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ABSTRACT

Higher order finite element (FE) methods provide significant advantages in a number of applications such as wave propagation, where high order shape functions
help to mitigate pollution (dispersion) error. However, classical assembly of higher order systems is computationally burdensome, requiring the evaluation of many
point quadrature schemes. When the Discontinuous Petrov-Galerkin (DPG) FE methodology is employed, the use of an enriched test space further increases the
computational burden of system assembly, increasing the relevance of improved assembly techniques. Sum factorization—a technique that exploits the tensor-
product structure of shape functions to accelerate numerical integration—was proposed in Ref. [10] for the assembly of DPG matrices on hexahedral elements that
reduced the computational complexity from order O(p°) to O(p”) (where p denotes polynomial order). In this work we extend the concept of sum factorization
to the construction of DPG matrices on prismatic elements by expressing prism shape functions as tensor products of 2D simplex and 1D interval shape functions.
Unexpectedly, the resulting sum factorization routines on partially-tensorized prism shape functions achieve the same O(p’) complexity as sum factorization on
fully-tensorized hexahedra shape functions (as products of 1D interval shape functions) presented in Ref. [10]. Throughout this work we adhere to the theory of
exact sequence energy spaces, proposing sum factorization routines for each of the 3D FE exact sequence energy spaces—H?!, H(curl), H(div), and L?. Computational
results for construction of the DPG Gram matrix on a prismatic element in each exact sequence energy space are presented, corroborating the expected O(p”)
complexity. Additionally, construction of the DPG system for an ultraweak Maxwell problem on a prismatic element is considered and a partially-tensorized sum
factorization for hexahedral elements is proposed to improve implementational compatibility between hexahedral and prismatic elements.

1. Introduction ences) for a rigorous review of shape functions, the construction of DPG
systems, and sum factorization. We begin this work by providing a less
formal overview of the DPG method that may appeal to a more general
audience. After providing a rough overview of the DPG method we will
proceed as follows: In Section 2, polynomial subspaces with the desired

tensor structure are defined and sum-factorization is outlined for each

Construction of Finite Element (FE) systems relies on the accurate
evaluation of integrals. Evaluation of quadrature schemes to approxi-
mate integrals can consume a significant portion of the total computa-
tional expense—especially when high-order elements are employed. In

the case of the Discontinuous Petrov-Galerkin (DPG) methodology, the
non-trivial expense of system assembly is further increased by use of an
enriched test space. Thus, algorithms for efficient quadrature evalua-
tion can result in significant computational savings in the construction
of DPG systems. One such algorithm for the assembly of DPG systems
presented in Ref. [10] achieves O(p”) computational complexity for
hexahedral-type elements (compared to Q(p°®) complexity of standard
routines) by decomposing the 3D hexahedron into the tensor product
of three 1D line segments. In this article we extend these results to
prismatic elements, achieving a similar @(p”) complexity through the
decomposition of prismatic elements into tensor products of 2D trian-
gle, and 1D interval shape functions.

The present work builds on that of [10] (and earlier work by Kurtz
[4]), presenting only results and details which are sufficiently different
for the prismatic element than for the hexahedral element to merit addi-
tional discussion. The reader is directed there (and the contained refer-
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of the exact-sequence energy spaces. In Section 3, computational results
are presented for both sum-factorized and standard assembly routines
and the desired O(p”) complexity is verified. We conclude in Section 4
with a summary of findings and suggestions for future work.

1.1. DPG: a rough sketch

The DPG methodology presented in this work—known fully as
the practical discontinuous Petrov-Galerkin method of optimal test func-
tions—can be understood in three contexts: as a method of optimal
testing, as a generalized minimum residual method, and as a mixed
method. To understand DPG as a method of optimal testing, consider
the generalized variational problem
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where U and V are the trial and test spaces respectively. Supposing
bilinear functional b(-, -) and linear functional I(-) satisfy continuity and
compatibility constraints, the inf-sup condition,

Lbwnl_, 5 g 1.2)
uel yev |lullylivily
guarantees the well-posedness of this problem with stability constant y.
However, in a computational setting, finite-dimensional bases are used
to represent spaces U and V, thus for this discretize problem to be well
posed (1.2) must be satisfied when restricted to finite-dimensional sub-
spaces Uy, and Vj,. Substituting Uy, for U poses no problem for stability
as restricting the infimum to a smaller set can only improve the stability
constant y. The same is not true for restricting V to Vj, thus a natural
question would be to ask if there is a way to choose V}, so that the stabil-
ity constant y is not affected. This is the essence of the DPG method and,
given a discrete trial space Uy and a test norm || - ||y;, the DPG method-
ology identifies the corresponding discrete test space Vj, that realizes
the supremum in (1.2) and essentially equates stability of the discrete
problem to stability of the continuous (infinite-dimensional) problem.
Identification of the optimal test space V}, is achieved by solving for
the Riesz representation of each u € Uj. In general, we cannot solve
this Riesz representation problem on the original infinite-dimensional
space V, so we introduce an enriched test space V" by simply rais-
ing the polynomial degree p by a factor Ap (typically Ap = 1,2; see
Ref. [3] for details) resulting in an enriched or total polynomial order
pr = p + Ap. In this finite-dimensional space V" the Riesz map is fully
represented by the Gram matrix G; thus solving the representation prob-
lem essentially reduces to constructing and inverting a Gram matrix on
the enriched test basis.

The role of the Gram matrix in DPG methods can be observed
directly by formulating (1.1) as a mixed problem. We defer to Ref. [3]
for details of this formulation, but essentially yields a discrete system
of coefficients of the form

(@ 0)0)-6)

where B is the stiffness matrix and [ is the load. Note the analogy of
system (1.3) with the system

(- 30-6)

for solving a general overdetermined system of equations Ax = b in
the least squares sense with residual r. Thus DPG can be identified as a
generalized minimum residual method (see Ref. [8]) and two important
properties can be observed from (1.3): i) DPG methods always produce
hermitian positive definite systems of equations, and ii) DPG methods
can be used to obtain a dual representation of the error which in turn
can be used to obtain a robust error indicator for adaptive mesh refine-
ment.

The primary benefits of DPG methods can then summarized as: sta-
bility, hermitian positive definiteness, and adaptability. These prop-
erties do not depend on a specific linear operator associated with a
given variational problem, but are attained for any linear operator by
virtue employing the DPG methodology. In addition to these remark-
able properties, the DPG methodology permits additional variational
formulations to be considered, including those with asymmetric func-
tional settings such as the so-called primal and ultraweak variational
formulations (see Ref. [2]).

