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1. Introduction

Let Q C C" be a bounded domain. Let L?(2) denote the space of square-integrable
functions with respect to the Lebesgue measure dV on 2. Let A%(Q) denote the subspace
of square-integrable holomorphic functions. The Bergman projection P is the orthogonal

projection from L?(2) onto A%(£2). Associated with P, there is a unique function Kq on
Q x Q such that for any f € L2(Q):

P(f)(2) = / Ko(z @) f(w)dV (w). (1.1)
Q
Let PT denote the positive Bergman projection defined by:
PG = [ 1Kotz o)l fw)av (w). (1)
Q

A question of importance in analytic function theory and harmonic analysis is to under-
stand the boundedness of P or PT on the space L?(£2, udV'), where p is some non-negative
locally integrable function on 2.

For the unweighted case (u = 1), the L? boundedness for the Bergman projection has
been studied in various settings. On a wide class of domains, the Bergman projection
is LP regularity for all 1 < p < oco. See for instance [16,27,21,22,26,22-24,7,15,3]. In all
these results, the domain needs to satisfy certain boundary conditions. On some other
domains, the projection has only a finite range of mapping regularity. See for example
[30,6,13,14,9]. One important example is the Hartogs triangle H. In [6], Chakrabarti and
Zeytuncu showed that the Bergman projection on the Hartogs triangle is LP-regular if
and only if % <p<A4

Less is known about the situation when the weight p # 1, and results and progress
depend upon the domains being studied. For the case of the unit ball in C™, the bound-
edness of P and P* in the weighted L? space was studied by Bekoll¢ and Bonami in [5]
and [4]. Let T, denote the Carleson tent over z in the unit ball B,, defined as below:

o T, := we[B%n:‘1f@é’<lf|z\}forz7é0,and

Then the result of Bekollé and Bonami can be stated as follows:

Theorem 1.1. (Bekollé-Bonami) Let the weight p(w) be a positive, locally integrable func-
tion on the unit ball B,,. Let 1 < p < co. Then the following conditions are equivalent:

(1) P:LP(By,pn) — LP(B,, 1) is bounded.
(2) Pt : LP(B,,u) — LP(B,, ) is bounded.
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(3) The Bekollé-Bonami constant

-1

by o A #@AV) (T )V (w)\”
p(1) = sup S AV (w) S AV (w)

is finite.

Motivated by recent developments on the As-Conjecture [18] for singular integrals
in the setting of Muckenhoupt weighted LP spaces, people have made progress on the
dependence of the operator norm || P||z»,, ) on By(p). In [28], Pott and Reguera gave a
weighted LP estimate for the Bergman projection on the upper half plane. Their estimates
are in terms of the Bekollé-Bonami constant and the upper bound estimate is sharp.
Later, Rahm, Tchoundja, and Wick [29] generalized the results of Pott and Reguera to
the unit ball case and also obtained estimates for the Berezin transform.

The purpose of this paper is to establish sharp weighted inequalities for the Bergman
projection on the Hartogs triangle H. The Hartogs triangle is a bounded pseudoconvex
domain defined by H = {(z1,22) € C? : |21| < |22| < 1}. The boundary bH of H has
a serious singularity at the origin, where bH cannot be represented as a graph of a
continuous function. Partially because of this, H exhibits many interesting phenomena
unseen on smooth domains and serves as a source of counterexamples to many conjectures
in several complex variables. The closure H does not have a Stein neighborhood basis.
The O problem on H is not global regular [8], i.e. there exists a d-closed (0,1) form
h € C§9 (H) such that no solution u of the equation du = h is in C°°(H). The Bergman
projection on H has only limited L? regularity for p € (3/4,4) [6]. This makes even the
unweighted LP norm estimate of the projection interesting.

We give a Bekollé-Bonami type constant and obtain weighted LP-norm estimates for
P and P*. Recall that the Hartogs triangle H is defined by

H = {(21,22) € <C2 : |Zl| < |22‘ < 1}

H is biholomorphic to the product domain of the disc and the punctured disc. By the
biholomorphic transformation formula, the kernel Kpyy(z1,22; w1, ws) has the following
form:

1

7T2221I}2(1 — %)2(1 — 22@2)2 '

Ku (21, 20; W1, w2) =

Detailed computation for Ky is provided in the next section. Given functions of several
variables f and g, we use f < g to denote that f < Cg for a constant C. If f < g and
g < f, then we say f is comparable to g and write f ~ g. For a weight 1 and a subset U
in a domain Q, we set 4(U) := [;; pdV and let <f)‘§dv denote the average of the function
| f| with respect to the measure udV on the set U:
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pdV o _ fU | f (w1, wa) | pudV
Vo™ = w(U) '

The main result obtained in this paper is:

Theorem 1.2. Let 1 < p < oo, and p' denote the Holder conjugate to p. Let p be a
positive, locally integrable weight on H of the form

(21, 22) = pa(21/22)p2(22). (1.4)
Set v = |zo| 7 = and du = 23|72dV . Then the Bergman projection P is bounded on
1

the weighted function space LP(H, udV') if and only if [, V], < co.
Moreover, the following quantitative estimate is provided:

1 1
[ 1" S WP Lo pavy < IP o pavy S vIp®)> +pp' ([, vIp° + [, v+

max —1_
(pp')* ([, ]ty thm=id, (1.5)
Here
p—1
vl = sup (ulwa M) ((ualPo)ft ) (1.6)
z1,22€D 172 172
_ w w\P—1
[, w150 = (Jwa* P )i ((vlwa)iH)" (1.7)
max{l,ﬁ
_ 1\ 2 p—1
[, V10 = ((wa* P o) ((walPra)fy )P~ 1) 7 sup ()7 ((v0)§)) ;
zel,
|z|>1/2
(1.8)
max{l,ﬁ}
1
_ _ p—1\ »
[, Vgt = sup (lwa* P ug) 7 ((wal*v2) g )P~ ((Ml)%v(@l)%v) ) ;
zel,
|z]|>1/2
(1.9)
p—1
ot = s (ulweP g (el ) (1.10)
D Z1,22 21,22

21,22€
|21|>1/2,|22|>1/2

For the definitions of the induced Carleson tents 7, _ of the Hartogs triangle, see

122

Section 2.

Remark 1.3. The constant [, V], serves as a natural generalization of the B, constant
for the Hartogs triangle case. It is not hard to see that [u,v], and the upper bound in
Theorem 1.2 are qualitatively equivalent, i.e. [u, V], is finite if and only if the sum
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1 max L1
([, V17007 + o0’ (s VI ° + [, Iy h) + (o) ([, ] 7t

is finite. But they are not quantitatively equivalent. More specifically, [u,v], and the
upper bound satisfy the following inequalities:

=

1 max .L
<[ 190 %+ pp ([ )20 + [, )01 + (p)2 ([, ]yt mrd

<(pp)? ([, v]p) et} (1.11)

([/1'7 V];D)

As one will see in the proof of Theorem 1.2, the products of averages of p and v over
different tents will have different impacts on the estimate for the weighted norm of the
projection P. The constant [u, V], above fails to reflect such a difference, and hence is
unable to give the sharp upper bound. This issue did not occur in the upper half plane
case [28] since the average over the whole upper half plane is not included in the B,
constant there.

Remark 1.4. In Theorem 1.2, we consider the weight u of the form as in (1.4) so that
the boundedness of the weighted maximal operator in Lemma 2.6 follows by the Fubini’s
theorem. See Section 5 for further discussion on this assumption. The measure du on H
is induced by the Lebesgue measure on D2. The weight v is chosen to be the dual weight
of |22 P with respect to the measure du so that a similar argument as in [28] and [29]
works for the Hartogs triangle case.

