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1. Introduction

Let Q C C™ be a bounded domain. Let dV denote the Lebesgue measure on C™.
The Bergman projection P is the orthogonal projection from L2(2) onto the Bergman
space A%(Q), the space of all square-integrable holomorphic functions. Associated with
P, there is a unique function Kq on Q x ©Q such that for any f € L*(Q):

P(f)(2) = / Koz @) f(w)dV (w). (1.1)
Q

Let PT denote the positive Bergman operator defined by:
PAE) = [ 1otz o)l f(w)av (w). (12)
Q

A question of importance in analytic function theory and harmonic analysis is to under-
stand the boundedness of P or PT on the space L?(£2, 0dV'), where o is some non-negative
locally integrable function on €. In [1,3], Bekollé and Bonami established the following
for P and PT on the unit ball B,, C C™:

Theorem 1.1 (Bekollé-Bonami). Let T, denote the Carleson tent over z in B, € C"
defined as below:

. T,

{weBn:’1—wi|
. T,

|z
B, for z=0.

<1—|z|} for z # 0, and

Let the weight o be a positive, locally integrable function on B,. Let 1 < p < co. Then
the following conditions are equivalent:

(1) P: LP(B,,0) — LP(B,,0) is bounded;
(2) Pt :LP(B,,0)— LP(B,,0) is bounded;
(3) The Bekollé-Bonami constant By(o) is finite where:

-1

Bp(o) := sup

S o)V (w) [ [ 0”7 (w)dV (w) )
z€B, sz dV(w)

sz dV (w)

In [19], we generalized Bekollé and Bonami’s result to a wide class of pseudoconvex
domains of finite type. To do so, we combined the methods of Bekollé [3] with McNeal [30].
This method of proof is qualitative, showing that the Bekollé-Bonami class is sufficient
for the weighted inequality of the projection to hold on those domains, and also necessary
if the domain is strictly pseudoconvex. However, the method of good-lambda inequalities
in [3] seems unlikely to give optimal estimates for the norm of the Bergman projection.
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In this paper, we address the quantitative side of this question using sparse domination
techniques.

Motivated by recent developments on the A,-Conjecture by Hytonen [20] for singular
integrals in the setting of Muckenhoupt weighted LP spaces, people have made progress
on the dependence of the operator norm || P||zrB, o) on By(o). In [39], Pott and Reguera
gave a weighted LP estimate for the Bergman projection on the upper half plane. Their
estimates are in terms of the Bekollé-Bonami constant and the upper bound is sharp.
Later, Rahm, Tchoundja, and Wick [40] generalized the results of Pott and Reguera
to the unit ball case, and also obtained estimates for the Berezin transform. Weighted
norm estimates of the Bergman projection have also been obtained [18] on the Hartogs
triangle.

We use the known estimates of the Bergman kernel in [13,6,36,26,29,27] to establish
the Bekollé-Bonami type estimates for the Bergman projection on some classes of finite
type domains. By finite type we mean that the D’Angelo 1-type [10] is finite. The domains
of finite type we focus on are:

(1) domains of finite type in C?;

(2) strictly pseudoconvex domains with smooth boundary in C™;
(3) convex domains of finite type in C";

(4) decoupled domain of finite type in C™.

Given functions of several variables f and g, we use f < g to denote that f < Cg for
a constant C. If f < gand g < f, then we say f is comparable to g and write f = g.
The main result obtained in this paper is:

Theorem 1.2. Let 1 < p < oo, and p' denote the Holder conjugate to p. Let o(z) be a
positive, locally integrable function on Q). Setv = a‘p//p(z). Then the Bergman projection
P satisfies the following norm estimate on the weighted space LP(Q,0):

1P|l Lr (0,00 < 1PF | Lr(0,0) S [0 (1.3)

where

1

max{1, 2+

—1\l/p p—1 Pt

ol = ({08 (&)™) +pp'< sup (o)t (0B ) ) -
€0>6>0,26bQ

The tent B¥(z,8) above is slightly different from the tent we use in [19] in order
to fit in the machinery of dyadic harmonic analysis. These two tents are essentially
equivalent. The construction of B#(z,d) uses the existence of the projection map onto
bS2 which is defined in a small tubular neighborhood of bf2. Hence the restriction ¢ < €
is needed to make sure that B#(z,d) is inside the tubular neighborhood. See Lemma 3.2
and Definition 3.3 in Section 3. For the detailed definition of the constant [o], and its
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connection with the Bekollé-Bonami constant B,(c), see Definition 3.4 and Remark 3.5.
We provide a sharp example for the upper bound above. See Section 6.

Using the asymptotic expansion of the Bergman kernel on a strictly pseudoconvex
domain [13,6], we showed in [19] that when € is smooth, bounded, and strictly pseudo-
convex, the boundedness of the Bergman projection P on the weighted space LP(Q, o)
implies that the weight o is in the B, class. Here we also provide the corresponding
quantitative result, giving a lower bound of the weighted norm of P:

Theorem 1.3. Let Q) be a smooth, bounded, strictly pseudoconvex domain. Let 1 < p < oo,
and p' denote the Hélder conjugate to p. Let o(z) be a positive, locally integrable function
on Q. Set v = o' /P(2). Suppose the projection P is bounded on LP (), o). Then we have

L

p—1\ %"
( sup (o) Bz (<V>d3‘;(275)> ) S Pl e (@,0)- (1.4)
€0>0>0,2€bQ

If Q is also Reinhardt, then

(By(0))? S IPllLr(2,0): (1.5)

—1 p—1
where BP(U) = max {<U>§12V <<V>§12V)p ) Supeg>5>0,2€bﬂ<a>d3‘;(z76) (<V>%‘;(z,5)) }

When Q is the unit ball in C™, the estimate (1.5) was obtained in [40]. When
Q is smooth, bounded, and strictly pseudoconvex, it was proven in [19] that if P is
bounded on LP(§), o), then the constant B,(o) is finite. It remains unclear to us that,
for a general strictly pseudoconvex domain Q, how || P||z»(q,,) dominates the constant
()& (&)

The approach we employ in this paper is similar to the ones in [39] and [40]. To prove
(1.3), we show that P and P* are controlled by a positive dyadic operator. Then an
analysis of the weighted L? norm of the dyadic operator yields the desired estimate. The
construction of the dyadic operator uses a doubling quasi-metric on the boundary b{2 of
the domain Q and a result of Hyténen and Kairema [17]. For the domains we consider,
estimates of the Bergman kernel function in terms of those quasi-metrics are known so
that a domination of the Bergman projection by the dyadic operator is possible. There
are other domains where estimates for the Bergman kernel function are known. We just
focus on the above four cases and do not attempt to obtain the most general result.

The paper is organized as follows: In Section 2, we recall the definitions and known
results concerning the non-isotropic metrics and balls on the boundary of the domain.
In Section 3, we give the definition of tents and the dyadic tents structure based on the
non-isotropic balls in Section 2. In Section 4, we recall known estimates for the Bergman
kernel function, and prove a pointwise domination of the (positive) Bergman kernel
function by a positive dyadic kernel. In Section 5, we prove Theorem 1.2. In Section 6,
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we provide a sharp example for the upper bound in Theorem 1.2. In Section 7, we prove
Theorem 1.3. In Section 8, we provide an additional (unweighted) application of the
pointwise dyadic domination to show the Bergman projection is weak-type (1,1). We
point out some directions for generalization in Section 9.
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2. Non-isotropic balls on the boundary

In this section, we recall various definitions of quasi-metrics and their associated
balls on the boundary of . When € is of finite type in C2 or strictly pseudoconvex
in C™, distances on the boundary can be well described using sub-Riemannian geometry.
Properties and equivalence of these distances can be found in [37,38,33,2]. For discussions
about the sub-Riemannian geometry, see for example [4,16,32].

