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1. Introduction

Let Ω ⊆ Cn be a bounded domain. Let dV denote the Lebesgue measure on Cn. 
The Bergman projection P is the orthogonal projection from L2(Ω) onto the Bergman 
space A2(Ω), the space of all square-integrable holomorphic functions. Associated with 
P , there is a unique function KΩ on Ω × Ω such that for any f ∈ L2(Ω):

P (f)(z) =
∫
Ω

KΩ(z; w̄)f(w)dV (w). (1.1)

Let P+ denote the positive Bergman operator defined by:

P+(f)(z) :=
∫
Ω

|KΩ(z; w̄)|f(w)dV (w). (1.2)

A question of importance in analytic function theory and harmonic analysis is to under-
stand the boundedness of P or P+ on the space Lp(Ω, σdV ), where σ is some non-negative 
locally integrable function on Ω. In [1,3], Bekollé and Bonami established the following 
for P and P+ on the unit ball Bn ⊆ Cn:

Theorem 1.1 (Bekollé-Bonami). Let Tz denote the Carleson tent over z in Bn ∈ Cn

defined as below:

• Tz :=
{
w ∈ Bn :

∣∣∣1 − w̄ z
|z|

∣∣∣ < 1 − |z|
}

for z �= 0, and
• Tz := Bn for z = 0.

Let the weight σ be a positive, locally integrable function on Bn. Let 1 < p < ∞. Then 
the following conditions are equivalent:

(1) P : Lp(Bn, σ) �→ Lp(Bn, σ) is bounded;
(2) P+ : Lp(Bn, σ) �→ Lp(Bn, σ) is bounded;
(3) The Bekollé-Bonami constant Bp(σ) is finite where:

Bp(σ) := sup
z∈Bn

∫
Tz

σ(w)dV (w)∫
Tz

dV (w)

(∫
Tz

σ− 1
p−1 (w)dV (w)∫
Tz

dV (w)

)p−1

.

In [19], we generalized Bekollé and Bonami’s result to a wide class of pseudoconvex 
domains of finite type. To do so, we combined the methods of Bekollé [3] with McNeal [30]. 
This method of proof is qualitative, showing that the Bekollé-Bonami class is sufficient 
for the weighted inequality of the projection to hold on those domains, and also necessary 
if the domain is strictly pseudoconvex. However, the method of good-lambda inequalities 
in [3] seems unlikely to give optimal estimates for the norm of the Bergman projection. 
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In this paper, we address the quantitative side of this question using sparse domination 
techniques.

Motivated by recent developments on the A2-Conjecture by Hytönen [20] for singular 
integrals in the setting of Muckenhoupt weighted Lp spaces, people have made progress 
on the dependence of the operator norm ‖P‖Lp(Bn,σ) on Bp(σ). In [39], Pott and Reguera 
gave a weighted Lp estimate for the Bergman projection on the upper half plane. Their 
estimates are in terms of the Bekollé-Bonami constant and the upper bound is sharp. 
Later, Rahm, Tchoundja, and Wick [40] generalized the results of Pott and Reguera 
to the unit ball case, and also obtained estimates for the Berezin transform. Weighted 
norm estimates of the Bergman projection have also been obtained [18] on the Hartogs 
triangle.

We use the known estimates of the Bergman kernel in [13,6,36,26,29,27] to establish 
the Bekollé-Bonami type estimates for the Bergman projection on some classes of finite 
type domains. By finite type we mean that the D’Angelo 1-type [10] is finite. The domains 
of finite type we focus on are:

(1) domains of finite type in C2;
(2) strictly pseudoconvex domains with smooth boundary in Cn;
(3) convex domains of finite type in Cn;
(4) decoupled domain of finite type in Cn.

Given functions of several variables f and g, we use f � g to denote that f ≤ Cg for 
a constant C. If f � g and g � f , then we say f is comparable to g and write f ≈ g.

The main result obtained in this paper is:

Theorem 1.2. Let 1 < p < ∞, and p′ denote the Hölder conjugate to p. Let σ(z) be a 
positive, locally integrable function on Ω. Set ν = σ−p′/p(z). Then the Bergman projection 
P satisfies the following norm estimate on the weighted space Lp(Ω, σ):

‖P‖Lp(Ω,σ) ≤ ‖P+‖Lp(Ω,σ) � [σ]p, (1.3)

where

[σ]p =
(
〈σ〉dVΩ

(
〈ν〉dVΩ

)p−1)1/p
+pp′

(
sup

ε0>δ>0,z∈bΩ
〈σ〉dVB#(z,δ)

(
〈ν〉dVB#(z,δ)

)p−1
)max{1, 1

p−1}

.

The tent B#(z, δ) above is slightly different from the tent we use in [19] in order 
to fit in the machinery of dyadic harmonic analysis. These two tents are essentially 
equivalent. The construction of B#(z, δ) uses the existence of the projection map onto 
bΩ which is defined in a small tubular neighborhood of bΩ. Hence the restriction δ < ε0
is needed to make sure that B#(z, δ) is inside the tubular neighborhood. See Lemma 3.2
and Definition 3.3 in Section 3. For the detailed definition of the constant [σ]p and its 
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connection with the Bekollé-Bonami constant Bp(σ), see Definition 3.4 and Remark 3.5. 
We provide a sharp example for the upper bound above. See Section 6.

Using the asymptotic expansion of the Bergman kernel on a strictly pseudoconvex 
domain [13,6], we showed in [19] that when Ω is smooth, bounded, and strictly pseudo-
convex, the boundedness of the Bergman projection P on the weighted space Lp(Ω, σ)
implies that the weight σ is in the Bp class. Here we also provide the corresponding 
quantitative result, giving a lower bound of the weighted norm of P :

Theorem 1.3. Let Ω be a smooth, bounded, strictly pseudoconvex domain. Let 1 < p < ∞, 
and p′ denote the Hölder conjugate to p. Let σ(z) be a positive, locally integrable function 
on Ω. Set ν = σ−p′/p(z). Suppose the projection P is bounded on Lp(Ω, σ). Then we have

(
sup

ε0>δ>0,z∈bΩ
〈σ〉dVB#(z,δ)

(
〈ν〉dVB#(z,δ)

)p−1
) 1

2p

� ‖P‖Lp(Ω,σ). (1.4)

If Ω is also Reinhardt, then

(Bp(σ))
1
2p � ‖P‖Lp(Ω,σ), (1.5)

where Bp(σ) = max
{
〈σ〉dVΩ

(
〈ν〉dVΩ

)p−1
, supε0>δ>0,z∈bΩ〈σ〉dVB#(z,δ)

(
〈ν〉dVB#(z,δ)

)p−1
}

.

When Ω is the unit ball in Cn, the estimate (1.5) was obtained in [40]. When 
Ω is smooth, bounded, and strictly pseudoconvex, it was proven in [19] that if P is 
bounded on Lp(Ω, σ), then the constant Bp(σ) is finite. It remains unclear to us that, 
for a general strictly pseudoconvex domain Ω, how ‖P‖Lp(Ω,σ) dominates the constant 
〈σ〉dVΩ

(
〈ν〉dVΩ

)p−1.
The approach we employ in this paper is similar to the ones in [39] and [40]. To prove 

(1.3), we show that P and P+ are controlled by a positive dyadic operator. Then an 
analysis of the weighted Lp norm of the dyadic operator yields the desired estimate. The 
construction of the dyadic operator uses a doubling quasi-metric on the boundary bΩ of 
the domain Ω and a result of Hytönen and Kairema [17]. For the domains we consider, 
estimates of the Bergman kernel function in terms of those quasi-metrics are known so 
that a domination of the Bergman projection by the dyadic operator is possible. There 
are other domains where estimates for the Bergman kernel function are known. We just 
focus on the above four cases and do not attempt to obtain the most general result.

The paper is organized as follows: In Section 2, we recall the definitions and known 
results concerning the non-isotropic metrics and balls on the boundary of the domain. 
In Section 3, we give the definition of tents and the dyadic tents structure based on the 
non-isotropic balls in Section 2. In Section 4, we recall known estimates for the Bergman 
kernel function, and prove a pointwise domination of the (positive) Bergman kernel 
function by a positive dyadic kernel. In Section 5, we prove Theorem 1.2. In Section 6, 
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we provide a sharp example for the upper bound in Theorem 1.2. In Section 7, we prove 
Theorem 1.3. In Section 8, we provide an additional (unweighted) application of the 
pointwise dyadic domination to show the Bergman projection is weak-type (1, 1). We 
point out some directions for generalization in Section 9.
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2. Non-isotropic balls on the boundary

In this section, we recall various definitions of quasi-metrics and their associated 
balls on the boundary of Ω. When Ω is of finite type in C2 or strictly pseudoconvex 
in Cn, distances on the boundary can be well described using sub-Riemannian geometry. 
Properties and equivalence of these distances can be found in [37,38,33,2]. For discussions 
about the sub-Riemannian geometry, see for example [4,16,32].

For convex or decoupled domains of finite type in Cn, the boundary geometry could be 
more complicated. We use quasi-metrics in [29,28,27]. In fact, all four classes of domains 
we consider in this paper can be referred to as the so-called “simple domains” in [30]. 
There it has been shown that estimates for the kernel function on these domains fall 
into a unified framework. When Ω is of finite type in C2 or strictly pseudoconvex in Cn, 
the boundary geometry of Ω is relatively straightforward. The quasi-metric induced by 
special coordinates systems in [26] and [30] is essentially the same as the sub-Riemannian 
metric.

It is worth mentioning that estimates expressed using some quasi-metrics for the 
Bergman kernel function are known in other settings. See for example [8,22,24].

