
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Deep Learning to Identify Transcription Start Sites

from CAGE Data

Hansi Zheng

Department of Electrical Engineering

and Computer Science

University of Central Florida

Orlando, United States
hansizheng@knights.ucf.edu

 Xiaoman Li

Department of Biomedical Science

University of Central Florida

Orlando, United States

xiaoman@mail.ucf.edu

 Haiyan Hu

Department of Electrical Engineering

and Computer Science

University of Central Florida

Orlando, United States
haihu@cs.ucf.edu

Abstract—Gene transcription start site (TSS) identification

is important to understanding transcriptional gene regulation.

Cap Analysis Gene Expression (CAGE) experiments have

recently become common practice for direct measurement of

TSSs. Currently, CAGE data available in public databases

created unprecedented opportunities to study gene

transcriptional initiation mechanisms under various cellular

conditions. However, due to potential transcriptional noises

inherent in CAGE data, in-silico methods are required to

identify bonafide TSSs from noises further. Here we present a

computational approach dlCAGE, an end-to-end deep neural

network to identify TSSs from CAGE data. dlCAGE

incorporate de-novo DNA regulatory motif features discovered

by DeepBind model architecture, as well as existing sequence

and structural features. Testing results of dlCAGE in several

cell lines in comparison with current state-of-the-art

approaches showed its superior performance and promise in

TSS identification from CAGE experiments.

Keywords—cap analysis gene expression, transcription start

site, promoter region, deep neural network, gene expression.

I. INTRODUCTION

Cap analysis gene expression (CAGE) has become a
standard experimental technique that can directly perform
genome-wide measurement of the 5’ end of mRNAs in a
biological sample [1]. Thus, CAGE has great potential to
help discover transcription start sites (TSSs) that are essential
to understanding gene regulation [2]. So far, a large number
of CAGE datasets have been deposited into public databases
[3], providing an unprecedented opportunity to study gene
transcriptional regulation. However, CAGE experiments
have been shown containing various types of transcriptional
noises, such as splicing byproducts and capped molecules [4,
5]. Therefore, computational methods are required to
eliminate such transcriptional noises further.

Computational methods have been developed to analyze
CAGE data [5-9]. Most of them focus on clustering CAGE
tags as TSSs. For example, PARACLU is able to cluster
CAGE tags at different scales controlled by a density
parameter [8]. The resulted multiple-scaled clusters were
used to illustrate the hierarchical organization of promoter
structures that may correspond to various gene regulatory
processes. RECLU improved PARACLU to identify
reproducible clusters across replicas [7]. To that end, they
defined the stability criteria for each CAGE cluster, which
was subsequently used to perform reproducibility evaluation.
CAGEr is an R package tool that can process CAGE data

from different resources [5]. It can also cluster CAGE tags as
identified TSSs, and provide CAGE data analysis across
samples, e.g., performing the differential test on CAGE
cluster-represented TSS usage between two samples. The
TSS classifier included in TOMTOOLS was developed to
separate CAGE-represented TSSs from non-TSSs [9]. TSS
classifier is based on a Gaussian mixture model that can
capture the relative distribution of 4-mer occurrences
surrounding TSSs. The generated 256 vectors of value
representative for each sequence and a Random Decision
Tree were then used to classify positive and negative
sequences. However, studies have frequently shown that
both sequence and structural features are important to TSS
identification [10-13]. Based on Support Vector Machines
(SVM) and Stochastic Gradient Boosting models, the most
recent study ADAPT-CAGE attempted accurate
identification of TSSs from CAGE data using multiple
features [14]. The features include CAGE tag clusters,
Polymerase II (Pol II) motifs such as TATA-box, MTE, and
CCAAT-Box, and structural features such as duplex disrupt
energy, bending stiffness and protein deformation.
Nevertheless, many sequence motifs exist in the promoter
regions besides Pol II motifs, which can also be useful for
TSS identification.