The benefits of the DPG methodology are, however, not obtained
for free. The cost of solving the full system (1.3) would be considerably
higher than the cost of solving a typical Galerkin discretization. The
practical DPG method reduces this cost by “breaking” the test space Vj
(see Refs. [1,12] for details) to provide G a block diagonal form that can
be statically condensed on an element level to obtain a reduced system
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of equations (an example will be provided in Sec. 3.2). Such breaking of
the test space necessitates the introduction of trace degrees of freedom,
resulting in a condensed system that typically possesses roughly twice
as many degrees of freedom as a classical FE discretizations. The bene-
fits of DPG can however be leveraged to reduce this cost. For example,
the hermitian positive definite structure of DPG systems permits use of
advanced solution techniques including preconditioned conjugate gra-
dient (CG) methods. One such CG solver proposed in Ref. [13] fur-
ther leveraged the hierarchical structure of DPG-enabled adaptivity in
a multigrid preconditioning scheme to produce a parallel linear-scaling
solver for general DPG systems. We conclude this informal introduc-
tion by emphasizing—when stability, hermitian positive definiteness,
and adaptivity are properly exploited, the DPG methodology can prove
an efficient, robust, and general technique for solving very challenging
problems.

2. Sum factorization

Similar to Ref. [10], this work follows the concept of exact sequence
energy spaces. Thus, after a brief review of infinite-dimensional energy
spaces, we define finite-dimensional polynomial subspaces with the
desired tensor structure on which we can compute.

2.1. Exact sequence energy spaces

Let Xo, Xp,..., Xy, (with Ny < oo) be a family of vector spaces,
and for eachi = 1,...,N, let A; : X;_; — X; be a linear operator. The
sequence or complex formed by these operators

ANy

A Ay
Xo—=X1—=- - = Xy,

is said to be exact if, for i = 1,2,...,N,—1, it holds that
R(A;) = N(A;;) where R and N denote the operator range and
nullspace. By energy space we simply refer to a Hilbert space in which
the solution of a variational problem is sought. Exact sequences can
be formed (as detailed in Ref. [10]) for energy spaces in one, two, and
three-dimensions as:

1D : H(Q212(Q)

2D : HY Q) > H(curl, Q) 2 12(Q)
@.1)

v, i
HY(Q) P H(div, QS 12(Q)

1 \% curl . div_o
3D : HY(Q)~>H(curl, Q)= H(div, Q)= L2(Q).

where the V,; and Vg, denote the 2D vector-to-scalar and scalar-to-
vector curl operators respectively, defined by V., = 0;()y — 0do(-)1
and Vg, =(dy,—0;), and Q denotes a bounded, simply connected
domain in RN with N = 1, 2,3 according to context.

Finite element methods introduce families of shape functions that
span finite-dimensional subspaces of these energy spaces, thus it is
natural to ask whether these discrete energy subspaces can be con-
structed to preserve exactness in the resulting sequence. Such exact
discretizations—including the one employed here—have diverse appli-
cations in approximability theory. For example, in Ref. [9], exact
sequence discretizations were used to produce geometry-preserving dis-
cretizations to improve coherence of plasma simulations. However, as
noted in Ref. [10], the sum-factorization algorithms presented here
only require that discrete energy subspaces form a complex, i.e. R(4;) C
N(A;;1). This complex structure is assumed in the following definition
of Piola transforms (pullback maps) which will enable integrals defined
on element domains to be evaluated on a master domain.
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2.2. Piola transforms (pullback maps)

Let K denote the master domain of definition for prismatic shape
functions, K = 7 ® T where T is the 2D simplex {x € R? : x1 > 0,x5 >
0,x; + x5 <1} and 7 is the 1D interval (0,1) in R. Let X : K - K be
a diffeomorphic map, transforming the master element into a physical
space element K with Jacobian

()X,C
0

where £ is the position vector in the master domain. For the remainder
of this work, hats () will be used to denote functions, domains, and
vectorspaces defined on master domain K.

The Piola transforms (pullback maps) presented in Ref. [10] define
transformations T84, Teurl TdiV T that transform corresponding energy
spaces defined on K to those defined on K as follows:

T = (2.2)

H'(K) 30w T80 = Toxg! =ue H'(K) (2.3)
H(curl, K) 3 E v TWE = (JTE) - X! =E € H(curl, K) 2.4
H(div,K) 3 Vs TV = 1771 T V) o X! =V € H(div, K) (2.5)
1K) 3G Tq= (17171 o X! = g € LX(K0). (2.6)

These transformations permit integrals defined on element domains K
to be transferred to the master domain K. Since application of these
transformations is independent of element type or tensor structure, we
defer to the derivation in Ref. [10] and will thus consider only spaces
(and integrals) defined on the master domain K. The remainder of
this section is dedicated to the outline of sum-factorization routines
for assembly of the Gram matrix on prismatic elements in each of the
considered energy spaces.

2.3. Tensor-product prismatic finite element shape functions

For each of the infinite dimensional energy spaces in (2.1), we define
polynomial subspaces with the tensorized structure of the domain
K=TQ®L. Beginning with the 1D exact sequence on I, we define
polynomial subspaces:

W = PP(T) ¢ H(T)
1o
Y2 = PrY(1) ¢ LA(1)

where PP(T) is the space of univariate polynomials on I with degree
less than or equal to p.

Polynomial subspaces corresponding to each of the 2D exact
sequences are then defined on the 2D simplex domain 7 as in Ref. [5]

by:
=PI(T) ¢ H\(T) =P(T) g H\(T)
LV =(01,95)
@ = N"(T) g H(curl, T)
1 Vs = 01()z = 05();

¥ =Pl g LA(T)

} Vg = (03, —0y)
P = RTP(T) ¢ H(div,T)
1 div=01(-); + 05("),
¥2 =Prl(T) g LA(T).

where PP(T) is the space of bivariate polynomials on 7 of total order
less than or equal to p and NP, R7? denote the Nédélec and Raviart-
Thomas spaces (respectively) for simplices with definitions:

NP(T)=PP_1®{E€ (f’p>2 : x-E(x)=0f0rallxe[R2},
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RTP(T)=PP 1 @ {v c (PP) : V(%) = p(0)x with
pePPliorvalxe [Rz},

where PP denotes the space of homogeneous polynomials of order p.