2.1. Balls on the boundaries of domains of finite type in C2 or strictly pseudoconvex 
domains in Cn

Let Ω be a bounded domain in Cn with C∞-smooth boundary. A defining function ρ
of Ω is a real-valued C∞ function on Cn with the following properties:

(1) ρ(z) < 0 for all z ∈ Ω and ρ(z) > 0 for all z /∈ Ω.
(2) ∂ρ(z) �= 0 when ρ(z) = 0.
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Such a ρ can be constructed, for instance, using the Euclidean distance between the 
point z and bΩ, the boundary of Ω. One can also normalize ρ so that |∂ρ| = 1. Let 
T (bΩ) denote the tangent bundle of bΩ and CT (bΩ) = T (bΩ) ⊗C its complexification. 
Let T 1,0(bΩ) denote the subbundle of CT (bΩ) whose sections are linear combinations of 
∂/∂zj , and T 0,1(bΩ) be its complex conjugate bundle. Their sum H(bΩ) := T 1,0(bΩ) +
T 0,1(bΩ) is a bundle of real codimension one in the complex tangent bundle CT (bΩ). 
Let 〈·, ·〉 denote the contraction of the one forms and vector fields, and let [·, ·] denote 
the Lie bracket of two vector fields. Let λ denote the Levi form, the Hermitian form on 
T 1,0(bΩ) defined by

λ(L, K̄) = 〈12(∂ − ∂̄)ρ, [L, K̄]〉 for L,K ∈ T 1,0(bΩ).

By the Cartan formula for the exterior derivative of a one form, one obtains

λ(L, K̄) =
〈
−d

(
1
2(∂ − ∂̄)ρ

)
, L ∧ K̄

〉
= 〈∂∂̄ρ, L ∧ K̄〉.

Hence, the Levi form is the complex Hessian (ρij̄) of ρ, restricted to T 1,0(bΩ).
The domain Ω is called pseudoconvex (resp. strictly pseudoconvex) if λ is positive 

semidefinite (resp. definite), i.e., the complex Hessian (ρij̄) is positive semidefinite (resp. 
definite) when restricted to T 1,0(bΩ).

Given L ∈ T 1,0(bΩ), we say the type of L at a point p ∈ bΩ is k and write TypepL = k

if k is the smallest integer such that there is a iterated commutator

[. . . [[L1, L2], L3], . . . , Lk] = Ψk,

where each Lj is either L or L̄ such that 〈Ψk, (∂ − ∂̄)ρ〉 �= 0.
When Ω ⊆ C2, the subbundle T 1,0(bΩ) has dimension one at each boundary point p

and TypepL defines the type of the point p: A point q ∈ bΩ is of finite type m in the 
sense of Kohn [23] if TypepL = m. A domain is of Kohn finite type m if every point 
q ∈ bΩ is of Kohn finite type at most m. In the C2 case, Kohn’s type and D’Angelo’s 
1-type are equivalent. See [11] for the proof.

When Ω is strictly pseudoconvex, the Levi form λ is positive definite. Thus for every 
L ∈ T 1,0(bΩ) and p ∈ bΩ, one has that TypepL = 2.

Using the defining function ρ, a local basis of H(bΩ) can be chosen as follows. Let 
p ∈ bΩ be a boundary point. We may assume that, after a unitary rotation, ∂ρ(p) = dzn. 
Then there is a neighborhood U of p such that ∂ρ

∂zn
�= 0 on U . We define n − 1 local 

tangent vector fields on bΩ ∩ U :

Lj = ρzn
∂

∂zj
− ρzj

∂

∂zn
j = 1, 2, 3 . . . , n− 1;

and their conjugates:
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L̄j = ρz̄n
∂

∂z̄j
− ρz̄j

∂

∂z̄n
j = 1, 2, 3 . . . , n− 1.

Then the Lj ’s span T 1,0(bΩ) and the L̄j ’s span T 0,1(bΩ). We set

S =
n∑

j=1
ρz̄j

∂

∂zj
and T = S − S̄.

Then the Lj ’s, L̄j ’s and T span CT (bΩ). Let Xj , Xn−1+j be real vector fields such that

Lj = Xj − iXn−1+j

for j = 1, . . . , n − 1. Then Xj ’s and T span the real tangent space of bΩ near the point 
p.

For every k-tuple of integers l(k) = (l1, . . . , lk) with k ≥ 2 and lj ∈ {1, . . . , 2n − 2}, we 
define λl(k) to be the smooth function such that

[Xlk , [Xlk−1 , [. . . [Xl2 , Xl1 ] . . . ]]] = λl(k)T mod X1, . . . , X2n−2,

and define Λk to be the smooth function

Λk(q) =
( ∑

all l(k)

|λl(k)(q)|2
)1/2

.

For q ∈ U and δ > 0, we set

Λ(q, δ) =
m∑
j=2

Λj(q)δj . (2.1)

In the C2 case, a point q ∈ bΩ is of finite type m if and only if Λ2(q) = · · · = Λm−1(q) = 0
but Λm(q) �= 0. When Ω is strictly pseudoconvex in Cn, the function Λ2 �= 0 on bΩ.

Though the function Λ is locally defined, one can construct a global Λ that is defined 
on bΩ and is comparable to its every local piece. In the finite type in C2 case and the 
strictly pseudoconvex case, a global construction can be realized without using partitions 
of unity. We explain this now. When Ω is strictly pseudoconvex, Λ2 does not vanish on 
the boundary of Ω, therefore we can simply set Λ(q, δ) = δ2. When Ω is of finite type in 
C2, global tangent vector fields L1 and S can be chosen on bΩ:

L1 = ρz2
∂

∂z1
− ρz1

∂

∂z2
,

S = ρz̄1
∂

∂z1
+ ρz̄2

∂

∂z2
.
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Then the function Λ induced by the above L1 and S is a smooth function defined on 
bΩ. From now on, we choose Λ to be the smooth function induced by L1 and S on bΩ
when Ω is of finite type in C2, and choose Λ(q, δ) = δ2 when Ω is strictly pseudoconvex 
in Cn.

We recall several non-isotropic metrics on bΩ that are locally equivalent:

Definition 2.1. For p, q ∈ bΩ, the metric d1(·, ·) is defined by:

d1(p, q) = inf
{ 1∫

0

|α′(t)|dt : α is any piecewise smooth map from [0, 1] to bΩ

with α(0) = p, α(1) = q, and α′(t) ∈ Hα(t)(bΩ)
}
. (2.2)

Equipped with the metric d1, we define the ball B1 centered at p ∈ bΩ of radius r to be

B1(p, r) = {q ∈ bΩ : d1(p, q) < r}. (2.3)

Definition 2.2. For p, q ∈ bΩ, the metric d2(·, ·) is defined by:

d2(p, q) = inf
{
δ : There is a piecewise smooth map α from [0, 1] to bΩ

with α(0) = p, α(1) = q, α′(t) =
2n−2∑
j=1

aj(t)Xj(α(t)), and |aj(t)| < δ
}
.

(2.4)

Equipped with the metric d2, we define the ball B2 centered at p ∈ bΩ of radius r to be

B2(p, r) = {q ∈ bΩ : d2(p, q) < r}. (2.5)

Definition 2.3. For p, q ∈ bΩ, the metric d3(·, ·) is defined by:

d3(p, q) = inf
{
δ : There is a piecewise smooth map α from [0, 1] to bΩ with

α(0) = p, α(1) = q, and α′(t) =
2n−2∑
j=1

aj(t)Xj(α(t)) + b(t)T (α(t)),

where |aj(t)| < δ, |b(t)| < Λ(p, δ)
}
. (2.6)

Equipped with the metric d3, we define the ball B3 centered at p ∈ bΩ of radius r to be

B3(p, r) = {q ∈ bΩ : d3(p, q) < r}. (2.7)
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It is known that when the domain is strictly pseudoconvex in Cn, or of finite type in 
C2, the quasi-metrics d1, d2, and d3 are locally equivalent (cf. [37,38,33]), i.e. there are 
positive constants C1, C2 and δ so that when di(p, q) < δ with i ∈ {1, 2, 3},

C1dj(p, q) < di(p, q) < C2dj(p, q) for j ∈ {1, 2, 3}.

As a consequence, the balls Bj are also equivalent in the sense that for small δ, there 
are positive constants C1, C2 such that

Bi(p, C1δ) ⊆ Bj(p, δ) ⊆ Bi(p, C2δ) for i, j ∈ {1, 2, 3}.

It is worth noting that the definition d1(·, ·) does not depend on how we choose the 
local vector fields. Moreover, if d1(p, q) < δ, then for some positive constants C1, C2,

C1Λ(p, δ) ≤ Λ(q, δ) ≤ C2Λ(p, δ). (2.8)

To introduce the Ball-Box Theorem below, we also need to define balls using the expo-
nential map.

Definition 2.4. For q ∈ bΩ and δ > 0, set

B4(q, δ) =

⎧⎨
⎩p ∈ bΩ : p = exp

⎛
⎝2n−2∑

j=1
ajXj(q) + bT (q)

⎞
⎠ ,

where |aj | < δ, and |b| < Λ(p, δ)

⎫⎬
⎭ .

Theorem 2.5 (Ball-Box Theorem). There exist positive constants C1, C2 such that for 
any q ∈ bΩ and any sufficiently small δ > 0,

Bj(q, C1δ) ⊆ B4(q, δ) ⊆ Bj(q, C2δ) for j ∈ {1, 2, 3}.

The proof of this theorem can be found in for example [38,4,16,32]. Variants of the 
Ball-Box Theorem also exist in the literature. The following version of the Ball-Box 
Theorem is a consequence of Theorem 2.5 and can be found in [2].

Corollary 2.6 (Ball-Box Theorem). Let Ω be a smooth, bounded, strictly pseudoconvex do-
main. There exist positive constants C1, C2 such that for any q ∈ bΩ and any sufficiently 
small δ > 0,

Box(q, C1δ) ⊆ Bj(q, δ) ⊆ Box(q, C2δ) for j ∈ {1, 2, 3, 4}.

Here Box(q, δ) = {q + ZH + ZN ∈ bΩ : |ZH | < δ, |ZN | < δ2} where ZH ∈ Hq(bΩ) and 
ZN is orthogonal to Hq(bΩ).
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We will only use this corollary for the strictly pseudoconvex case. See for example [2].
The next theorem provides estimates for the surface volume of B4, and hence also for 

Bj with j = {1, 2, 3}. See for example [38].

