T ′
c|t1|,c|t2|). Thus

∫
T ′
t1,t2

|w2|2−pμ(w1, w2)du(w1, w2)

�
∫

T ′
c|t1|,c|t2|

|w2|2−pμ(w1, w2)du(w1, w2)

=
∫

Tc|t1|×Tc|t2|

|(1 − w1)(1 − w2)|(p−1)(2−2s)
dV (w1, w2)

=
2∏

j=1

∫
{wj∈D:|1−wj |<1−c|tj |}

|1 − wj |(p−1)(2−2s)
dV (wj). (4.3)

Using the changes of variables zj = i
1−wj

1+wj
, we have

∫
{wj∈D:|1−wj |<1−c|tj |}

∣∣∣∣1 − wj

1 + wj

∣∣∣∣
(p−1)(2−2s)

dV (wj)

≈
∫

{zj∈C:|zj |<1−c|tj |,Imzj>0}

|zj |(p−1)(2−2s)
dV (zj) ≈

(1 − c|tj |)(p−1)(2−2s)+2

(p− 1)(2 − 2s) + 2 . (4.4)

Thus

∫
T ′

|w2|2−pμ(w1, w2)du(w1, w2) ≈
2∏

j=1

(1 − c|tj |)(p−1)(2−2s)+2

(p− 1)(2 − 2s) + 2 . (4.5)
t1,t2
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Similarly, for ν = |w2|−p′
μ

−p′
p ,

∫
T ′
t1,t2

|w2|2ν(w1, w2)du(w1, w2) ≈
2∏

j=1

(1 − c|tj |)2s
2s . (4.6)

Since 1 < p ≤ 2 and 0 < s < 1, we have

[μ, ν]1,1p = sup
t1,t2∈D

|t1|,|t2|≥1/2

〈|w2|2−pμ〉duT ′
t1,t2

(
〈|w2|2ν〉duT ′

t1,t2

)p−1
� s−2(p−1).

Moreover,

[μ, ν]0,0p = 〈|w2|2−pμ〉duH
(
〈ν|w2|2〉duH

)p−1 ≈ s−2p;

[μ, ν]1,0p =
(
〈|z2|2−pμ2〉dVD (〈ν2〉dVD )p−1) 1

p

⎛
⎜⎝ sup

z∈D,
|z|>1/2

〈μ1〉dVTz

(
〈ν1〉dVTz

)p−1

⎞
⎟⎠

max{1, 1
p−1}

≈ s−2;

[μ, ν]0,1p =

⎛
⎜⎝ sup

z∈D,
|z|>1/2

〈|z2|2−pμ2〉dVTz
(〈ν2〉dVTz

)p−1

⎞
⎟⎠

max{1, 1
p−1} (

〈μ1〉dVD
(
〈ν1〉dVD

)p−1) 1
p ≈ s−2.

Thus the upper bound

([μ, ν]0,0p )
1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1

p−1} � s−2.

When w1/w2, w2 ∈ T1/2, there hold |w1|/|w2|, |w2| ≈ 1. Therefore

‖f‖pLp(H,μ) ≈
∫

T ′
1/2,1/2

μ
p

1−p (w1, w2)μ(w1, w2)dV (w1, w2) ≈ 〈|w2|2ν〉duT ′
1/2,1/2

≈ s−2.

(4.7)

For z1/z2, z2 ∈ B1/4, we claim that

|P (f)(z1, z2)| � |z2|−1〈f〉dVT ′
1/2,1/2

. (4.8)

Note that for w ∈ T 1
2

and z ∈ B1/4, there holds that |1 − zw̄| ≈ 1 and

arg{(1 − zw̄), 1} ∈ (− arcsin(1/4), arcsin(1/4)).

Using these facts and the formula (2.2) for the Bergman projection, we have
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|P (f)(z1, z2)| =

∣∣∣∣∣∣∣
∫

T ′
1/2,1/2

f(w1, w2)
π2z2w̄2(1 − z1w̄1

z2w̄2
)2(1 − z2w̄2)2

dV (w1, w2)

∣∣∣∣∣∣∣
= |z2|−1

∣∣∣∣∣∣∣
∫

T1/2,1/2

f(w1w2, w2)w2

π2(1 − z1
z2
w̄1)2(1 − z2w̄2)2

dV (w1, w2)

∣∣∣∣∣∣∣
� |z2|−1

∫
T1/2,1/2

|1 − w1/w2|2s−2|1 − w2|2s−2dV (w1, w2)

≈ |z2|−1〈f〉dVT ′
1/2,1/2

. (4.9)

Since |w1|/|w2|, |w2| ≈ 1 for (w1, w2) ∈ T ′
1/2,1/2, we have

〈f〉T ′
1/2,1/2

≈
∫

T ′
1/2,1/2

|(1 − w1/w2)(1 − w2)|2(s−1)
dV (w1, w2) ≈ 〈|w2|2ν〉duT ′

1/2,1/2
≈ s−2.