For convex or decoupled domains of finite type in C", the boundary geometry could be
more complicated. We use quasi-metrics in [29,28,27]. In fact, all four classes of domains
we consider in this paper can be referred to as the so-called “simple domains” in [30].
There it has been shown that estimates for the kernel function on these domains fall
into a unified framework. When € is of finite type in C? or strictly pseudoconvex in C",
the boundary geometry of 2 is relatively straightforward. The quasi-metric induced by
special coordinates systems in [26] and [30] is essentially the same as the sub-Riemannian
metric.

It is worth mentioning that estimates expressed using some quasi-metrics for the
Bergman kernel function are known in other settings. See for example [8,22,24].

2.1. Balls on the boundaries of domains of finite type in C? or strictly pseudoconver
domains in C"

Let 2 be a bounded domain in C” with C*°-smooth boundary. A defining function p
of 2 is a real-valued C'*° function on C™ with the following properties:

(1) p(z) <0 for all z € Q and p(z) > 0 for all z ¢ Q.
(2) 9p(z) # 0 when p(z) = 0.
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Such a p can be constructed, for instance, using the Euclidean distance between the
point z and b{), the boundary of Q. One can also normalize p so that |dp| = 1. Let
T(bS?) denote the tangent bundle of b{2 and CT' (b)) = T'(bQ2) ® C its complexification.
Let T19(bQ2) denote the subbundle of CT'(bf)) whose sections are linear combinations of
0/9z;, and T%1(bQ) be its complex conjugate bundle. Their sum H(bQ2) := T0(bQ2) +
T%1(bQ) is a bundle of real codimension one in the complex tangent bundle CT(b(2).
Let (-,-) denote the contraction of the one forms and vector fields, and let [-, ] denote
the Lie bracket of two vector fields. Let A denote the Levi form, the Hermitian form on
TH9(bQ) defined by

)\(L,K):(%(a—é)p,[L,f(]) for L,K € T°(bQ).

By the Cartan formula for the exterior derivative of a one form, one obtains

ML, K) = <—d <%(a — a)p) LA K> = (00p, L N K).

Hence, the Levi form is the complex Hessian (p;;) of p, restricted to T"0(b2).

The domain Q is called pseudoconvex (resp. strictly pseudoconvex) if A is positive
semidefinite (resp. definite), i.e., the complex Hessian (p,;) is positive semidefinite (resp.
definite) when restricted to T%(b(Q2).

Given L € TH9(b2), we say the type of L at a point p € bQ is k and write Type,L =k
if k£ is the smallest integer such that there is a iterated commutator

[...[[L1,Lo], L], ..., L] = Uy,

where each L; is either L or L such that (g, (9 — 9)p) # 0.

When Q C C?, the subbundle TH9(b2) has dimension one at each boundary point p
and Type, L defines the type of the point p: A point ¢ € bQ2 is of finite type m in the
sense of Kohn [23] if Type,L = m. A domain is of Kohn finite type m if every point
g € bQ is of Kohn finite type at most m. In the C? case, Kohn’s type and D’Angelo’s
1-type are equivalent. See [11] for the proof.

When Q is strictly pseudoconvex, the Levi form A is positive definite. Thus for every
L € T"°(bQ) and p € b€, one has that Type,L = 2.

Using the defining function p, a local basis of H(bS2) can be chosen as follows. Let
p € b2 be a boundary point. We may assume that, after a unitary rotation, dp(p) = dz,.
Then there is a neighborhood U of p such that 8‘1’; # 0 on U. We define n — 1 local
tangent vector fields on bQ N U:

0 0
L;= 2n Pz 3 .:1,2,3..., —]_;
J p"(‘)zj pJ@zn J "

and their conjugates:
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- 0 0
L': z. ~— — Pz.— ‘:1,2,3..., —1
J p"azj p’azn J "

Then the L;’s span TH°(bQ) and the L;’s span T%!(b(2). We set

Then the L;’s, L;’s and T span CT(bQ2). Let X;, X,,_14; be real vector fields such that
Lj = XJ — an,1+j

for j =1,...,n—1. Then X;’s and T" span the real tangent space of b{2 near the point
.

For every k-tuple of integers I®) = (Iy,...,1;) with & > 2 and L e{l,...,2n—2}, we
define A;x) to be the smooth function such that

[Xlk, [Xlk—l’ [ .. [XZZ,Xll] .. H] = /\l(k)T mod Xl, N ,Xgn_g,

and define A, to be the smooth function

1/2
Ak(Q)Z( > |)\z<k>(q)|2> :

all 1(F)

For ¢ € U and ¢ > 0, we set

NODEDIRVIOLE (1)

Jj=2

In the C2 case, a point ¢ € bQ2 is of finite type m if and only if Aa(q) = -+ = A,,—1(q) =0
but A, (q) # 0. When Q is strictly pseudoconvex in C”, the function Ay # 0 on b{2.

Though the function A is locally defined, one can construct a global A that is defined
on bQ) and is comparable to its every local piece. In the finite type in C? case and the
strictly pseudoconvex case, a global construction can be realized without using partitions
of unity. We explain this now. When (2 is strictly pseudoconvex, Ay does not vanish on
the boundary of €, therefore we can simply set A(g,d) = §%2. When Q is of finite type in
C?2, global tangent vector fields L; and S can be chosen on bQ:

0 ad
Ll Pzo 821 Pz 8_227
0 0
S Pz 6_2’1 Pzs 6_2'2
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Then the function A induced by the above L; and S is a smooth function defined on
bQ. From now on, we choose A to be the smooth function induced by L; and S on b{)
when € is of finite type in C?, and choose A(q,§) = 62 when (Q is strictly pseudoconvex
in C™.

We recall several non-isotropic metrics on b2 that are locally equivalent:

Definition 2.1. For p, ¢ € bQQ, the metric dy(+,-) is defined by:

1
di(p,q) = inf { / |’ (t)|dt : a is any piecewise smooth map from [0,1] to b2
0

with a(0) = p,a(1) = ¢, and o (t) € Ho (bQ)}. (2.2)
Equipped with the metric d;, we define the ball By centered at p € bS) of radius r to be

Bi(p,r) ={q € b :di(p,q) < r}. (2.3)

Definition 2.2. For p, ¢ € b2, the metric da(+,-) is defined by:

da(p,q) = inf {(5 : There is a piecewise smooth map « from [0, 1] to bQ

2n—2
with a(0) = p,a(1) = q,d/(t) = Z a;(t)X;(a(t)), and |a;(t)] < 5}.
j=1
(2.4)
Equipped with the metric ds, we define the ball By centered at p € bQ2 of radius r to be
Bs(p,r) = {q € bQ : d2(p,q) <1} (2.5)

Definition 2.3. For p, ¢ € bQQ, the metric ds(-,-) is defined by:

ds(p,q) = inf {6 : There is a piecewise smooth map « from [0, 1] to bQ2 with

a(0) = pall) = g, and a'(t) = 3 a;()X;(a(t) + HOT(a(t))
j=1
where |a;(t)] < 6, [b(t)] < A(p, 5)}. (2.6)

Equipped with the metric ds, we define the ball Bs centered at p € bS) of radius r to be

Bs(p,r) ={q € b2 : d3(p,q) < r}. (2.7)
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It is known that when the domain is strictly pseudoconvex in C™, or of finite type in
C?, the quasi-metrics dq, da, and d3 are locally equivalent (cf. [37,38,33]), i.e. there are
positive constants C7, Cy and § so that when d;(p, ¢) < § with ¢ € {1,2,3},

Cid;(p,q) < d;i(p,q) < Cadj(p,q) for j e {1,2,3}.

As a consequence, the balls B; are also equivalent in the sense that for small J, there
are positive constants C7, Cs such that

It is worth noting that the definition d;(-,-) does not depend on how we choose the
local vector fields. Moreover, if d;(p, ¢) < J, then for some positive constants Cy, Cs,

ClA<pa 5) < A(Qa 6) < C2A(p’ 6) (28)

To introduce the Ball-Box Theorem below, we also need to define balls using the expo-
nential map.