Lemma 2.7. Let μ denote the Lebesgue surface measure on bΩ. Then there exist constants 
C1, C2 > 0 such that

C1δ
2n−2Λ(p, δ) ≤ μ(B4(p, δ)) ≤ C2δ

2n−2Λ(p, δ). (2.9)

As a consequence of the definitions of d1 and Λ and Lemma 2.7, we have the “doubling 
measure property” for the non-isotropic ball: There exists a positive constant C such that 
for each p ∈ bΩ and δ > 0,

μ(Bj(p, δ)) ≤ Cμ(Bj(p, δ/2)) for j ∈ {1, 2, 3, 4}. (2.10)

2.2. Balls on the boundary of a convex/decoupled domain of finite type

When Ω is a convex/decoupled domain of finite type in Cn, non-isotropic sets can be 
constructed using a special coordinate system of McNeal [29,27,30] near the boundary 
of Ω. Let p ∈ bΩ be a point of finite type m. For a small neighborhood U of the point p, 
there exists a holomorphic coordinate system z = (z1, . . . , zn) centered at a point q ∈ U

and defined on U and quantities τ1(q, δ), τ2(q, δ), . . . , τn(q, δ) such that

τ1(q, δ) = δ and δ1/2 � τj(q, δ) � δ1/m for j = 2, 3, . . . , n. (2.11)

Moreover, the polydisc D(q, δ) defined by:

D(q, δ) = {z ∈ Cn : |zj | < τj(q, δ), j = 1, . . . , n} (2.12)

is the largest one centered at q on which the defining function ρ changes by no more 
than δ from its value at q, i.e. if z ∈ D(q, δ), then |ρ(z) − ρ(q)| � δ.

The polydisc D(q, δ) is known to satisfy several “covering properties” [28]:

(1) There exists a constant C > 0, such that for points q1, q2 ∈ U ∩ Ω with D(q1, δ) ∩
D(q2, δ) �= ∅, we have

D(q2, δ) ⊆ CD(q1, δ) and D(q1, δ) ⊆ CD(q2, δ). (2.13)

(2) There exists a constant c > 0 such that for q ∈ U ∩ Ω and δ > 0, we have

D(q, 2δ) ⊆ cD(q, δ). (2.14)
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It was also shown in [28] that D(p, δ) induces a global quasi-metric on Ω. Here we will 
use it to define a quasi-metric on bΩ.

For q ∈ bΩ and δ > 0, we define the non-isotropic ball of radius δ to be the set

B5(q, δ) = D(q, δ) ∩ bΩ.

Set containments (2.13), (2.14), and the compactness and smoothness of bΩ imply the 
following properties for B5:

(1) There exists a constant C such that for q1, q2 ∈ U∩bΩ with B5(q1, δ) ∩B5(q2, δ) �= ∅,

B5(q2, δ) ⊆ CB5(q1, δ) and B5(q1, δ) ⊆ CB5(q2, δ). (2.15)

(2) There exists a constant c > 0 such that for q ∈ U ∩ Ω and δ > 0, we have

B5(q, δ) ⊆ cB5(q, δ/2) and μ(B5(q, δ)) ≈ δ
n∏

j=2
τ2
j (q, δ). (2.16)

The balls B5 induce a quasi-metric on bΩ ∩ U . For q, p ∈ bΩ ∩ U , we set d̃5(q, p) =
inf{δ > 0 : p ∈ B5(q, δ)}. To extend this quasi-metric d̃5(·, ·) to a global quasi-metric 
d5(·, ·) defined on bΩ ×bΩ, one can just patch the local metrics together in an appropriate 
way. The resulting quasi-metric is not continuous, but satisfies all the relevant properties. 
We refer the reader to [28] for more details on this matter. Since d5(·, ·) and d̃5(·, ·) are 
equivalent, we may abuse the notation B5 for the ball on the boundary induced by d5. 
Then (2.15) and (2.16) still hold true for B5.

3. Tents and dyadic structures on Ω

From now on, the domain Ω will belong to one of the following cases:

• a bounded, smooth, pseudoconvex domain of finite type in C2,
• a bounded, smooth, strictly pseudoconvex domain in Cn,
• a bounded, smooth, convex domain of finite type in Cn, or
• a bounded, smooth, decoupled domain of finite type in Cn.

Notations d(·, ·) and B(p, δ) will be used for

• the metric d1(·, ·) and the ball B1(p, δ) if Ω is pseudoconvex of finite type in C2 or 
strictly pseudoconvex in Cn;

• the metric d5(·, ·) and the ball B5(p, δ) if Ω is a convex/decoupled domain of finite 
type.
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Remark 3.1. It is worth noting that even though we use the same notation B(p, δ) for 
balls on the boundary of Ω, the constant δ has different geometric meanings in different 
settings. When Ω is a bounded, smooth, pseudoconvex domain of finite type in C2, or 
a bounded, smooth, strictly pseudoconvex domain in Cn, δ represents the radius of the 
sub-Riemannian ball B1(p, δ). When Ω is a bounded, smooth, convex (or decoupled) 
domain of finite type in Cn, 2δ is the height in the z1 coordinate of the polydisc D(q, δ)
that defines B5(q, δ). If Ω is the unit ball Bn which is strictly pseudoconvex, convex, and 
decoupled, the ball B1(q, δ) will be of similar size as the ball B5(q, 

√
δ).

3.1. Dyadic tents on Ω and the Bp(σ) constant

The non-isotropic ball B(p, δ) on the boundary bΩ induces “tents” in the domain Ω. 
To define what “tents” are we need the orthogonal projection map near the boundary. 
Let dist(·, ·) denote the Euclidean distance in Cn. For small ε > 0, set

Nε(bΩ) = {w ∈ Cn : dist(w,bΩ) < ε}.

Lemma 3.2. For sufficiently small ε0 > 0, there exists a map π : Nε0(bΩ) → bΩ such 
that

(1) For each point z ∈ Nε0(bΩ) there exists a unique point π(z) ∈ bΩ such that

|z − π(z)| = dist(z,bΩ).

(2) For p ∈ bΩ, the fiber π−1(p) = {p − εn(p) : −ε0 ≤ ε < ε0} where n(p) is the outer 
unit normal vector of bΩ at point p.

(3) The map π is smooth on Nε0(bΩ).
(4) If the defining function ρ is the signed distance function to the boundary, the gradient 

�ρ satisfies

�ρ(z) = n(π(z)) for z ∈ Nε0(bΩ).

A proof of Lemma 3.2 can be found in [2].

Definition 3.3. Let ε0 and π be as in Lemma (3.2). For z ∈ bΩ and sufficiently small 
δ > 0, the “tent” B#(z, δ) over the ball B(z, δ) is defined to be the subset of Nε0(bΩ) as 
follows: When Ω is a pseudoconvex domain of finite type in C2 or a strictly pseudoconvex 
domain,

B#(z, δ) = B#
1 (z, δ) = {w ∈ Ω : π(w) ∈ B1(z, δ), |π(w) − w| ≤ Λ(π(w), δ)}.

When Ω is a convex (or decoupled) domain of finite type in Cn,
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B#(z, δ) = B#
5 (z, δ) = {w ∈ Ω : π(w) ∈ B5(z, δ), |π(w) − w| ≤ δ}.

For δ � 1 and any z ∈ bΩ, we set B#(z, δ) = Ω.

For the “tent” B#(z, δ) to be within Nε0(bΩ), the constant δ in Definition 3.3 needs 
to satisfy Λ(z′, δ) < ε0 for z′ ∈ B1(z, δ) when Ω is of finite type in C2 or strictly 
pseudoconvex; and satisfy δ < ε0 when Ω is a convex (or decoupled) domain in Cn.

Given a subset U ∈ Cn, let V (U) denote the Lebesgue measure of U . By (2.8) and 
the definitions of the tents B#

1 (z, δ) and B#
5 (z, δ), we have:

V (B#
1 (z, δ)) ≈ δ2n−2Λ2(z, δ), (3.1)

V (B#
5 (z, δ)) ≈ δ2

n∏
j=2

τ2
j (z, δ), (3.2)

and hence also the “doubling property”:

V (B#(z, δ)) ≈ V (B#(z, δ/2)). (3.3)

We give the definition of the Bekollé-Bonami constant on Ω. For a weight σ and a subset 
U ⊆ Ω, we set σ(U) :=

∫
U
σdV and let 〈f〉σdVU denote the average of the function |f |

with respect to the measure σdV on the set U :

〈f〉σdVU =
∫
U
|f(w)|σdV
σ(U) .

Definition 3.4. Given weights σ(z) and ν = σ−p′/p(z) on Ω, the characteristic [σ]p of the 
weight σ is defined by

[σ]p :=
(
〈σ〉dVΩ

(
〈ν〉dVΩ

)p−1)1/p
+pp′

(
sup

ε0>δ>0,z∈bΩ
〈σ〉dVB#(z,δ)

(
〈ν〉dVB#(z,δ)

)p−1
)max{1, 1

p−1}

.

(3.4)

Remark 3.5. A natural generalization of the Bp constant in the above setting will be

Bp(σ) = max
{
〈σ〉dVΩ

(
〈ν〉dVΩ

)p−1
, sup
ε0>δ>0,z∈bΩ

〈σ〉dVB#(z,δ)

(
〈ν〉dVB#(z,δ)

)p−1
}
.

It is not hard to see that Bp(σ) and [σ]p are qualitatively equivalent, i.e., Bp(σ) is finite if 
and only if [σ]p is finite. But they are not quantitatively equivalent. As one will see in the 
proof of Theorem 1.2, the products of averages of σ and σ1/(1−p) over the whole domain 
and over the small tents will have different impacts on the estimate for the weighted 
norm of the projection P . The Bp(σ) above fails to reflect such a difference, and hence 
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is unable to give the sharp upper bound. For the same reason, the claimed sharpness of 
the Bekollé-Bonami bound in [40] is not quite correct. See Remark 6.1. This issue did 
not occur in the upper half plane case [39] since the average over the whole upper half 
plane is not included in the Bp constant there.

Now we are in the position of constructing dyadic systems on bΩ and Ω. Note that 
the ball B(·, δ) on bΩ satisfies the “doubling property” as in (2.10) and (2.16). By (2.8)
and (2.13), the surface area μ(B(q1, δ)) ≈ μ(B(q2, δ)) for any q1, q2 ∈ bΩ satisfying 
d(q1, q2) ≤ δ. Combining these facts yields that the metric d(·, ·) is a doubling metric, 
i.e. for every q ∈ bΩ and δ > 0, the ball B(q, δ) can be covered by at most M balls 
B(xi, δ/2). Results of Hytönen and Kairema in [17] then give the following lemmas:

Lemma 3.6. Let δ be a positive constant that is sufficiently small and let s > 1 be a 
parameter. There exist reference points {p(k)

j } on the boundary bΩ and an associated 

collection of subsets Q = {Qk
j } of bΩ with p(k)

j ∈ Qk
j such that the following properties 

hold:

(1) For each fixed k, {p(k)
j } is a largest set of points on bΩ satisfying d1(p(k)

j , p(k)
i ) > s−kδ

for all i, j. In other words, if p ∈ bΩ is a point that is not in {p(k)
j }, then there exists 

an index jo such that d1(p, p(k)
jo

) ≤ s−kδ.
(2) For each fixed k, 

⋃
j Q

k
j = bΩ and Qk

j

⋂
Qk

i = ∅ when i �= j.
(3) For k < l and any i, j, either Qk

j ⊇ Ql
i or Qk

j

⋂
Ql

i = ∅.
(4) There exist positive constants c and C such that for all j and k,

B(p(k)
j , cs−kδ) ⊆ Qk

j ⊆ B(p(k)
j , Cs−kδ).