(4.10)

Thus |P (f)(z1, z2)| � |z2|−1s−2. Moreover,

‖Pf‖pLp(H,μdV ) =
∫
H

|Pf(z1, z2)|pμ(z1, z2)dV (z1, z2)

≥ s−2p
∫

{(z1/z2,z2)∈B1/4×B1/4}

|z2|−pμ(z1, z2)dV (z1, z2)

≈ s−2p
∫

{(t,z2)∈B1/4×B1/4}

|t|s−2|z2|s−2dV (t, z′2) ≈ s−2p−2. (4.11)

Thus the desired estimates hold:

‖Pf‖pLp(H,μdV )

‖f‖pLp(H,μdV )
� s−2p

�
(
([μ, ν]0,0p )

1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1

p−1}
)p

.

4.2. Lp regularity of the Bergman projection on the Hartogs triangle

If weight μ is identically 1, then μdV is the Lebesgue measure on the Hartogs triangle, 
and ‖P+‖Lp(H,μ) is the unweighted Lp norm of the Bergman projection. Chakrabarti and 
Zeytuncu showed in [6] that the Bergman projection on the Hartogs triangle is Lp regular 
if and only if 4

3 < p < 4. Using Theorem 1.2, we give an alternative proof of this Lp

regularity result.
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Set μ ≡ 1. Then ν = |w2|−p′ and

[μ, ν]p = sup
(γ,η)∈Tm,n

1≤m,n≤M

〈|w2|2−p〉du
K̂′

γ,η

(
〈|w2|2−p′〉du

K̂′
γ,η

)p−1
.

When p ≥ 4 or p ≤ 4/3, we have 
∫
H |w2|2−pdu 

∫
H |w2|2−p′

du = ∞. Thus [μ, ν]p = ∞ for 
p /∈ (4

3 , 4). By Theorem 1.2, the Bergman projection P is not bounded on Lp(H).
When p ∈ (4

3 , 4), we have for (γ, η) ∈ Tm,n where 1 ≤ m, n ≤ M that

〈|w2|2−p〉du
K̂′

γ,η

(
〈|w2|2−p′〉du

K̂′
γ,η

)p−1
= 〈|w2|2−p〉dV

K̂η

(
〈|w2|2−p′〉dV

K̂η

)p−1
.

Therefore for all w2 ∈ K̂η with |η| ≥ 1/2, we have |w2| � 1 and

〈|w2|2−p〉dV
K̂η

(
〈|w2|2−p′〉dV

K̂η

)p−1
≈ 1. (4.12)

When η = 0, K̂η = D and

〈|w2|2−p〉dVD
(
〈|w2|2−p′〉dVD

)p−1
= [μ, ν]0,0p = 2

4 − p

(
2(p− 1)
3p− 4

)p−1

. (4.13)

Similarly, we have the estimates for the other [μ, ν]i,jp :

[μ, ν]1,0p ≈
(
〈|w2|2−p〉dVD (〈|w2|2−p′〉dVD )p−1

) 1
p =

(
2

4 − p

(
2(p− 1)
3p− 4

)p−1
)1/p

;

[μ, ν]0,1p ≈ [μ, ν]1,1p ≈ 1.

Hence for p ∈ (3/4, 4),

([μ, ν]0,0p )
1
p + pp′([μ, ν]1,0p + [μ, ν]0,1p ) + (pp′)2([μ, ν]1,1p )max{1, 1

p−1}

≈
(

2
4 − p

(
2(p− 1)
3p− 4

)p−1
)1/p

≈ (4 − p)−1/p(3p− 4)−1/p′
< ∞. (4.14)

Theorem 1.2 gives the norm estimate of the Bergman projection P for 4
3 < p < 4,

‖P‖Lp(H) � (4 − p)−1/p(3p− 4)−1/p′
, (4.15)

which implies the blowing up of ‖P‖Lp(H) as p → 4
3
+ or p → 4−. This fact can also be 

checked by computing the quotient ‖P (|z2|−p′
z̄2)‖pLp(H)/‖|z2|−p′

z̄2‖pLp(H) for the cases 
p → 4− and p → 4+. Moreover, the estimate (4.15) is sharp in the sense that
3
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‖P (|z2|−p′
z̄2)‖Lp(H)

‖|z2|−p′ z̄2‖Lp(H)
≈ 1

(4 − p)1/p(3p− 4)1/p′ .

