Deep Learning to Identify Transcription Start Sites
from CAGE Data

Hansi Zheng
Department of Electrical Engineering
and Computer Science
University of Central Florida
Orlando, United States
hansizheng@knights.ucf.edu

Abstract—Gene transcription start site (TSS) identification
is important to understanding transcriptional gene regulation.
Cap Analysis Gene Expression (CAGE) experiments have
recently become common practice for direct measurement of
TSSs. Currently, CAGE data available in public databases
created unprecedented opportunities to study gene
transcriptional initiation mechanisms under various cellular
conditions. However, due to potential transcriptional noises
inherent in CAGE data, in-silico methods are required to
identify bonafide TSSs from noises further. Here we present a
computational approach dICAGE, an end-to-end deep neural
network to identify TSSs from CAGE data. dICAGE
incorporate de-novo DNA regulatory motif features discovered
by DeepBind model architecture, as well as existing sequence
and structural features. Testing results of dICAGE in several
cell lines in comparison with current state-of-the-art
approaches showed its superior performance and promise in
TSS identification from CAGE experiments.

Keywords—cap analysis gene expression, transcription start
site, promoter region, deep neural network, gene expression.

I. INTRODUCTION

Cap analysis gene expression (CAGE) has become a
standard experimental technique that can directly perform
genome-wide measurement of the 5° end of mRNAs in a
biological sample [1]. Thus, CAGE has great potential to
help discover transcription start sites (TSSs) that are essential
to understanding gene regulation [2]. So far, a large number
of CAGE datasets have been deposited into public databases
[3], providing an unprecedented opportunity to study gene
transcriptional regulation. However, CAGE experiments
have been shown containing various types of transcriptional
noises, such as splicing byproducts and capped molecules [4,
5]. Therefore, computational methods are required to
eliminate such transcriptional noises further.

Computational methods have been developed to analyze
CAGE data [5-9]. Most of them focus on clustering CAGE
tags as TSSs. For example, PARACLU is able to cluster
CAGE tags at different scales controlled by a density
parameter [8]. The resulted multiple-scaled clusters were
used to illustrate the hierarchical organization of promoter
structures that may correspond to various gene regulatory
processes. RECLU improved PARACLU to identify
reproducible clusters across replicas [7]. To that end, they
defined the stability criteria for each CAGE cluster, which
was subsequently used to perform reproducibility evaluation.
CAGEr is an R package tool that can process CAGE data

This work has been supported by the National Science Foundation

[grants 2015838 and 1661414] and the National Institute of Health [grant
RI15SHGM123407]..

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Xiaoman Li
Department of Biomedical Science
University of Central Florida
Orlando, United States
xiaoman@mail.ucf.edu

Haiyan Hu
Department of Electrical Engineering
and Computer Science
University of Central Florida
Orlando, United States
haihu@cs.ucf.edu

from different resources [5]. It can also cluster CAGE tags as
identified TSSs, and provide CAGE data analysis across
samples, e.g., performing the differential test on CAGE
cluster-represented TSS usage between two samples. The
TSS classifier included in TOMTOOLS was developed to
separate CAGE-represented TSSs from non-TSSs [9]. TSS
classifier is based on a Gaussian mixture model that can
capture the relative distribution of 4-mer occurrences
surrounding TSSs. The generated 256 vectors of value
representative for each sequence and a Random Decision
Tree were then used to classify positive and negative
sequences. However, studies have frequently shown that
both sequence and structural features are important to TSS
identification [10-13]. Based on Support Vector Machines
(SVM) and Stochastic Gradient Boosting models, the most
recent study ADAPT-CAGE attempted accurate
identification of TSSs from CAGE data using multiple
features [14]. The features include CAGE tag clusters,
Polymerase II (Pol II) motifs such as TATA-box, MTE, and
CCAAT-Box, and structural features such as duplex disrupt
energy, bending stiffness and protein deformation.
Nevertheless, many sequence motifs exist in the promoter
regions besides Pol II motifs, which can also be useful for
TSS identification.