(5) Each Qk
j contains of at most N numbers of Qk+1

i . Here N does not depend on k, j.

Lemma 3.7. Let δ and {p(k)
j } be as in Lemma 3.6. There are finitely many collections 

{Ql}Nl=1 such that the following hold:

(1) Each collection Ql is associated to some dyadic points {z(k)
j } and they satisfy all the 

properties in Lemma 3.6.
(2) For any z ∈ bΩ and small r > 0, there exist Qk1

j1
∈ Ql1 and Qk2

j2
∈ Ql2 such that

Qk1
j1

⊆ B(z, r) ⊆ Qk2
j2

and μ(B(z, r)) ≈ μ(Qk1
j1

) ≈ μ(Qk2
j2

).

Setting the sets Qk
j in Lemma 3.6 as the bases, we construct dyadic tents in Ω as 

follows:

Definition 3.8. Let δ, {p(k)
j } and Q = {Qk

j } be as in Lemma 3.6. We define the collection 

T = {K̂k
j } of dyadic tents in the domain Ω as follows:
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• When Ω is pseudoconvex of finite type in C2, or strictly pseudoconvex in Cn, we 
define

K̂k
j := {z ∈ Ω : π(z) ∈ Qk

j and |π(z) − z| < Λ(π(z), s−kδ)}.

• When Ω is a convex or decoupled domain of finite type in Cn, we define

K̂k
j := {z ∈ Ω : π(z) ∈ Qk

j and |π(z) − z| < s−kδ}.

Lemma 3.9. Let T = {K̂k
j } be a collection of dyadic tents in Definition 3.8 and let 

{Ql}Nl=1 be a collection of subsets in Lemma 3.7. The following statements hold true:

(1) For any K̂k
j , K̂k+1

i in T , either K̂k
j ⊇ K̂k+1

i or K̂k
j

⋂
K̂k+1

i = ∅.
(2) For any z ∈ bΩ and small r > 0, there exist Qk1

j1
∈ Ql1 and Qk2

j2
∈ Ql2 such that

K̂k1
j1

⊆ B#(z, r) ⊆ K̂k2
j2

and V (B#(z, r)) ≈ V (K̂k1
j1

) ≈ V (K̂k2
j2

).

Proof. Statement (1) is a consequence of the definition of K̂k
j and Lemma 3.6(3). State-

ment (2) is a consequence of the definitions of B#(z, r), K̂k
j , and Lemma 3.7(2). �

By Lemma 3.9(2), we can replace B#(z, δ) by K̂k
j in the definition of [σ]p to obtain 

a quantity of comparable size:

[σ]p ≈
(
〈σ〉dVΩ

(
〈ν〉dVΩ

)p−1)1/p
+ pp′

⎛
⎝ sup

1≤l≤N
sup

K̂k
j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1
⎞
⎠

max{1,1/(p−1)}

.

(3.5)
From now on, we will abuse the notation [σ]p to represent both the supremum in B#

q

and the supremum in K̂k
j .

3.2. Dyadic kubes on Ω

By choosing the parameter s in Lemmas 3.6 and 3.7 to be sufficiently large, we can 
also assume that for any p ∈ Qk+1

i ⊂ Qk
j , one has

Λ(p, s−k−1δ) < 1
4Λ(p, s−kδ). (3.6)

Definition 3.10. For a collection T of dyadic tents, we define the center α(k)
j of each tent 

K̂k
j to be the point satisfying

• π(α(k)
j ) = p

(k)
j ; and

• |p(k)
j − α

(k)
j | = 1 sup (k) dist(p, bΩ).
2 π(p)=pj
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We set Kk
−1 = Ω\ 

(⋃
j K̂

0
j

)
, and for each point α(k)

j or its corresponding tent K̂k
j , we 

define the dyadic “kube” Kk
j := K̂k

j \ 
(⋃

l K̂
k+1
l

)
, where l is any index with p(k+1)

l ∈ K̂k
j .

The following lemma for dyadic kubes holds true:

Lemma 3.11. Let T = {K̂k
j } be the system of tents induced by Q in Definition 3.8. Let 

Kk
j be the kubes of K̂k

j . Then

(1) Kk
j ’s are pairwise disjoint and 

⋃
j,k K

k
j = Ω.

(2) When Ω is a finite type domain in C2 or a strictly pseudoconvex domain in Cn,

V (Kk
j ) ≈ V (K̂k

j ) ≈ s−k(2n−2)δ2n−2Λ(p(k)
j , s−kδ). (3.7)

When Ω is a convex or decoupled domain of finite type in Cn,

V (Kk
j ) ≈ V (K̂k

j ) ≈ s−2kδ−2
n∏

j=2
τ2
j (p(k)

j , s−kδ). (3.8)

Proof. Statement (1) holds true by the definition of Kk
j . The estimates for V (K̂k

j ) in 
(3.7) and (3.8) follow from (3.1), (3.2) and Lemma 3.9(2). When the domain is convex or 
decoupled of finite type in Cn, the height of K̂k

j is s times the height of the tent K̂k
j \Kk

j . 
Thus V (K̂k

j ) ≈ V (K̂k
j \Kk

j ) which also implies V (K̂k
j ) ≈ V (Kk

j ). For the finite type in C2

case and strictly pseudoconvex case, it follows by (3.6) that Λ(p, s−k−1δ) < 1
4Λ(p, s−kδ)

for any p ∈ Qk+1
i ⊂ Qk

j . Hence the height of K̂k
j will be at least 4 times the height of 

K̂k
j \Kk

j . Thus V (K̂k
j ) ≈ V (Kk

j ). �
3.3. Weighted maximal operator based on dyadic tents

Definition 3.12. Let σ be a positive integrable function on Ω. Let Tl be a collection of 
dyadic tents as in Definition 3.8. The weighted maximal operator MTl,σ is defined by

MTl,σf(w) := sup
K̂k

j ∈Tl

1K̂k
j
(w)

σ(K̂k
j )

∫
K̂k

j

|f(z)|σ(z)dV (z). (3.9)

Lemma 3.13. MTl,σ is bounded on Lp(Ω, σ) for 1 < p ≤ ∞. Moreover

‖MTl,σ‖Lp(σ) � p/(p− 1). (3.10)

Proof. It’s obvious that MTl,σ is bounded on L∞(Ω, σ). We claim MTl,σ is of weak-type 
(1, 1), i.e. for f ∈ L1(Ω, σ), the following inequality holds for all λ > 0:
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.

σ({z ∈ Ω : MTl,σ(f)(z) > λ}) �
‖f‖L1(Ω,σ)

λ
. (3.11)

Then the Marcinkiewicz Interpolation Theorem implies the boundedness of MTl,σ on 
Lp(Ω, σ) for 1 < p ≤ ∞, and inequality (3.10) follows from a standard argument for the 
Hardy-Littlewood maximal operator.

For a point w ∈ {z ∈ Ω : MTl,σf(z) > λ}, there exists a unique maximal tent K̂k
j ∈ T

that contains w and satisfies:

1K̂k
j
(w)

σ(K̂k
j )

∫
K̂k

j

|f(z)|σ(z)dV (z) > λ

2 . (3.12)

Let Iλ be the set of all such maximal tents K̂k
j . The union of these maximal tents covers 

the set {z ∈ Ω : MTl,σf(z) > λ}. Since the tents K̂k
j are maximal, they are also pairwise 

disjoint. Hence

σ({z ∈ Ω : MTl,σf(z) > λ}) ≤
∑

K̂k
j ∈Iλ

σ(K̂k
j ) ≤

∑
K̂k

j ∈Iλ

2
λ

∫
K̂k

j

f(z)σ(z)dV (z) ≤
2‖f‖L1(Ω,σ)

λ

Thus inequality (3.11) holds and MTl,σ is weak-type (1,1). �
4. Estimates for the Bergman kernel function

We recall known estimates for the Bergman kernel function, and their relation with 
the volume of the tents in the previous section.

4.1. Finite type in C2 case

In [36], the estimate of the Bergman kernel has been expressed in terms of d1 and 
Λ(p, δ). Similar results were also obtained in [26].

Theorem 4.1 ([36,26]). Let ε0 be the same as in Lemma 3.2. Then for points p, q ∈
Nε0(bΩ), one has

|KΩ(p; q̄)| � d1(p, q)−2Λ(π(p), d1(p, q))−2. (4.1)

As a consequence, there is a constant c such that p, q ∈ B#
1 (π(p), cd1(p, q)) and

|KΩ(p; q̄)| � (V (B#
1 (π(p), cd1(p, q))))−1. (4.2)
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4.2. Strictly pseudoconvex case

When Ω is bounded, strictly pseudoconvex with smooth boundary, the behavior of 
the Bergman kernel function is well understood. In [13,6], asymptotic expansions of 
the kernel function were obtained on and off the diagonal. To obtain the Lp mapping 
property of the Bergman projection, a weaker estimate as in [9] would suffice. The proof 
of the following theorem can be found in [30].

Theorem 4.2 ([30]). Let Ω be a smooth, bounded, strictly pseudoconvex domain in Cn with 
a defining function ρ. For each p ∈ bΩ, there exists a neighborhood U of p, holomorphic 
coordinates (ζ1, . . . , ζn) and a constant C > 0, such that for p, q ∈ U

⋂
Ω,

|KΩ(p; q̄)| ≤ C

⎛
⎝|ρ(p)| + |ρ(q)| + |pn − qn| +

n−1∑
j=1

|pk − qk|2
⎞
⎠

−n−1

. (4.3)

Here p = (p1, . . . , pn) is in ζ-coordinates.