There has been some recent interest in analyzing the LP regularity properties of the
projection via characteristics of the weight. In [10], Chen considered an A;‘ condition,
which is equivalent to the Bekollé-Bonami condition in the upper half plane setting, and
obtained the LP regularity of the weighted Bergman projection with some special weights
on the Hartogs triangle. Using the A; condition, Chen, Krantz, and Yuan [11] obtained
the LP regularity results for the Bergman projections on domains covered by the polydisc
through a rational proper holomorphic map. The result of Chakrabarti and Zeytuncu
in [6] can be recovered from [10] by showing that the A constant of the weight u =1
blows up for p ¢ (%, 4). Similarly, Theorem 1.2 provides another proof for this result.

The approach we employ in this paper is similar to the ones in [28] and [29]. The
lower bound estimate follows from a weak-type inequality argument. To obtain the upper
bound estimate, we show that P and PT are controlled by a positive dyadic operator.
Then an analysis on the weighted LP? norm of the dyadic operator yields the desired
estimate. Here we use harmonic analysis strategy from [25] and [20]. In particular, we
build the dyadic structure on the Hartogs triangle induced by the dyadic structure on
the unit disc via the biholomorphism between H and D x D*. We also use techniques
from multi-parameter harmonic analysis to control the induced product structure on the
Hartogs triangle. See also the last remark in Section 5. Our upper bound is sharp. In
Section 4.1, we provide an example of weights and functions where the sharp bound is
attained. As applications of our results, we recover the LP-regularity results in [6] and
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[14] and give upper bound estimates for the LP-norm of the Bergman projections on the
Hartogs triangle H and the generalized Hartogs triangle H,, . See Sections 4.2 and 4.4.
It is worth noting that the construction of the positive dyadic operator relies on a dyadic
structure on the unit disc where the measure of the set in the structure can be used to
estimate the Bergman kernel function. Since the dyadic structures on the disc D and the
ball B,, are well understood, the approach we use in this paper can also be applied to
the setting where the domain is related to the unit disc or ball, such as the polydisc, the
product of unit balls, and domains that are biholomorphically equivalent to them.

The paper is organized as follows: In Section 2, we introduce a dyadic structure on the
unit disc and a corresponding structure on the Hartogs triangle and provide the results
that will be used throughout the paper. In Section 3, we present the dyadic operator
Q;‘,‘L’n’y and prove Theorem 1.2. In Section 4, we give a sharp example for our upper
bound estimate. We also provide some examples where the upper bound estimates can
be explicitly computed. In Section 5, we make several remarks and possible directions
for generalization.

Acknowledgments. B.D. Wick’s research is partially supported by National Science Foun-
dation grants DMS # 1560955 and DMS # 1800057 and Australian Research Council
grant DP 190100970. We would like acknowledge Liwei Chen, John D’Angelo, and the
referee for their suggestions and comments.

2. Preliminaries

Let D denote the unit disc in C. Let D* denote the punctured disc D\{0}. The Hartogs
triangle H is defined by

H = {(21,22) € C?: |21 < |22| < 1}. (2.1)

Note that the mapping (z1,22) — (£, 22) is a biholomorphism from H onto D x D*.
The biholomorphic transformation formula (see [19]) then implies that

o 1 z1 wy  _
Ky (21, 223 W1, w2) = Kpyxp+ | —, 22; —,We
2 w2

Z2W2

1 z1 7I]1 _
— Kpxp | —, 225 —, We
Z22W2 %) w2

1
= - . 2.2
7T2227I/2(1 — —2%;)2(1 — 22@2)2 ( )

Hence, the Bergman projection P and the absolute Bergman projection P+ on the Har-
togs triangle can be expressed as follows

) f(w)
P(f)(z) = / 722010 (1 — ﬂ)Z(l — 2912)?

Z2W2
H

AV (w); (2.3)
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PH(f)(z) = / f (fu”) AV (w). (2.4)

7r2\z2w2||1— |2|1—2’21I}2|2

Z2W2

We next introduce a dyadic structure on the unit disk. A related construction appears
in [2]. Let D = {D}} be a dyadic system on the unit circle with
Dy ={e*":(j-1)27" <0< j27%}, for j=1,...,2"
Let d(+,-) denote the Bergman metric on the unit disc D. For z € D, let B(z,r) denote
the ball centered at point z with radius » under this metric. Set » = 271 1n 2. For k € N,
let Si, denote the circle centered at the origin with radius kr in the Bergman metric.

Let Py-z be the radial projection of z onto the sphere Sy,.. By the proof of [29, Lemma
9], {Pngf} satisfy the following three properties:

(1) Sk:r = U?k=1lpk'rD;‘€;
(2) PrrD% NPy, DF =0 for i # j;
(3) For wk = Py =227 Sy N B(wk, \) C Py D¥ C Si, N B(wh, CN).

Define subsets, K]]jc of D to be:

KY:={zeD:d(0,2) <r};
K;C ={zeD:kr<d(0,2z) < (k+1)r and Pz € Pker},k >1,j>1.

For k =0and j = 1, set ¢ € K} to be the origin. For k > 1, set c;? € Kj’-C to be the point

P(kJr%)rw;“. For a = c;?, the set K, := Kjk is referred to as a kube and the point o = cé?
is the center of the kube. We define a Bergman tree structure 7 := {cgC } on centers of
the kubes. We say that ¢ is a child of ek if Pr-DFTE C PrrDf. We say ¢f* > ¢ if

m > k and Py.c]* € P;WD;-“. We define Ka to be the dyadic tent under K,:

Ko:= |J Ks (2.5)
BET: B>«

For z € D, we say the generation gen(z) = N if z € KJN for some j.
Using shifted dyadic systems D; = {Df(l)} on the unit circle with

k(1) — {20 . (: —k o—k _ k
Di(l)={e™ : (j—1)27" +1<0<j27" +1}, for j=1,...,2" and | € R,

one can obtain different dyadic structures on D with their corresponding Bergman trees
7. Recall the Carleson tent T, over z € D:

. Tz::{weDzll—wé
e T,:=D for z=0.

<1—\z|} for z # 0, and



8 Z. Huo, B.D. Wick / Journal of Functional Analysis 279 (2020) 108727

For a subset U, we use the notation |U| to denote the Lebesgue measure of U. The fol-
lowing three lemmas relate the Carleson tent T, to the dyadic tent K, and the Bergman
kernel function on D.

Lemma 2.1. Let T be a Bergman tree constructed as above. For a € T,
| Ta| = [Ka| = |Kao| = (1 |a])?.

Proof. Suppose gen(a) = k. Let Ry, denote the Euclidean distance between Sy, and
the origin. Then |K,| = 727%(1 — R2) and |K,| = 772_’“(R?k+1)r — R?)). Recall that
r = 27 11n2. By the definition of the Bergman distance, 1 — Ry, ~ e 2" = 2=%_ Thus
|Ko| ~ |Ko| ~ 272*. Since « is the center of the kube K,, the Bergman distance

d(0,) = (k + 3)r. Hence we obtain
okt d .
(1=l]a])® = (1= Rguy1),)* = 272072)  |Ko | ~ | Kol

Notice that the Carleson tent T, is the intersection set of the unit disc D and the disc
z

H with Euclidean radius 1 — |a. A geometric consideration then

centered at the point
yields

Tal ~ (1= a)?. O

Lemma 2.2 (/29, Lemma 9]). There is a finite collection of Bergman trees {T;}, such
that for all o € D, there is a tree T from the finite collection and an B € T such that
the dyadic tent K contains the tent T, and o(Kz) ~ |T,)|.

Lemma 2.3 (/29, Lemma 15]). For z,w € D, there is a Carleson tent, T, containing z
and w such that

ITo| ~ |1 — 20> = 7 Kp (2, w)| " (2.6)

Lemma 2.4. For any dyadic tent f(g with B € T, for some l, there exists a Carleson tent
T, such that f(ﬁ CT, and |f(ﬁ| ~ |T,|.