Definition 2.4. For ¢ € bQ) and ¢ > 0, set
2n—2

Bi(q,8) ={pebQ:p=exp | Y a;X;(q) +bT(q) |,

j=1

where |a;| < 4, and |b] < A(p,9)

Theorem 2.5 (Ball-Box Theorem). There exist positive constants Cy,C2 such that for
any q € bQ and any sufficiently small § > 0,

Bj(qacl(s) g B4(q,5) g Bj(qa 025) fO?”j € {13273}

The proof of this theorem can be found in for example [38,4,16,32]. Variants of the
Ball-Box Theorem also exist in the literature. The following version of the Ball-Box
Theorem is a consequence of Theorem 2.5 and can be found in [2].

Corollary 2.6 (Ball-Box Theorem,). Let §) be a smooth, bounded, strictly pseudoconvex do-
main. There exist positive constants C1, Co such that for any q € b2 and any sufficiently
small 6 > 0,

Boa(q,C16) C Bj(q,9) C Box(q,C2d) for j € {1,2,3,4}.

Here Box(q,8) = {q+ Zuy + Zn € bQ : | Zy| < 6,|Zn| < 6%} where Zy € H,(bQ) and
Zn 1s orthogonal to Hy(bQ).
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We will only use this corollary for the strictly pseudoconvex case. See for example [2].
The next theorem provides estimates for the surface volume of By, and hence also for
B; with j = {1,2,3}. See for example [38].

Lemma 2.7. Let pu denote the Lebesque surface measure on bS). Then there exist constants
C1,Cy > 0 such that

C16*" 2 A(p,0) < u(Ba(p,d)) < Ca6*"2A(p, 0). (2.9)
As a consequence of the definitions of d; and A and Lemma 2.7, we have the “doubling

measure property” for the non-isotropic ball: There exists a positive constant C' such that
for each p € bQ and § > 0,

1(Bj(p,0)) < Cu(B;(p,6/2)) for j €{1,2,3,4}. (2.10)
2.2. Balls on the boundary of a conver/decoupled domain of finite type
When  is a convex/decoupled domain of finite type in C™, non-isotropic sets can be
constructed using a special coordinate system of McNeal [29,27,30] near the boundary
of Q2. Let p € bS) be a point of finite type m. For a small neighborhood U of the point p,
there exists a holomorphic coordinate system z = (z1,..., 2,) centered at a point ¢ € U
and defined on U and quantities 71 (g,0),72(q,0), .., Tn(g,d) such that
m1(q,0) =6 and Y2 < 7;(q,9) < V™ for j=2,3,...,n. (2.11)
Moreover, the polydisc D(q,d) defined by:
D(q,0) ={z€C" : |z| < T(¢q,0),j=1,...,n} (2.12)
is the largest one centered at g on which the defining function p changes by no more
than ¢ from its value at g, i.e. if z € D(q,d), then |p(z) — p(q)| S 0.

The polydisc D(q,d) is known to satisfy several “covering properties” [28]:

(1) There exists a constant C' > 0, such that for points ¢1,¢2 € U N Q with D(q1,0) N
D(gq2,8) # 0, we have

D(q2,9) C CD(q1,96) and D(¢q1,0) € CD(g2,9). (2.13)
(2) There exists a constant ¢ > 0 such that for g € U N Q and 6 > 0, we have

D(q,26) C ¢D(q,9). (2.14)
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It was also shown in [28] that D(p,d) induces a global quasi-metric on Q. Here we will
use it to define a quasi-metric on b{2.
For g € b2 and 6 > 0, we define the non-isotropic ball of radius § to be the set

Set containments (2.13), (2.14), and the compactness and smoothness of bQ) imply the
following properties for Bs:

(1) There exists a constant C such that for ¢1, g2 € UNbSQ with Bs(q1,)NBs(q2,0) # 0,
B5<(]2,5) g CB5<(]1,6) and B5(ql,(5> g CB5(q2,(5>. (2.15)

(2) There exists a constant ¢ > 0 such that for ¢ € UNQ and § > 0, we have
Bs(q,6) C ¢Bs(q,0/2) and  wu(Bs(g,0)) ~d H TJ-Q(q7 J). (2.16)
j=2

The balls Bs induce a quasi-metric on bQ N U. For ¢,p € bQNU, we set ds(q,p) =
inf{d > 0 : p € Bs(q,0)}. To extend this quasi-metric ds(-,-) to a global quasi-metric
ds (-, ) defined on b2 xb§2, one can just patch the local metrics together in an appropriate
way. The resulting quasi-metric is not continuous, but satisfies all the relevant properties.
We refer the reader to [28] for more details on this matter. Since ds(-,-) and ds(-,-) are
equivalent, we may abuse the notation Bj for the ball on the boundary induced by ds.
Then (2.15) and (2.16) still hold true for Bs.

3. Tents and dyadic structures on 2

From now on, the domain ) will belong to one of the following cases:

 a bounded, smooth, pseudoconvex domain of finite type in C2,
e a bounded, smooth, strictly pseudoconvex domain in C",

e a bounded, smooth, convex domain of finite type in C™, or

e a bounded, smooth, decoupled domain of finite type in C™.

Notations d(-,-) and B(p, d) will be used for

o the metric d;(-,-) and the ball B;(p,d) if Q is pseudoconvex of finite type in C? or
strictly pseudoconvex in C";
o the metric ds(-,) and the ball Bs(p,d) if Q is a convex/decoupled domain of finite

type.
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Remark 3.1. It is worth noting that even though we use the same notation B(p,d) for
balls on the boundary of 2, the constant § has different geometric meanings in different
settings. When €2 is a bounded, smooth, pseudoconvex domain of finite type in C2, or
a bounded, smooth, strictly pseudoconvex domain in C™, ¢ represents the radius of the
sub-Riemannian ball Bj(p,d). When 2 is a bounded, smooth, convex (or decoupled)
domain of finite type in C™, 26 is the height in the z; coordinate of the polydisc D(q,d)
that defines Bj(g, d). If  is the unit ball B,, which is strictly pseudoconvex, convex, and
decoupled, the ball B;(q, ) will be of similar size as the ball Bs(q, v/9).

3.1. Dyadic tents on 2 and the B,(o) constant

The non-isotropic ball B(p,d) on the boundary bS2 induces “tents” in the domain €.
To define what “tents” are we need the orthogonal projection map near the boundary.
Let dist(-, ) denote the Euclidean distance in C™. For small € > 0, set

N (b)) = {w e C™ : dist(w, b)) < €}.

Lemma 3.2. For sufficiently small ¢g > 0, there exists a map m : N¢,(bS2) — bQ) such
that

(1) For each point z € N¢,(bQ) there exists a unique point w(z) € b§} such that
|z — 7(2)| = dist(z, bQ).
(2) For p € bQ, the fiber 7=1(p) = {p — en(p) : —eo < € < €9} where n(p) is the outer
unit normal vector of bS) at point p.
(3) The map 7 is smooth on N, (bQ).

(4) If the defining function p is the signed distance function to the boundary, the gradient
Vp satisfies

Vp(z) = n(n(z)) for z € N, (bQ).
A proof of Lemma 3.2 can be found in [2].
Definition 3.3. Let ¢p and 7 be as in Lemma (3.2). For z € bQ) and sufficiently small
§ > 0, the “tent” B#(z,d) over the ball B(z,4) is defined to be the subset of N, (bQ}) as

follows: When (2 is a pseudoconvex domain of finite type in C? or a strictly pseudoconvex
domain,

B#(2,6) = B (2,8) = {w € Q : w(w) € Bi(z,6), |r(w) — w| < A(r(w),d)}.

When Q is a convex (or decoupled) domain of finite type in C",
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B#(2,6) = B¥(2,8) = {w € Q : w(w) € Bs(z,0), |r(w) — w| < 8}
For § > 1 and any z € bQ, we set B#(z,0) = Q.