A polynomial subspace can then be constructed for the prism’s exact
sequence by employing each of the 1D and 2D exact sequence polyno-
mial subspaces:

WP = WI;IZ ® WIZ)S
l V= (31»02563)

A ~b
_QI;IZ ®W13

| curl = (05(-)3 —

V.4 P
X WT12 ® YIS
03(-)2, 93()1

Op — P12 iAP3 P12 o PP3
V=V QWp x V2QY]

—01()3,01()2 = 92()1) 2.7

1 div=0;(); + 05()g + 95(-)3
¥P = Y‘;” QY.

The use of superscript p;, to denote the order of 2D simplex spaces and
p3 to denote the order of 1D interval spaces here is used to indicate
that p;, is the order in the first and second spatial dimensions, while
D3 is the order in the third spatial dimension of the master domain.
Such a use of subscripts will follow throughout this document, with
its purpose becoming increasingly evident when Gram matrix assembly
routines are introduced. Before moving to the construction of the Gram
matrix for DPG systems for the various energy spaces, we emphasize the
importance of the 3D exact sequence polynomial subspaces in (2.7) as
they define the structure of prismatic shape functions used to compute
in the various energy spaces.

The Gram matrix considered here for each finite dimensional Hilbert
space H is defined identically to Ref. [10], and the construction for
each space is presented in the order defined therein—deviating from
the exact sequence order in favor of simplicity.

2.4. Space I?

Let {v }d"g Y*-1 be a basis for Y?, where dim YP = —(plz +1)pyop3.
Elements of basis {v;} in Y? are represented in the tensorlzed form of

(2.7) as vy = V112V where v, , € YT12 with ij5 = 0, ..., 2 (D15 + 1Py —

1; where v;, € YI withi; = 0,...,p3 — 1; and where I is some unique
integer identifier dependent on i}, and i3 such that 0 < I < dimYP.

The L? Gram matrix is then constructed for ordered pairs of basis ele-
ments (v;,vy) as:

Gy = (o, )

DUEDHEIT(©) T dE

/01(51 &y, E)D5 (81, &g, EIT (81, &5, &) 7128y, E)dEs (2.8)
T

]
N\ » T~

= ey @] [ v ern 8, 60 1T G ) R )
1

T

where the evaluation of all inner-products and shape functions have
been transferred to the master domain K by means of Piola transforms
(see (2.16) in Ref. [10]) and the integral in the last line has been fac-
tored according to Fubini’s theorem.

Sum factorization proceeds by computing and storing the inner area
integral first for all combinations of 2D simplicial shape functions in
Y‘;” before evaluating any outer integral terms. To accomplish this, we
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introduce a sequence of auxiliary functions to compute the final Gram
matrix:

O = [ Vi1 8,6 2T 5 ) PG )
T

= Gy = Gy = | Vi 6%, )G, ) 2.9)

1

Discretizing the preceding integrals by means of a quadrature rule
leads to corresponding auxiliary matrices:

AT 2 Vi, (B EM; L, (€T, EM) T (EM, &, &3)| W

L
Ciroirainis ® ZZ viy (v, (EGE (S (2.10)
=1

We note here that our definition of auxiliary functions and matrices
is not unique. Indeed, a reverse factorization of (2.8) with the area
integral on the outside would lead to a definition of ¢* dependent on
&, and &,. As will become clear shortly however, this factorization leads
to order O(p®) complexity instead of the desired O(p7).

Evaluation of the auxiliary sequence (2.10) follows similar logic as
was presented for the hexahedra: all three components of a quadrature
point &, are fixed, G* is evaluated, then G is evaluated. This process is
iterated until each quadrature point has been evaluated. Note in partic-
ular that ¢# is evaluated once for each 1D quadrature point .fé.

The assembly procedure for the L?> Gram matrix is outlined in
Algorithm 1. In the following, standard Gaussian quadrature rules
for the unit interval and triangle are used. Constants L and M will
denote the number of 1D interval and 2D triangle quadrature points
respectively (thus L is O(p) and M is O(p?)). Indices | and m will be
used as in (2.10) to traverse 1D and 2D quadrature points respec-
tively. Finally, indices j;, and j; traverse test space degrees of free-
dom on the triangle and interval respectively. In the context of the
Gram matrix, indices i;, and i3 also traverse test space degrees of free-
dom (see Remark 2.4); however, for assembling the stiffness matrix
B, these indices would instead traverse trial space degrees of free-
dom. The physical coordinate x;,, corresponding to quadrature point
&, returned by the function “geometry” is not used during assem-
bly of the Gram matrix; it is however used in assembly of the stiff-
ness matrix to obtain material data. Thus, Algorithm 1 can be adapted
for assembly of the stiffness matrix by incorporating the trial space
and material data as described. For subsequent energy spaces, such
algorithms will not be outlined explicitly as they follow rather natu-
rally from the loop structure of Algorithm 1 and from the correspond-
ing sum-factorization algorithms for the hexahedra presented in Ref.
[10].

Remark 2.1 When applying the DPG methodology there can be
some confusion over the definition of trial and test spaces. This confu-
sion arises because we are essentially solving two variational problems
simultaneously: first the Riesz problem to identify the optimal test func-
tions, and second the original variational problem in which we employ
the optimal test functions. Some clarity can be achieved by considering
the difference between the (optimal) test space and the enriched test
space. However, the Riesz problem (corresponding to the Gram matrix)
has a symmetric functional setting in which both trial and test space
correspond to the enriched test space. To avoid confusion ‘trial space’
will denote the trial space of the original variational problem, and ‘test
space’ will denote the enriched test space. We again emphasize that in
the following algorithm for assembly of the Gram matrix both i and j
indices loop over test degrees of freedom.
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To clearly illustrate how the preceding algorithm achieves O(p”)
complexity, in Algorithm 1 (Naked) we identify only the ‘naked’ loops
with their corresponding complexity. Consideration of the naked loops
immediately reveals the O(p”) scaling both for the computation of
the auxiliary matrix ¢4, and for the computation of the final Gram
matrix G.

A similar analysis of sum-factorization algorithms for the hexahedra
in Ref. [10] reveals instead a scaling of @(p®) for computation of auxil-
iary matrix G*, O(p®) for computation of the additional auxiliary matrix
¢B, and O(p7) for the final computation of the Gram matrix. Thus, while
the computation of auxiliary matrices for the full sum-factorization of
the hexahedra has an order less computational-complexity than for the
partial sum-factorization of the prism, both achieve a total O(p”) com-
plexity. We reiterate here that if (2.8) was factored differently (as dis-
cussed previously in this section) that the resulting complexity would
be O(p®), as could be seen by inverting the order of loops on I and m in
Algorithm 1 (Naked).