Proof. Given a dyadic tent K 8, we can find a Carleson tent T, such that K g is a largest
dyadic tent in T,. Without loss of generality, we may assume that z is a positive real
number. By Lemma 2.1, |K,| ~ |K,|. It suffices to show that the top kube Kj of the
tent K5 satisfies the inequality |Kg| ~ |T%|. Since Kz is a largest kube contained in
T,, all of its ancestors are not contained in T,. Let k& be the generation gen(8) of 5.
Then T, intersects with at most two of the Borel subsets {Qf‘1 5;;1 of Sx_1)9- Let
R(—1), denote the Euclidean distance between S;_1), and the origin. The arc length of
the set P(k,l)TDf_l equals R(k,l)ﬂﬂ?l_k. Thus the arc length of the intersection set
S(k—1)r NT} is less than 2R(k,1)T27721_k. Note that the point z is a positive real number.
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2mi2t =k

T, is symmetric about the real number axis. Therefore the point R(;_1).e is not

inT,, ie.
o1—k
11— R(k_l)TGQMQ [>1-—2=z.

Since 1 — Ryt ~ e 2Nt and |1 — ™| =~ t for t € R, we have

1—k

al—k .
11— Rp—1)r€®™ | < 1= Rp—1ye| + [Rj—1yr — r(r—1)0€>™% |
~ e—Z(k—l)T‘(l + 21—k) — e—(k—l)an(l + 21—k) ~ 2—(}6—1).
Hence 2=*=1 > 1 — 2 = 1 — |2|. Lemma 2.1 then implies that |T,| < 272(*=1 Since

gen(B) = k, the Bergman distance d(8,0) equals (k + 2)r. Recall that r = 271 In2. We
have

1- |8 ~ e 2(k+5)0 _ 9—(k+3)

Applying Lemma 2.1 again yields |Kg| = 2—2(k+3) 2 |T.|. By the containment Kz C T,
there holds | K| < |T,|. Combining these inequalities, we conclude that |Kg| ~ |T| and
the proof is complete. O

Combining Lemmas 2.2 and 2.3, we obtain the following estimate for arbitrary
z,w € D:

S

1= 20|~ |To| 7 R KPS Y Y (2.7)

m=1~v€Tn,

Here {7,,}M_, is the finite collection in Lemma 2.2.
Similarly, on the bidisk, D?, we have:
|1 - 21’1,1_)1|72|1 - 22w2|72
~[T, |71|Ta2|71
z|K51|_1|K52‘_1

M
ey y bl

_ il (2.8)
| Ky x Koy

m,n=1v€Tm,n€Tx

Given a tree structure Ty, x T,, on D? and a dyadic tent Kg, x K, we define the induced
tree structure 7y, ,, and dyadic tent Kj 5 on H to be:

Tézn:: {(01,62)6]1_]1: <Z_1302> GTmXﬁL}v (29)

’ 2

N z ~ N
Kj, 5, = {(2’1,22) eH: (Z—;,Zg) € Kg, x ng}. (2.10)
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Similarly the induced Carleson tent 77 on H can be defined by

21,22

w
T, ., = {(wy,ws) € H: (w—;w) €T, xT.,} (2.11)

Set du = |wz|~2dV. For a weight y and a subset U C H, we set u(U) := [;; pdV and let
( f)‘deV denote the average of the function |f| with respect to the measure udV on the
set U:

pdv _ fU |f(wi, ws)|pdV

(f) (2.12)
v u(0)
Given weights p on H and v = |zQ|_p,u_pl/ P we define the characteristic of two weights
, v to be
2-p\d 2 \d Pt
vl = sup (ulws2 ) (GualPoigy ) (2.13)
z1,22€D #1.%2 1,22

By Lemmas 2.2 and 2.4, we can replace T, . by f(ﬁw to obtain a quantity of comparable

1,22
size:

p—1
vl s s (pheeP )R (el ) (214)
1<m,n<M (v,n)€T, , v v

From now on, we will abuse the notations [u, V], and [u, V};’j for 4,7 = 0,1 to represent
both the supremum in T 1.2, and the supremum in the corresponding IAﬁW of similar
size.

The proof of Theorem 1.2 will use the weighted strong maximal function on H.

Definition 2.5. For a weight x1, and a Bergman tree 7y, ,,, we define the following maximal

function:
11%;31,/32 (wl’ wz)

M f(wi,w2) = sup —— | f (21, 22) |[1(21, 22)dV (21, 22).

' (B1,82)ETm X Tn ’U'(Kﬁlﬁ2) R

K/

81,82
(2.15)
d
We set (f)q,u = ‘[i‘(g)u, then we also have:
Mg fwy,we) = sup L (wi,w2)(Pgr (2.16)
’ (B1,B2) €T x T~ 172 fper

We have the following L? regularity result for My, .

Lemma 2.6. Let (21, 22) the same as in Theorem 1.2, then My, , is bounded on
LP(H, p) for 1 < p < 0o. Moreover, |M7;  ullLe@ ) S (p/(p— 1))? for 1 < p < oo.
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Proof. When p = oo, the boundedness of M7, is obvious. We turn to the case 1 <
p < 00. Set ph(ws) := |wa|?*pa(ws). Using the biholomorphism A : (wy, wg) — (wiws, ws)
from D x D* onto H, we transform My , into the following maximal function on
D x D*:

L, (wi)lg, (ws)
MTm,n7Hf(w1?w2) = su up - B2
(B1,82)€Tx T i1 (K, )iy (Kp,)

< / G o)l (20 (22)dV (21, 2), (2.17)

Kpy .85

and it suffices to show that My, is L bounded on LP(D x D*, |wa|*p o h) for 1 <
p < co. Defining the following two 1-parameter maximal functions:

lg, (
Mo o) = sup s / G w)lm()dV () (218)
BiE€Tm 1 K51
K,
iy, (W2
M flwr, wa) i= sup 7A |f (w1, 22)|ph (22)dV (22), (2.19)
B2E€Tn /12 K
132

we obtain that Mz, .f < Mz, ., o Mz, ., f. By Fubini’s Theorem, it is enough to
show that M7, ,, is bounded on LP(D, 3 dV') and M7, ,; is bounded on LP(DD, ushdV').
Here we show the LP boundedness of M7, ... The boundedness of My, . follows from
an analogous argument.

Note that M, ,, is bounded on L>(D, u;). By interpolation, the weak-type (1,1)
estimate

/122 (©,21)

i({z €D Mr, () > M) S T

(2.20)

is sufficient to finish the proof. For a point w € {z € D : M, ., f(2) > A}, there exists
a unique maximal tent K, that contains w and satisfies:

Mf( / V() > (2.21)

22
2

Let Ay be the set of indices of all such maximal tents K,. The union of these maximal
tents covers the set {z € D : Mz, ., f(z) > A}. Since the tents K, are maximal, they
are also pairwise disjoint and hence

p{z €D My, f(2) > A < D (k)

ac Ay



12 Z. Huo, B.D. Wick / Journal of Functional Analysis 279 (2020) 108727
2 2
<Y 2 [romEre < s,

Thus inequality (2.20) holds and M, ,, is weak-type (1,1). Using a standard argument

7

for the Hardy-Littlewood maximal function, we further have
M <P
M7, 0 | Lo (@ XD Jwo 2 poh) S -1

Since the same inequality holds for M. ./,

||MT,;1,TL,M

‘LP(H»#) :HMTm,mMHL”(DXD*,\wQPpoh)

2
p
<IMT, 0 0 M, g e @D s 2p0n) S (p - 1) '

Finally, we define two operators @ and QT. Let p’ be the conjugate index of p. We

set
1
Q(f)(z1,22) = / T22g(1 — 20L)2(] z2w2)2f(w1,w2)dV(w1,w2), (2.22)
H Z2W2
+ . 1
QT (f)(z1,22) = / 72| zg||1 — ZLTL|2]T — Z2w2|2f(w1,w2)dv(w17w2)- (2.23)

It is clear that P = QM g, and PT = QT Mj|,,|. Moreover, the weighted L? norm
of the projection, ||[P* : LP(H, udV) — LP(H, udV)||, is equal to the weighted norm of
QT M, acting between two different weighted L? spaces.