For the “tent” B#(z,d) to be within N, (b{2), the constant & in Definition 3.3 needs
to satisfy A(2',8) < € for 2/ € Bi(z,8) when Q is of finite type in C? or strictly
pseudoconvex; and satisfy § < ¢y when € is a convex (or decoupled) domain in C™.

Given a subset U € C™, let V(U) denote the Lebesgue measure of U. By (2.8) and
the definitions of the tents Bf&(z, ) and B?(z, 0), we have:

V(Bf (2,0)) = 62" 2A%(2,0), (3.1)
V(B (2,0)) ~ 6 H TJ-2<Z, d), (3.2)
j=2

and hence also the “doubling property”:
V(B*(z,6)) =~ V(B¥(2,5/2)). (3.3)

We give the definition of the Bekollé-Bonami constant on ). For a weight ¢ and a subset
U C Q, weset o(U) := [;;0dV and let (f)7?" denote the average of the function |f]|
with respect to the measure odV on the set U:

vav _ Ju |f(w)|edV
<f>UdV—UJT-

Definition 3.4. Given weights ¢(z) and v = ¢~ 2'/?(z) on , the characteristic [o], of the
weight o is defined by

max{1, 14
_1\l/p p—1 P
ol = ()& (@)&)") +pp’< sup (o) B o) (80 ) .
€0>6>0,2€bQ
(3.4)

Remark 3.5. A natural generalization of the BB, constant in the above setting will be

Bp<o>=max{<o>?¥ (&), s (B, (<v>d3z<z,5>)p_1}.

€0>5>0,26bQ

It is not hard to see that B,(c) and [0], are qualitatively equivalent, i.e., B, (o) is finite if
and only if [0], is finite. But they are not quantitatively equivalent. As one will see in the
proof of Theorem 1.2, the products of averages of o and o'/(1=?) over the whole domain
and over the small tents will have different impacts on the estimate for the weighted
norm of the projection P. The B,(c) above fails to reflect such a difference, and hence
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is unable to give the sharp upper bound. For the same reason, the claimed sharpness of
the Bekollé-Bonami bound in [40] is not quite correct. See Remark 6.1. This issue did
not occur in the upper half plane case [39] since the average over the whole upper half
plane is not included in the B, constant there.

Now we are in the position of constructing dyadic systems on b2 and €. Note that
the ball B(-,d) on b{ satisfies the “doubling property” as in (2.10) and (2.16). By (2.8)
and (2.13), the surface area u(B(q1,9)) ~ u(B(ge,d)) for any ¢1,q2 € bS) satisfying
d(q1,q2) < 6. Combining these facts yields that the metric d(,-) is a doubling metric,
i.e. for every g € b{2 and 6 > 0, the ball B(q,d) can be covered by at most M balls
B(z;,6/2). Results of Hyténen and Kairema in [17] then give the following lemmas:

Lemma 3.6. Let 6 be a positive constant that is sufficiently small and let s > 1 be a
parameter. There exist reference points {p(k)} on the boundary bQ) and an associated
collection of subsets Q = {Q } of bQ with p(k € Qk such that the following properties
hold:

(", p") > 578
for alli,j. In other words, if p € b is a point that is not in {p§k)}, then there exists

(1) For each fized k, {p§k)} is a largest set of points on bQQ satisfying d;

an indezx j, such that di(p, p( )) —ks.
(2) For each fized k, |J; Q? bQ) and Qf NQE =0 when i # j.
For k <1 and any i, j, either Qf 2Q! or Qf NQL = 0.
(4) There exist positive constants ¢ and C such that for all j and k,

—
w
~~—

B, es7k6) € QF € B, Cs7F4).

(5) Each Q? contains of at most N numbers of Qf"'l. Here N does not depend on k, j.

Lemma 3.7. Let 0 and {p;k)} be as in Lemma 3.6. There are finitely many collections
{Qi}Y, such that the following hold:

(1) Each collection Q; is associated to some dyadic points {zj(-k)} and they satisfy all the
properties in Lemma 3.6.
(2) For any z € bQ and small r > 0, there exist Qfll € 9y, and ij € 9y, such that

Q' CB(z,r) CQ and p(B(z,r)) ~ u(QL) ~ n(@QF).

Setting the sets Q? in Lemma 3.6 as the bases, we construct dyadic tents in 2 as
follows:

Definition 3.8. Let 9, {pg-k)} and Q = {Qf} be as in Lemma 3.6. We define the collection
T ={K #} of dyadic tents in the domain Q as follows:
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e When € is pseudoconvex of finite type in C2, or strictly pseudoconvex in C", we
define

Pk . k —k
Kj :={2€Q:7(z) € Q] and |7(2) — 2| < A(7(z),s™"9)}.
e When (2 is a convex or decoupled domain of finite type in C™, we define
ko ) k —k
Kj :={2€Q:7(z) € Q and |7(2) — z| < s7"6}.

Lemma 3.9. Let T = {f(jk} be a collection of dyadic tents in Definition 3.8 and let
{Q1}N.| be a collection of subsets in Lemma 3.7. The following statements hold true:

(1) For any Kf, IA(fH in T, either IA(J’“ ) IA(ik‘H or IA(;“ ﬂf(f“ = 0.
(2) For any z € bQ) and small r > 0, there exist Qfll € 9y, and ij € Qy, such that

A ke ~ -k ~ -k
KM C B#(z,r) CK? and V(B¥(z,7) = V(K = V(KJ?).

J2

Proof. Statement (1) is a consequence of the definition of IA(]’“ and Lemma 3.6(3). State-

ment (2) is a consequence of the definitions of B¥(z,7), IA(]’“, and Lemma 3.7(2). O

By Lemma 3.9(2), we can replace B#(z,8) by K% in the definition of [0], to obtain
a quantity of comparable size:

max{1,1/(p—1)}

—1\1/p p—1
oy~ (@& (&)™) | s sup ()% (42
I<ISN greT; J J

(3.5)
From now on, we will abuse the notation [o], to represent both the supremum in B
and the supremum in K x.

3.2. Dyadic kubes on )

By choosing the parameter s in Lemmas 3.6 and 3.7 to be sufficiently large, we can
also assume that for any p € Qf“ C Q;’?, one has

A(p,s™"718) < iA(p, s7k6). (3.6)

Definition 3.10. For a collection 7 of dyadic tents, we define the center a;-k) of each tent

K ¥ to be the point satisfying
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We set KF, = Q\ (U] K?), and for each point a§.k) or its corresponding tent K , we

define the dyadic “kube” KJ’»C = f{]k\ (Ul K’f“), where [ is any index with pl(kH) € KJ’?.
The following lemma for dyadic kubes holds true:

Lemma 3.11. Let 7 = {IA(J’“} be the system of tents induced by Q in Definition 3.8. Let
K]k be the kubes of kf Then

(1) KJIC ’s are pairwise disjoint and ijk KJ’-C = Q.
(2) When Q is a finite type domain in C? or a strictly pseudoconvex domain in C™,

V(KR m V(KE) & s7HEn=2 5202\ (50 5=Fe), (3.7)

When  is a convex or decoupled domain of finite type in C",
V(KF) = V(KE) ~ 5720672 H 2(p™ | s7kg). (3.8)

Proof. Statement (1) holds true by the definition of KJ’?. The estimates for V(Kf) in
(3.7) and (3.8) follow from (3.1), (3.2) and Lemma 3.9(2). When the domain is convex or
decoupled of finite type in C”, the height of K ¥ is s times the height of the tent K Javies
Thus V(IA(]") A V(Xf\Kf) which also implies V(Kf) ~ V(KF). For the finite type in C?
case and strictly pseudoconvex case, it follows by (3.6) that A(p,s~*716) < 1A(p, s7%6)
for any p € Q¥ C Q. Hence the height of Kf will be at least 4 times the height of
KM KF. Thus V(KF) =~ V(KE). O

3.3. Weighted maximal operator based on dyadic tents

Definition 3.12. Let o be a positive integrable function on 2. Let 7; be a collection of
dyadic tents as in Definition 3.8. The weighted maximal operator M, , is defined by

/If )|o(2)dV (2). (3.9)

Lemma 3.13. My, , is bounded on LP(Q,0) for 1 < p < co. Moreover

M7 0llLr () S /(P —1). (3.10)

Proof. It’s obvious that My, , is bounded on L™(, o). We claim M7, , is of weak-type
(1,1), i.e. for f € L(Q,0), the following inequality holds for all A > 0:
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ey

o({z € Q: M7 o(f)(z) > A}) S =

(3.11)
Then the Marcinkiewicz Interpolation Theorem implies the boundedness of My, , on
LP(Q,0) for 1 < p < 0o, and inequality (3.10) follows from a standard argument for the
Hardy-Littlewood maximal operator.