In this study, we present a deep learning model, named
dlCAGE, an end-to-end tool to identify bona fide TSSs from
CAGE data. Currently, various deep learning algorithms
have been widely practiced in bioinformatics problems with
the outstanding performance [15]. The large-scale genome-
wide CAGE data’s availability makes it possible to take
advantage of the deep learning methods. dlCAGE
implements the state-of-the-art deep architecture that enables
the optimal performance in transcription initiation pattern
characterization and TSS identification. Meanwhile, in
addition to existing sequence and structural features used for
TSS identification based on CAGE data, dlCAGE also
incorporates a high-performance protein-binding sequence
motif identification model, DeepBind, to identify de-novo
regulatory sequence features to facilitate TSS identification
[16]. We trained and tested dlCAGE in human embryonic
cell lines as well as an additional K562 cell line. dlCAGE
has shown good performance overall comparing to recent
studies on CAGE-based TSS identification.

The contributions of this work are summarized as follows:

 Present the first attempt to apply deep learning
methods to model and predict true TSSs from
CAGE experiments

 Incorporate the state-of-the-art DeepBind model
for genome-wide discovery of DNA regulatory

This work has been supported by the National Science Foundation

[grants 2015838 and 1661414] and the National Institute of Health [grant

R15HGM123407]..

2

motifs as features for TSS identification from
CAGE data.

II. MATERIALS AND METHOD

A. Training and testing data

For the training and testing, we downloaded the CAGE
samples corresponding to human embryonic H1 and H9 cell
lines from FANTOM project (CNhs14067, CNhs14068,
CNhs13964, CNhs11917 and CNhs12824), version
GRCh38 [3]. We also obtained the CAGE data in the K562
cell line (CNhs11250), version GRCh37. We additionally
obtained the corresponding H3K4me3 ChIP-Seq peak data in
H1 (ENCFF467XCU), H9 (ENCFF556EHG) and K562 cell
line (ENCFF915MJO) from ENCODE. The Pol II ChIP-Seq
peaks in the H1 cell line were downloaded from ENCODE
(ENCFF574FQP). Annotated TSSs were obtained from
GENCODE (Release 32).

We used data from H1 cell line as the training data. The
aligned CAGE tags were first filtered by the mapping quality
threshold (set as 10). The tags located within 50bps of each
other were then grouped as a single cluster, and peaks with
tag per million (TPM) less than 0.5 were ignored. The
nucleotide position with the highest CAGE tag counts within
each CAGE cluster was defined as the CAGE cluster
representative (Ccr). The training data was extracted from
the 100bp regions surrounding the Ccrs, called Ccr regions.
The positive training data was selected from those Ccr
regions that have their Ccrs located within the +-500
surrounding regions of the annotated TSSs, and are
overlapped with H3K4me3 and Pol II ChIP-Seq peaks. The
negative training data was selected from those Ccr regions
that have their Ccrs located outside +-500 regions of the
annotated TSSs and does not contain H3K4me3 and
Polymerase II peaks. To avoid sample imbalance in the
training data, we performed random sampling and obtained
12,500 positive and 12,500 negative samples, respectively.
We then split the combined 25k dataset into training and
validation set using a 4:1 ratio. The resulted training set
contains 20,000 Ccr regions, and the validation set includes
5,000 Ccr regions.

For model testing, we similarly obtained 41,314 and
28,608 negative from H9 cell line sample CNhs11917;
33,787 positive and 17,887 negative for H9 cell line sample
CNhs12824. For the K562 cell line (CNhs11250), we
compiled 12,706 positive and 179,085 negative samples. We
then performed random sampling to obtain 13,000 negative
K562 samples as part of the final testing set.

B. Network architecture

dlCAGE was developed based on VGG16, one of the
best performed convolutional neural network (CNN) model
[17]. The model has achieved 92.7% top-5 test accuracy in
ImageNet, a dataset of over 14 million images belonging to
1,000 classes with input data as 224x224x3 images. The
original VGG16 architecture consists of 13 convolutional
layers, five max pooling layers and three dense layers.
Considering the smaller size of our encoded input data
comparing with ImageNet, we adjusted the size of VGG16
CNN architecture accordingly to fit our input data for better
training and testing efficiency. We sampled multiple
parameters and different sizes of the deep neural network and
kept the dlCAGE architecture that best optimizes the
performance and efficiency (Fig. 1). The resulted dlCAGE