Up to a unitary rotation and a translation, we may assume that, under the original 
z-coordinates, ∂ρ(p) = dzn and p = 0, then the holomorphic coordinates (ζ1, . . . , ζn) in 
Theorem 4.2 can be expressed as the biholomorphic mapping Φ(z) = ζ with

ζ1 = z1

...

ζn−1 = zn−1

ζn = zn + 1
2

n∑
k,l=1

∂2ρ

∂zl∂zk
(p)zkzl.

The next theorem relates the estimate in Theorem 4.2 to the measure of the tents:

Theorem 4.3. Let p, q, and (p1, . . . , pn) be the same as in Theorem 4.2. There exists a 
constant r > 0 such that the tent B#

1 (p, r) contains points p and q, and

r2 ≈ max

⎧⎨
⎩|ρ(p)| + |ρ(q)|, |pn − qn| +

n−1∑
j=1

|pk − qk|2
⎫⎬
⎭ . (4.4)

Moreover, |KΩ(p; q̄)| �
(
V (B#

1 (p, r))
)−1

.

Proof. Note that Φ is biholomorphic and can be approximated by the identity map 
near p. For any points w, η in the neighborhood U of the point p in Theorem 4.2, the 
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distance d1(w, η) is about the same when computed in coordinates (ζ1, . . . , ζn). Φ is also 
measure preserving since the complex Jacobian determinant JCΦ = 1. Therefore we may 
assume that those results about d1 and volumes of the tents in Sections 2 and 3 hold 
true in ζ-coordinates. Then by (3.1) and the strict pseudoconvexity (Λ(π(p), ε) = ε2), 
the estimate

|KΩ(p; q̄)| � (V (B#
1 (p, r)))−1

holds true for r > 0 that satisfies (4.4). Therefore it is enough to show the existence 

of such a constant r. Set r1 =
√
|pn − qn| +

∑n−1
j=1 |pk − qk|2 and r2 =

√
|ρ(p)| + |ρ(q)|. 

Note that ∂/∂ζ1, . . . , ∂/∂ζn−1 are in Hp(bΩ) and ∂/ζn is orthogonal to Hp(bΩ). It 
follows from the fact Λ(π(p), ε) = ε2 and Corollary 2.6 that there exists a constant C1
such that the boundary point π(q) ∈ Box(π(p), C1r1). On the other hand, |ρ(p)| +|ρ(q)| ≈
dist(p, bΩ) +dist(q, bΩ). Therefore there exists a constant C2 such that Λ(π(p), C2r2) >
|ρ(p)| + |ρ(q)|. Set r = max{C1r1, C2r2}. Then B#

1 (π(p), r) contains both points p, q and 
inequality (4.4) holds. �
4.3. Convex/decoupled finite type case

When Ω is a smooth, bounded, convex (or decoupled) domain of finite type in Cn, 
estimates of the Bergman kernel function on Ω were obtained in [29,27,30]. See also [35]
for a correction of a minor issue in [29].

Theorem 4.4. Let Ω be a smooth, bounded, convex (or decoupled) domain of finite type 
in Cn. Let p be a boundary point of Ω. There exists a neighborhood U of p so that for 
all q1, q2 ∈ U ∩ Ω,

|KΩ(q1; q̄2)| � δ−2
n∏

j=2
τj(q1, δ)−2, (4.5)

where δ = |ρ(q1)| + |ρ(q2)| + inf{ε > 0 : q2 ∈ D(q1, ε)}.

We can reformulate Theorem 4.4 as below.

Theorem 4.5. Let Ω be a smooth, bounded, convex (or decoupled) domain of finite type 
in Cn. Let p be a boundary point of Ω. There exists a neighborhood U of p so that for 
all q1, q2 ∈ U ∩ Ω,

|KΩ(q1; q̄2)| �
(
V (B#

5 (π(q1), δ))
)−1

, (4.6)

where δ = |ρ(q1)| + |ρ(q2)| + inf{ε > 0 : q2 ∈ D(q1, ε)}. Moreover, there exists a constant 
c such that q1, q2 ∈ B#

5 (π(q1), cδ).



20 Z. Huo et al. / Bull. Sci. math. 170 (2021) 102993
Here the estimate (4.6) follows from (3.2). Recall that the polydisc D(q, δ) induces a 
global quasi-metric [28] on Ω. Then a triangle inequality argument using this quasi-metric 
yields the containment q2 ∈ B#

5 (π(q1), cδ).

4.4. Dyadic operator domination

Theorem 4.6. Let K̂k
j , Kk

j be the tents and kubes with respect to d and B#. Let {Tl}Nl=1
be the finite collections of tents induced by {Ql}Nl=1 in Lemma 3.7. Then for p, q ∈ Ω,

|KΩ(p; q̄)| � (V (Ω))−11Ω×Ω(p, q) +
N∑
l=1

∑
K̂k

j ∈Tl

(V (K̂k
j ))−11K̂k

j ×K̂k
j
(p, q). (4.7)

Proof. It suffices to show that for every p, q, there exists a K̂k
j ∈ Tl for some l such that

|KΩ(p; q̄)| � (V (K̂k
j ))−11K̂k

j ×K̂k
j
(p, q).

When dist(p, q) ≈ 1 or dist(p, bΩ) + dist(q, bΩ) ≈ 1, the pair (p, q) is away from the 
boundary diagonal of Ω × Ω. By Kerzman’s Theorem [21,5], we have

|KΩ(p; q̄)| � 1 ≈ (V (Ω))−1 ≈ (V (Ω))−11Ω×Ω(p, q).

We turn to the case when dist(p, q) and dist(p, bΩ) + dist(q, bΩ) are both small and 
we may assume that both p, q ∈ Ω ∩Nε0(bΩ). By Theorems 4.1, 4.3, and 4.5, there exists 
a small constant r > 0 such that p, q ∈ B#(π(p), r) and

|KΩ(p; q̄)| � (V (B#(π(p), r)))−1.

By Lemma 3.9, there exists a tent K̂k
j ∈ Tl for some l such that B#(π(p), r) ⊆ K̂k

j and

V (K̂k
j ) ≈ V (B#(π(p), r)).

Thus p, q ∈ K̂k
j and |KΩ(p; q̄)| � (V (K̂k

j ))−11K̂k
j ×K̂k

j
(p, q). �

5. Proof of Theorem 1.2

Given a function h on Ω, we set Mh to be the multiplication operator by h:

Mh(f)(z) := h(z)f(z).

Let σ be a weight on Ω. Set ν(z) := σ−p′/p(z) where p′ is the Hölder conjugate index of 
p. Then it follows that the operator norms of P and P+ on the weighted space Lp(Ω, σ)
satisfy:
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‖P : Lp(Ω, σ) → Lp(Ω, σ)‖ = ‖PMν : Lp(Ω, ν) → Lp(Ω, σ)‖; (5.1)

‖P+ : Lp(Ω, σ) → Lp(Ω, σ)‖ = ‖P+Mν : Lp(Ω, ν) → Lp(Ω, σ)‖. (5.2)

It suffices to prove the inequality for ‖P+Mν : Lp(Ω, ν) → Lp(Ω, σ)‖.
Let {Tl}Nl=1 be the finite collections of tents in Theorem 4.6. Then inequality (4.7)

holds: for p, q ∈ Ω,

|KΩ(p, q̄)| � (V (Ω))−11Ω×Ω(p, q) +
N∑
l=1

∑
K̂k

j ∈Tl

(V (K̂k
j ))−11K̂k

j ×K̂k
j
(p, q). (5.3)

Applying this inequality to the operator P+Mν yields

∣∣P+Mνf(z)
∣∣ = ∫

Ω

|KΩ(z; w̄)ν(w)f(w)|dV (w)

�〈fν〉dVΩ +
∫
Ω

N∑
l=1

∑
K̂k

j ∈Tl

1K̂k
j
(z)1K̂k

j
(w) |ν(w)f(w)|

V (K̂k
j )

dV (w)

=〈fν〉dVΩ +
N∑
l=1

∑
K̂k

j ∈Tl

1K̂k
j
(z)〈fν〉dV

K̂k
j
. (5.4)

Set Q+
0,ν(f)(z) := 〈fν〉dVΩ and Q+

l,νf(z) :=
∑

K̂k
j ∈Tl

1K̂k
j
(z)〈fν〉dV

K̂k
j

. Then it suffices to 

estimate the norm for Q+
l,ν with l = 0, 1, . . . , N . The proof given below uses the argument 

for the upper bound of sparse operators in weighted theory of harmonic analysis, see for 
example [31] and [25]. An estimate for the norm of Q+

0,ν is easy to obtain by Hölder’s 
inequality:

‖Q+
0,ν(f)‖pLp(Ω,σ)

‖f‖pLp(Ω,ν)
� (〈fν〉dVΩ )p〈σ〉dVΩ∫

Ω |f |pνdV � 〈σ〉dVΩ (〈ν〉dVΩ )p−1. (5.5)

Now we turn to Q+
l,ν for l �= 0. Assume p > 2. For any g ∈ Lp′(Ω, σ),

∣∣∣〈Q+
l,νf(z), g(z)σ(z)

〉∣∣∣ =
∣∣∣∣∣∣
∫
Ω

Q+
l,νf(z)g(z)σ(z)dV (z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫
Ω

∑
K̂k

j ∈Tl

1K̂k
j
(z)〈fν〉dV

K̂k
j
g(z)σ(z)dV (z)

∣∣∣∣∣∣∣
≤
∑

K̂k
j ∈Tl

〈fν〉dV
K̂k

j

∫
K̂k

|g(z)|σ(z)dV (z)
j
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=
∑

K̂k
j ∈Tl

〈fν〉dV
K̂k

j
〈gσ〉dV

K̂k
j
V (K̂k

j ). (5.6)

Since 〈fν〉dV
K̂k

j

〈gσ〉dV
K̂k

j

= 〈f〉νdV
K̂k

j

〈ν〉dV
K̂k

j

〈g〉σdV
K̂k

j

〈σ〉dV
K̂k

j

, it follows that

∑
K̂k

j ∈Tl

〈fν〉dV
K̂k

j
〈gσ〉dV

K̂k
j
V (K̂k

j ) =
∑

K̂k
j ∈Tl

〈f〉νdV
K̂k

j
〈ν〉dV

K̂k
j
〈g〉σdV

K̂k
j
〈σ〉dV

K̂k
j
V (K̂k

j )

=
∑

K̂k
j ∈Tl

(
〈ν〉dV

K̂k
j

)p−1
〈σ〉dV

K̂k
j
〈f〉νdV

K̂k
j
〈g〉σdV

K̂k
j
V (K̂k

j )
(
〈ν〉dV

K̂k
j

)2−p

.