For a point w € {z € Q: My ,f(2) > A}, there exists a unique maximal tent K'jk eT
that contains w and satisfies:

1pw
K

%. (3.12)

o

(w)
5 / F@lo(2)dV (z) >
&

Let 7, be the set of all such maximal tents K Jk The union of these maximal tents covers
the set {z € Q: My, »f(z) > A}. Since the tents Kf are maximal, they are also pairwise
disjoint. Hence

o{z € Q: My of(2) > A}) < Z o Ajk) < Z ; /f(Z)J(Z)dV(z) < 2”f||[),\1(§l,a)'

KkeT, KkeT, Kk
Thus inequality (3.11) holds and My; , is weak-type (1,1). O
4. Estimates for the Bergman kernel function

We recall known estimates for the Bergman kernel function, and their relation with
the volume of the tents in the previous section.

4.1. Finite type in C? case

In [36], the estimate of the Bergman kernel has been expressed in terms of d; and
A(p, §). Similar results were also obtained in [26].

Theorem 4.1 (/36,26]). Let eg be the same as in Lemma 5.2. Then for points p,q €
N, (bS2), one has

[Ka(p:@)| < di(p, @) Al (p), du(p. @)~ (4.1)

As a consequence, there is a constant ¢ such that p,q € Bf&(ﬂ'(p),cdl (p,q)) and

| Ka(p; @) S (V(BY (n(p), cdi(p,0))) (4.2)
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4.2. Strictly pseudoconvez case

When € is bounded, strictly pseudoconvex with smooth boundary, the behavior of
the Bergman kernel function is well understood. In [13,6], asymptotic expansions of
the kernel function were obtained on and off the diagonal. To obtain the LP mapping
property of the Bergman projection, a weaker estimate as in [9] would suffice. The proof
of the following theorem can be found in [30].

Theorem 4.2 ([30]). Let Q2 be a smooth, bounded, strictly pseudoconvex domain in C™ with
a defining function p. For each p € bSQ, there exists a neighborhood U of p, holomorphic
coordinates ((1,...,Cn) and a constant C > 0, such that for p,q € U9,

—n—1
n—1

(Ka(p; @)l < C | o) + p(@)] + [pn — anl + > _ Ipx — asl? ~ (4.3)
j=1

Here p = (p1,...,pn) is in (-coordinates.

Up to a unitary rotation and a translation, we may assume that, under the original
z-coordinates, dp(p) = dz, and p = 0, then the holomorphic coordinates ((,...,{,) in
Theorem 4.2 can be expressed as the biholomorphic mapping ®(z) = ¢ with

G1=21

Cn—l = Zn-1

1 < 9%
Cn =2zn+ § kgl aZlaZk (p)zktzl-

The next theorem relates the estimate in Theorem 4.2 to the measure of the tents:

Theorem 4.3. Let p, q, and (p1,...,pn) be the same as in Theorem 4.2. There exists a
constant v > 0 such that the tent Bf (p,7) contains points p and q, and

n—1

r? & max { [p()| + p(@)], Ipn — anl + > Ik — axl® ¢ - (4.4)
j=1

4 -1
Moreover, |Kq(p; )| < (V(31 (P 7’))) .

Proof. Note that ® is biholomorphic and can be approximated by the identity map
near p. For any points w,n in the neighborhood U of the point p in Theorem 4.2, the
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distance d; (w,n) is about the same when computed in coordinates ({1, ..., (,). @ is also
measure preserving since the complex Jacobian determinant Jc® = 1. Therefore we may
assume that those results about d; and volumes of the tents in Sections 2 and 3 hold
true in (-coordinates. Then by (3.1) and the strict pseudoconvexity (A(m(p),e) = €2),
the estimate

|Ka(p; @) < (V(BY (p,r)) !

holds true for r > 0 that satisfies (4.4). Therefore it is enough to show the existence

of such a constant r. Set r; = \/|pn —qn| + 27;11 |pr — qr|? and 7o = /|p(p)| + |p(q)|-
Note that 0/9¢,...,0/0¢,—1 are in H,(bQ) and 0/(, is orthogonal to H,(bQ2). It
follows from the fact A(m(p),€) = €2 and Corollary 2.6 that there exists a constant C;
such that the boundary point w(q) € Box(7(p), C171). On the other hand, |p(p)|+|p(q)| =
dist(p, bQ) + dist(q, bS2). Therefore there exists a constant Cs such that A(w(p), Cars) >
lp(p)|+ |p(q)]. Set r = max{Cyr1, Cory}. Then B (7(p), ) contains both points p, ¢ and
inequality (4.4) holds. O

4.8. Convez/decoupled finite type case

When € is a smooth, bounded, convex (or decoupled) domain of finite type in C",
estimates of the Bergman kernel function on {2 were obtained in [29,27,30]. See also [35]
for a correction of a minor issue in [29].

Theorem 4.4. Let Q be a smooth, bounded, convex (or decoupled) domain of finite type
in C™. Let p be a boundary point of Q. There exists a neighborhood U of p so that for
all q1,q0 € UNK,

|Ka(q; )| S0 [ [ 75(@m, 072 (4.5)
j=2

where 6 = |p(q1)| + |p(qz)| + inf{e > 0: g2 € D(q1,€)}.
We can reformulate Theorem 4.4 as below.
Theorem 4.5. Let Q be a smooth, bounded, convex (or decoupled) domain of finite type

in C™. Let p be a boundary point of . There exists a neighborhood U of p so that for
all g1,q0 € U N,

Ka(a: )| < (VBE ((@).6)) . (4.6)

where § = |p(q1)| + |p(g2)| + inf{e > 0: g2 € D(q1,€)}. Moreover, there exists a constant
¢ such that q1,qs € Bf(ﬂ'(ql),cé).
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Here the estimate (4.6) follows from (3.2). Recall that the polydisc D(q,d) induces a
global quasi-metric [28] on 2. Then a triangle inequality argument using this quasi-metric
yields the containment gy € B (7(q1), ¢6).

4.4. Dyadic operator domination

Theorem 4.6. Let IA(]k, K be the tents and kubes with respect to d and B¥. Let {T;}{Y,
be the finite collections of tents induced by {Ql}{il in Lemma 3.7. Then for p,q € €,

N
Ko(p:a)l £ (V(2) laxalp.a) + 3 S (VIED) Mg pelpa). (A7)
=1 KkreT

Proof. It suffices to show that for every p, ¢, there exists a K ]k € 7T, for some [ such that

(Ko@)l S (VIKD) s er (. 0)-

When dist(p, ¢) = 1 or dist(p, bQ) + dist(q, b2) ~ 1, the pair (p, q) is away from the
boundary diagonal of 2 x Q. By Kerzman’s Theorem [21,5], we have

[Ka(p:d)| S 1~ (V(Q)™ = (V(Q) 'laxa(p, 9).

We turn to the case when dist(p, ¢) and dist(p, b§2) + dist(g, b?) are both small and
we may assume that both p,q € QN N, (bQ2). By Theorems 4.1, 4.3, and 4.5, there exists
a small constant r > 0 such that p,q € B#(n(p),r) and

|Ka(p:d)| < (V(B* (n(p),r))".