Lemma 2.7. Let p be a weight on the Hartogs triangle. Set v := u% |w2|*p/, Then

|P: LP(H, pdV) — LP(H, pdV)| = |QM, : LP(H,vdV) — LP(H, pdV)|;  (2.24)
| Pt LP(H, udV) — LP(H, pdV)|| = ||QT M, : LP(H,vdV) — LP(H, pdV)||.
(2.25)

Proof. We show (2.25) here as the proof for (2.24) is similar. Given f € LP(H, u), we
have

Jispuavion e = 1L
H H ?

Thus || f| e (uavy = 1M1 jws| fll Le (uws|pavy and

P P
wal iV (wn,wa) = [ |y 1| eV ().
H

(2.26)

|P* : LP(EL pdV) — LP(HL pdV)|| = |Q* : LP(H, [wo|udV) — LP(H, udV)].
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We claim further that for f € LP(H,|wz|PudV), ||fllLe(jwsippavy = IMijvflliewav)-
Then (2.25) holds. Recall that v := p» |wa| ™. We have

I

Hence the claim is shown and the proof is complete. 0O

vdv = [15pvtrav = [P sl ) rav = [ 17l ruav.
H H H

3. Proof of Theorem 1.2

It is sufficient to prove that inequality (1.5) holds.
3.1. Proof for the upper bound

For the upper bound inequality

1 max
1P| o pavy S (1 2190)% + pp ([, v]E° + [, 1100 + (') (] bty =t

we first consider the case p > 2. The case 1 < p < 2 will follow from a duality argument.

Recall the tree structure {7, ,}M_, and the dyadic tent {IA(Z,ME} from (2.9) and
(2.10). Set the measure du := |wy|2dV. By Lemma 2.2 and the inequality (2.8), there is
a finite collection M such that for (21, 22) and (wy,ws) in H, there exists Kgl and f(gl
such that

_ =2
Z1w1 _ = A 1 P —
|1_22w2| 2 %|K51‘ 1|K52| !

’1_

Z2W2

i T L xi, (2122, 22)1 gy, (w1 /w2, w2)
[ > Ky

IN

m,n=1~v€T n€Tn

M 1er (21,22)1 5, (w1,ws)
Z Z K f(/K ,)n . (31)

mn=1 (y,n)ET! u(K,

m,n

Applying this inequality to the operator Q™ M, yields

|QT M, f(21,22)]
_‘/ 22| " M, f (w1, w2)

dV (wy,w
2|1 — ZLLR[T — 2|2 (wn, we)

Lo (21,22)1, (w1, w2) [M, f(wr, wo)|

/ Z Z b S ) AV (wr, ws)

b i alulR
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11%“(21,2'2)

-y Y

2\du
Viw 2
<f ‘ 2| >K’/vn

mn=1(y,m€T,, n 22|
=lpo+Ioq+Tio+ 111, (3.2)
where
M 1z, (Zl 22)
K, ’ Im (21, 22
Ipo = Z 00|7|< v|ws|? >Koo M2(7|)<f1/w22>%1u§ (3.3)
m,n=1 Z2 #2
M 1z, (2’1 22)
K , ? d
Iio= Z Z “)‘T<fu|w2|2>f(“;)o; (3.4)
m,n=1(v,00€T,, ,,
M 1., (21 ZQ)
KY ) d
Ip1 = Z Z (”iT<fV|w2|2>f;2m; (3.5)
mn=1(0,m€Ty, ,,
M
Lai= Y > 1f<w(21,Z2)|Z2|_1<fV|w2\2>f§2 ) (3.6)
mn=L1 (v, €T » Y
¥:m#0
Set
1 (2’1,22)
g’l?nﬂ/f(zla'z?) = T<f |w2| >
:ﬁ?n,uf(zlaZQ) = Z 1[%;,0(21722)|22\71<f’/|w2|2>%2D;
(HO)ET ’
(1, 2) = Y 1;%6_”(21722)|Z2\71<fV|w2|2>fg"6n5
OO ’
i f (21, 22) = Z 1;&;177(21, 22)\22|_1(f1/|w2|2>‘;§ r
(¥ MET 7 ’
v¥,m#0
Then it suffices to estimate the L norm for each Q%7 ,. The proof given below uses

the idea of how to prove the linear bound for sparse operators in the weighted theory of
harmonic analysis, bee for example [25] and [20].
We first consider For arbitrary g € L¥' (H, p),

m n,v:
(@S0, f(21,22), g(21, 22)18)

:/ngn,uf(zb22)9(21,22)udv(21,z2)

- / Lat(21, 22) 2] (frwsl?) g (21, 2)pudV (21, 22)
H
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:(u(H))_l/f(zl,zg)l/dV(zl,zQ)/g(zl,22)\z2|_1udV(z1,z2)
H

H
p—1 1
P P
S(U(H))‘lgvd‘/ [RAIVAYE: 9% /IZQI"’udV 19 o r.p0)
1
— U u -1\ r
= (PP (o)) 1w 9l o e (3.7)

Therefore

=

— Uu U -1 1
QY I Lo (B )= Lo (B ) < (<|w2|2 Puyg ((vlwe?)g)” ) = ([, vV]y%)7. (3.8)

We turn to QL% . For arbitrary g € L (H, ),

< :r’b}n,uf(zlv 22)7 g(zlv 22):u‘>

_ / LU e 229, )pdV (21, 22)
H

[ X ik Gomlal Py o mudv =)

o e
¥,n#0

= Y (rlusP) [ ezl ud ()
¥im
(v €T m o
71#0 K
_ 2-7d _ A

= 3 (D wlwaYE (glwa PR PR w(R )
(VET o o W] o

vn#0

p—1 _ _ ~Pudy
= Y (Ol ) (el (Y (ghealr
(7,77)67;/” ., vm Yn vm ¥,n
A0

N 2—p
< u(KY ) (e )

v — 1\ |wa| 7P pudVv Ey p-1 A 2-p
<oyt X DR Lalwa Y (u( ) (E) T (39)
(€T n ’
¥,n#0

Recall from Lemma 2.1 that |K,| ~ | K| for the tree structure T with Lebesgue measure

o on the unit disc. Hence for the induced tree structure 7, , with the induced weighted

measure u on the Hartogs triangle, we also have u(f{,/m) ~ u(K! ). The facts that p > 2
2, . . . E) 2-p 2—p ..

and K! , C K/  gives the inequality (V(K;m)) < (V(K;’n)) . Combining these

facts, we have
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() (v )" S () (w(S,0)

By Holder’s inequality,

=

u(K ) < (V(KS,)?

Therefore,

Tl=

(005~ (004,)) 7 < () | Py

K/

v

Applying these inequalities to the last line of (3.9), we have

ot 3 O gl (i )Y (R )

(rmMETH

v —1\ |wa| P pdV 1 _
Syt Y DR Gl Y () | el Py
(v ET m ’ K7,
Applying Holder’s inequality again to the sum above yields:
%
v wa| P udV 1
Do DR fglwalr T Y (WK Jwa| P pdV
(vmMET n o K

< X () v,

.m
(rmMETH

_ “Ppav\? -
| (bl )l iy
(vmETn n K,

By the disjointness of K’ , and Lemma 2.6, we have

> () v < [ Mg PPV < GV v

, vm
rmETh n H

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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Note that | glws|P~1||, (Hjws|-ppav) = 9l Lo @ pavy- A similar argument using the

maximal function M

7 olws|—rp Will also give the inequality

— 1\ |w2| TP udvV
> (el ) / wal PV < PP 19l gy (519
(YMETH n ' K,
Substituting (3.14) and (3.15) into (3.13) and (3.9) finally yields
(Quinwfr91) S [ )y 01 Fl e twavy 191 ot (11, vy - (3.16)

Therefore [|Q:), |l Le (Hwav)— e H pavy S (00)2 [0, V]!
For the case 1 < p < 2 and we claim that

_1
(Quitnwfr900) S (vl 7= o wav) 191l 2o o pavy (3.17)

for all f € LP(H,vdV) and g € L? (H, udV). By the definition of QL!

m,n,v?