4.3. The case μ(w1, w2) = |w1|a|w2|b

When the weight μ(w1, w2) = |w1|a|w2|b, the weight ν = |w1|−ap′/p|w2|−p′(1+b/p). The 
singularity of the weight only occurs at places where w1 or w2 vanishes. Hence the blowing 
up of weights at both z1 = 0 and z2 = 0 can only be captured by computing the average 
of the weights over the entire Hartogs triangle. Thus [μ, ν]0,0p will be the largest term 
among [μ, ν]i,jp . By a change of variables we obtain

[μ, ν]0,0p = 〈|w1|a|w2|2−p+b〉duH
(
〈|w1|−ap′/p|w2|2−p′(1+b/p)〉duH

)p−1

= 〈|w1|a〉dVD
(
〈|w1|−

ap′
p 〉dVD

)p−1
〈|w2|2+a−p+b〉dVD

(
〈|w2|2−p′(1+ a+b

p )〉dVD
)p−1

.

(4.16)

A computation using polar coordinates implies the following estimate for [μ, ν]0,0p :

• [μ, ν]0,0p ≈ (a + 2)−1(2 − ap′

p )1−p(4 − p + a + b)−1(4 − p′(1 + a+b
p ))1−p, for −2 < a <

2(p − 1) and p − 4 < a + b < 3p − 4;
• [μ, ν]0,0p = ∞ otherwise.

Rearranging these inequalities, we conclude that the Bergman projection P is Lp regular 
for p ≥ 2 if and only if max{1, a+1

2 , a+b+4
3 } < p < a + b + 4. The p range we obtain here 

is not of form (α, α
α−1 ). This is because, for the case a or b is not zero, the Bergman 

projection operator is not self-adjoint on Lp(H, μdV ), and is not necessarily L2 bounded.

4.4. Lp regularity of the Bergman projection on the generalized Hartogs triangle

In [14], Edholm and McNeal studied the Lp boundedness of the Bergman projection 
on the generalized Hartogs triangle

Hm/n = {(z1, z2) ∈ C2 : |z1|m < |z2|n < 1},

where m, n ∈ Z+ with gcd(m, n) = 1. A crucial step in their paper (see [14, Proposition 
3.4]) is to analyze the Lp regularity of the integral operator KA defined by

KA(f)(z1, z2) :=
∫

H

|z2w̄2|A
|1 − z2w̄2|2|zn2 w̄n

2 − zm1 w̄m
1 |2 f(w1, w2)dV (w1, w2).
m/n
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Using the proper map h : (w1, w2) �→ (wm
1 wn−1

2 , w2) from Hm/n to H, we can relate the 
Lp norm of KA on Hm/n to the weighted Lp norm of the absolute Bergman projection 
on H:

‖KA‖Lp(Hm/n) = m−1‖MhP
+Mh : Lp(H, ω1dV ) → Lp(H, ω2dV )‖

= m−1‖P+Mh : Lp(H, ω1dV ) → Lp(H, ω2h
pdV )‖,

where the weights ω1(w1, w2) = |w1|
2m−2

m (p−1)|w2|
2
m (n−1)(1−p), ω2(w1, w2) = |w1|−2+ 2

m ×
|w2|

2
m (n−1), and h(w1, w2) = |w2|A−2n+1. Setting μ := ω2h

p and ν := ω
− p′

p

1 |w2|(A−2n)p′ , 
we obtain

‖P+Mh : Lp(H, ω1dV ) → Lp(H, ω2h
pdV )‖ = ‖Q+Mν : Lp(H, νdV ) → Lp(H, μdV )‖.