A

By Lemma 3.9, there exists a tent IA(jk € T, for some [ such that B#(n(p),r) C K¥ and

k

J
V(K}) =~ V(B#(n(p),r)).

Thus p,q € K} and [Ka(p;9)| £ (V(E}) gseir(pa). O

5. Proof of Theorem 1.2

Given a function h on 2, we set M}, to be the multiplication operator by h:

Let o be a weight on Q. Set v/(z) := o~?"/P(z) where p/ is the Hélder conjugate index of
p. Then it follows that the operator norms of P and P+ on the weighted space LP(, o)
satisfy:
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|P:LP (R, 0) = LP(Q,0)| = ||PM, : LP(Q,v) — LP(Q,0)|; (5.1)
|PT: LP(Q,0) = LP(Q,0)| = ||[PTM, : LP(Q,v) — LP(Q,0)|. (5.2)
It suffices to prove the inequality for |PT M, : LP(Q,v) — LP(Q,0)]|.

Let {7}, be the finite collections of tents in Theorem 4.6. Then inequality (4.7)
holds: for p,q € Q,

[Ko(p, 9l £ (V(Q) laxalp.q) + VIED) Mg (p0)- (5:3)

M-

Applying this inequality to the operator PTM, yields

ML ()] = / (Ko (2 w)u(w) () AV (w)

()L (w) () f (w)]
<y + K = dV (w)
. / ?QK% V(ES)
%HZ > g ()L (5.4)

I=1 KkeT,

Set Qg (F)(2) = (fr)&" and Q,f(2) == X grcy 1z (2)(f¥) % Then it suffices to
’ ’ J J j

estimate the norm for qu withl =0,1,...,N. The proof given below uses the argument

for the upper bound of sparse operators in weighted theory of harmonic analysis, see for

example [31] and [25]. An estimate for the norm of Qf{’y is easy to obtain by Hélder’s

inequality:

190 (NIr0,0) - (EVE _ ) v, avipa
||f||ip(Q7l/) ~ fQ |f|deV ~ <G>Q (<I/>Q ) . (55)

Now we turn to foy for [ # 0. Assume p > 2. For any g € L? (2, 0),

(@, 7). 0)0(2)| = / Ql, F()g(2)o )V (2)

- / > L (UM g()o(:)aV (2)

Q K"GT

W / 9()lo(2)av (2)
&

IN
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= Y ()t VR, (56)

KkeT;

Since (fu)Kk (g90) ‘j = (f)’idv(l/)}gfc (g>‘;<dkv< >K’°’ it follows that

> IR BVES) = 3 (A R @5 RV (RS

KkeT; KkeT
p—1 2—p
= > (W) @B @R vED ()
KFeT;
(5.7)
Then
p—1 2—p
> (W) @ @E Ve ()
RFeT '
-1 N p—1 N 2—p
< av av\? vV \odV k k .
< s s () (W5) > e (VEn) (&)
J KieT
(5.8)
By Lemma 3.11, one has V( A]k) ~ V(K7). The fact that p > 2 and the containment
K¥ C KF gives the inequality (1/( AJ’“)) ( (Kk)) P This inequality yields
p—1 S 2-p
(V&D)" (kD) " s (VD) (w(kh) (5.9)

Therefore,

(5.10)

Substituting these inequalities into the last line of (5.8), we obtain

S il s (VD) (i)

KFeT
1
D gren PR DY (KD (oK)

Applying Holder’s inequality again the sum above gives
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ST ) ((KD) (o(KE) ¥
KkeT;

]

By the disjointness of K Jk and Lemma 3.13, we have

> () v < [ (M £V < 161

R J
KkeT Q

Similarly, we also have

KkeT

Substituting (5.12) and (5.13) back into (5.11) and (5.6), we finally obtain

Q f < av av p=1
1wl 90 Spp’ sup  sup (o >f<]l,c <V>KJI,« ”fHLp(Q,V)”g”Lf’/(Q,U)'

I<ISN RreT;

p—1
Therefore Y21, Q1 lsv.0) < 20 s1pscrcn SUD s (0)2 (<u>;1§_k) .
J

p, ’ ’ ’
> (i) otih) < [ Mriag) saV < 0P 9l .,
Q

23

(5.11)

(5.12)

(5.13)

Now we turn to the case 1 < p < 2 and show that for all f € LP(Q,v) and g € L? (2, 0)

p—1
(Qf,f.90) S | swp sup ()2 (k) 11z 91l @10

1<ISN RheT; J

By the definition of ny,

<foyf,gcr> —< > Lgr(w )<fV>Kk,gU>

KfeT

D R g0) GV (ES)

KkreT

= <1f<;c( )<90>Kk>fV>

KFeT

(@i (9. fv).

(5.14)
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Since 1 < p < 2, p’ > 2. Then, replacing p by p’, interchanging ¢ and v, and adopting
the same argument for the case p > 2 yields that

p'—1
1@, o) S 0 sup sup () (o))
1<ISN kkeT; J J
_1
p—1
p—1
=pp' | sup sup (0)%, ((VW‘Q)
1<ISN RreT; i i
Thus we have
_1
7
-
(@i g0y Spp' | sup sup ()% ()i 91l @ 11127200
1<ISN RreT; J J

and

_1_
p—1

p—1
1QF, : 1) > L@ o) S pp' | swp swp (o) ()
I<ISN RreT; i J

Combining the results for Qlfu with I £ 0 for 1 < p < 2 and p > 2 and inequality (5.5)
for QS" ., gives the estimate in Theorem 1.2:

I1PF | Le,0) S [0l
6. A sharp example

In this section, we provide an example to show that the estimate in Theorem 1.2
is sharp. Our example is for the case 1 < p < 2. The case p > 2 follows by a duality
argument. The idea is similar to the ones in [39,40]. Since 2 is a pseudoconvex domain of
finite type, Kerzman’s Theorem [21,5] implies that the kernel function K extends to a
C*° function away from a neighborhood of the boundary diagonal of 2x Q. Let w, € 2 be
a point that is away from the set N, (bQ2) and satisfies Kq(wo;w,) = 2C7 > 0 for some
constant Cy. Then the maximum principle implies that {z € bQ2 : |[Kq(z;w,)| > C1} is a
non-empty open subset of b{). We claim that there exists a strictly pseudoconvex point z,
in the set {z € bQ : |Kq(z;w,)| > C1}. Let p be a point in {z € bQ : |Kq(z;w,)| > Cy}.
Since p is a point of finite 1-type in the sense of D’Angelo, the determinant of the Levi
form does not vanish identically near point p. Thus the determinant of the Levi form
is strictly positive at some point in every neighborhood of p, i.e., there is a sequence of
strictly pseudoconvex points converging to p. Since {z € bQ : |Kq(z;w.)| > C1} is a
neighborhood of p, there exists a strictly pseudoconvex point z, such that
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| K203 o) > C1. (6.1)

There are several possible proofs in the literature for the existence of the nonvanishing
point of the determinant of the Levi form near a point of finite type. See for example [34]
or the forthcoming thesis of Fassina [12]. Nevertheless, we choose the strictly pseudocon-
vex point z, above only for the simplicity of the construction of our example and it is not
required. See Remark 6.2 below. By Kerzman’s Theorem again, there exists a small con-
stant §y such that for any pair of points (z,w) € B¥ (2o, dp) X {w €  : dist(w, w,) < o},

|Kq(z,w) — Kq(z2o;w,)| < C1/10.
Thus for (z,w) € B#(z,,d0) X {w € Q : dist(w,w,) < do}, one has
|Kq(z,w)| = Ci.
Moreover, an elementary geometric reasoning yields that
arg{ Kq(z;w), Kq(2,wo)} € [—sin™!(1/10),sin~*(1/10)]. (6.2)
From now on, we let dg be a fixed constant. For z € €, we set
h(z) =inf{6 > 0: 2z € B¥(2,0)}, and () = dist(z,ws). (6.3)

Let 1 < p < 2. Let s be a positive constant that is sufficiently close to 0. We define the
weight function o on €2 to be