(5.7)

Then
∑

K̂k
j ∈Tl

(
〈ν〉dV

K̂k
j

)p−1
〈σ〉dV

K̂k
j
〈f〉νdV

K̂k
j
〈g〉σdV

K̂k
j
V (K̂k

j )
(
〈ν〉dV

K̂k
j

)2−p

≤ sup
1≤l≤N

sup
K̂k

j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1 ∑
K̂k

j ∈Tl

〈f〉νdV
K̂k

j
〈g〉σdV

K̂k
j

(
V (K̂k

j )
)p−1 (

ν(K̂k
j )
)2−p

.

(5.8)

By Lemma 3.11, one has V (K̂k
j ) ≈ V (Kk

j ). The fact that p ≥ 2 and the containment 

Kk
j ⊆ K̂k

j gives the inequality 
(
ν(K̂k

j )
)2−p

≤
(
ν(Kk

j )
)2−p. This inequality yields:

(
V (K̂k

j )
)p−1 (

ν(K̂k
j )
)2−p

�
(
V (Kk

j )
)p−1 (

ν(Kk
j )
)2−p

. (5.9)

By Hölder’s inequality,

V (Kk
j ) ≤

(
ν(Kk

j )
) 1

p′
(
σ(Kk

j )
) 1

p .

Therefore,

(
V (Kk

j )
)p−1 (

ν(Kk
j )
)2−p ≤

(
ν(Kk

j )
) 1

p
(
σ(Kk

j )
) 1

p′ . (5.10)

Substituting these inequalities into the last line of (5.8), we obtain

∑
K̂k

j ∈Tl

〈f〉νdV
K̂k

j
〈g〉σdV

K̂k
j

(
V (K̂k

j )
)p−1 (

ν(K̂k
j )
)2−p

�
∑

K̂k
j ∈Tl

〈f〉νdV
K̂k

j
〈g〉σdV

K̂k
j

(
ν(Kk

j )
) 1

p
(
σ(Kk

j )
) 1

p′ .

Applying Hölder’s inequality again the sum above gives
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∑
K̂k

j ∈Tl

〈f〉νdV
K̂k

j
〈g〉σdV

K̂k
j

(
ν(Kk

j )
) 1

p
(
σ(Kk

j )
) 1

p′

≤

⎛
⎜⎝ ∑

K̂k
j ∈Tl

(
〈f〉νdV

K̂k
j

)p
ν(Kk

j )

⎞
⎟⎠

1
p
⎛
⎜⎝ ∑

K̂k
j ∈Tl

(
〈g〉σdVKk

j

)p′

σ(Kk
j )

⎞
⎟⎠

1
p′

. (5.11)

By the disjointness of Kk
j and Lemma 3.13, we have

∑
K̂k

j ∈Tl

(
〈f〉νdV

K̂k
j

)p
ν(Kk

j ) ≤
∫
Ω

(MTl,νf)pνdV ≤ (p′)p‖f‖pLp(Ω,ν). (5.12)

Similarly, we also have

∑
K̂k

j ∈Tl

(
〈g〉σdV

K̂k
j

)p′

σ(Kk
j ) ≤

∫
Ω

(MTl,σg)p
′
σdV ≤ (p)p

′‖g‖p
′

Lp′ (Ω,σ). (5.13)

Substituting (5.12) and (5.13) back into (5.11) and (5.6), we finally obtain

〈
Q+

l,νf, gσ
〉

� pp′ sup
1≤l≤N

sup
K̂k

j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1
‖f‖Lp(Ω,ν)‖g‖Lp′ (Ω,σ).

Therefore 
∑N

l=1 ‖Q+
l,ν‖Lp(Ω,σ) � pp′ sup1≤l≤N supK̂k

j ∈Tl
〈σ〉dV

K̂k
j

(
〈ν〉dV

K̂k
j

)p−1

.

Now we turn to the case 1 < p < 2 and show that for all f ∈ Lp(Ω, ν) and g ∈ Lp′(Ω, σ)

〈
Q+

l,νf, gσ
〉

�

⎛
⎝ sup

1≤l≤N
sup

K̂k
j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1
⎞
⎠

1
p−1

‖f‖Lp(Ω,ν)‖g‖Lp′ (Ω,σ).

By the definition of Q+
l,ν ,

〈
Q+

l,νf, gσ
〉

=
〈 ∑

K̂k
j ∈Tl

1K̂k
j
(w)〈fν〉dV

K̂k
j
, gσ

〉

=
∑

K̂k
j ∈Tl

〈fν〉dV
K̂k

j
〈gσ〉dV

K̂k
j
V (K̂k

j )

=
∑

K̂k
j ∈Tl

〈
1K̂k

j
(w)〈gσ〉dV

K̂k
j
, fν
〉

=
〈
Q+

l,σ(g), fν
〉
. (5.14)



24 Z. Huo et al. / Bull. Sci. math. 170 (2021) 102993
Since 1 < p < 2, p′ > 2. Then, replacing p by p′, interchanging σ and ν, and adopting 
the same argument for the case p ≥ 2 yields that

‖Q+
l,σ‖Lp′ (Ω,ν) � p′p sup

1≤l≤N
sup

K̂k
j ∈Tl

〈ν〉dV
K̂k

j

(
〈σ〉dV

K̂k
j

)p′−1

= pp′

⎛
⎝ sup

1≤l≤N
sup

K̂k
j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1
⎞
⎠

1
p−1

.

Thus we have

〈
Q+

l,νf, gσ
〉

� pp′

⎛
⎝ sup

1≤l≤N
sup

K̂k
j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1
⎞
⎠

1
p−1

‖g‖Lp′ (Ω,σ)‖f‖Lp(Ω,ν),

and

‖Q+
l,ν : Lp(Ω, ν) → Lp(Ω, σ)‖ � pp′

⎛
⎝ sup

1≤l≤N
sup

K̂k
j ∈Tl

〈σ〉dV
K̂k

j

(
〈ν〉dV

K̂k
j

)p−1
⎞
⎠

1
p−1

.

Combining the results for Q+
l,ν with l �= 0 for 1 < p < 2 and p ≥ 2 and inequality (5.5)

for Q+
0,ν gives the estimate in Theorem 1.2:

‖P+‖Lp(Ω,σ) � [σ]p.

6. A sharp example

In this section, we provide an example to show that the estimate in Theorem 1.2
is sharp. Our example is for the case 1 < p ≤ 2. The case p > 2 follows by a duality 
argument. The idea is similar to the ones in [39,40]. Since Ω is a pseudoconvex domain of 
finite type, Kerzman’s Theorem [21,5] implies that the kernel function KΩ extends to a 
C∞ function away from a neighborhood of the boundary diagonal of Ω ×Ω. Let w◦ ∈ Ω be 
a point that is away from the set Nε0(bΩ) and satisfies KΩ(w◦; w̄◦) = 2C1 > 0 for some 
constant C1. Then the maximum principle implies that {z ∈ bΩ : |KΩ(z; w̄◦)| > C1} is a 
non-empty open subset of bΩ. We claim that there exists a strictly pseudoconvex point z◦
in the set {z ∈ bΩ : |KΩ(z; w̄◦)| > C1}. Let p be a point in {z ∈ bΩ : |KΩ(z; w̄◦)| > C1}. 
Since p is a point of finite 1-type in the sense of D’Angelo, the determinant of the Levi 
form does not vanish identically near point p. Thus the determinant of the Levi form 
is strictly positive at some point in every neighborhood of p, i.e., there is a sequence of 
strictly pseudoconvex points converging to p. Since {z ∈ bΩ : |KΩ(z; w̄◦)| > C1} is a 
neighborhood of p, there exists a strictly pseudoconvex point z◦ such that
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|KΩ(z◦; w̄◦)| > C1. (6.1)

There are several possible proofs in the literature for the existence of the nonvanishing 
point of the determinant of the Levi form near a point of finite type. See for example [34]
or the forthcoming thesis of Fassina [12]. Nevertheless, we choose the strictly pseudocon-
vex point z◦ above only for the simplicity of the construction of our example and it is not 
required. See Remark 6.2 below. By Kerzman’s Theorem again, there exists a small con-
stant δ0 such that for any pair of points (z, w) ∈ B#(z◦, δ0) ×{w ∈ Ω : dist(w, w◦) < δ0},

|KΩ(z, w̄) −KΩ(z◦; w̄◦)| ≤ C1/10.

Thus for (z, w) ∈ B#(z◦, δ0) × {w ∈ Ω : dist(w, w◦) < δ0}, one has

|KΩ(z, w̄)| ≈ C1.

Moreover, an elementary geometric reasoning yields that

arg{KΩ(z; w̄),KΩ(z◦, w◦)} ∈ [− sin−1(1/10), sin−1(1/10)]. (6.2)

From now on, we let δ0 be a fixed constant. For z ∈ Ω, we set

h(z) = inf{δ > 0 : z ∈ B#(z◦, δ)}, and l(z) = dist(z, w◦). (6.3)

Let 1 < p ≤ 2. Let s be a positive constant that is sufficiently close to 0. We define the 
weight function σ on Ω to be

σ(w) = (h(w))(p−1)(2+2n−2s)

(l(w))2n−2s . (6.4)

We claim that the constant [σ]p ≈ s−1.
First, we consider the average of σ and σ

1
1−p over the tent B#(z, δ). Note that

σ
1

1−p (w) = (h(w))(2s−2n−2)

(l(w))(2s−2n)/(p−1) .

If the tent B#(z, δ) does not intersect B#(z◦, δ), then for any w ∈ B#(z, δ) we have 
h(w) ≈ x + δ and l(w) ≈ 1 with x � δ. Thus we have

〈σ〉dVB#(z,δ)

(
〈σ 1

1−p 〉dVB#(z,δ)

)p−1
≈ (x + δ)(p−1)(2+2n−2s)

(
(x + δ)(2s−2n−2)

)p−1
= 1.