2.5. Space H!

To consider the H! energy space, let {¢;}3mW'=1 be a basis

for WP, where dim WP = %(Plz + 2)(p15 + 1)(p3 + 1). Elements of basis
{¢;} can again be represented in the tensorized form of (2.7) as
& =1, Xi, where u;, € Wp12 with i1, =0,..., %(Plz +2)(pp+1)—

1; where y;, € WI with i3 = 0,...,p3; and where I is a unique inte-
ger identifier dependent on i}, and i3 such that 0 < I < dimWP. The
H! Gram matrix is then constructed for ordered pairs of basis elements

(@1, ¢y) as:
Ggrad = (¢Iv¢J)H1(K3)

= [bod@isees] (v 50| D© [94,0) 1710

K

/¢1(§)¢1(§)|J(§)|d(€1 $2)dés
T

N\ »

+[ [ [#60)] p@ [F,0] m @@ e @11

T

where D(£) = J~1(&)J T (£) and

A Og, Uy, (81, 82) 13, (€3)
Vobr = 0,1, (1. 82) 231, (83) |-
Uy, (61, ‘52))({3 (&3)
The first integral in (2.11) closely resembles that in (2.8) for the L,
case (note however the lack of the inverse on | J(&)| in the H! case) and

its factorization will not be repeated here. The sum-factorization of this
integral is approximated by the auxiliary matrix sequence:

(2.12)

ggradA ( 53)

11212

N
iy, (8 E;,, (&0, ED)| T (8, &8, E3)IWh,
n=1

¢ z Vi, (€M, (EMGEA Emywn (2.13)

112.1121313 112J12

To factor the second integral in (2.11) according to Fubini’s theorem
we first write (2.12) as a product of 3 X 3 and 3 X 1 arrays:



J. Badger et al.

Og, Uiy, (61, 60) - -

Ve = Uy, (1. E)X,, (&) = - O, (1. 2) -

Such a definition naturally leads to the factorization of (2.11) as:

[ [ [36©)] p@ [98,0] i@1de. e
7T

=[x [ U @D, 6 eI T O £ X Gz,

1 T

To proceed with sum-factorization we introduce an auxiliary func-
tion sequence for the computation of (2.15):

G ) = [ UL, (6 0D )y, 61 T 1 )P )
T

Gt = [ XL T, e (2.16)
1

Note in particular that the integral for Egrad’“ in (2.16) evaluates a
3 X 3 matrix. In addition to discretizing integrals through a quadrature
rule we introduce indices a,b € {1, 2, 3} to store matrix components of
G814 The resulting discretized auxiliary function sequence can be rep-
resented in terms of arrays as:

[Fat i AR

abiy2j12

abijojio

3
2 X, o€ (DX p(Ewh.

IIMw

L
—grad Z
gllzllzlsls o &

were subscripts a, b denote vector indices.
The Gram matrix is finally calculated by the addition of (2.13) and
(2.17):

G grad __ ggrad —grad

PN (2.18)
i12j1213f3 112]1213J3

2.6. Space H(div)

In considering the final two energy spaces, some additional difficulty
is presented by the structure of the polynomial subspaces in (2.7) from
which the shape functions are defined. In particular, in both H(div) and

G = (909 )uiv

H(curl) spaces, shape functions come from two families of shape func-
tions (note that the definition of families here only loosely coincides
with the definition in Ref. [5]).
The definition of prism shape function families is indicated naturally
by the definition of polynomial subspace VP in 2.7):
VP = VI;IZ ® Yll’s
——

Family 1

P12 o TAP3

x 2 @ Wi,

——
Family 2

/ B(OTCOI, 1T @) e + / dvd,&)dV, @17 @)1 d¢
£

/ / BETCENONTEN PG ey + [ [ EOIOIT @O 1)
I IT
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Xi3(€3)
iz (&)
u;,, (61.82) )({3 (&3)

(2.14)

(2.15)

Various implementations are possible for incorporating the two
family structure of this space including: decomposition of Gram
matrix into blocks based on family interactions (i.e. [fam 1,fam1],
[fam1,fam?2],...), or by sequential treatment of simplicial shape func-
tions and a logical treatment of interval shape functions. The second
approach is outlined here due to its relatively compact representation.

Let {§1 }f:g V-1 be a basis of prismatic shape functions spanning
VP that is partitioned into two families as depicted above. Let N%z =
dim V‘;” denote the number of 2D simplicial shape functions in V‘;”
used in defining family 1, and N122 = dim /?‘;12 denote the number of

2D simplicial shape functions in 17‘;12 used in defining family 2. The

M
Y Uiyaa @M EMD (M, E. E)Uj  pp(EM, EM T (£, 8T, E) W,
m=1

(2.17)

approach is outlined as follows: we define i;5 =0, ... ,N%z +Nf2 -1
to enumerate all simplicial components of shape functions in VP. The
appropriate univariate shape function space (17‘;3 or VAVII’3) is then deter-
mined by i}, and a Gram index I can be uniquely defined given i;, and
i;. Table 1 defines the shape functions, their divergence, and indices.
Note in particular that values i, < N}z correspond to the first family of
shape functions while values i1, > N%z correspond to the second family
of shape functions.

The Gram matrix G?Jiv

functions (9, 9;) as:

is then calculated for ordered pairs of shape

(2.19)

where C is the symmetric matrix given by C(&) :== J(£)J (£) = D(&)~L.

The first integral in (2. 19) resembles that of (2.15) and can be fac-
tored similarly by writing 81 as a product of a 3 X 3 array Wy, (£, &)
and 3 X 1 array X;, (&3,1;) ast:

Wi, (€1, 82)X;, (&3, 112)
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where

Wi12 (61,&2) =1
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Table 1
Definition of two families of prismatic shape functions for V?
Family 1 Family 2
R ‘412,1(51,52)‘/1'3(53) R 0
O = Vip (61, E2)Viy (&) 9 = 0
0 Vi12(§1,52)1i3(53)

v, = (0,Viy, (618 + 0, Vi, (61,80 ) vy (&) .
3 !
divd; = vy, (&, fz)}(iS (&)
= diV(Viz (SR ))Vi3 (&)
where Vilee V‘;“, N1, = (P12 + 2)P12, 0 < iy <N, where v; , € Y";lz, N2, = %pu(p12 +1), N}, <iy, <NL, +NZ,
and v;, € Y?,N% =p3, 0 <i3 <NJ; and y;, € W‘;T’,Ng =p3+1,0<i3 <NZ;