In this study, we present a deep learning model, named
dICAGE, an end-to-end tool to identify bona fide TSSs from
CAGE data. Currently, various deep learning algorithms
have been widely practiced in bioinformatics problems with
the outstanding performance [15]. The large-scale genome-
wide CAGE data’s availability makes it possible to take
advantage of the deep learning methods. dICAGE
implements the state-of-the-art deep architecture that enables
the optimal performance in transcription initiation pattern
characterization and TSS identification. Meanwhile, in
addition to existing sequence and structural features used for
TSS identification based on CAGE data, dICAGE also
incorporates a high-performance protein-binding sequence
motif identification model, DeepBind, to identify de-novo
regulatory sequence features to facilitate TSS identification
[16]. We trained and tested dICAGE in human embryonic
cell lines as well as an additional K562 cell line. dICAGE
has shown good performance overall comparing to recent
studies on CAGE-based TSS identification.

The contributions of this work are summarized as follows:

e Present the first attempt to apply deep learning
methods to model and predict true TSSs from
CAGE experiments

e Incorporate the state-of-the-art DeepBind model
for genome-wide discovery of DNA regulatory

motifs as features for TSS identification from
CAGE data.

II. MATERIALS AND METHOD

A. Training and testing data

For the training and testing, we downloaded the CAGE
samples corresponding to human embryonic H1 and H9 cell
lines from FANTOM project (CNhs14067, CNhs14068,
CNhs13964, CNhs11917 and CNhs12824), version
GRCh38 [3]. We also obtained the CAGE data in the K562
cell line (CNhs11250), version GRCh37. We additionally
obtained the corresponding H3K4me3 ChIP-Seq peak data in
H1 (ENCFF467XCU), H9 (ENCFF556EHG) and K562 cell
line (ENCFF915MJO) from ENCODE. The Pol II ChIP-Seq
peaks in the H1 cell line were downloaded from ENCODE
(ENCFF574FQP). Annotated TSSs were obtained from
GENCODE (Release 32).

We used data from H1 cell line as the training data. The
aligned CAGE tags were first filtered by the mapping quality
threshold (set as 10). The tags located within 50bps of each
other were then grouped as a single cluster, and peaks with
tag per million (TPM) less than 0.5 were ignored. The
nucleotide position with the highest CAGE tag counts within
each CAGE cluster was defined as the CAGE cluster
representative (Ccr). The training data was extracted from
the 100bp regions surrounding the Ccrs, called Cer regions.
The positive training data was selected from those Cer
regions that have their Ccrs located within the +-500
surrounding regions of the annotated TSSs, and are
overlapped with H3K4me3 and Pol II ChIP-Seq peaks. The
negative training data was selected from those Ccr regions
that have their Ccrs located outside +-500 regions of the
annotated TSSs and does not contain H3K4me3 and
Polymerase II peaks. To avoid sample imbalance in the
training data, we performed random sampling and obtained
12,500 positive and 12,500 negative samples, respectively.
We then split the combined 25k dataset into training and
validation set using a 4:1 ratio. The resulted training set
contains 20,000 Ccr regions, and the validation set includes
5,000 Cecr regions.

For model testing, we similarly obtained 41,314 and
28,608 negative from H9 cell line sample CNhs11917;
33,787 positive and 17,887 negative for H9 cell line sample
CNhs12824. For the K562 cell line (CNhs11250), we
compiled 12,706 positive and 179,085 negative samples. We
then performed random sampling to obtain 13,000 negative
K562 samples as part of the final testing set.

B. Network architecture

dICAGE was developed based on VGG16, one of the
best performed convolutional neural network (CNN) model
[17]. The model has achieved 92.7% top-5 test accuracy in
ImageNet, a dataset of over 14 million images belonging to
1,000 classes with input data as 224x224x3 images. The
original VGG16 architecture consists of 13 convolutional
layers, five max pooling layers and three dense layers.
Considering the smaller size of our encoded input data
comparing with ImageNet, we adjusted the size of VGG16
CNN architecture accordingly to fit our input data for better
training and testing efficiency. We sampled multiple
parameters and different sizes of the deep neural network and
kept the dICAGE architecture that best optimizes the
performance and efficiency (Fig. 1). The resulted dICAGE