(6.5)
If B#(z, δ) intersects B#(z◦, δ), then there exists a constant C so that B#(z◦, Cδ) con-
tains B#(z, δ) with |B#(z◦, Cδ)| ≈ |B#(z, δ)| by the doubling property of the ball B#. 
Hence
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〈σ〉dVB#(z,δ)

(
〈σ 1

1−p 〉dVB#(z,δ)

)p−1
� 〈σ〉dVB#(z◦,Cδ)

(
〈σ 1

1−p 〉dVB#(z◦,Cδ)

)p−1
.

Since w◦ is away from the set Nε0(bΩ) and hence is away from any tents, l(w) ≈ 1 for 
any w ∈ B#(z◦, Cδ). It follows that

〈σ〉dVB#(z◦,Cδ) ≈
∫

B#(z◦,Cδ)

h(w)(p−1)(2n+2−2s)dV (w)(V (B#(z, δ)))−1.

Recall that z◦ is a strictly pseudoconvex point. There exist special holomorphic coordi-
nates (ζ1, . . . , ζn) in a neighborhood of z◦ as in Theorem 4.2 so that z◦ = (0, . . . , 0) and 
the tent

D(z◦, δ) := {w = (ζ1, . . . , ζn) ∈ Ω : |ζn| < δ2, |ζj | < δ, j = 1, . . . , n− 1},

is equivalent to B#(z◦, Cδ) in the sense that there exist constants c1 and c2 so that

D(z◦, c1δ) ⊆ B#(z◦, Cδ) ⊆ D(z◦, c2δ).

Moreover, h(w) ≈ (|ζ1|2 + · · · + |ζn−1|2 + |ζn|)
1
2 . Therefore

〈σ〉dVB#(z◦,Cδ) ≈
∫

B#(z◦,Cδ)

h(w)(p−1)(2n+2−2s)dV (w)(V (B#(z, δ)))−1 ≈ δ(p−1)(2n+2−2s).

(6.6)
Similarly,

〈σ 1
1−p 〉dVB#(z◦,Cδ) ≈

∫
B#(z◦,Cδ)

h(w)2s−2n−2dV (w)(V (B#(z, δ)))−1 ≈ s−1δ(2s−2n−2),

(6.7)
where s−1 comes from the power rule 

∫ a

0 ts−1dt = as/s. Combining these inequalities 
yields

〈σ〉dVB#(z,δ)

(
〈σ 1

1−p 〉dVB#(z,δ)

)p−1
� 〈σ〉dVB#(z◦,Cδ)(〈σ

1
1−p 〉dVB#(z◦,Cδ))

p−1 ≈ s−(p−1). (6.8)

Now we turn to the average of σ and σ
1

1−p over the entire domain Ω. Note that

〈σ〉dVΩ ≈
∫
Ω

l(w)2s−2ndV (w).

A computation using polar coordinates yields that 〈σ〉dVΩ ≈ s−1. Also,
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〈σ 1
1−p 〉dVΩ ≈

∫
Ω

h(w)2s−2n−2dV (w)

=
∫

B#(z◦,δ0)

h(w)2s−2n−2dV (w) +
∫

Ω\B#(z◦,δ0)

h(w)2s−2n−2dV (w)

≈ δ2s−2n−2
0 s−1 + δ2s−2n−2

0 ≈ s−1,

where the third approximation sign follows by s being sufficiently small and δ0 being a 
fixed constant. Thus

〈σ〉dVΩ
(
〈σ 1

1−p 〉dVΩ
)p−1

≈ s−1(s−1)p−1 ≈ s−p. (6.9)

This estimate together with inequalities (6.5) and (6.8) yields that [σ]p ≈ s−1.
Now we consider the function

f(w) = σ
1

1−p (w)1B#(z◦,δ0),

where δ0 is the same fixed constant so that (6.2) holds. Since z◦ is a point away from 
w◦, l(w) ≈ 1 for w ∈ B#(z◦, δ0). Thus

‖f‖pLp(Ω,σ) = 〈σ 1
1−p 〉dVB#(z◦,δ0)V (B#(z◦, δ0)) ≈ s−1.

When z ∈ {w ∈ Ω : dist(w, w◦) < δ0}, (6.1) and (6.2) imply that

|P (f)(z)| =

∣∣∣∣∣∣∣
∫

B#(z◦,δ0)

KΩ(z; w̄)f(w)dV (w)

∣∣∣∣∣∣∣
≈

∫
B#(z◦,δ0)

|KΩ(z0; w̄0)|f(w)dV (w)

≈
∫

B#(z◦,δ0)

f(w)dV (w) = 〈σ 1
1−p 〉dVB#(z◦,δ0)V (B#(z◦, δ0)) ≈ s−1. (6.10)

By (6.10) and the fact that δ0 ≈ 1, we obtain the desired estimate:

‖P (f)‖pLp(Ω,σ) =
∫
Ω

|P (f)(z)|pσ(z)dV (z)

≥
∫

{z∈Ω:dist(z,w◦)<δ0}

|P (f)(z)|pσ(z)dV (z)

� s−p

∫
(dist(z, w◦))2s−2ndV (z)
{z∈Ω:dist(z,w◦)<δ0}
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≈ s−ps−1 ≈ ([σ]p)p‖f‖pLp(Ω,σ). (6.11)

Remark 6.1. In the particular case of the unit ball Bn we can make our example more 
explicit: the weight σ(w) = |w − z◦|(p−1)(2+2n−2s)/|w|2n−2s with z◦ = (1, 0, . . . , 0) and 
the test function f(w) = σ

1
1−p (w)1B#(z◦,1/2)(w). One can compute explicitly in this case 

that σ is in the Bp class. We further remark that in [40], the authors produce an upper 
and lower bound in terms of a Bekollé-Bonami condition that doesn’t utilize information 
about the large tents. The upper bound they produce is correct, however the claimed 
sharpness of the Bekollé-Bonami condition without testing the large tents is not quite 
correct. The example they construct does appropriately capture the behavior of small 
tents, but fails to do so in the case of large tents and this characteristic fails to capture 
the sharpness. It is for this reason that we have had to modify the definition of the 
Bekollé-Bonami characteristic in Definition 3.4 to reflect the behavior of both large and 
small tents.

Remark 6.2. In this example, we require z◦ to be a strictly pseudoconvex point only 
for the simplicity of the construction of the weight σ and the test function f , and the 
computation. For every z ∈ bΩ, the geometry of the tent B#(z, δ) is well understood. 
Thus σ and f can be modified accordingly so that the estimate (6.8) still holds true.

Remark 6.3. For a different example, we can also choose z◦ to be a point in Ω that is away 
from both Nε0(bΩ) and w◦, and change h(w) in (6.3) to be (dist(z◦, w))(p−1)(2n−2s). The 
average of σ and σ

1
1−p over tents is controlled by a constant since all tents are away from 

points z◦ and w◦. Moreover, 〈σ〉dVΩ (〈σ 1
p−1 〉dVΩ )p−1 ≈ s−p by a computation using polar 

coordinates. Thus [σ]p ≈ s−1 and a similar argument yields the sharpness of the bound 
in Theorem 1.2. We did not adopt this example since it does not reflect the connection 
between the weighted norm of the projection and the average of σ and σ

1
1−p over small 

tents.

Remark 6.4. When the weight σ ≡ 1, the constant [σ]p ≈ pp′. Theorem 1.2 then gives 
an estimate for the Lp norm of the Bergman projection:

‖P‖Lp(Ω) � pp′.

For the strictly pseudoconvex case, such an estimate was obtained and proven to be 
sharp by Čučković [41]. Therefore, the constant pp′ in [σ]p is necessary.

7. Proof of Theorem 1.3

We first show that the lower bound (1.4) in Theorem 1.3 with the assumption that Ω
is bounded, smooth, and strictly pseudoconvex.

We begin by recalling the following two lemmas from [19].
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Lemma 7.1. Let Ω be a smooth, bounded, strictly pseudoconvex domain. If the Bergman 
projection P is bounded on the weighted space Lp(Ω, σ), then the weight σ and its dual 
weight ν = σ

1
1−p are integrable on Ω.

Lemma 7.2. Let Ω be a smooth, bounded, strictly pseudoconvex domain. Let δ be a small 
constant. For a boundary point z1, let B#(z1, δ) be a tent defined as in Definition 3.3. 
Then there exists a tent B#(z2, δ) with d(B(z1, δ), B(z2, δ)) ≈ δ so that if f ≥ 0 is a 
function supported in B#(zi, δ) and z ∈ B#(zj , δ) with i �= j and i, j ∈ {1, 2}, then we 
have

|P (f)(z)| � 〈f〉dVB#(zi,δ).

Recall that ν = σ1/(1−p). By (5.1),

‖P‖Lp(Ω,σdV ) = ‖PMν : Lp(Ω, νdV ) → Lp(Ω, σdV )‖.

It suffices to show that

sup
ε0>δ>0,z∈bΩ

〈σ〉dVB#(z,δ)

(
〈ν〉dVB#(z,δ)

)p−1
� ‖PMν : Lp(Ω, νdV ) → Lp(Ω, σdV )‖2p.

For simplicity, we set A := ‖PMν : Lp(Ω, νdV ) → Lp(Ω, σdV )‖. If A < ∞, then we have 
a weak-type (p, p) estimate:

σ{w ∈ Ω : |PMνf(w)| > λ} � Ap

λp
‖f‖pLp(Ω,νdV ). (7.1)

Let δ0 be a fixed constant so that Lemma 7.2 is true for all δ < δ0. Set f(w) =
1B#(z1,δ)(w). Lemma 7.2 implies that for any z ∈ B#(z2, δ),

|PMν1B#(z1,δ)(z)| =

∣∣∣∣∣∣∣
∫

B#(z1,δ)

KΩ(z; w̄)ν(w)dV (w)

∣∣∣∣∣∣∣ > 〈ν〉dVB#(z1,δ). (7.2)

It follows that

B#(z2, δ) ⊆ {w ∈ Ω : |PMνf(w)| > 〈ν〉dVB#(z1,δ)}. (7.3)

By Lemma 7.1, 〈ν〉dVB#(z1,δ) is finite. Then inequality (7.1) implies

σ(B#(z2, δ)) ≤ Ap
(
〈ν〉dVB#(z1,δ)

)−p

ν(B#(z1, δ)), (7.4)

which is equivalent to 〈σ〉dV#
(
〈ν〉dV#

)p−1
� Ap. Since one can interchange the 
B (z2,δ) B (z1,δ)
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roles of z1 and z2 in Lemma 7.2, it follows that

〈σ〉dVB#(z1,δ)

(
〈ν〉dVB#(z2,δ)

)p−1
� Ap.