Algorithm 1 Computation of the L2 Gram Matrix - (partial) sum factorization.

procedure L2GRAMTENSOR (7., G) > Compute G for element No. i.; - Partial sum factorization
Ny =1/2(p12 + 1)pi2 > Calculate DoFs for 2D simplex
N3 = ps > Calculate DoF's for 1D simplex

call setquadraturelD(i.;, ps — 15 L, {€, w'})
call setquadrature2D (i, p1o — 1; M, {(§7, £5Y), w™})

g« 0 > Initialize Gram Matrix
for [ =1to L do
call Shapell2(&}, ps; {vi,(€5)}) > Evaluate 1D shape functions at &}
G0
for m =1 to M do
call Shape2L2(£™, pi2; {viy, (§7.654)}) > Evaluate 2D shape functions at (£]", £3")

€, (€7, €0,€L)
call geometry( &,,,,%c1; Xim, J (1) T (€,,): |T1) > Compute x;,, = xx(§;,,) and Jacobian
for j;» =0 to N, do
for iy, = j12 to Nip do
| G2 Gibarn + 0 (€0 )0, (67, €T | 0™
for j;=0to N;— 1 do
for is = j; to N3 — 1 do
for j;, =0to Ny, — 1 do
for i, = j1» to Nip, — 1 do
| Gurainaiais  Grraiaiass + Via (8032 (€67, ,, (€4 )0"

return G
Vi,1(61,82) - -
- Vi,2(61,8) —| if0<ip< Ny
- - 0
0 - _
-0 - if N}, <ijp < Nj, +N3,,
- = vp,6é)
(2.20)
Algorithm 1: (Naked)
for il =1to L do O(p)
for m=1to M do O(p?)
for j;, =0to Ni; — 1 do O(p?)
‘ for iy, = j15 to Nip — 1 do Oo(p?) > Total: O(p”)
for j; =0 to Ny — 1 do O(p)
for i3 = j3 to N3 — 1 do O(p)
for j,5, =0 to Nj; — 1 do Op?)
for i, = j1» to Ni — 1 do Oo(p?) > Total: O(p”)
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and

Viz(€3)
v, (&3)|  if0 <ipp <N,
Xis (&3,112) =1 (2.21)

0

enl s 1 2

0 if NI, <ijy <NI, +N2,.
Ais (&)

Sum factorization then proceeds by introducing the auxiliary func-
tion sequence for computation of the first integral term in (2.19) as:

1212 3P

di Toe i ivA ;
O = [ X o200 (E0)X, G 2 s
1

Discretization of this auxiliary sequence is accomplished similar to
(2.17) by introducing indices a,b € {1,2,3} and will not be repeated
here.

Computation of the second integral term in (2.19) can be simpli-
fied by introducing functions w; , (£1,¢&,) and x;,(3,1;2) to treat both
families of shape functions simultaneously:

if 0 <ijo < N}

div(V;, (¢1,&2) 122

Vi, (61.62) if Nj <1y < Npp +Np,.,

Wi, (61.8) = {

1
Gy = (v, W) H(curl)

K

Y
- / / PUOTDED ()T @)Id(Ep. £1)dEs
I

T

+[ [ [aioo)] c@ [anp, @] 17 @ e
IT

and

viy(&3)  if0<ipy <Nj,

X;, (€3,112) = i arl . 1 2
3 X, (&) if Ny, <y <N, +Ni,.

An auxiliary function sequence (similar to that in (2.9) for the L,
case) can be introduced for the computation of this term.

1212

gl (&3) ’:/ Wilz(‘fp‘52)1’1’1‘12(‘51,‘52)|~7(‘§1"52"53)|_1d2(§1’§2)
T

cdi — : \divA ;
G iriaja ~—/ Xig(fs,llz)gfllzvhz(ég)xjg(ésgllz)dfs (2.23)
1

The H(div) Gram matrix can finally be computed by summing the
contribution from each term as:

div _ ~div ~div
Gy = gil?jlzisfs + gil?jlziafs'

(2.24)
2.7. Space H(curl)

We conclude this section by presenting a sum factorization for
H(curl). However, due to the similarities between this and other spaces

VA (£3) = / W] (81, 8)C(E. 2. E)W), (61. 8T (6185, &3)| 71 d2(E1. &)
T
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we forgo explicit definitions of the auxiliary sequences. The definition
of prism shape function families for polynomial subspace QP again fol-
lows from (2.7):

@=rWE x WP
——— N———

Family 1 Family 2

This two family structure closely resembles that of V2, thus we use the
same indexing structure as before.

Let the basis {{J; }Idin(;Qp_l of prismatic shape functions spanning 104
be partitioned into two families. As before, we allow i, to take non-

negative values up to dim d}lz +dim WI;“, uniquely enumerating 2D

(2.22)

simplicial components of the basis {{/;}. The index i;, can then be used
to identify the appropriate space for univariate shape functions (Wll’3 or
Y?) and the corresponding range of index i3. Gram index I can again
be uniquely defined given values of i;,, i3. Table 2 defines the shape
functions and indexing corresponding to each family.

The H(curl) Gram matrix can then be calculated for each ordered
pair (y,y) as:

— T —
[ o p@n @@+ [ g @] c@ |anp,e)|17@res

(2.25)

As can be seen in Table 2, both {; and c/u\rl(ﬁl are vector quantities.
Thus, both integrals in (2.25) can be factored through Fubini’s theorem
by introducing array factors similar to (2.20) and (2.21). The auxiliary
function sequences for the sum factorization of both integrals are then
sufficiently similar to (2.22) to neglect explicit definition here.

3. Results

We begin our exposition of numerical results by reporting compu-
tational times both for conventional and sum-factorized Gram matrix
assembly in each of the previously presented energy spaces. Next, the
construction of DPG matrices G (Gram), B (stiffness), and [ (load) for
an ultraweak formulation of a Maxwell problem employing a scaled
adjoint graph norm is considered. In all cases order O(p”) complexity is
observed.

