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Abstract—Gene transcription start site (TSS) identification 

is important to understanding transcriptional gene regulation. 

Cap Analysis Gene Expression (CAGE) experiments have 

recently become common practice for direct measurement of 

TSSs. Currently, CAGE data available in public databases 

created unprecedented opportunities to study gene 

transcriptional initiation mechanisms under various cellular 

conditions. However, due to potential transcriptional noises 

inherent in CAGE data, in-silico methods are required to 

identify bonafide TSSs from noises further. Here we present a 

computational approach dlCAGE, an end-to-end deep neural 

network to identify TSSs from CAGE data. dlCAGE 

incorporate de-novo DNA regulatory motif features discovered 

by DeepBind model architecture, as well as existing sequence 

and structural features. Testing results of dlCAGE in several 

cell lines in comparison with current state-of-the-art 

approaches showed its superior performance and promise in 

TSS identification from CAGE experiments.  

Keywords—cap analysis gene expression, transcription start 

site, promoter region, deep neural network, gene expression. 

 

I. INTRODUCTION  

Cap analysis gene expression (CAGE) has become a 
standard experimental technique that can directly perform 
genome-wide measurement of the 5’ end of mRNAs in a 
biological sample [1]. Thus, CAGE has great potential to 
help discover transcription start sites (TSSs) that are essential 
to understanding gene regulation [2]. So far, a large number 
of CAGE datasets have been deposited into public databases 
[3], providing an unprecedented opportunity to study gene 
transcriptional regulation. However, CAGE experiments 
have been shown containing various types of transcriptional 
noises, such as splicing byproducts and capped molecules [4, 
5]. Therefore, computational methods are required to 
eliminate such transcriptional noises further.  

Computational methods have been developed to analyze 
CAGE data [5-9]. Most of them focus on clustering CAGE 
tags as TSSs. For example, PARACLU is able to cluster 
CAGE tags at different scales controlled by a density 
parameter [8]. The resulted multiple-scaled clusters were 
used to illustrate the hierarchical organization of promoter 
structures that may correspond to various gene regulatory 
processes. RECLU improved PARACLU to identify 
reproducible clusters across replicas [7]. To that end, they 
defined the stability criteria for each CAGE cluster, which 
was subsequently used to perform reproducibility evaluation. 
CAGEr is an R package tool that can process CAGE data 

from different resources [5]. It can also cluster CAGE tags as 
identified TSSs, and provide CAGE data analysis across 
samples, e.g., performing the differential test on CAGE 
cluster-represented TSS usage between two samples.  The 
TSS classifier included in TOMTOOLS was developed to 
separate CAGE-represented TSSs from non-TSSs [9]. TSS 
classifier is based on a Gaussian mixture model that can 
capture the relative distribution of 4-mer occurrences 
surrounding TSSs. The generated 256 vectors of value 
representative for each sequence and a Random Decision 
Tree were then used to classify positive and negative 
sequences. However, studies have frequently shown that 
both sequence and structural features are important to TSS 
identification [10-13]. Based on Support Vector Machines 
(SVM) and Stochastic Gradient Boosting models, the most 
recent study ADAPT-CAGE attempted accurate 
identification of TSSs from CAGE data using multiple 
features [14]. The features include CAGE tag clusters, 
Polymerase II (Pol II) motifs such as TATA-box, MTE, and 
CCAAT-Box, and structural features such as duplex disrupt 
energy, bending stiffness and protein deformation. 
Nevertheless, many sequence motifs exist in the promoter 
regions besides Pol II motifs, which can also be useful for 
TSS identification.  

In this study, we present a deep learning model, named 
dlCAGE, an end-to-end tool to identify bona fide TSSs from 
CAGE data. Currently, various deep learning algorithms 
have been widely practiced in bioinformatics problems with 
the outstanding performance [15]. The large-scale genome-
wide CAGE data’s availability makes it possible to take 
advantage of the deep learning methods. dlCAGE 
implements the state-of-the-art deep architecture that enables 
the optimal performance in transcription initiation pattern 
characterization and TSS identification. Meanwhile, in 
addition to existing sequence and structural features used for 
TSS identification based on CAGE data, dlCAGE also 
incorporates a high-performance protein-binding sequence 
motif identification model, DeepBind, to identify de-novo 
regulatory sequence features to facilitate TSS identification 
[16]. We trained and tested dlCAGE in human embryonic 
cell lines as well as an additional K562 cell line. dlCAGE 
has shown good performance overall comparing to recent 
studies on CAGE-based TSS identification.  

The contributions of this work are summarized as follows: 

 Present the first attempt to apply deep learning 
methods to model and predict true TSSs from 
CAGE experiments  

 Incorporate the state-of-the-art DeepBind model 
for genome-wide discovery of DNA regulatory 
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motifs as features for TSS identification from 
CAGE data. 