Combining these two inequalities, we have

〈σ〉dVB#(z1,δ)

(
〈ν〉dVB#(z2,δ)

)p−1
〈σ〉dVB#(z2,δ)

(
〈ν〉dVB#(z1,δ)

)p−1
� A2p. (7.5)

By Hölder’s inequality,

V (B#(z2, δ))p ≤
∫

B#(z2,δ)

σdV

⎛
⎜⎝ ∫

B#(z2,δ)

νdV

⎞
⎟⎠

p−1

. (7.6)

Therefore 〈σ〉dVB#(z2,δ)

(
〈ν〉dVB#(z2,δ)

)p−1
� 1. Applying this to (7.5) and taking the supre-

mum of the left side of (7.5) for all tents B#(z1, δ) where δ < δ0 yields

sup
δ<δ0,
z1∈bΩ

〈σ〉dVB#(z1,δ)

(
〈ν〉dVB#(z1,δ)

)p−1
� A2p. (7.7)

Since the constant ε0 in Lemma 3.2 can be chosen to be δ0, inequality (1.4) is proved.
Now we turn to prove (1.5) and assume in addition that Ω is Reinhardt. Since in-

equality (7.7) still holds true, it suffices to show

〈σ〉dVΩ
(
〈ν〉dVΩ

)p−1 � A2p. (7.8)

Because Ω is Reinhardt, the monomials form a complete orthogonal system for the 
Bergman space A2(Ω). Thus the kernel function KΩ has the following series expression:

KΩ(z; w̄) =
∑

α∈Nn

zαw̄α

‖zα‖2
L2(Ω)

. (7.9)

This implies that KΩ(z; 0) = ‖1‖−2
L2(Ω) for any z ∈ Ω. By either the asymptotic expansion 

of KΩ [13,6] or Kerzman’s Theorem [21], we can find a precompact neighborhood U of 
the origin such that for any z ∈ Ω and w ∈ U ,

|KΩ(z; w̄)| ≈ 1 and arg{KΩ(z; w̄),KΩ(z; 0)} ∈ [−1/4, 1/4]. (7.10)

Let f(w) = 1U (w). Then for any z ∈ Ω,

|PMν(f) (z)| =

∣∣∣∣∣∣
∫
U

KΩ(z; w̄)νdV (w)

∣∣∣∣∣∣ > c‖f‖L1(Ω,νdV ),
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for some constant c. Therefore,

Ω ⊆
{
z ∈ Ω : |PMν(f)(z)| > c‖f‖L1(Ω,νdV )

}
.

Applying this containment and the fact that ‖f‖L1(Ω,νdV ) = ‖f‖pLp(Ω,νdV ) to (7.1) yields

σ(Ω) ≤ Ap

cp‖f‖pL1(Ω,νdV )
‖f‖pLp(Ω,νdV ) ≤

Ap

cp‖f‖p−1
L1(Ω,νdV )

< ∞. (7.11)

Thus

〈σ〉dVΩ
(
〈ν〉dVU

)p−1 � Ap. (7.12)

Interchanging the role of z and w in the argument above, we also have

U ⊆
{
w ∈ Ω : |PMν(1)(w)| > c‖1‖L1(Ω,νdV )

}
,

and

σ(U) ≤ Ap

cp‖1‖pL1(Ω,νdV )
‖1‖pLp(Ω,νdV ) ≤

Ap

cp‖1‖p−1
L1(Ω,νdV )

< ∞. (7.13)

Thus

〈σ〉dVU
(
〈ν〉dVΩ

)p−1 � Ap. (7.14)

Combining (7.12), (7.14) and using the fact that

〈σ〉dVU
(
〈ν〉dVU

)p−1 ≥ 1,

we obtain the desired estimate:

〈σ〉dVΩ
(
〈ν〉dVΩ

)p−1 � 〈σ〉dVΩ
(
〈ν〉dVΩ

)p−1 〈σ〉dVU
(
〈ν〉dVU

)p−1 � A2p. (7.15)

Estimates (7.15) and (7.7) then give (1.5). The proof is complete.

8. An application to the weak L1 estimate

In [28], the weak-type (1, 1) boundedness of the Bergman projection on simple domains 
was obtained using a Calderon-Zygmund type decomposition. In this section, we use 
Theorem 4.6 to provide an alternative approach to establish the weak-type bound for the 
Bergman projection. We follow the argument in [7] since we have a “sparse domination” 
for the Bergman projection.



32 Z. Huo et al. / Bull. Sci. math. 170 (2021) 102993
Theorem 8.1. There exists a constant C > 0 so that for all f ∈ L1(Ω),

sup
λ

λV ({z : |Pf(z)| > λ}) < C‖f‖L1(Ω).

Proof. By a well-known equivalence of weak-type norms (see for example [15]), it suffices 
to show

sup
f1

‖f1‖L1(Ω)=1

sup
G⊂Ω

inf
G′⊂G

V (G)<2V (G′)

sup
f2

|f2|≤1G′

|〈Pf1, f2〉| < ∞. (8.1)

In light of Theorem 4.6, we may replace P by Q+
�0,1 (using our previous notation) for 

some fixed �0 with 1 ≤ � ≤ N . As in Definition 3.12, we consider the (now unweighted) 
dyadic maximal function MT�0 ,1. For convenience in what follows, we will simply write 
MT�0

. By Lemma 3.13, we know this operator is of weak-type (1, 1). Fix f1 with norm 
1, G ⊂ Ω and constants C1, C2 to be chosen later. Define sets

H = {z ∈ Ω : MT�0
f1(z) > C1V (G)−1}

and

H̃ =
⋃

K̂k
j ∈K

K̂k
j

where

K =
{

maximal tents K̂k
j in T�0 so V (K̂k

j ∩H) > C2V (K̂k
j )
}
.

Note if C1 is chosen sufficiently large relative to C−1
2 , the weak-type estimate of MT�0

implies

V (H̃) = V

⎛
⎜⎝ ⋃

K̂k
j ∈K

K̂k
j

⎞
⎟⎠

≤
∑

K̂k
j ∈K

C−1
2 V (K̂k

j ∩H)

≤ C−1
2 V (H)

≤ C−1
2 C−1

1 V (G)‖f1‖L1(Ω)

≤ 1
2V (G).

It is then clear if we let G′ = G \ H̃, then V (G) < 2V (G′), so G′ is a candidate set in 
the infimum in (8.1). If z ∈ Hc, then, by definition,
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MT�0
f1(z) ≤ C1V (G)−1. (8.2)

Using the distribution function,

‖MT�0
f1‖2

L2(Hc) = 2
C1V (G)−1∫

0

tV ({z ∈ Hc : MT�0
f1(z) > t})dt

≤ 2
C1V (G)−1∫

0

dt‖MT�0
‖L1,∞(Hc)‖f1‖L1(Ω)

� C1V (G)−1. (8.3)

Now let |f2| ≤ 1G be fixed. We have

|〈Q+
�0,1f1, f2〉| =

∑
K̂k

j ∈T�0

V (K̂k
j )〈f1〉K̂k

j
〈f2〉K̂k

j
. (8.4)

Note that for K̂k
j ∈ T�0 , if V (K̂k

j ∩H) > C2V (K̂k
j ) then K̂k

j ⊂ H̃. But f2 is supported on 
G′ ⊂ H̃c, so for such a tent 〈f2〉K̂k

j
= 0. Thus, examining (8.4), we may assume without 

loss of generality that if K̂k
j ∈ T�0 then

V (K̂k
j ∩H) ≤ C2V (K̂k

j ). (8.5)

Then note that (8.5) implies the following holds true for the kubes Kk
j , provided C2 is 

chosen sufficiently small:

V (Kk
j ∩Hc) = V (Kk

j ) − V (Kk
j ∩H)

≥ CV (K̂k
j ) − V (K̂k

j ∩H)

� V (K̂k
j )

≥ V (Kk
j )

where we let C be the implicit constant in Lemma 3.11. Thus we have

V (Kk
j ) � V (Kk

j ∩Hc). (8.6)

Therefore, continuing from (8.4) and using (8.3) and (8.6), we obtain

|〈Q+
�0,1f1, f2〉| �

∑
K̂k

j ∈T�0

V (Kk
j )〈f1〉K̂k

j
〈f2〉K̂k

j

�
∑

K̂k∈T

V (Kk
j ∩Hc)〈f1〉K̂k

j
〈f2〉K̂k

j

j �0
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≤
∫
Hc

(MT �0f1)(MT �0f2) dV

≤ ‖MT�0
f1‖L2(Hc)‖MT�0

f2‖L2(Ω)

� V (G)− 1
2 ‖f2‖L2(Ω)

≤ V (G)− 1
2V (G) 1

2

= 1,

which establishes the result. �
9. Directions for generalization

1. The example in Section 6 showed the upper bound estimate in Theorem 1.2 is sharp. 
It is not clear if the lower bound estimates given in Theorem 1.2, or in [39] and [40]
are sharp. It would be interesting to see what a sharp lower bound is in terms of the 
Bekollé-Bonami type constant.

2. Our lower bound estimate in Theorem 1.3 uses the asymptotic expansion of the 
Bergman kernel function and hence only works for bounded, smooth, strictly pseudocon-
vex domains. An interesting question would be whether similar lower bound estimates 
hold true for the Bergman projection when the domain is of finite type in C2, convex 
and of finite type in Cn, or decoupled and of finite type in Cn.

3. We focus on the weighted estimates for the Bergman projection for the simplicity of 
the computation. In [40], Rahm, Tchoundja, and Wick obtained the weighted estimates 
for operators Sa,b and S+

a,b defined by

Sa,bf(z) := (1 − |z|2)a
∫
Bn

f(w)(1 − |w|2)b
(1 − zw̄)n+1+a+b

dV (w);

S+
a,bf(z) := (1 − |z|2)a

∫
Bn

f(w)(1 − |w|2)b
|1 − zw̄|n+1+a+b

dV (w),

on the weighted space Lp(Bn, (1 − |w|2)bμdV ). Using the methods in this paper, it is 
possible to obtain weighted estimates for analogues of Sa,b and S+

a,b in the settings we 
considered in this paper.
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