contains seven convolutional layers and three max pooling
layers. We also performed the optimization of the
hyperparameters, such as the size of each convolutional
kernel and the dropout rate. As a result, we set 0.4 for
dropout rate, 64 filters for the first and second convolutional
layers, 128 for the third and fourth convolutional layers, and
256 for the rest of the convolutional layers. The kernel size
for all of the convolutional layers is all 3x3. A dropout layer
follows after each max pooling layers to avoid overfitting. A
fully connected layer with 512 units is attached after the
flatten operation and followed by another fully connected
layer with 128 units. Between the final output layer with two
units, there is another dropout layer. dICAGE then can
generate labels include 0 or 1 to indicate the predicted class
of the input data, together with a score that shows the
probability. We also incorporated the model checkpoint and
the early stopping mechanism during the training. Only the
model in certain epochs with the highest validation accuracy
during the entire training was saved. The training was
stopped if the validation accuracy was not improved over 25
iterations, and the last saved model was considered the
converged model. We implemented the dICAGE using Keras
with TensorFlow backend.

927 Deepbind Models

(A)

1024 x 47

+-500 regior matrix
atri;

CAGE cluster
Representative
(Cer)

1024 x 64 x1

matrix [nput Matrix
1024x 4

matrix

(B)
64x1024x

[nput

¥
I DropOut | | DropOut I
[]

[]
Flatten Dense

Conv [Conv l [Conv]

Conv

[MaxPooling I MaxPooling I m Out
,
[DropQOut] [DropOut]

Dense
[[

Fig. 1. (A) Feature Encoding Flow Chart; (B) dICAGE Model Architecture.

{Ekike]

MazxPooling

C. Control model without DeepBind binding score features

dICAGE has 927 DeepBind protein binding scores as
part of the input. To investigate the DeepBind score’s effect
on the performance of dICAGE for CAGE-represented TSS
identification, we also created a control model without
binding scores as the input features. The architecture of the
control model is identical to the dICAGE. By removing the
Binding score features, the control model has a feature input
size 17* 1024*1. We use the same 5-fold validation strategy
on the same training data. According to the comparison, the
dICAGE with the binding score features achieved better
performance overall compared with the control model.

D. Model variation

Besides the VGG16-based dICAGE approach, we also
implemented three additional deep learning models with
different architectures for comparison. These include a CNN
baseline model, a Long-Term-Short-Term-Memory
(LSTM)-based, and a Gated Recurrent Unit (GRU)-based
recurrent neural network (RNN) model. (LSTM) and Gated
Recurrent Unit (GRU) are two typical RNN models wildly

used in sequence prediction problems due to their capacity
of learning order dependence [18, 19].

The CNN baseline model contains one convolutional
layer with 64 filters followed by a max pooling layer with 2
by 2 pooling size, which is then followed by 64 unit-fully
connected layers (FC layer) with ReLu activation, and
another 32 units FC layer with the same ReLu activation. At
last, a final FC layer with softmax activation. The LSTM-
based model consists of 16 units followed by a 0.4 drop out
layers and a 2 unit FC layer. The GRU model has an almost
identical structure as the above LSTM model, except the
LSTM layer was replaced by a GRU layer. Both of the
RNN-based models take 64 channels, 1024 time step as
input, and generate a single score between zero and one as
the prediction probability.

We implemented all the alternative models mentioned
above, using Keras with TensorFlow backend. We then
trained all three alternative models with the same data and
training strategy. We also utilized the same holdout data for
performance evaluation and comparison.

E. Features and feature encoding

Each Cecr region was encoded using one-hot encoding.
We also included 13 DNA Structure features that have been
used in literature to identify promoter and TSS regions [12]:
bending stiffness, stacking energy, duplex free energy,
protein deformation, protein DNA twist, B DNA twist, Z
DNA stability, duplex disrupt energy, propeller twist, DNA
denaturation, A-philicity, DNA bendability, nucleosome
positioning. Each structure feature was encoded as a size-
1,024 vector and calculated as described in the recent work
[14]. In cases the encoded vector for one structural feature is
shorter than the 1,024, we filled the rest of the vector using
zeros. Stacking the thirteen encoded vectors together, we
have a 1,024x13 structural feature matrix (Fig.1).