contains seven convolutional layers and three max pooling
layers. We also performed the optimization of the
hyperparameters, such as the size of each convolutional
kernel and the dropout rate. As a result, we set 0.4 for
dropout rate, 64 filters for the first and second convolutional
layers, 128 for the third and fourth convolutional layers, and
256 for the rest of the convolutional layers. The kernel size
for all of the convolutional layers is all 3x3. A dropout layer
follows after each max pooling layers to avoid overfitting. A
fully connected layer with 512 units is attached after the
flatten operation and followed by another fully connected
layer with 128 units. Between the final output layer with two
units, there is another dropout layer. dlCAGE then can
generate labels include 0 or 1 to indicate the predicted class
of the input data, together with a score that shows the
probability. We also incorporated the model checkpoint and
the early stopping mechanism during the training. Only the
model in certain epochs with the highest validation accuracy
during the entire training was saved. The training was
stopped if the validation accuracy was not improved over 25
iterations, and the last saved model was considered the
converged model. We implemented the dlCAGE using Keras
with TensorFlow backend.

C. Control model without DeepBind binding score features

dlCAGE has 927 DeepBind protein binding scores as

part of the input. To investigate the DeepBind score’s effect

on the performance of dlCAGE for CAGE-represented TSS

identification, we also created a control model without

binding scores as the input features. The architecture of the

control model is identical to the dlCAGE. By removing the

Binding score features, the control model has a feature input

size 17* 1024*1. We use the same 5-fold validation strategy

on the same training data. According to the comparison, the

dlCAGE with the binding score features achieved better

performance overall compared with the control model.

D. Model variation

Besides the VGG16-based dlCAGE approach, we also

implemented three additional deep learning models with

different architectures for comparison. These include a CNN

baseline model, a Long-Term-Short-Term-Memory

(LSTM)-based, and a Gated Recurrent Unit (GRU)-based

recurrent neural network (RNN) model. (LSTM) and Gated

Recurrent Unit (GRU) are two typical RNN models wildly

Fig. 1. (A) Feature Encoding Flow Chart; (B) dlCAGE Model Architecture.

3

used in sequence prediction problems due to their capacity

of learning order dependence [18, 19].

The CNN baseline model contains one convolutional

layer with 64 filters followed by a max pooling layer with 2

by 2 pooling size, which is then followed by 64 unit-fully

connected layers (FC layer) with ReLu activation, and

another 32 units FC layer with the same ReLu activation. At

last, a final FC layer with softmax activation. The LSTM-

based model consists of 16 units followed by a 0.4 drop out

layers and a 2 unit FC layer. The GRU model has an almost

identical structure as the above LSTM model, except the

LSTM layer was replaced by a GRU layer. Both of the

RNN-based models take 64 channels, 1024 time step as

input, and generate a single score between zero and one as

the prediction probability.

We implemented all the alternative models mentioned

above, using Keras with TensorFlow backend. We then

trained all three alternative models with the same data and

training strategy. We also utilized the same holdout data for

performance evaluation and comparison.

E. Features and feature encoding

Each Ccr region was encoded using one-hot encoding.
We also included 13 DNA Structure features that have been
used in literature to identify promoter and TSS regions [12]:
bending stiffness, stacking energy, duplex free energy,
protein deformation, protein DNA twist, B DNA twist, Z
DNA stability, duplex disrupt energy, propeller twist, DNA
denaturation, A-philicity, DNA bendability, nucleosome
positioning. Each structure feature was encoded as a size-
1,024 vector and calculated as described in the recent work
[14]. In cases the encoded vector for one structural feature is
shorter than the 1,024, we filled the rest of the vector using
zeros. Stacking the thirteen encoded vectors together, we
have a 1,024x13 structural feature matrix (Fig.1).