We conclude this section by considering a partial tensorization of
hexahedral-type elements (as the tensor product of a 2D square and
1D interval), showing that the corresponding sum-factorization routine
achieves order O(p”) complexity however with a slightly higher com-
putational expense compared to full tensorization. Such a partially ten-
sorized formulation may be desirable for a number of reasons includ-
ing improved ease and brevity of implementation, as well as increased
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Table 2
Definition of two families of prismatic shape functions for QP
Family 1 Family 2
Eilz,l(fl,gz)}(% (&) 0
W= By, 261, 62) 21, (83) W= 0
0 Hilz(fl,'fz)‘/i3(§3)
_Eilz.z(flsﬁz))(,v; (&) l)yu"lz (51,52)\43 (&3)
curh;}l = Eilz»l (1,62 )){i,g (&) curh?/l = _‘)x’—lil2 &, 52)"1'3 (&3)

curl(E; , (61, 62)) 21 (€3)
where E; , € Q’}lz, Ny, = (P12 + 2)P12, 0 < iy < N3

and;(isEW‘IJ3,N§=p3+1,OSi3<N§;

where u,, € W2, N2, = L(p, +2)(py5 + 1), NI, <ijp < NI, +N?

0

12 = 12

and v;, € Y‘;3,N§ =p3, 0 <i3 <N3;

Table 3

Computational times (seconds) for conventional and sum factorized Gram matrix G assembly for a
prismatic element in each exact sequence energy space. The observed order was calculated using
only the three highest order elements p, = 6,7, 8 to better capture asymptotic behavior.

L2 H'

pr Conventional Sum Factorized Conventional Sum Factorized
2 4.1x10°° 3.8x10°° 7.7 X 1075 5.1x107°

3 1.4 x 1074 1.3x 1074 3.4x107* 1.8 x 1074

4 3.8x 1074 3.2x 1074 1.3x 1073 5.4 x 1074

5 1.1x 1073 7.8%x 1074 5.2x 1073 1.5%x 1073

6 3.1x 1073 1.6 x 1073 2.1x 1072 3.2x 1073

7 1.2 x 1072 3.1x1073 6.0 X 1072 9.0x 1073

8 3.5%x 1072 6.5%x 1073 2.2x 107! 1.9 x 1072
Observed Order 8.3 4.9 8.1 6.1

H div H curl

pr Conventional Sum Factorized Conventional Sum Factorized
2 9.9 x 107° 6.3 x 107> 2.2x107* 1.7 x 1074

3 5.7 x 1074 2.7 x 1074 1.9x 1073 9.3x 1074

4 3.6 x 1073 1.1x 1073 1.3x 1072 51x1073

5 2.5%x 1072 4.4x10°3 6.8 X 1072 1.9 x 102

6 1.0 x 107! 1.3x 1072 2.7 x 107! 5.5%x 1072

7 3.7%x 107! 3.2x1072 8.3x 107! 1.4x 1071

8 1.3 x 10° 7.3 %X 1072 2.8 X 10° 3.2x 107!
Observed Order 8.6 6.3 8.1 6.1

implementational compatibility in applications where both hexahedral
and prismatic elements are used.

In each of the following examples, both sum-factorized and conven-
tional element assembly routines were implemented. Sum factorization
routines were then verified by direct comparison of matrices with those
produced by standard construction routines. In every case, the result-
ing matrices were verified to be identical within machine precision. All
experiments were performed 50 times to reduce statistical variation;
only averages are reported here.

3.1. Gram matrix assembly in various energy spaces

Assembly of the Gram Matrix was performed for each of the exact
sequence energy spaces (in the associated norm). Computational times
for assembly on a prismatic element of various enriched orders (p,) are
presented in Table 3—revealing a roughly 10 X computational advan-
tage of sum factorization in the case of enriched order p, = 8 in each
energy space. The observed order reported in Table 3 for each energy
space was calculated using regression on the three highest order ele-
ments p, = 6,7,8. Note in particular that the observed orders both for
conventional and for sum factorized assembly appear slightly less than
theory would suggest; the reason behind this aberration will become
apparent in further discussion.

Fig. 1 provides a graphical representation of the computational
data in Table 3 with additional reference lines corresponding to the
expected O(p°) and O(p’) rates. Consideration of Fig. 1 reveals that a
pre-asymptotic regime for low-orders p, is to blame for the seemingly
deficient observed orders reported in Table 3. Especially in the case of
L2 and H! energy spaces, the pre-asymptotic region is observed to per-
sist well into the high-order regime. Note however that for experiments
in which pre-asymptotic behavior is especially apparent, computational
times are small, typically on the order of milliseconds. The relatively
small relatively small computational times as well as presence of pre-
asymptotic behavior in both conventional and sum-factorized routines,
suggest that this pre-asymptotic behavior is due to computational and
memory overhead and could be implementation dependent. To min-
imize computational overhead, arrays for Gram matrix G and auxil-
iary matrices ¢* were dynamically allocated in contiguous memory;
however only minor improvements in pre-asymptotic behavior were
observed.

Despite the presence of a pre-asymptotic region, sum factorization
was observed to reduce over-all computational cost in each energy
space—demonstrating improved assembly cost for all order elements.



J. Badger et al.
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Fig. 1. Computational times for conventional and sum factorized Gram matrix

3.2. Assembly of DPG matrices for ultraweak Maxwell problem

To further illustrate the utility of sum factorization for the construc-
tion of DPG systems, we consider as a model problem the ultraweak
variational form of Maxwell’s equation. This problem and its DPG set-
ting are discussed in depth in Refs. [1,11], but will be outlined here for
completeness.

3.2.1. Problem definition

Consider the time-harmonic Maxwell system (of positive frequency
@ > 0) defined on an open bounded and connected domain Q C R3
given by:

Average elapsed time (s)

curl E+iwouyH =0 in Q
curl H —iweE = J™ in Q
J B.1
nXE =nXE, on Ig
nxH =nXH, on I'y

where the functions E,H,J™ : Q — C represent electric field, mag-
netic field, and imposed current respectively, and I'g, ['y; coincide with
the disjoint portions of boundary dQ on which electric and magnetic
boundary conditions are imposed. Parameters u, ¢ represent the elec-
tromagnetic properties of the domain and are assumed to be positive
and element-wise constant on a mesh €;,. We denote by I';, the skeleton
of mesh €.