(4.17)
Here ν is no longer equal to |w2|−p′

μ− p′
p which is the dual weight of |w2|−pμ with 

respect to the measure u. Still, μ and ν are blowing or vanishing at points where z1 or z2
vanishes. Thus [μ, ν]1,1p ≈ 1. Moreover, the constants [μ, ν]1,0p and [μ, ν]0,1p only measure 
the singularity of the weight in either z1 or z2 variable. Therefore

([μ, ν]0,0p )1/p =
(
〈μ|w2|2−p〉duH

(
〈|w2|2ν〉duH

)p−1)1/p

is the main term in the upper bound of the weighted norm of Q+Mν . By a simple 
integration, we obtain for p ∈

(
2n+2m

Am+2n+2m−2nm , 2n+2m
2nm−Am

)
,

[μ, ν, ]0,0p ≈(2n−A)−p

(
2m + 2n

2mn−Am
− p

)−1 ( 2m + 2n
2mn−Am

− p′
)1−p

=(2n−A)−p

(
2m + 2n + Am− 2mn

(p− 1)(2mn−Am)

)1−p

×

(
2m + 2n

2mn−Am
− p

)−1 (
p− 2m + 2n

Am + 2n + 2m− 2mn

)1−p

< ∞. (4.18)

Hence, we recover [14, Proposition 3.4]:

KA is bounded on Lp(Hm/n) if p ∈
(

2n + 2m
Am + 2n + 2m− 2nm,

2n + 2m
2nm−Am

)

whenever Am + 2n + 2m− 2nm > 2nm−Am > 0,

and obtain an Lp norm estimate for such a bounded KA:

‖KA‖Lp(Hm/n) � m−1([μ, ν]0,0p )
1
p . (4.19)
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By [14, Theorem 3.4], the Bergman projection |PHm/n
(f)(z)| � m2KA(|f |)(z) with A =

2n − 1 + 1−n
m . Applying (4.19) and (4.18) to this inequality of PHm/n

, we recover the 
Lp regularity result of the Bergman projection on Hm/n, obtained in [14, Corollary 4.7], 
and obtain an estimate for the Lp norm of PHm/n

:

Theorem 4.1. For p ∈
(

2m+2n
m+n+1 ,

2m+2n
m+n−1

)
,

‖PHm/n
‖Lp(Hm/n) �m2(p− 1)

1
p′ ((2m + 2n) − (m + n− 1)p)−

1
p ×

((n + m + 1)p− (2m + 2n))−
1
p′ .

It’s not clear for us if the norm estimate above is sharp or not especially when the 
constant m is large. Each operator KA above corresponds to a sub-Bergman projection 
induced by an orthogonal decomposition of the Bergman space in [14]. Since the ranges 
of these sub-Bergman projections are orthogonal to each other, the norm bound obtained 
using the inequality |PHm/n

(f)(z)| � m2KA(|f |)(z) might not be optimal for large m.

5. Remarks and generalizations

1. The assumption μ(z1, z2) = μ1(z1/z2)μ2(z2) in Theorem 1.2 is used only in the proof 
of Lemma 2.6. Because of this fact, our lower bound in Theorem 1.2 holds without this 
assumption:

Corollary 5.1. Let μ be a weight on H and set ν = |w2|−p′
μ

−p′
p . If the Bergman projec-

tion P is bounded on the corresponding weighted space Lp(H, μdV ), then [μ, ν]p < ∞. 
Moreover, there holds

‖P‖Lp(H,μdV ) � ([μ, ν]p)
1
2p .

Using inequality (1.11) and a similar argument for Q1,1
m,n,ν in the proof of Theorem 1.2, 

we can also generalize our upper bound estimate for P and P+ as follows:

Corollary 5.2. Let μ be a weight on H and set ν = |w2|−p′
μ

−p′
p . Suppose the quantities 

‖MT ′
m,n,ν

‖Lp(H,νdV ), ‖MT ′
m,n,|w2|−pμ‖Lp′ (H,|z2|−pμdV ), and [μ, ν]p are all finite. Then the 

operators P and P+ are bounded on Lp(H, μdV ). Moreover,

‖P‖Lp(H,μdV ) ≤ ‖P+‖Lp(H,μdV ) �‖MT ′
m,n,ν‖Lp(H,νdV )‖MT ′

m,n,|w2|−pμ‖Lp′ (H,|w2|−pμdV )

× ([μ, ν]p)max{1, 1
p−1}.