In addition to the above sequence and structural features,
DNA regulatory motifs play essential roles in gene
transcription and are important features for CAGE-detected
TSS identification [14, 20-22]. Instead of specifying a fixed
number of known motifs, we incorporate the de-novo motif

discovery model, DeepBind, into our dlCAGE pipeline.
DeepBind is a CNN-based deep learning model for protein-
binding sequence motif identification. Trained on a huge
number of sequences, DeepBind provides hundreds of pre-
trained models that target different protein-binding sequence
motifs. The resulted DeepBind score indicates the binding
affinity between a given DNA sequence and a specific
regulatory protein. We first applied DeepBind models to our
training and testing sequences, and then encoded DeepBind
binding scores as part of the input features toward TSS
identification. In detail, DeepBind provides 927 pre-trained

models that can produce the binding scores for each
candidate sequence. In our deep learning models, we
included all 927 pre-trained DeepBind models as 927
features. For each sequence in our dataset, we used a moving
window strategy to obtain a set of DeepBind binding score
feature vector, the size of the window is 50 bps, and the step
of the window is 25 bps.

III. RESULT

A. dlCAGE performance in comparison to alternative deep

learning models

We performed K-fold (K=5) cross-validation for model

performance evaluation based on the compiled training data

set corresponding to the H1 cell line (see Material and

Method, Section A for details). The TSS identification task

is a binary classification problem. We thus included five

metrics for the performance evaluation: sensitivity,

specificity, precision, F1 score, and accuracy.

The above performance metrics were also used for

dlCAGE model architecture selection, the performance

comparison with the latest work and the case study in the

K562 cell line. The performance of dlCAGE is overall

constantly above 90%, suggesting dlCAGE is not likely to

suffer from overfitting. To understand how DeepBind score

as input features affect model performance, we also

performed K-fold cross-validation on dlCAGE architecture

with DeepBind model removed from the pipeline (control

model without DeepBind). The results show that with the

same deep learning architecture, the control model without

DeepBind has its performance dropped in terms of all the

metrics, and it can have its sensitivity and F1 score dropped

below 90% for parts of the data. These results suggest the

DeepBind score features contribute to true TSS

identification from CAGE data noises, and dlCAGE can

suffer from performance loss when working without

DeepBind binding score features.

The architecture of a deep neural network is essential to

its learning and prediction performance. To investigate the

influence of different deep learning model architectures on

the TSS prediction accuracy in comparison with dlCAGE,

we implemented three alternative deep learning models

including a CNN baseline, a LSTM-based, and a GRU-

based model (Materials and Method section). All the

training procedure was performed on the same 20,000 Ccr

training sequences and 5,000 testing sequences in H1 cell

line. As shown in Table I, dlCAGE outperformed the three

alternative models in terms of specificity, precision, F1

score and accuracy. These deep learning models have

achieved sensitivity ranging from approximately 89% to

TABLE I. COMPARISON OF DIFFERENT NEURAL NETWORK ARCHITECTURE

Architecture
Metrics

Sensitivity Specificity Precision F1 score Accuracy

GRU-based 0.8972 0.9042 0.9009 0.8991 0.9008

LSTM-based 0.9022 0.8904 0.8888 0.8954 0.8962

CNN baseline 0.9143 0.9302 0.9271 0.9207 0.9224

dlCAGE 0.9180 0.9543 0.9512 0.9343 0.9364

4

92%, specificity ranging from 89% to 95%, F1 score and

accuracy from 89% to 93%. In general, CNN-based deep

learning models have better performance than LSTM-based

and GRU-based RNN models with the current input data

encoding mechanism. dlCAGE achieved 95% precision and

specificity, which is much higher than all the alternative

models, suggesting dlCAGE is less likely to identify non-

TSS CAGE signals and have a higher chance of recovering

true CAGE TSSs comparing to the alternative models.

B. Performance comparison with the most recent work

We also compared dlCAGE with the most recent work on
TSS identification from CAGE data, ADAPT-CAGE.
ADAPT-CAGE was trained on ten Pol II motif binding
information, 13 structure features and a TPM-based CAGE
cluster expression score. The method involves Gradient
Boosting Machines (GBMs) trained with Pol II motif affinity
scores, and SVM to model the structural features. The
combined output of the trained GBMs and SVMs was then
used as the input of the next GBM for an overall structural
feature score. Then the overall structural feature and the
CAGE cluster expression scores were combined as the input
of the final GBM that will produce a final classification
score. Applying a cutoff on the final score, the user can
determine the ADAPT-CAGE prediction result. The
comparison was performed on two samples of the H9 cell
line (12724-135G6 and 12626-134E7), respectively (see
Material and method). We run ADAPT-CAGE with the
default parameters. The minimum TPM value of accepted
CAGE clusters was set as 0.5. The CAGE tags with a
mapping quality lower than ten were filtered out, and the
maximum required distance between discovered CAGE
clusters was set to 50. The maximum size of the cluster was
limited to 1 kbp. This setting resulted in a total of 121,596
Ccr regions and TSS predictions (69,922 from the sample
12626-134E7 and 51,674 from 12724-135G6, respectively),
including 40,094 positive and 81,502 negative predictions.
We applied dlCAGE on the same set of Ccr regions and
predicted 72,155 positive and 49,441 negative TSSs. Table II
shows the performance of dlCAGE in comparison with