In addition to the above sequence and structural features,
DNA regulatory motifs play essential roles in gene
transcription and are important features for CAGE-detected
TSS identification [14, 20-22]. Instead of specifying a fixed
number of known motifs, we incorporate the de-novo motif

models that can produce the binding scores for each
candidate sequence. In our deep learning models, we
included all 927 pre-trained DeepBind models as 927
features. For each sequence in our dataset, we used a moving
window strategy to obtain a set of DeepBind binding score
feature vector, the size of the window is 50 bps, and the step
of the window is 25 bps.

III. RESULT

A. dICAGE performance in comparison to alternative deep
learning models

We performed K-fold (K=5) cross-validation for model
performance evaluation based on the compiled training data
set corresponding to the HI cell line (see Material and
Method, Section A for details). The TSS identification task
is a binary classification problem. We thus included five
metrics for the performance evaluation: sensitivity,
specificity, precision, F1 score, and accuracy.

The above performance metrics were also used for
dICAGE model architecture selection, the performance
comparison with the latest work and the case study in the
K562 cell line. The performance of dICAGE is overall
constantly above 90%, suggesting dICAGE is not likely to
suffer from overfitting. To understand how DeepBind score
as input features affect model performance, we also
performed K-fold cross-validation on dICAGE architecture
with DeepBind model removed from the pipeline (control
model without DeepBind). The results show that with the
same deep learning architecture, the control model without
DeepBind has its performance dropped in terms of all the
metrics, and it can have its sensitivity and F1 score dropped
below 90% for parts of the data. These results suggest the
DeepBind score features contribute to true TSS
identification from CAGE data noises, and dICAGE can
suffer from performance loss when working without
DeepBind binding score features.

The architecture of a deep neural network is essential to
its learning and prediction performance. To investigate the
influence of different deep learning model architectures on

TABLE I. COMPARISON OF DIFFERENT NEURAL NETWORK ARCHITECTURE

Metrics
Architecture
Sensitivity Specificity Precision F1 score Accuracy
GRU-based 0.8972 0.9042 0.9009 0.8991 0.9008
LSTM-based 0.9022 0.8904 0.8888 0.8954 0.8962
CNN baseline 0.9143 0.9302 0.9271 0.9207 0.9224
dICAGE 0.9180 0.9543 0.9512 0.9343 0.9364

discovery model, DeepBind, into our dICAGE pipeline.
DeepBind is a CNN-based deep learning model for protein-
binding sequence motif identification. Trained on a huge
number of sequences, DeepBind provides hundreds of pre-
trained models that target different protein-binding sequence
motifs. The resulted DeepBind score indicates the binding
affinity between a given DNA sequence and a specific
regulatory protein. We first applied DeepBind models to our
training and testing sequences, and then encoded DeepBind
binding scores as part of the input features toward TSS
identification. In detail, DeepBind provides 927 pre-trained

the TSS prediction accuracy in comparison with dICAGE,
we implemented three alternative deep learning models
including a CNN baseline, a LSTM-based, and a GRU-
based model (Materials and Method section). All the
training procedure was performed on the same 20,000 Cecr
training sequences and 5,000 testing sequences in HI cell
line. As shown in Table I, dICAGE outperformed the three
alternative models in terms of specificity, precision, F1
score and accuracy. These deep learning models have
achieved sensitivity ranging from approximately 89% to

TABLE II.

PERFORMANCE COMPARISON WITH ADAPT-CAGE

Tool Metrics

0018 Sensitivity Specificity Precision F1 score Accuracy
dICAGE -12626-134E7 0.8789 0.8846 0.9166 0.8974 0.8812
dICAGE -12724-135G6 0.8863 0.8550 0.9203 0.9030 0.8755
ADAPTICAGE - 12626- 0.3385 0.6688 0.5961 0.4318 0.4736
ADAPT-CAGE 12724- 0.3199 0.6745 0.6499 0.4288 0.4426
135G6
dICAGE-overall 0.8823 0.8732 0.9183 0.8999 0.8788
ADAPT-CAGE-overall 0.3302 0.6710 0.6184 0.4305 0.4605

92%, specificity ranging from 89% to 95%, F1 score and ~ ADAPT-CAGE. The results show that dICAGE has a

accuracy from 89% to 93%. In general, CNN-based deep
learning models have better performance than LSTM-based
and GRU-based RNN models with the current input data
encoding mechanism. dICAGE achieved 95% precision and
specificity, which is much higher than all the alternative
models, suggesting dICAGE is less likely to identify non-
TSS CAGE signals and have a higher chance of recovering
true CAGE TSSs comparing to the alternative models.