( %;}n,uf7gu>=< Z 1R;,n(w1aw2)|w2|7 (fviws )% : 79M>

(vmET n

2\du —1
S (i, o) (frles)E glwsl )

(vmET

= > Uy (gl w(K )

(vMET

= Y Lk, (wrwa)wsl ™ ghwo T fwnl Pufws?)E fwal. fv)
(€T

1,1 _
= <M\z2\Qm,n,wfp#(glwzl” 1)7fV>- (3.18)

Set h = glwa[P~" and ¥ = |w2| Pp. Then |[h|[ Lo g, ¢dv = llgll e (11, puav)- Setting the

weight w to satisfies |wa| Pw=r" o= =4, we have w = p'v = = v|2|?". Replacing p by p', p
by w, and v by ¥ and going through same argument for the case p > 2 yields that

1,1
||M|Z2|Qm,n7\w2|—Pul|Lp/ (H,vdV)

1,1
= ||Qm7n,‘wQ‘—pMHLP'(H,\w2|P'VdV)

plfl ’ ’
SE)? swp (e ) (sl vl
( )ET ¥n Ym

m,n

1

— (o')? (( sup (s 7)g <<w2|2y>%>p_1> _

YMET m
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1

= (") ([, V], )7 T (3.19)

Thus we have

1
(Quin v fr91) < (021 V1) 7 gl Lo (o1, puavy 1 Lo vavy

and

||Q nV”LP (H,udV) ~ (pp) ([:U” ]1 1)

Combining the results for 1 < p < 2 and p > 2 gives:

QLS L Lo (Ewavy— 1o (b pavy S (092 (s, v] L)z, (3.20)

To estimate ||QL nVHLp (HvdV)—Lr(H pdv), We combine the above arguments for
00, and Q1 . For arbitrary g € LV (H, p),

< gr,lon uf(zlaZQ) 9(21722)M>
/anu Z17Z2) (z17Z2),U/dV(Zl’z2)

= Y gy, Gn@lal (e g(a,z2)pdV(a, z)
H (710)67’1;7.,17,

=Y k) / | (o1, ) vV (21, 22) / 2ol Mg (1, 22) [V (21, 22)

(v, O)ETrIn n R;,O R’/Y,O
~ oy KT / |f (21, 22) [vdV (21, 22) / |9(21, 22) |22 " udV (21, 22). (3:21)
(770)67711,," K K
0 0

Recall that p(z1,22) = p1(21/22)p2(z2). There holds v(z1, 22) = v1(21/22)v2(22) by the
definition of v. Hence

/ |f (21, 22)|vdV (21, 22)

K%O

= [ UGtz Pav (e, 2)
K, xD
p

/ / £ (2t 20) 1 AV ()| v (20) |22V (22) / v (29)| 222V (22)

D | D

~

S
3
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: | i |f (22t 2z2) | (H)dV ()P 2 :
Uy . 7 va(22)|22|°dV (22

(&) D/ AT ()2 dV (z2)
X(.D/VZ(ZQHZQFW(ZZ) | (3.22)

Similarly,

/ 9z, 22)| 22~ pdV (21, 22)

K,
. | [ 9(zat, 22)|pa (£)dV (2) v
< ' K : 2 2(%2 222 29
Sm(K) I! Ey )
| [ ratelaPravi | (3.23)
D

Set f*(t,2z2) = f(2at, 22) and g*(t, z2) = g(z2t, 22). Recall the boundedness of M, .,
from the proof of Lemma 2.6 and the fact that (v1(K,))>? < (11(K,))> P for p >
2. Applying these facts, substituting (3.22) and (3.23) into (3.21), and following the
computation for the operator QL' then yields that for p > 2,

m,n,v
< }ﬁ?n,uf(21,22)’9(21722)ﬂ>

_ PR p—1
S Uzl Pu)d ()7 s () () x
0AYETm v

||MTm7V1 (|f*(7 22)|)||LP(D21|22|2V1V2) ||M7—m7#1 (|g*('7 ZQ)DHLP/ (D2, | z2]2 1 p2)

1 p—1
S (U2l ) ()87 sup () ()4
0#£YETm 7 7

X pp,”f* ||LP(]D2,|22|2V1V2) ||g* ”LP/(]D)2,|22|2,LL1;L2)

_ L p—1
S (P78 (021877 sup Ga) (00R) 2ol ocatan oo iy
Y€ m

(3.24)
The same duality argument as in (3.18) implies that for 1 < p < 2,
< 'rl"r;,?n,yf(zl722)7g(21722)u>
1

5(<|22“u2>%v(<1/2>%v)p1)"( sup_ ()i, (<V1>‘4V)p_l> 7

0#’}/67—771,
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X pplllfHL”(H,V)HgHLP'(]HI,M)'

Combining these inequalities, we obtain

1@ o (B, wavy = Lo (B uav
1

max{l,ﬁ
1 pP—
<ov’ (22l ((w)B ) ( sup_ () g ((w)e) )
0#AYETm v v

s

=pp' [, v]," (3.25)

By a similar argument, one can obtain the estimate for [|Q%:}, |:

||le:n,v |LP(H7VdV)—>LP(H,udV)

max{l,ﬁ} )
— — -1\
<o’ ( sup (|22 o) 8 (o) 8 )7 ) (4B ()" )"
0#n€Tn " "
=pp/ [, V] (3.26)
Combining (3.8), (3.20), (3.25) and (3.26), we obtain the upper bound in Theorem 1.2:
max{1l, -1+
1P o S (s V1) P+ 0! (s V] + [ vl ) + (o0)? (s )y e
3.2. Proof for the lower bound
Now we turn to show the lower bound
%
(1, V" S Pl e H pav)
in Theorem 1.2. By the proof of Lemma 2.7,
||PHLP(]HI,udV) = ||M,,QM, : LP(H,vdV) — LP(H, pdV)||. (3.27)
It suffices to show that [, v], < [|[M.,QM, : LP(H,vdV) — LP(H, |22|PudV)||?*. For

simplicity, we set A := | M,,QM, : LP(H, vdV) — LP(H, |z2|"PudV)||. Set |z2| Pu = p,p.
If A < oo, then we have a weak-type (p, p) estimate:

AP
ppl(wr,w2) € H = (Mo, QMo f(wi,w2)| > A} S S5 I 1 vav)- (3.28)

We choose f(wi,ws) =1g, (w1,ws) with v and 7 to be determined. Then
Ysn
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|M22QMV1[A(”Y,T, (21, 22)|

1

- _ wa)dV (wy,

/ m2(1— zlgl)g(lizﬂDQ)QV(wl wa)dV (w1, ws)

/ : (trwa, w2 |wa 2V (11, w2)
= = v(tiws, wa ) |w , W

w21 — 25)2(1— zuwn)? b

Ky m

= P]D)2(|w2|2y<t1w27wg)lf(kan(tl,wg))(zl/ZQ,Zg) . (329)

Here Pp: is the Bergman projection on the polydisc D?2.