ADAPT-CAGE. The results show that dlCAGE has a
significant performance increase across all five metrics. For
example, dlCAGE achieved a 88% sensitivity in contrast to
the 33% sensitivity of ADAPT-CAGE.

Meanwhile, dlCAGE obtained an 87% specificity value
while ADAPT-CAGE had its specificity as 67%. This result
suggests dlCAGE is more likely to pick up true TSSs and
true noises from CAGE data. Similarly, dlCAGE achieved
nearly 90% F1 score and 88% accuracy comparing to the 43%
F1 score and 46% accuracy of ADAPT-CAGE. Further
investigation revealed individual cases dlCAGE had
predicted correctly. For example, Ccr regions surrounding
chr20: 1185670, chr15: 82680533 and chr8 66870785 were
predicted as positive TSSs by dlCAGE, but negative TSSs by
ADAPT-CAGE. We found all these Ccrs are located within
the +/-500bp surrounding regions of genes Transmembrane
Protein 74B, Adaptor Related Protein Complex 3 Subunit
Beta 2 and Minichromosome Maintenance Domain
Containing 2, respectively. They all have H3K4me3 peaks in
their surrounding 200bp regions. Therefore, they are most
likely to be true TSSs. On the other hand, Ccr regions
surrounding chr1: 214646966; chr2: 38231464 and chr5:
83522984 were predicted as false TSSs by dlCAGE, but true
TSSs by ADAPT-CAGE. We checked their genomic
locations and found they are not close to any annotated TSSs.
In the meantime, there are not H3K4me3 signals in these
regions. They are thus most likely to be noises.

C. Case study(K562 cell line)

For a more comprehensive comparison, we performed an

additional test on the K562 cell line (sample: CNhs11250).