In [17], Fefferman gave a sufficient condition for the boundedness of the maximal 
operator M (n)

μ on Rn defined by
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M(n)
μ (f)(x) = sup

x∈R

∫
R
|f(t)|μ(t)dV (t)∫
R
μ(t)dV (t)

,

where R is any rectangle in Rn with sides parallel to the coordinate axes. He showed that, 
if the weight μ on Rn is uniformly in the class A∞ in each variable separately, then M(n)

μ

is Lp bounded on Lp(Rn, μ) for all 1 < p < ∞. In [1], Aleman, Pott, and Reguera studied 
the B∞ weights on the unit disc which is the analogue of the A∞ weights in the Bergman 
setting. Using their results and Fefferman’s proof, it is possible to give a sufficient condi-
tion for the boundedness of ‖MT ′

m,n,ν‖Lp(H,νdV ) and ‖MT ′
m,n,|w2|−pμ‖Lp(H,|z2|−pμdV ) in 

the corollary above. To obtain an upper bound estimate, one also needs to understand the 
dependence of the quantities ‖MT ′

m,n,ν‖Lp(H,νdV ) and ‖MT ′
m,n,|w2|−pμ‖Lp(H,|z2|−pμdV ) on 

the sufficient condition for the weight ν and |z2|−pμ.

2. The example in Section 4.1 showed the upper bound estimate in Theorem 1.2 is 
sharp. It is not clear if the lower bound estimates given in Theorem 1.2, or in [28] and 
[29] are sharp. It would be interesting to see what a sharp lower bound is in terms of the 
Bekollé-Bonami constant.

3. We focus on the weighted estimates for the Bergman projection on the Hartogs triangle 
for the simplicity of the computation. In [29], Rahm, Tchoundja, and Wick obtained the 
weighted estimates for operators Sa,b and S+

a,b defined by

Sa,bf(z) := (1 − |z|2)a
∫
Bn

f(w)(1 − |w|2)b
(1 − zw̄)n+1+a+b

dV (w);

S+
a,bf(z) := (1 − |z|2)a

∫
Bn

f(w)(1 − |w|2)b
|1 − zw̄|n+1+a+b

dV (w),

on the weighted space Lp(Bn, (1 − |w|2)bμdV ). Using the methods in this paper, it is 
possible to obtain weighted estimates for analogues of Sa,b and S+

a,b in the Hartogs 
triangle setting. When the domain Ω is covered by the polydisc through a rational 
proper holomorphic map as in [11], an induced dyadic structure on Ω can be obtained 
via the proper map. One direction for generalization is to obtain the Bekollé-Bonami 
type estimates for the Bergman projection, and analogues of Sa,b and S+

a,b on such a 
domain Ω.

4. In the proof of Theorem 1.2, the positive dyadic operator Q+
m,n,ν is used to relate the 

Bergman projection to the maximal operator. The constant p4

(p−1)2 appeared in Theo-
rem 1.2 dominates the Lp and Lp′ norms of the maximal operator on the D2. In [12], 
Čučković showed that the Lp-norm of the Bergman projection on a smooth bounded 
strongly pseudoconvex domain is dominated by p2

p−1 . This fact suggests the possibility to 
relate the Bergman projection to the maximal function via a dyadic harmonic analysis 
argument. It would be interesting to see what is the appropriate dyadic structure and 
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the dyadic operator for the Bergman projection on the strongly pseudoconvex domain, 
and establish Bekollé-Bonami estimates for weighted Lp norm of the projection.

5. Although the main result is expressed on the Hartogs triangle, there is a theorem on 
the bidisc and other product domains in disguise. Note that on the unit ball Bn, the 
following estimate [29] holds

‖PBn
‖Lp(Bn,μ) � ‖P+

Bn
‖Lp(Bn,μ) � Bp(μ)max{1, 1

p−1}.

Fubini’s theorem then yields that for a product domain Ω = Bn1 ×Bn2 ×· · ·××Bnd
and 

a weight μ on Ω of the form μ(z1, . . . , zd) = μ1(z1) · · ·μd(zd) with zj ∈ Cnj for each j,

‖PΩ‖Lp(Ω,μ) � ‖P+
Ω ‖Lp(Ω,μ) �

n∏
j=1

Bp(μj)max{1, 1
p−1}.

For more general weights there are challenges in determining the sharp behavior of 
the weight condition in the multiparameter setting and there are additional issues that 
appear in these questions. We plan to undertake a deeper study of these questions in a 
forthcoming project.
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