Recall that for a point z € D and a tree structure 7, the generation gen(z) equals N
ifze KJN for some j. By [4, Lemma 5], there exists an integer N so that for v € T, W}th
gen(y) > N, there is a 7' € T, with gen(y) = gen(v’) such that for any fixed z € K.,/
and all w € IA(,Y there holds,

(1—z20)2=(1-29)24(1-20)"2 = (1-29)72),
where |(1 — z)™2 — (1 — 27) 72| < 271 — 23|72 and |1 — 27|® = |K,|. Moreover, an
elementary geometric argument yields that arg((1—zw) =2, (1—2%)72) < /6 for all w €
K.,. Thus for (7,1) € T x T, with gen(v), gen(n) > N, thereis a (7, 7') € T X Trr with

gen(y) = gen(y') and gen(n) = gen(n’) such that for any fixed (21/22, 22) € Ky X Ky
there holds:

-2 )
arg ((1 — z—;t_1> (1 — zpw5) ™2, <1 — z—;’y) (1- 2277)_2> <7/3,

for all (t;,ws) € K, x K,. Hence

|PID2 (|w2|2y(t1’w2, w2)1f{ﬂ,><f(,,, (tl, wg))(zl/zg, Zg)l

1
- : t 24V (t
/ (1 — 241)2(1 - 22@2)21/( 1Wg, Wa)|ws| (t1,w2)

v.n

1
>167" t 2dV(t
2167 [ St e )

K%n

av

>er(fwalPv(tiwa, w2) g

for some constant ¢;. Thus via the biholomorphism between D x D* and H, the following
containment holds:
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K;'ﬂ?/ - {(wl,wg) cH: |M22QMl,f(w1,w2)| > cl<|w2|21/(t1w2,w2)>?{‘:xk"}. (330)

By [4, Lemma 4], there holds that v(H) < co. Hence
<|w2|2V(t1w2,w2)>%‘:XK (|wa*v >K/ < 0.

Inequality (3.28) then implies

A, -p A
o (RS ) < A7 (o) ) (RS, (3.31)

p—1
which is equivalent to (Jwa|>~Pu) %, <<|ng|2 )K, > < AP. Since one can inter-
’Y,»nl

change the roles of 7,7 and 7/, in the proof of [4, Lemma 5], there holds

Combining these two inequalities, we have

p—1 p—1
(s, (Quaf, ) )(wm%mwa,Qmﬁw%H) )sA%
¥,m ¥.m ~'\n ~'\n

(3.32)
By Holder’s inequality,

p—1

u(K,, )P < / lwa|* P /\w2|2udu (3.33)

p—1

for any (v,m) € Tm,n. Therefore <|w2|2_pu>%ﬁ <<|w221/>;{(“, ) > 1 for all v,n €
vm Ysn

Tm.n- Applying this to (3.32) and taking the supremum of the left side of (3.32) for

gen(vy) > N and gen(n) > N, there holds

p—1
sup  (unl g (e, )T S A (3.34)
(V1) €T, n» vn

gen(7),gen(n)>N

We turn to show that (3.34) also holds when the supremum is taken over tents where
either gen(y) < N or gen(n) < N.

Suppose that both gen(y) < N and gen(n) < N. Then K7 and K,, are big tents on
the unit disk D and |K,| = |K,| ~ 1. Set Bijy = {z € C : |z| < 1/4}. Then for any
given z € D, [zw| < 1/4 for w € By 4. Therefore Arg((1 — zw)?) C [-%, Z]. Applying
this fact, we obtain
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z
Pz (Jwa|*v(trwa, wa) 1, ,x B, , (t1, w2)) (1,22> ‘

%o
w2 |?
= - v(tyws, wo)dV (t1,w
/ m2(1— 246))2(1 — z0ws)? (brwz, w2)dV (b, ws)
IB1/4XB1/4 2
21671 / 7r72|w2\21/(t1w2,w2)dV(t1,wg) Z 02<‘w2‘21/(t1w2,w2)>dB‘1/4xBl/4
174X B1/a

(3.35)

for some constant cs. Therefore,

D? = {(z1,22) € D* :| Pp (lwa|*v(tywa, wo) 15, ,x B, ,,) (21, 22)|

d
> ca|zoPv(tiz2, 22) B,y 0 )

Let By, denote the set {(w1,w2) € H : (3, w2) € Bia x Bia}. Via the bihomo-

wa?
morphism between D x D* and H, we obtain

o (F) = iy { (21, 22) € H: |Pr(vipy ) (o1, 22)| > oo} )

Bi/4,1/4
Ap||1Bi/4 ”]ZP(H,VdV)

P p'
2, ,\du
¢ (<|Z2| V>Bi/4,1/4>

Thus

p—1
(a2 (ol ) S AP,

’
1/4,1/4

Interchanging the role of variables z and w, we also have

1p(B1/4,1/4) = Hp {(w17w2) € By yya ¢ [Pa(vim)(wi,w2)| > C2<\w2\2V>iif}

AP 1 vy
= & ((Jwa2r))”

Thus
2—p, \du 2, \du\p—1 < gp
Qs P2yl (ualPr)fir < AP,
By Holder’s inequality
walpy (oo ) 21
2 MB£/4,1/4 2 B£/4,1/4 =

Combining these inequalities yields that
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([P it (a0 )P~

p—1
sty (waPo) ) waP e (QwalPo)l ) S A% (336)

Therefore, |K7, | ~ 1 implies
p—1
a7y (el )" S (o (el S A, (337)
For the case gen(y) < N and gen(n) > N, we combine the arguments for both the
big tents and the small tents. There exists an 1’ with gen(n) = gen(n’) such that for all

z—; €D and 2z € IA(,]/, there holds:

|PD2(|w2|2V(t1w27wz)lBl/Mf(" (t1, w2))(21/ 22, 22)|

[wa|?v(t1wa, wo)
— —— ——dV (t1, ws
/A 7.‘.2(1 _ itl)Q(l _ 22w2)2 ( 1 )
1/4><KT,

. lwa|?v(t1ws, wo) 2 av
>16 / Wd‘/(tl,wg) > c3(|ws] V<t1w2aw2>>ko><knv

Bl/4><f(7]

for some constant cs. Set By, = {(wi,w2) € H : (1, w2) € Byyy x K,}. Via the
biholomorphism between D x D* and H again, the following containment holds:

1/4,m

N C3
Koy © {(wlawz) €H:[M.,QM,1p,,, (wi,wa)l> 3—2<|w2|2’/(t1w2vw2)>?‘<‘;xk,,}'

(3.38)
Applying the proof for inequalities (3.34) and (3.37) to (3.38) gives

B p—1 B p—1
(a2 7uyge (o) ) S (el (o) )7 S AP (3.39)

The last case gen(n) < N,, and gen(y) > Ny, follows from a similar argument with the
role of v and 7 interchanged. Combining all these estimates, we obtain the desired lower
bound:

p—1
vl = sup (ol ()i ) S A, (3.40)
(7777)67—177.,71, v.m vm

which completes the proof of Theorem 1.2.
4. Examples

We begin by providing a sharp example for the upper bound estimate in Theorem 1.2.
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4.1. A sharp example for the upper bound

We give an example for the case 1 < p < 2 here. The case p > 2 follows from a duality
argument. The idea is based on the construction of the sharp examples in [28] and [29].
Recall By/y = {z € C: |z| < 1/4}. Given a number 1 > s > 0, we set

—wy /ws)(1 — w2)|2(p—1)(1—s)

|w1 [w2|?~* |wa [*~¢

u(wr ) = [wgfp=210 , (4.1)

f(wl,wg) = u_)g,uﬁ(wl, wg)lT% (wl/wg)lT% (wg). (42)

Then for (t1,t;) € D? with T}, , not intersecting the tent T}y, |.1t») 20d away from the
p—1
point (0, 0), there holds z(w1,ws) &~ 1 and hence (u|ws|*~ p>Tt . (<|w2|21/>%’; . ) ~ 1.
“1,t2

When T}, ,, intersects the tent T}, |, = with [t1], [t2] = 1/2 there exists a positive
constant ¢ > 0 such that Ty ,, C T

et |elta] and u(Ty, 4,) ~ u(T, LCItzI)' Thus

C‘tl

/ [wa| 7P p(wy, wa)du(wy , wa)
Ttllwt2

< / a2 w0, wa)duuwy, wn)

TI
clty],clta]

- / (1 = 1) (1 — w)| P~V 4 (w0, )

Tejeq | XTe|ty)