We identified in total 25,707 Ccr regions in the K562

sample, from which dlCAGE predicted 7,935 as positive

TSSs and 17,772 as negative TSSs. Table III shows the

overall performance. We observed that dlCAGE achieved a

75% F1 score and 80% accuracy. In contrast, ADAPT-

CAGE obtained a 4% F1 score and 50% accuracy. In fact,

out of 7,935 positive TSS predictions made by dlCAGE,

7,770 (98%) contains H3K4me3 and are located within +/-

500 bp surrounding regions of annotated TSSs. Only 165

(2%) do not contain H3K4me3 peaks and are located

outside the +/- 500 bp region of annotated TSSs, and thus

are likely false predictions. In the meantime, out of the

17,772 negative TSSs predicted by dlCAGE, 12,728 do not

contain H3K4me3 peaks and are located outside +/-500 bp

surrounding regions of annotated TSSs. On the other hand,

ADAPT-CAGE predicted 553 positive TSSs and 25,154 as

negative TSSs. Only 280 of the 553 positive-predicted Ccr

TABLE II. PERFORMANCE COMPARISON WITH ADAPT-CAGE

Tools
Metrics

Sensitivity Specificity Precision F1 score Accuracy

dlCAGE -12626-134E7 0.8789 0.8846 0.9166 0.8974 0.8812

dlCAGE -12724-135G6 0.8863 0.8550 0.9203 0.9030 0.8755

ADAPT-CAGE - 12626-
134E7

0.3385 0.6688 0.5961 0.4318 0.4736

ADAPT-CAGE - 12724-

135G6
0.3199 0.6745 0.6499 0.4288 0.4426

dlCAGE-overall 0.8823 0.8732 0.9183 0.8999 0.8788

ADAPT-CAGE-overall 0.3302 0.6710 0.6184 0.4305 0.4605

TABLE III. CASE STUDY IN THE K562 CELL LINE

Tools
Metrics

Sensitivity Specificity Precision F1-score Accuracy

dlCAGE 0.6115 0.9873 0.9792 0.7529 0.8016

ADAPT

-CAGE
0.0220 0.9790 0.5063 0.0422 0.5060

5

regions (0.506) are located within the +/-500 bp surrounding

regions of annotated TSSs and contain H3K4me3 peaks. We

found that there were 273 Ccr regions predicted as positive

TSSs by ADAPT-CAGE and negative TSSs by dlCAGE

that do not have H3K4me3 peaks and are not located close

to annotated TSSs. For example, the Ccr regions

surrounding the genomic locations: chr7: 120889267, chr18:

9744585, and chr7, 26224223. In the meantime, we found

7,588 Ccr regions predicted as negative TSSs by ADAPT-

CAGE were identified as positive TSSs by dlCAGE. All of

these Ccr regions are located within the +/-500bp regions of

annotated TSSs and also overlap with H3K4me3 peaks in

the K562 cell line. For example, the Ccr regions

surrounding genomic locations: chr1: 32797313, chr19:

51226649, and chr12: 95467315, overlap with three

annotated TSSs of genes: Histone Deacetylase 1, C-Type

Lectin Domain Containing 11A and nuclear receptor

subfamily 2 group C member 1, respectively.

IV. CONCLUSION

In this article, we introduced dlCAGE, a deep learning

model, to distinguish true TSSs from transcriptional noises

in CAGE data. Identifying TSSs is essential to the discovery

of transcription initiation mechanisms and further

understanding of gene transcriptional regulation. Deep

learning methods have been widely applied in many

bioinformatics problems and achieved outstanding

performance, but have not been seen in TSS identification

from CAGE data. In the meantime, current work on TSS

identification from CAGE data is mostly based on a limited

number of sequence and structural features. dlCAGE was

developed to exploit the current development of deep

learning and also take advantage of the genome-wide motif

discovery methods for feature identification. With VGG16-

based deep learning architecture, dlCAGE integrated scores

from 927 DeepBind motif binding models as part of

sequence features to identify TSSs in addition to the one-hot

encoded sequence surrounding the Ccrs and 13 Structure

features. Applying dlCAGE to several human embryonic

cell lines and K562, we showed dlCAGE is able to achieve

outstanding performance in TSS prediction in comparison

with the most recent work. We also shown integrating de-

novo protein binding motif models such as DeepBind into

the TSS prediction pipelines can improve the overall

prediction performance.

V. REFERENCES

[1] R. Kodzius et al., "CAGE: cap analysis of gene expression," (in

eng), Nat Methods, vol. 3, no. 3, pp. 211-22, Mar 2006.
[Online]. Available:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&

db=PubMed&dopt=Citation&list_uids=16489339

[2] S. Wang, A. Talukder, M. Cha, X. Li, and H. Hu,

"Computational annotation of miRNA transcription start sites,"

Brief Bioinform, Jan 31 2020, doi: 10.1093/bib/bbz178.
[3] M. Lizio et al., "Gateways to the FANTOM5 promoter level

mammalian expression atlas," Genome Biol, vol. 16, p. 22, Jan 5

2015, doi: 10.1186/s13059-014-0560-6.
[4] H. Takahashi, T. Lassmann, M. Murata, and P. Carninci, "5'

end-centered expression profiling using cap-analysis gene

expression and next-generation sequencing," Nat Protoc, vol. 7,
no. 3, pp. 542-61, Feb 23 2012, doi: 10.1038/nprot.2012.005.

[5] V. Haberle, A. R. Forrest, Y. Hayashizaki, P. Carninci, and B.

Lenhard, "CAGEr: precise TSS data retrieval and high-
resolution promoterome mining for integrative analyses,"

Nucleic Acids Res, vol. 43, no. 8, p. e51, Apr 30 2015, doi:

10.1093/nar/gkv054.
[6] C. Barham, M. Cha, X. Li, and H. Hu, "Application of Deep

Learning Models to MicroRNA Transcription Start Site

Identification," in IEEE 7th International Conference on
Bioinformatics and Computational Biology, 2019: IEEE, pp. 22-

28.