Ultraweak variational forms (as defined in Ref. [1]) are obtained
by expressing a system in first order form, then weakening each first-
order equation by introducing a test function and integrating by parts.
Such a formulation passes all differential operators—and correspond-
ing regularity—to the test space. In the case of the first order Maxwell
system (3.1), the ultraweak formulation is obtained by multiplying the
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Gram Matrix (G) Assembly Time - H1

100 T T
—&— Conventional )
—=A— Sum Factorized
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(d)

G assembly for a prismatic element in each exact sequence energy space.

first and second lines by test functions F,G € H(curl, Q) respectively,
integrating by parts, identifying the new unknowns—traces defined on
mesh skeleton I';, and incorporating boundary conditions on I'; and
I'y. The following system is obtained:

E,He (12Q)%  E.H eHY2(curl,T}),

(E.curl F) — (n X E,. F)p, +io(uH.F) =0 F € H(curl, Qy),

(H, curl G) — (nx H,.G)r, —iw(¢E.G)  =(J™.G) G € H(curl,Q),
E =Ey,; onl'g,
B =H,, onl'y,

(3.2)

where (-,) denotes the standard L2 product, and (-, ), denotes the
duality pairing between trace spaces H‘l/ 2(dlv I',) and H~Y2(curl, T'}).
The additional unknown functions Et,H denote tangential traces
defined on the mesh skeleton I, that arise through the use of the
discontinuous test space H(curl,2,) with no additional assumptions
(i.e. electing to test on the boundary). System (3.2) can be expressed in
abstract variational form by introducing bilinear functional

b ((E,H,Et,ﬁt),(p, G)) =b((E H),(F,G) +E((Et,ﬁt),(p, G)) (3.3)

where,
b((E,H),(F,G)) = (E,curl F) + (H, curl G) + iw(uH, F) — iw(eE, G),
b ((Et,ﬁt), (. G)) = ~(nxE,.Fyr, - (nx . G)r,.,
and linear functional
£((F,G)=(T™,G). (€X0)
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Table 4
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Computational times for assembly of the Gram matrix G alone and with additional DPG stiffness matrix B
and load [ for the ultraweak Maxwell problem on a prismatic element.

Do Ap Dr G Assembly Time (s) G, B, I Assembly Time (s)
Conventional Sum Factorized Conventional Sum Factorized

2 0 2 1.0 x 1073 5.7 x 1074 1.1 x1073 6.6 x 1074
2 1 3 1.3 x 1072 4.6 x 1073 1.4 x 1072 4.7 x 1073
3 1 4 7.4 X 1072 1.3x 1072 8.2x1072 1.4 X 1072
4 1 5 41x107! 4.8 x 1072 4.4x107! 5.2 x 1072
5 1 6 1.8 x 10° 1.4 x 107! 2.0 x 10° 1.5x 107!
6 1 7 8.3 x10° 3.9x%x 107! 1.2 x 10! 4.7 x107!
6 2 8 3.8 x 10! 1.1 x 10° 4.5 x 10! 1.3 x 10°
6 3 9 1.1 x 102 2.4 x 10° 1.1 x 102 2.5 x 100
Observed Order 9.2 6.9 9.1 7.0

To simplify notation, we define group variables u = (E,H); 1=
(ﬁt,ﬁt); and v = (G, F) with corresponding spaces % = (LZ(Q))6; %
(H™1/2(curl, Fh))z; and 7 = (H(curl, Q,))2.

Variational problem (3.2) can be cast as a mixed problem by intro-
ducing the error representation function y (detailed in Refs. [1,11]) as
follows: find y € 7", u" e ", u" € %" such that

W Ve + bW V) +B@ V) =2(v) Vv e 7T(Qy)
b(Su, w) =0 VYéuewuh (3.5)
b(5T, w) =0 Vsue#"Ty

where (., ')cyr(gh) denotes the test inner product which, in the context
of DPG, is assumed to be defined a priori—with a particular choice of
test norm defining a particular DPG method. Here we employ the scaled
adjoint test norm as described in Ref. [1]. Finally, defining a discrete
trial subspace allows problem (3.5) to be formulated in discrete matrix
form as

Gs+Bu+Bw =
B's =0 (3.6)
BTs =0,

where s, u, and w represent degrees-of-freedom corresponding to y, u”,
and " respectively. Matrix Bin (3.6) is composed of only trace terms
and its assembly requires integration only over 2D faces—evaluation of
which are computationally insignificant compared to the overall cost
of assembly—and can be handled by conventional assembly methods.
The remaining Gram matrix G, stiffness matrix B, and load vector [

Gram Matrix (G) Assembly - UW Maxwell

—&— Conventional
—6— Sum Factorized /
— « —Ref.line~p ? B

— + —Ref.line~p [ e 4

N

o
=)
T

Average elapsed time (s)
5]
\
\
\
\
\

N

o
IS
1

Enriched order (p r)

(a)

in (3.6) involve only volume integrals and are amenable to the sum
factorization techniques outlined previously.

The dimensionality of system (3.6) can be reduced by statically con-
densing variable s to obtain a system of the form

B'G'B B'G'B)/u BTG

BTa-1p  BRTa-17 “\gre-1 ) 37

B'G™'B B'G'B/\w B'G™I
The block diagonal structure of G achieved by breaking test spaces in
the practical DPG method (see Ref. [1]) allows this static condensation
to be performed on an element level. This is efficiently achieved by

performing a Cholesky factorization on G, then using back-substitution
to obtain G™'B, G™'B, and Gl

3.2.2. Computational results

Table 4 reports assembly times for the Gram matrix G, and for
the full DPG system G, B, and I. Comparing assembly times for G to
those for G, B, and [, it can be verified that the assembly of the Gram
matrix G incurs the greatest computational expense in the construction
of DPG systems—a result that reiterates the need for specialized Gram
matrix assembly routines considered in this work. Indeed, in the case
of enriched order p, = 9 notice that the conventional assembly time of
110 s is reduced to a mere 2.4 s for sum factorized assembly. Addition-
ally, it can be observed that in the case of a highly enriched test space
(Ap = 3) the additional cost for assembling B and I becomes relatively
negligible, requiring roughly 4% of overall cost for both conventional
and sum factorized routines.

DPG system (G, B, I) Assembly - UW Maxwell

102 g
—©&— Conventional
—6— Sum Factorized
@ — < —Ref. line ~p ? 7
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2 100f |~ + —Ref.line~p 7 > 3
g =
o)
E ~ //
o 10 2k 1% i ;
o) -7
g —= /.//
> E - -
<< Pt
~
10»4 L — i 1 L L L L 2
5 3 4 5 6 7 8 9

Enriched order (p r)

(b)

Fig. 2. Computational results for assembly of (a) Gram matrix G and (b) DPG system (neglecting trace terms) consisting of Gram matrix G, stiffness matrix B, and

load [ for the ultraweak Maxwell problem on a prismatic element.
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Table 5
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Computational times for construction of the ultraweak Maxwell Gram matrix using
conventional, partial sum factorization, and full sum factorization techniques.

pr G Assembly Time (s)
Conventional Partial Sum Factorization Full Sum Factorization

2 29x 1073 1.5x 1073 6.1 x 1074

3 4.0 x 1072 8.9x 1073 2.5%x 1073

4 3.0x 107! 4.1x1072 1.0 X 1072

5 1.7 x 10° 1.6 x 1071 3.4 x 1072

6 7.9 x 10° 5.5x 1071 1.0 x 107!