2
=11 / 11— w,| PV gy (w)). (4.3)

le{wjeD:|1—wj|<1—c\tj\}

Using the changes of variables z; = Tt T + , we have

w; |P-DE=29)

‘ o dV (w;)

1+U}j

{w; eD:|1—w;|<1—c|t;]}

1— t (p—1)(2—2s)+2
— 48
{z;€C:|zj|<1—c|t;|,Imz; >0}
Thus
_ 1— C|t.|)(p71)(272s)+2
2=p d ~ ( J 4.5
/ "IU2| :U’(wlva) u(wlan) H (pfl)(2*2$)+2 ( )

it
Tt’1,t2 ’
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’

Similarly, for v = |ws| P p 7,

(L= et )™
/ |ws Pv(wy, wa)du(wr, ws) ~ H 23] (4.6)
Ty =t
Since 1 < p<2and0< s <1, we have
11 _ 2-p \du 2 vdu VP! —2(p—1)
oyt = swp(usP g (e ) S5m0,
[t1],[t21>1/2
Moreover,
- U u)\P—1 —
[, V190 = (Jwa|* P ((vlwa)§)" " ~ 577
max{l,ﬁ}
_ 1\ 2 -1 _
[, V150 = ({2l Ppa)y ((v2)y )P~ 1) " sup ()Y (()g)" ~s2
zel,
|z|>1/2
max{l,ﬁ}
1
_ _ —1\ » _
oyt = | sup (Y () ()8 (o))"~
zel),
|z|>1/2
Thus the upper bound
1 max{1, 1 _
([ 150) + o0 ([ VI ° + [, V1) + ()P ([ ]y )Pt S 672,
When wy/wa,wy € Ty /2, there hold |w|/|ws|, |wz| = 1. Therefore
sy~ [ 075 (o whiin,wa)aV () = (uaPoidy s
T1,/2,1/2
(4.7
For z1 /2, 20 € By 4, we claim that
[P(f)(21,22)| Z |22l "HNT - (4.8)

1/2,1/2

Note that for w € T% and z € By 4, there holds that |1 — 2w| ~ 1 and
arg{(1 — zw), 1} € (—arcsin(1/4), arcsin(1/4)).

Using these facts and the formula (2.2) for the Bergman projection, we have
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fwy, ws)
P = - dv
()1, 2) / mapz(1 = 55 )2 (1 — 22w2)? (o1, 2)
1/2,1/2

3 [ (wrwa, we)we
|22| / 71_2(1 — %wl)z(l — ZQII)Q)Q (’U)l,’U)Z)
1/2,1/2 2

pe |22|_1 / [1— wl/w2|25_2|1 - w2|25_2dV(w1,w2)

Ti/2,1/2
~ |zo| TP (4.9)

1/2,1/2"

Since |wy|/|wal, Jws| & 1 for (wy,ws) € T1//271/2, we have

N1y = / (1 = wi fw2)(1 = we) ™Y AV (w1, ws) ~ (JwaPr)3 o~

/2,1/2
T1I/2,1/2
(4.10)
Thus |P(f)(z1,22)| 2 |22|'s™2. Moreover,
1P iy = [ 1PFGrs20)Pien,22)dV (2, 22)
H
> 57 | 22| 7P (21, 22)dV (21, 22)
{(21/#2,22)€B1/4 X B1/4}
~ s [t]57 2|22 2dV (£, 25) & 57T (4.11)

{(t,z2)€B1/4xB1/4}

Thus the desired estimates hold:

IPH L g v o

~

”f”lzp(H’Mdv)
1 max{1,-1:}\”
S (T N P T S R O PR K I

4.2. LP regularity of the Bergman projection on the Hartogs triangle

If weight p is identically 1, then udV is the Lebesgue measure on the Hartogs triangle,
and || P || 1» (w1, is the unweighted L? norm of the Bergman projection. Chakrabarti and
Zeytuncu showed in [6] that the Bergman projection on the Hartogs triangle is L? regular
if and only if % < p < 4. Using Theorem 1.2, we give an alternative proof of this L?
regularity result.
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Set 1 = 1. Then v = |wy| ™" and

p—1
vl = s (a2 (a2 )
(v, €Tm,n v i&
1<mn<M

When p >4 or p < 4/3, we have [5 |wa|> Pdu [5 |w2]>~* du = co. Thus [u,v], = oo for
p ¢ (%, 4). By Theorem 1.2, the Bergman projection P is not bounded on L?(H).
When p € (%, 4), we have for (v,7n) € Tp.n where 1 < m,n < M that

—p\d —pvdu )P —p\d —pav P!
(oo (a0 ) = a0 (a5 )

Therefore for all wy € K, with || > 1/2, we have |wa| > 1 and

—ond —'\d p—1
O A (T S T R

(4.12)
When 7 =0, K, =D and
o (W) = i = 2 (22DY g
Similarly, we have the estimates for the other [u, V];j
s 120 = (el P (ol )" = (ﬁ (%)>/
[, vyt = [ v]pt = 1
Hence for p € (3/4,4),
(V15 ' (s vy V) o (o0 ([ 75
1\ Y
) (4329 (2:5,2: i)) ) ) <o (414
Theorem 1.2 gives the norm estimate of the Bergman projection P for % <p<A4,
1Pl ey S (4= p) "7 (3p —4)7H7, (4.15)

which implies the blowing up of ||P||z»m) as p — §+ or p — 4. This fact can also be
checked by computing the quotient ||P(|zg\_p/22)Hip(H)/|||zg|_p/22HiP(H) for the cases

p— 4~ and p — %+. Moreover, the estimate (4.15) is sharp in the sense that
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1P (22l 22) Loy |
Nl 2l (A= p)7(3p— 477

4.8. The case p(wy,ws) = |wy|%|ws|®

When the weight ju(w1,ws) = w1 |*ws|?, the weight v = |wy |~%"/?|wy| =" (1+0/P) The
singularity of the weight only occurs at places where w; or wy vanishes. Hence the blowing
up of weights at both z; = 0 and z3 = 0 can only be captured by computing the average
of the weights over the entire Hartogs triangle. Thus [u, ]9 will be the largest term
among [/, V];j . By a change of variables we obtain

’ ’ p—1
1,15 = (Jon w277 40) e (G |70/ P w277 00/ )

-1 _ . a+b p—1
e A (T I

ap’ p
= (|8 ((un|= )8
(4.16)
A computation using polar coordinates implies the following estimate for [u, I/]g’oi

o ()= (a+2)71(2- an)/)l_p(él —pt+a+b)t4—-p(1+ aT'fb))l_p, for -2 <a<
2p—1)andp—4<a+b<3p—4
o [p, ]9 = oo otherwise.

Rearranging these inequalities, we conclude that the Bergman projection P is LP regular
for p > 2 if and only if max{1, ¢, @b} < p < o + b+ 4. The p range we obtain here

is not of form (a, z%7). This is because, for the case a or b is not zero, the Bergman
projection operator is not self-adjoint on LP(H, udV'), and is not necessarily L? bounded.