B. Performance comparison with the most recent work

We also compared dICAGE with the most recent work on
TSS identification from CAGE data, ADAPT-CAGE.
ADAPT-CAGE was trained on ten Pol II motif binding
information, 13 structure features and a TPM-based CAGE
cluster expression score. The method involves Gradient
Boosting Machines (GBMs) trained with Pol II motif affinity
scores, and SVM to model the structural features. The
combined output of the trained GBMs and SVMs was then
used as the input of the next GBM for an overall structural
feature score. Then the overall structural feature and the
CAGE cluster expression scores were combined as the input
of the final GBM that will produce a final classification
score. Applying a cutoff on the final score, the user can
determine the ADAPT-CAGE prediction result. The
comparison was performed on two samples of the H9 cell
line (12724-135G6 and 12626-134E7), respectively (see
Material and method). We run ADAPT-CAGE with the
default parameters. The minimum TPM value of accepted
CAGE clusters was set as 0.5. The CAGE tags with a
mapping quality lower than ten were filtered out, and the
maximum required distance between discovered CAGE
clusters was set to 50. The maximum size of the cluster was
limited to 1 kbp. This setting resulted in a total of 121,596
Cer regions and TSS predictions (69,922 from the sample
12626-134E7 and 51,674 from 12724-135G6, respectively),
including 40,094 positive and 81,502 negative predictions.
We applied dICAGE on the same set of Ccr regions and
predicted 72,155 positive and 49,441 negative TSSs. Table 11
shows the performance of dICAGE in comparison with

TABLE II1. CASE STUDY IN THE K562 CELL LINE
Metrics
Tools
Sensitivity | Specificity | Precision | Fl-score | Accuracy
dICAGE | 0.6115 0.9873 0.9792 0.7529 0.8016
ADAPT
-CAGE 0.0220 0.9790 0.5063 0.0422 0.5060

significant performance increase across all five metrics. For
example, dICAGE achieved a 88% sensitivity in contrast to
the 33% sensitivity of ADAPT-CAGE.

Meanwhile, dICAGE obtained an 87% specificity value
while ADAPT-CAGE had its specificity as 67%. This result
suggests dICAGE is more likely to pick up true TSSs and
true noises from CAGE data. Similarly, dICAGE achieved
nearly 90% F1 score and 88% accuracy comparing to the 43%
F1 score and 46% accuracy of ADAPT-CAGE. Further
investigation revealed individual cases dICAGE had
predicted correctly. For example, Ccr regions surrounding
chr20: 1185670, chrl5: 82680533 and chr8 66870785 were
predicted as positive TSSs by dICAGE, but negative TSSs by
ADAPT-CAGE. We found all these Ccrs are located within
the +/-500bp surrounding regions of genes Transmembrane
Protein 74B, Adaptor Related Protein Complex 3 Subunit
Beta 2 and Minichromosome Maintenance Domain
Containing 2, respectively. They all have H3K4me3 peaks in
their surrounding 200bp regions. Therefore, they are most
likely to be true TSSs. On the other hand, Cecr regions
surrounding chrl: 214646966; chr2: 38231464 and chr5:
83522984 were predicted as false TSSs by dICAGE, but true
TSSs by ADAPT-CAGE. We checked their genomic
locations and found they are not close to any annotated TSSs.
In the meantime, there are not H3K4me3 signals in these
regions. They are thus most likely to be noises.

C. Case study(K562 cell line)

For a more comprehensive comparison, we performed an
additional test on the K562 cell line (sample: CNhs11250).
We identified in total 25,707 Ccr regions in the K562
sample, from which dICAGE predicted 7,935 as positive
TSSs and 17,772 as negative TSSs. Table III shows the
overall performance. We observed that dICAGE achieved a
75% F1 score and 80% accuracy. In contrast, ADAPT-
CAGE obtained a 4% F1 score and 50% accuracy. In fact,
out of 7,935 positive TSS predictions made by dICAGE,
7,770 (98%) contains H3K4me3 and are located within +/-
500 bp surrounding regions of annotated TSSs. Only 165
(2%) do not contain H3K4me3 peaks and are located
outside the +/- 500 bp region of annotated TSSs, and thus
are likely false predictions. In the meantime, out of the
17,772 negative TSSs predicted by dICAGE, 12,728 do not
contain H3K4me3 peaks and are located outside +/-500 bp
surrounding regions of annotated TSSs. On the other hand,
ADAPT-CAGE predicted 553 positive TSSs and 25,154 as
negative TSSs. Only 280 of the 553 positive-predicted Ccr