(6.4)

w (p—1)(242n—2s)
oty = (0

(1w

We claim that the constant [o], ~ s~

First, we consider the average of ¢ and 015 over the tent B# (z,0). Note that

1 (h(w))(25—2n72)
ST ) @ e

If the tent B#(z,d) does not intersect B¥(zo,d), then for any w € B#(z,§) we have
h(w) ~ 2 4+ 6 and l(w) ~ 1 with = §. Thus we have

p—1 p—1

~ (]J + 6)(p71)(2+2n72s) ((.73 + 5)(25727172)) -1

(6.5)
If B#(z,6) intersects B¥(z,, ), then there exists a constant C' so that B#(z,,Cd) con-
tains B#(z,0) with |B# (2,,C)| ~ |B#(z,0)| by the doubling property of the ball B#.
Hence

<U>dB‘;(z,5) (<‘7ﬁ>d3‘;ﬁ(z,5))



26 Z. Huo et al. / Bull. Sci. math. 170 (2021) 102993

1 p—1 1 p—1
O Bes) (0™ ) SO Facn (T Be0) -

Since w, is away from the set N, (b)) and hence is away from any tents, I(w) ~ 1 for
any w € B#(z,,C4). It follows that

OBion s [ )OIV )V (B (2, 8) .
B#(2,,06)
Recall that z, is a strictly pseudoconvex point. There exist special holomorphic coordi-

nates ((1,...,(,) in a neighborhood of z, as in Theorem 4.2 so that z, = (0,...,0) and
the tent

D(20,0) :i={w = (C1,...,¢n) €Q: |l < 6% (¢| < 6,5 =1,...,n—1},
is equivalent to B#(z,,(Cd) in the sense that there exist constants ¢; and ¢ so that
D(z0,¢10) C B#(zo,Cé) C D(zo,¢20).
Moreover, h(w) & (|C1]2 + - -+ 4 [Ca_1|? + |Ca]) 2. Therefore
Oescn™ [ BTG () (1 (B (2, 8))) ! o220
B#(2,C6)

(6.6)
Similarly,

(077 ) e o) = / h(w)?* 22V (w)(V (B (2,6))) 7" 571020,
B#(z,,C9)
(6.7)

I comes from the power rule foa t*~1dt = a®/s. Combining these inequalities

where s~
yields

1 p—1 1 _ (p—
<O—>%‘;(z,6) ((01*"%‘;(275)) N <J>dB‘;(zO7C§)(<0-17p>%‘;(50705))p 1y g= (=), (6.8)

Now we turn to the average of ¢ and o7 over the entire domain Q. Note that
@~ [ 1w (w)
Q

A computation using polar coordinates yields that (¢)d" ~ s~1. Also,
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o [ bRy (w)

= [ awrrave s [ v
B#(Zo,éo) Q\B#(Zo,50)

2s—2n—2 — 2s—2n—2 —
%503n81+609n %81,

where the third approximation sign follows by s being sufficiently small and J, being a
fixed constant. Thus

) (o) m s s s (69)

This estimate together with inequalities (6.5) and (6.8) yields that [o], ~ s~
Now we consider the function

1
f(w) =077 (W)1p# (2, 50)5

where Jp is the same fixed constant so that (6.2) holds. Since z, is a point away from
Wo, l(w) = 1 for w € B#(zo,dy). Thus

_1 —
HfHZ[),P(Q’O-) = <017p>%‘;(z0,50)v(B#(20760)) S 1'

When z € {w € Q : dist(w,ws) < dp}, (6.1) and (6.2) imply that

[P(f)(2)|

Ka(zw) f(w)dV (w)

B#(Zo,(s())

Q

[ Kq(z0; wo)| f (w)dV (w)

B#(zo,60)

~ [ v = T g VB o do) 57 (610

B#(z0,60)

By (6.10) and the fact that dy & 1, we obtain the desired estimate:
1PNy = [ PPNV ()
Q

> / P(f)(2)Po(2)av (2)
{z€Q:dist(z,w5) <0}

> s P / (dist(z, w,))?5~2"dV ()

{z€Q:dist(z,ws) <o}



28 Z. Huo et al. / Bull. Sci. math. 170 (2021) 102993

~ s s ((0]p) 1o (6.11)
(Q,0)

Remark 6.1. In the particular case of the unit ball B,, we can make our example more
explicit: the weight o(w) = |w — z,|P~DE+20=25) /|9[27 =25 with 2, = (1,0,...,0) and
the test function f(w) = o (w)1p# (., 1/2)(w). One can compute explicitly in this case
that o is in the B, class. We further remark that in [40], the authors produce an upper
and lower bound in terms of a Bekollé-Bonami condition that doesn’t utilize information
about the large tents. The upper bound they produce is correct, however the claimed
sharpness of the Bekollé-Bonami condition without testing the large tents is not quite
correct. The example they construct does appropriately capture the behavior of small
tents, but fails to do so in the case of large tents and this characteristic fails to capture
the sharpness. It is for this reason that we have had to modify the definition of the
Bekollé-Bonami characteristic in Definition 3.4 to reflect the behavior of both large and
small tents.

Remark 6.2. In this example, we require z, to be a strictly pseudoconvex point only
for the simplicity of the construction of the weight o and the test function f, and the
computation. For every z € bS), the geometry of the tent B#(z, ) is well understood.
Thus o and f can be modified accordingly so that the estimate (6.8) still holds true.

Remark 6.3. For a different example, we can also choose z, to be a point in €2 that is away
from both N, (bQ) and w,, and change h(w) in (6.3) to be (dist(z,,w))P~D(27=25) The
average of o and o775 over tents is controlled by a constant since all tents are away from
points z, and w,. Moreover, <0>$V(<Uﬁ>gv>p—1 ~ s~ P by a computation using polar
coordinates. Thus [o], ~ s~! and a similar argument yields the sharpness of the bound
in Theorem 1.2. We did not adopt this example since it does not reflect the connection
between the weighted norm of the projection and the average of ¢ and o7 over small
tents.

Remark 6.4. When the weight o = 1, the constant [¢], ~ pp’. Theorem 1.2 then gives
an estimate for the L? norm of the Bergman projection:

”P”LP(Q) < pp/~

For the strictly pseudoconvex case, such an estimate was obtained and proven to be
sharp by Cuckovié [41]. Therefore, the constant pp’ in [0], is necessary.

7. Proof of Theorem 1.3
We first show that the lower bound (1.4) in Theorem 1.3 with the assumption that €

is bounded, smooth, and strictly pseudoconvex.
We begin by recalling the following two lemmas from [19].
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Lemma 7.1. Let Q be a smooth, bounded, strictly pseudoconvexr domain. If the Bergman

projection P is bounded on the weighted space LP(Q2, o), then the weight o and its dual
1

weight v = o1-» are integrable on Q.

Lemma 7.2. Let Q) be a smooth, bounded, strictly pseudoconvexr domain. Let § be a small
constant. For a boundary point z;, let B¥(z1,8) be a tent defined as in Definition 3.5.
Then there exists a tent B (z2,0) with d(B(z1,6), B(22,9)) = § so that if f > 0 is a
function supported in B#(z;,0) and z € B¥#(z;,0) with i # j and i,j € {1,2}, then we
have

I1P(f)(2)] 2 <f>%‘;(z71,5)'
Recall that v = ¢'/(1=P), By (5.1),
| Pl e (0,0av) = |PM, : LP(Q,vdV) — LP(Q,0dV)].