4.4. LP regularity of the Bergman projection on the generalized Hartogs triangle

In [14], Edholm and McNeal studied the L? boundedness of the Bergman projection
on the generalized Hartogs triangle

Hm/n = {(2’1,22) € (C2 : ‘Zl|m < |22‘n < 1},

where m,n € Z* with gcd(m,n) = 1. A crucial step in their paper (see [14, Proposition
3.4]) is to analyze the LP regularity of the integral operator K4 defined by

| 201 |*

Kalf)erz) = [

m/n

dv .
‘]. — 22w2|2|2gwg _ Z{nﬁ){nP f(wlan) (UJl,lUQ)
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Using the proper map h : (w1, ws) — (wi'wh ™", ws) from H,, /, to H, we can relate the
LP norm of K4 on H,,/,, to the weighted L” norm of the absolute Bergman projection
on H:

IKallLe ) = m™ | My P My, - LP(H,w1dV) — LP(H, wadV) ||
=m Y|Pt My, : LP(H,wdV) — LP(H,weh?dV) ||,

where the weights wy (w1, we) = |wy |5 @D |wy|m =DO=P) 4o (wy, we) = |wy |27 x
_n

w7 =1 and h(wy,ws) = |we| A2+, Setting p := wyh? and v := wy 7 |wg|(A=20P"

we obtain

|PT My, : LP(H,wi1dV) — LP(H,wehPdV)| = |QT M, : LP(H,vdV) — LP(H, pudV)||.
/ (4.17)
Here v is no longer equal to |ws|™? 1~ % which is the dual weight of |ws| Py with
respect to the measure u. Still, u and v are blowing or vanishing at points where z; or z;
vanishes. Thus [u, V]! &~ 1. Moreover, the constants [u,v])* and [u, v]9 only measure
the singularity of the weight in either z; or z5 variable. Therefore

(507 = (kP (i) ™)

is the main term in the upper bound of the weighted norm of QT M,. By a simple

2n+2m 2n+2m
2n+2m—2nm’ 2nm—Am )’

2m + 2n -1 2m + 2n 1=p
0.0 ry(2m — A)P (2T _EMEER
[ 1y (2n ) omn— Am  ? omn— Am ?

integration, we obtain for p € piyrn

—(2n— A)T 2m + 2n + Am — 2mn 1=p
B (p—1)(2mn — Am)

2m + 2n B -t B 2m + 2n 1_p<oo (4.18)
omn— Am  * P Am + 2n + 2m — 2mn ' '

Hence, we recover [14, Proposition 3.4]:

2 2 2 92
K4 is bounded on L*(H,, ) jfp€< n+2m n + 2m )

Am + 2n + 2m — 2nm’ 2nm — Am

whenever Am + 2n + 2m — 2nm > 2nm — Am > 0,

and obtain an LP norm estimate for such a bounded K 4:

— 1
IKallLeqm,,,) S m™ (u,v]p®)e. (4.19)



Z. Huo, B.D. Wick / Journal of Functional Analysis 279 (2020) 108727 31

(£)(2)] S m2Ka(|f])(z) with A =
n—1+ I_Tn Applying (4.19) and (4.18) to this inequality of Py we recover the

m/n?

By [14, Theorem 3.4], the Bergman projection [Py, ,,
LP regularity result of the Bergman projection on H,, ,, obtained in [14, Corollary 4.7],
and obtain an estimate for the LP norm of Py, :

m/n’

2m+2n  2m+2n
Theorem 4.1. For p € (m+n+1’ —m+n—1)’

1
ol

| Pr P ((2m—|—2n)—(m+n—1)p)_% X

Lr(H,,,,) Sm*(p—1)

m/n

8 e

(n+m+1)p—(2m+2n))”

It’s not clear for us if the norm estimate above is sharp or not especially when the
constant m is large. Each operator K4 above corresponds to a sub-Bergman projection
induced by an orthogonal decomposition of the Bergman space in [14]. Since the ranges
of these sub-Bergman projections are orthogonal to each other, the norm bound obtained
using the inequality [Py (f)(2)] < m?Ka(]f])(z) might not be optimal for large m.

m/n

5. Remarks and generalizations

1. The assumption p(z1, z2) = p1(21/22)p2(22) in Theorem 1.2 is used only in the proof
of Lemma 2.6. Because of this fact, our lower bound in Theorem 1.2 holds without this
assumption:

Corollary 5.1. Let p be a weight on H and set v = |w2|_p/,u%, If the Bergman projec-
tion P is bounded on the corresponding weighted space LP(H, udV'), then [u,v], < oco.
Moreover, there holds

a1
1Pl Lo, pavy 2 ([, V]p) 2.

1,1

Using inequality (1.11) and a similar argument for Q,,;",, ,, in the proof of Theorem 1.2,

we can also generalize our upper bound estimate for P and P+ as follows:

Corollary 5.2. Let pu be a weight on H and set v = |w2|_p/,u%, Suppose the quantities
My wllee@wavy, IMT2 w2l Lo (8,20 -# pavy» and [, V]p are all finite. Then the

m,mn’

operators P and Pt are bounded on LP(H, udV'). Moreover,

1Pl o pavy < 1P oo pavy SIM7s, wllie@vav) 1M, | wsl—rull 1o (8, juos | pavy

x ([ v]p) =),

In [17], Fefferman gave a sufficient condition for the boundedness of the maximal
operator Ml(Ln) on R” defined by
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up Sl OV (®)
B G i

M (f)(@) =

where R is any rectangle in R™ with sides parallel to the coordinate axes. He showed that,
if the weight p on R is uniformly in the class A, in each variable separately, then ./\/lftn)
is L? bounded on LP(R", 1) for all 1 < p < co. In [1], Aleman, Pott, and Reguera studied
the By, weights on the unit disc which is the analogue of the A,, weights in the Bergman
setting. Using their results and Fefferman’s proof, it is possible to give a sufficient condi-
tion for the boundedness of [|[M7s .| Lo, vav) and ||/\/l7—4m7‘“,2|7pu||LP(H7‘22‘7;,#,1V) in
the corollary above. To obtain an upper bound estimate, one also needs to understand the
dependence of the quantities M7 o llze@vav) and M s —epull e (20| -2 pdv) 00
the sufficient condition for the weight v and |z3| P pu. ’

2. The example in Section 4.1 showed the upper bound estimate in Theorem 1.2 is
sharp. It is not clear if the lower bound estimates given in Theorem 1.2, or in [28] and
[29] are sharp. It would be interesting to see what a sharp lower bound is in terms of the
Bekollé-Bonami constant.

3. We focus on the weighted estimates for the Bergman projection on the Hartogs triangle
for the simplicity of the computation. In [29], Rahm, Tchoundja, and Wick obtained the
weighted estimates for operators S, ;, and S;r’b defined by

w)(1 — |w|?)®
Sunf(2) = (1= 22" / v (w)

w) (1 — |w*)
SHf(2) = (1= [af) / eV (),

on the weighted space LP(B,, (1 — |w|?)’udV). Using the methods in this paper, it is
possible to obtain weighted estimates for analogues of S,; and S;b in the Hartogs
triangle setting. When the domain ) is covered by the polydisc through a rational
proper holomorphic map as in [11], an induced dyadic structure on € can be obtained
via the proper map. One direction for generalization is to obtain the Bekollé-Bonami
type estimates for the Bergman projection, and analogues of S, ; and S;b on such a
domain €.

4. In the proof of Theorem 1.2, the positive dyadic operator Q" is used to relate the

mnv
Bergman projection to the maximal operator. The constant (1)_—1)2 appeared in Theo-
rem 1.2 dominates the L? and L norms of the maximal operator on the D?. In [12],
Cuckovié¢ showed that the LP-norm of the Bergman projection on a smooth bounded
strongly pseudoconvex domain is dominated by z%' This fact suggests the possibility to
relate the Bergman projection to the maximal function via a dyadic harmonic analysis
argument. It would be interesting to see what is the appropriate dyadic structure and
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the dyadic operator for the Bergman projection on the strongly pseudoconvex domain,
and establish Bekollé-Bonami estimates for weighted LP norm of the projection.

5. Although the main result is expressed on the Hartogs triangle, there is a theorem on
the bidisc and other product domains in disguise. Note that on the unit ball B,, the
following estimate [29] holds

max 1
1P, |l 2o B, ) S I Pg, |o B, ) S Bp(p) ™51},

Fubini’s theorem then yields that for a product domain Q@ =B,,, x B, x--- x xB,,, and
a weight 1 on Q of the form p(z1,...,2q) = p1(2z1) - - - pa(zq) with z; € C™ for each j,

n 1
1Pallze( S 1P oo S [ Bplug) >t o=t
j=1

For more general weights there are challenges in determining the sharp behavior of
the weight condition in the multiparameter setting and there are additional issues that
appear in these questions. We plan to undertake a deeper study of these questions in a
forthcoming project.
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