regions (0.5006) are located within the +/-500 bp surrounding
regions of annotated TSSs and contain H3K4me3 peaks. We
found that there were 273 Ccr regions predicted as positive
TSSs by ADAPT-CAGE and negative TSSs by dICAGE
that do not have H3K4me3 peaks and are not located close
to annotated TSSs. For example, the Ccr regions
surrounding the genomic locations: chr7: 120889267, chr18:
9744585, and chr7, 26224223, In the meantime, we found
7,588 Ccr regions predicted as negative TSSs by ADAPT-
CAGE were identified as positive TSSs by dICAGE. All of
these Ccr regions are located within the +/-500bp regions of
annotated TSSs and also overlap with H3K4me3 peaks in
the K562 cell line. For example, the Cecr regions
surrounding genomic locations: chrl: 32797313, chrl9:
51226649, and chrl2: 95467315, overlap with three
annotated TSSs of genes: Histone Deacetylase 1, C-Type
Lectin Domain Containing 11A and nuclear receptor
subfamily 2 group C member 1, respectively.

IV. CONCLUSION

In this article, we introduced dICAGE, a deep learning
model, to distinguish true TSSs from transcriptional noises
in CAGE data. Identifying TSSs is essential to the discovery
of transcription initiation mechanisms and further
understanding of gene transcriptional regulation. Deep
learning methods have been widely applied in many
bioinformatics problems and achieved outstanding
performance, but have not been seen in TSS identification
from CAGE data. In the meantime, current work on TSS
identification from CAGE data is mostly based on a limited
number of sequence and structural features. dICAGE was
developed to exploit the current development of deep
learning and also take advantage of the genome-wide motif
discovery methods for feature identification. With VGG16-
based deep learning architecture, dICAGE integrated scores
from 927 DeepBind motif binding models as part of
sequence features to identify TSSs in addition to the one-hot
encoded sequence surrounding the Ccrs and 13 Structure
features. Applying dICAGE to several human embryonic
cell lines and K562, we showed dICAGE is able to achieve
outstanding performance in TSS prediction in comparison
with the most recent work. We also shown integrating de-
novo protein binding motif models such as DeepBind into
the TSS prediction pipelines can improve the overall
prediction performance.

V. REFERENCES

[1] R. Kodzius et al., "CAGE: cap analysis of gene expression," (in
eng), Nat Methods, vol. 3, no. 3, pp. 211-22, Mar 2006.
[Online]. Available:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&
db=PubMed&dopt=Citation&list_uids=16489339

[2] S. Wang, A. Talukder, M. Cha, X. Li, and H. Hu,
"Computational annotation of miRNA transcription start sites,"
Brief Bioinform, Jan 31 2020, doi: 10.1093/bib/bbz178.

[3] M. Lizio et al., "Gateways to the FANTOMS promoter level
mammalian expression atlas," Genome Biol, vol. 16, p. 22, Jan 5
2015, doi: 10.1186/s13059-014-0560-6.

[4] H. Takahashi, T. Lassmann, M. Murata, and P. Carninci, "5'
end-centered expression profiling using cap-analysis gene
expression and next-generation sequencing," Nat Protoc, vol. 7,
no. 3, pp. 542-61, Feb 23 2012, doi: 10.1038/nprot.2012.005.

(3]

(6]

(7]

(8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

V. Haberle, A. R. Forrest, Y. Hayashizaki, P. Carninci, and B.
Lenhard, "CAGEr: precise TSS data retrieval and high-
resolution promoterome mining for integrative analyses,"
Nucleic Acids Res, vol. 43, no. 8, p. e51, Apr 30 2015, doi:
10.1093/nar/gkv054.

C. Barham, M. Cha, X. Li, and H. Hu, "Application of Deep
Learning Models to MicroRNA Transcription Start Site
Identification," in [EEE 7th International Conference on
Bioinformatics and Computational Biology, 2019: IEEE, pp. 22-
28.