7 3.5 % 10! 1.6 X 10° 2.7 x 107!

8 1.2 x 10% 4.0 x 10° 6.4 x 107!

Observed Order 9.2 6.9 6.7

The observed order reported in Table 4 was calculated using regres-
sion on the three highest enriched order elements p, = 7,8,9 and
verifies the respective O(p®) and O(p”) complexity for conventional
and sum factorized assembly. Graphical representation of the data as
depicted in Fig. 2 reveals that expected asymptotic rates are reached
for relatively low polynomial orders p,.

3.3. Partial tensorization of hexahedral elements

To conclude our exposition of results we briefly consider a partial
tensorization of the hexahedral elements, based on the representation of
the hexahedra as a tensor product of a 2D square domain and 1D inter-
val. Such a construction produces auxiliary function sequences, shape
function families, and computational loops with structures similar to
those for the prism. Indeed, the primary benefit of this partially ten-
sorized representation is that it allows for a symmetric implementation
of prismatic and hexahedral elements. In the case of the authors’ code
base, this allowed a single sum factorization routine to handle assembly
of both element types. As an added benefit, the partially tensorized rep-
resentation reduces both the length and complexity of element assembly
routines by eliminating the assembly of secondary auxiliary matrices
(denoted ¢® in Ref. [10]). Note however that this representation allows
for polynomial anisotropy in only a single direction (the 2D square is
assumed to be of uniform polynomial order) and therefore may not be
suitable for routines requiring fully anisotropic polynomial refinements.

To provide a direct comparison of partially and fully tensorized sum
factorization on hexahedral elements, both Gram matrix assembly rou-
tines were implemented for the ultraweak Maxwell problem considered
previously. The results of this experiment are reported in Table 5 and
depicted graphically in Fig. 3.

Gram Matrix (G) Assembly - UW Maxwell

10%F ;
—&— Conventional
—A— Partial Factorization
D —+&— Full Factorization
[
£ 10°
°
@
(%2}
a
«
3]
o 107
o)
o
g 4
<
104 1 1 1 1 1

2 3 4 5 6 7 8
Enriched order (p r)

Fig. 3. Computational times for construction of the ultraweak Maxwell Gram
matrix using conventional, partial sum factorization, and full sum factorization
techniques.
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Consideration of Table 5 reveals that both partial sum factoriza-
tion and full sum factorization routines achieve the expected O(p”)
complexity. However, it can be seen both in Table 5 and in Fig. 3
that the partial sum factorization requires a roughly constant multi-
ple of four to six times greater computational cost compared to full
sum factorization. Despite the increased cost, the partial sum factoriza-
tion significantly reduced assembly time compared to the conventional
procedure—achieving a 10 X speed-up in the case of modest enriched
order p, = 5 and a 30 X speed-up in the case of enriched orderp, = 8.
While the increased expense of the partially tensorized representation is
certainly non-negligible, in applications where both prismatic and hex-
ahedral elements are used sum factorization routines for prismatic ele-
ments can be rather trivially extended to support hexahedral elements.
Additionally, the reduced length and complexity of a unified routine for
treatment of hexahedral and prismatic elements may further justify the
additional computational cost incurred for partial sum factorization.

4. Conclusions

Sum factorization routines for fast assembly of Gram matrices in
the exact sequence energy spaces H!, H(curl), H(div), and L? were pro-
posed based on the construction of prismatic shape functions as tensor-
products of 2D simplex and 1D interval shape functions. The proposed
algorithms for the partial tensorization of prismatic elements achieve
the same O(p”) complexity as the full tensorization of the hexahedra
(as a product of three 1D intervals) proposed in Ref. [10]. This some-
what unexpected result is achieved since the final matrix maintains the
same O(p’) complexity but the complexity of auxiliary matrix assem-
bly is increased from O(p®) in the case of the O(p®) in the case of
the fully tensorized hexahedra to @(p?) in the case of the prism. The
proposed algorithms were verified to achieve the expected @(p”) com-
plexity in each energy space—a significant reduction over conventional
O(p®) assembly routines.

To further illustrate the efficiency of sum factorization routines,
the ultraweak formulation of a Maxwell problem was considered.
The sum factorized construction of DPG matrices on a prismatic ele-
ment significantly reduced computational cost in the case of both
low-order and high-order elements. Additionally, a partial factoriza-
tion for hexahedral elements (as a product of 2D square and 1D
interval) was proposed to mirror the structure of prismatic elements.
Such a formulation allows for a symmetric treatment of prismatic
and hexahedral elements—enabling the unification of element assem-
bly routines for prismatic and hexahedral elements—but was observed
to incur a roughly constant four to six times penalty in computa-
tional performance. Despite this significant penalty, the expected O(p”)
complexity was observed and significant computational savings were
observed for all polynomial orders compared to conventional assembly
routines—achieving a 30 X reduced computational expense in the case
of enriched order p, = 8 elements.
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Recently, in the context of modern manycore architectures, espe-
cially GPU accelerators, parallel assembly of element matrices has
become a focus of study. While the sum factorization routines pre-
sented here were developed independent of parallel considerations,
these routines are in fact amenable to parallelization. For example,
evaluation of auxiliary matrices at 1D quadrature points could readily
be distributed. It should be noted however that the additional memory
required to store the auxiliary arrays for sum factorization—while rel-
atively small—may inhibit efficient GPU acceleration. Investigation of
the feasibility and efficacy of such techniques would be beneficial and
may further reduce the cost of DPG system assembly.

Sum factorization routines for the construction of DPG systems have
thus far been presented only for hexahedral and prismatic element types
since their structure is amenable to a tensor product representation.
While shape functions on the remaining tetrahedral and pyramid ele-
ment types do not possess a natural tensor structure, a tensor struc-
ture may be imparted through use of Duffy transformations as noted
in Ref. [6] and outlined in Refs. [7,14]. Sum factorized construction
of DPG systems on the remaining element types may then be achieved
by exploiting the resulting tensor structure. Such an extension of sum
factorization to include all finite element types would enable consider-
able computational savings on more general geometries—especially in
parallel element assembly routines where use of conventional assem-
bly on a subset of elements produces a significant load imbalance. The
extension of sum factorization to include all element types in each exact
sequence energy space is left to future work.
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