[7] H. Ohmiya et al., "RECLU: a pipeline to discover reproducible
transcriptional start sites and their alternative regulation using

capped analysis of gene expression (CAGE)," BMC Genomics,

vol. 15, p. 269, Apr 25 2014, doi: 10.1186/1471-2164-15-269.
[8] M. C. Frith, E. Valen, A. Krogh, Y. Hayashizaki, P. Carninci,

and A. Sandelin, "A code for transcription initiation in

mammalian genomes," Genome Res, vol. 18, no. 1, pp. 1-12, Jan
2008, doi: 10.1101/gr.6831208.

[9] F. Consortium et al., "A promoter-level mammalian expression

atlas," Nature, vol. 507, no. 7493, pp. 462-70, Mar 27 2014, doi:
10.1038/nature13182.

[10] A. Kanhere and M. Bansal, "Structural properties of promoters:

similarities and differences between prokaryotes and
eukaryotes," Nucleic Acids Res, vol. 33, no. 10, pp. 3165-75,

2005, doi: 10.1093/nar/gki627.

[11] Y. Fukue, N. Sumida, J. Nishikawa, and T. Ohyama, "Core
promoter elements of eukaryotic genes have a highly distinctive

mechanical property," Nucleic Acids Res, vol. 32, no. 19, pp.
5834-40, 2004, doi: 10.1093/nar/gkh905.

[12] Y. Gan, J. Guan, and S. Zhou, "A comparison study on feature

selection of DNA structural properties for promoter prediction,"
BMC Bioinformatics, vol. 13, p. 4, Jan 7 2012, doi:

10.1186/1471-2105-13-4.

[13] T. Abeel, Y. Saeys, E. Bonnet, P. Rouze, and Y. Van de Peer,
"Generic eukaryotic core promoter prediction using structural

features of DNA," Genome Res, vol. 18, no. 2, pp. 310-23, Feb

2008, doi: 10.1101/gr.6991408.
[14] G. K. Georgakilas, N. Perdikopanis, and A. Hatzigeorgiou,

"Solving the transcription start site identification problem with

ADAPT-CAGE: a Machine Learning algorithm for the analysis
of CAGE data," Sci Rep, vol. 10, no. 1, p. 877, Jan 21 2020, doi:

10.1038/s41598-020-57811-3.

[15] A. Talukder, C. Barham, X. Li, and X. Hu, "Interpretation of
Deep Learning in Genomics and Epigenomics," Briefings in

Bioinformatics, 2020.

[16] B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey,
"Predicting the sequence specificities of DNA- and RNA-

binding proteins by deep learning," Nat Biotechnol, vol. 33, no.

8, pp. 831-8, Aug 2015, doi: 10.1038/nbt.3300.
[17] K. Simonyan and A. Zisserman, "Very deep convolutional

networks for large-scale image recognition," in ICLR, 2015.

[18] K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H.
Schwenk, and Y. Bengio, "Learning phrase representations

using RNN encoder-decoder for statistical machine translation,"

in Conference on Empirical Methods in Natural Language
Processing (EMNLP 2014), 2014.

[19] S. Hochreiter and J. Schmidhuber, "Long short-term memory "

Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[20] Y. Wang, S. Goodison, X. Li, and H. Hu, "Prognostic cancer

gene signatures share common regulatory motifs," Sci Rep, vol.

7, no. 1, p. 4750, Jul 6 2017, doi: 10.1038/s41598-017-05035-3.
[21] J. Ding, V. Dhillon, X. Li, and H. Hu, "Systematic discovery of

cofactor motifs from ChIP-seq data by SIOMICS," Methods,

vol. 79-80, pp. 47-51, Jun 2015, doi:
10.1016/j.ymeth.2014.08.006.

[22] S. M. Ruppert, M. Chehtane, G. Zhang, H. Hu, X. Li, and A. R.

Khaled, "JunD/AP-1-mediated gene expression promotes
lymphocyte growth dependent on interleukin-7 signal

transduction," PLoS One, vol. 7, no. 2, p. e32262, 2012, doi:

10.1371/journal.pone.0032262.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16489339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16489339