H. Ohmiya et al., "RECLU: a pipeline to discover reproducible
transcriptional start sites and their alternative regulation using
capped analysis of gene expression (CAGE)," BMC Genomics,
vol. 15, p. 269, Apr 25 2014, doi: 10.1186/1471-2164-15-269.
M. C. Frith, E. Valen, A. Krogh, Y. Hayashizaki, P. Carninci,
and A. Sandelin, "A code for transcription initiation in
mammalian genomes," Genome Res, vol. 18, no. 1, pp. 1-12, Jan
2008, doi: 10.1101/gr.6831208.

F. Consortium et al., "A promoter-level mammalian expression
atlas," Nature, vol. 507, no. 7493, pp. 462-70, Mar 27 2014, doi:
10.1038/nature13182.

A. Kanhere and M. Bansal, "Structural properties of promoters:
similarities and differences between prokaryotes and
eukaryotes," Nucleic Acids Res, vol. 33, no. 10, pp. 3165-75,
2005, doi: 10.1093/nar/gki627.

Y. Fukue, N. Sumida, J. Nishikawa, and T. Ohyama, "Core
promoter elements of eukaryotic genes have a highly distinctive
mechanical property," Nucleic Acids Res, vol. 32, no. 19, pp.
5834-40, 2004, doi: 10.1093/nar/gkh905.

Y. Gan, J. Guan, and S. Zhou, "A comparison study on feature
selection of DNA structural properties for promoter prediction,"
BMC Bioinformatics, vol. 13, p. 4, Jan 7 2012, doi:
10.1186/1471-2105-13-4.

T. Abeel, Y. Saeys, E. Bonnet, P. Rouze, and Y. Van de Peer,
"Generic eukaryotic core promoter prediction using structural
features of DNA," Genome Res, vol. 18, no. 2, pp. 310-23, Feb
2008, doi: 10.1101/gr.6991408.

G. K. Georgakilas, N. Perdikopanis, and A. Hatzigeorgiou,
"Solving the transcription start site identification problem with
ADAPT-CAGE: a Machine Learning algorithm for the analysis
of CAGE data," Sci Rep, vol. 10, no. 1, p. 877, Jan 21 2020, doi:
10.1038/s41598-020-57811-3.

A. Talukder, C. Barham, X. Li, and X. Hu, "Interpretation of
Deep Learning in Genomics and Epigenomics," Briefings in
Bioinformatics, 2020.

B. Alipanahi, A. Delong, M. T. Weirauch, and B. J. Frey,
"Predicting the sequence specificities of DNA- and RNA-
binding proteins by deep learning," Nat Biotechnol, vol. 33, no.
8, pp. 831-8, Aug 2015, doi: 10.1038/nbt.3300.

K. Simonyan and A. Zisserman, "Very deep convolutional
networks for large-scale image recognition," in /CLR, 2015.

K. Cho, B. van Merrienboer, C. Gulcehre, F. Bougares, H.
Schwenk, and Y. Bengio, "Learning phrase representations
using RNN encoder-decoder for statistical machine translation,"
in Conference on Empirical Methods in Natural Language
Processing (EMNLP 2014),2014.

S. Hochreiter and J. Schmidhuber, "Long short-term memory "
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

Y. Wang, S. Goodison, X. Li, and H. Hu, "Prognostic cancer
gene signatures share common regulatory motifs," Sci Rep, vol.
7,no. 1, p. 4750, Jul 6 2017, doi: 10.1038/s41598-017-05035-3.
J. Ding, V. Dhillon, X. Li, and H. Hu, "Systematic discovery of
cofactor motifs from ChIP-seq data by SIOMICS," Methods,
vol. 79-80, pp- 47-51, Jun 2015, doi:
10.1016/j.ymeth.2014.08.006.

S. M. Ruppert, M. Chehtane, G. Zhang, H. Hu, X. Li, and A. R.
Khaled, "JunD/AP-1-mediated gene expression promotes
lymphocyte growth dependent on interleukin-7 signal
transduction," PLoS One, vol. 7, no. 2, p. €32262, 2012, doi:
10.1371/journal.pone.0032262.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16489339
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16489339