It suffices to show that

p—1
sup (o)) (Bae) S IPM, = IP(QwdV) > LP(2, 0dV) >

€0>6>0,2€bQ

For simplicity, we set A := ||PM,, : LP(Q,vdV) — LP(Q,0dV)||. If A < oo, then we have
a weak-type (p,p) estimate:

AP
ofw e 0 [PM, ()] > X} S T 1 o pav, (7.1)

Let dp be a fixed constant so that Lemma 7.2 is true for all § < dg. Set f(w) =
1p# (s ,5)(w). Lemma 7.2 implies that for any z € B#(23,6),

|PM, 154, 5 ()| = / Ka(z@)v(w)dV (w)| > )% .. 5- (7.2)

B#(zl,é)

It follows that

B¥(2,8) C {w € 9 [PM, f(w)] > (1% o)} (73)
By Lemma 7.1, <1/>°§;(z1 5) is finite. Then inequality (7.1) implies
# v ()Y, o (B*
o(B#(22,0) A" ()5(c,5))  VBF(21,0)), (7.4)

p—1
which is equivalent to (U)%‘;(Zz 5) ((1/)%‘;(21 5)) < AP. Since one can interchange the
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roles of z; and z9 in Lemma 7.2, it follows that

p—1
(0) 5% (21,0 (<V>d3‘;(22,5)) S AP

Combining these two inequalities, we have

sy (V) @By (o)) 5
By Holder’s inequality,
p—1
V(B#(2,0))P < / odV / vdV : (7.6)
B#(z2,8) B#(z2,0)

p—1
Therefore <U>‘]?;(2275) ((V)dB‘; (2 5)) 2 1. Applying this to (7.5) and taking the supre-

mum of the left side of (7.5) for all tents B#(21,8) where § < g yields
p—1
sup (o) 5% -, ) ((VV%&(%&) S A% (7.7)

§<do,
21 EbQ

Since the constant €y in Lemma 3.2 can be chosen to be dy, inequality (1.4) is proved.
Now we turn to prove (1.5) and assume in addition that 2 is Reinhardt. Since in-
equality (7.7) still holds true, it suffices to show

(V& (&) s A%, (7.8)

Because 2 is Reinhardt, the monomials form a complete orthogonal system for the
Bergman space A?(Q2). Thus the kernel function Kq has the following series expression:

24w

KQ(ZaU_}): Z H all2

I (7.9)
aemn 1290520

This implies that Kq(z;0) = ||1HZ22(Q) for any z € €. By either the asymptotic expansion
of Kq [13,6] or Kerzman’s Theorem [21], we can find a precompact neighborhood U of
the origin such that for any z € Q and w € U,

|[Ko(z;w)| ~1 and arg{Kq(z;w), Kq(z;0)} € [—1/4,1/4]. (7.10)

Let f(w) = 1y (w). Then for any z € Q,

PM,(f) (2)] = / Koz @)vdV (w)| > | fllt@uav).
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for some constant c. Therefore,

QC{zeQ:|PM,(f)(2)| > el fllrpavy} -

31

Applying this containment and the fact that || f||L1(q,vav) = ||f||Lp(Q vav) 10 (7.1) yields

AP AP
”f”ip Q.vdV ——— < Q.
@wav) = I @ vavy

a(Q) <

p”f”Ll QdV)

Thus
@8 (W) <.
Interchanging the role of z and w in the argument above, we also have
UC{weQ:[PM,(1)(w)] > cllflr@uav } »

and
AP p AP

Iz pav) < — g <0
P(Qv p||1||L1 (av)

o(U) <

Cle”Ll(Q vdV)

Thus

(@ (&) < A,

~

Combining (7.12), (7.14) and using the fact that
@ (WE)" =1,

we obtain the desired estimate:

() ()™ S O (WS @ () < A,

Estimates (7.15) and (7.7) then give (1.5). The proof is complete.

8. An application to the weak L' estimate

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

In [28], the weak-type (1, 1) boundedness of the Bergman projection on simple domains

was obtained using a Calderon-Zygmund type decomposition. In this section, we use

Theorem 4.6 to provide an alternative approach to establish the weak-type bound for the

Bergman projection. We follow the argument in [7] since we have a “sparse domination”

for the Bergman projection.
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Theorem 8.1. There exists a constant C > 0 so that for all f € L'(2),
SI;PAV({Z (P2 > A} < Cllf @)

Proof. By a well-known equivalence of weak-type norms (see for example [15]), it suffices
to show

sup  sup inf sup |(Pf1, f2)] < 0. (8.1)
f1 Gca  GcG
”leLl(Q):l V(G)<2V(G") |f21<1qr

In light of Theorem 4.6, we may replace P by QZ)’I (using our previous notation) for
some fixed £y with 1 < ¢ < N. As in Definition 3.12, we consider the (now unweighted)
dyadic maximal function MTeO,L For convenience in what follows, we will simply write
Mo, . By Lemma 3.13, we know this operator is of weak-type (1,1). Fix f; with norm
1, G € Q and constants Cy, Cs to be chosen later. Define sets

H={ze€Q: Mg, fi(z) > C1V(G)""}

and
o Pk
- U &
Kheke
where
K= {maximal tents IA(J]“ in Ty, so V(IA(;C NH)> CQV(IA(;:)} .

Note if C is chosen sufficiently large relative to C5 ! the weak-type estimate of M,
implies

V) =V | | K
Kkrek
< Y CG'V(RFNH)
Kkek

< Cy'V(H)

< G VA il
1
2

< ZV(G).

It is then clear if we let G’ = G'\ H, then V(G) < 2V(G’), so G’ is a candidate set in
the infimum in (8.1). If 2 € H€, then, by definition,
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Mz, fi(z) < CLV(G)~L (8.2)
Using the distribution function,

cve) !

Mo, fill2 ey = 2 / V({2 € H : My, fi(2) > t})dt
0
c1V(G)™!

<2 / dt| Mo, ooy | Lo o)
0

<OovV(G) L (8.3)

Now let | fa] < 1¢ be fixed. We have

(QE S fl = Y VIEDU) glfo) e (8.4)

KkeTy,

Note that for f(k € Te,, if V(Kk NH) > CQV(Kk) then R’k C H. But f, is supported on
G' c H¢, so for such a tent (fa) z © = = 0. Thus, examining (8 4), we may assume without

loss of generality that if K Jk € 720 then
V(KF N H) < GV (KF). (8.5)

Then note that (8.5) implies the following holds true for the kubes K f, provided Cj is
chosen sufficiently small:

V(KFnH®) =V(K}) - V(KfNH)
> CV(KF) - V(KFnH)
Z V(K]
> V(K})

where we let C be the implicit constant in Lemma 3.11. Thus we have
V(K}) SV(KFnHe). (8.6)
Therefore, continuing from (8.4) and using (8.3) and (8.6), we obtain

Q7 1f1, )| S Z V(Kf)<f1>f<_;v<f2>k;e

ok
KkeTs,

> V(KFNn HO) () g (F2) e

ik
Kj ETEO
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< /(MTeofl)(Mszoh) v

e
< M7, fill L2 (e M7, follL2 )
SV(@) 2| follr2qo)
<V(G):V(G)?

=1,

which establishes the result. O
9. Directions for generalization

1. The example in Section 6 showed the upper bound estimate in Theorem 1.2 is sharp.
It is not clear if the lower bound estimates given in Theorem 1.2, or in [39] and [40]
are sharp. It would be interesting to see what a sharp lower bound is in terms of the
Bekollé-Bonami type constant.

2. Our lower bound estimate in Theorem 1.3 uses the asymptotic expansion of the
Bergman kernel function and hence only works for bounded, smooth, strictly pseudocon-
vex domains. An interesting question would be whether similar lower bound estimates
hold true for the Bergman projection when the domain is of finite type in C2, convex
and of finite type in C”, or decoupled and of finite type in C™.

3. We focus on the weighted estimates for the Bergman projection for the simplicity of
the computation. In [40], Rahm, Tchoundja, and Wick obtained the weighted estimates
for operators S, ; and S:b defined by

w)(1 — |w|?)?
Suaf(2) = (1= |22 / v (w)
SE ) = (1 |2P) / L0 D av ),

on the weighted space LP(B,, (1 — |w|?)’udV). Using the methods in this paper, it is
possible to obtain weighted estimates for analogues of S, and S » in the settings we
considered in this paper.
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