II. MATERIALS AND METHOD 

A. Training and testing data 

For the training and testing, we downloaded the CAGE 
samples corresponding to human embryonic H1 and H9 cell 
lines from FANTOM project (CNhs14067,  CNhs14068, 
CNhs13964,  CNhs11917 and CNhs12824), version 
GRCh38 [3]. We also obtained the CAGE data in the K562 
cell line (CNhs11250), version GRCh37. We additionally 
obtained the corresponding H3K4me3 ChIP-Seq peak data in 
H1 (ENCFF467XCU), H9 (ENCFF556EHG) and K562 cell 
line (ENCFF915MJO) from ENCODE. The Pol II ChIP-Seq 
peaks in the H1 cell line were downloaded from ENCODE 
(ENCFF574FQP). Annotated TSSs were obtained from 
GENCODE (Release 32).   

We used data from H1 cell line as the training data. The 
aligned CAGE tags were first filtered by the mapping quality 
threshold (set as 10). The tags located within 50bps of each 
other were then grouped as a single cluster, and peaks with 
tag per million (TPM) less than 0.5 were ignored. The 
nucleotide position with the highest CAGE tag counts within 
each CAGE cluster was defined as the CAGE cluster 
representative (Ccr). The training data was extracted from 
the 100bp regions surrounding the Ccrs, called Ccr regions. 
The positive training data was selected from those Ccr 
regions that have their Ccrs located within the +-500 
surrounding regions of the annotated TSSs, and are 
overlapped with H3K4me3 and Pol II ChIP-Seq peaks. The 
negative training data was selected from those Ccr regions 
that have their Ccrs located outside +-500 regions of the 
annotated TSSs and does not contain H3K4me3 and 
Polymerase II peaks. To avoid sample imbalance in the 
training data, we performed random sampling and obtained 
12,500 positive and 12,500 negative samples, respectively. 
We then split the combined 25k dataset into training and 
validation set using a 4:1 ratio. The resulted training set 
contains 20,000 Ccr regions, and the validation set includes 
5,000 Ccr regions. 

For model testing, we similarly obtained 41,314 and 
28,608 negative from H9 cell line sample CNhs11917; 
33,787 positive and 17,887 negative for H9 cell line sample 
CNhs12824. For the K562 cell line (CNhs11250), we 
compiled 12,706 positive and 179,085 negative samples. We 
then performed random sampling to obtain 13,000 negative 
K562 samples as part of the final testing set.  

B. Network architecture 

dlCAGE was developed based on VGG16, one of the 
best performed convolutional neural network (CNN) model 
[17]. The model has achieved 92.7% top-5 test accuracy in 
ImageNet, a dataset of over 14 million images belonging to 
1,000 classes with input data as 224x224x3 images. The 
original VGG16 architecture consists of 13 convolutional 
layers, five max pooling layers and three dense layers. 
Considering the smaller size of our encoded input data 
comparing with ImageNet, we adjusted the size of VGG16 
CNN architecture accordingly to fit our input data for better 
training and testing efficiency. We sampled multiple 
parameters and different sizes of the deep neural network and 
kept the dlCAGE architecture that best optimizes the 
performance and efficiency (Fig. 1). The resulted dlCAGE 

contains seven convolutional layers and three max pooling 
layers. We also performed the optimization of the 
hyperparameters, such as the size of each convolutional 
kernel and the dropout rate. As a result, we set 0.4 for 
dropout rate, 64 filters for the first and second convolutional 
layers, 128 for the third and fourth convolutional layers, and 
256 for the rest of the convolutional layers. The kernel size 
for all of the convolutional layers is all 3x3. A dropout layer 
follows after each max pooling layers to avoid overfitting. A 
fully connected layer with 512 units is attached after the 
flatten operation and followed by another fully connected 
layer with 128 units. Between the final output layer with two 
units, there is another dropout layer. dlCAGE then can 
generate labels include 0 or 1 to indicate the predicted class 
of the input data, together with a score that shows the 
probability. We also incorporated the model checkpoint and 
the early stopping mechanism during the training. Only the 
model in certain epochs with the highest validation accuracy 
during the entire training was saved. The training was 
stopped if the validation accuracy was not improved over 25 
iterations, and the last saved model was considered the 
converged model. We implemented the dlCAGE using Keras 
with TensorFlow backend.  

C. Control model without DeepBind binding score features 

dlCAGE has 927 DeepBind protein binding scores as 

part of the input. To investigate the DeepBind score’s effect 

on the performance of dlCAGE for CAGE-represented TSS 

identification, we also created a control model without 

binding scores as the input features. The architecture of the 

control model is identical to the dlCAGE. By removing the 

Binding score features, the control model has a feature input 

size 17* 1024*1. We use the same 5-fold validation strategy 

on the same training data. According to the comparison, the 

dlCAGE with the binding score features achieved better 

performance overall compared with the control model.  

D. Model variation 

Besides the VGG16-based dlCAGE approach, we also 

implemented three additional deep learning models with 

different architectures for comparison. These include a CNN 

baseline model, a Long-Term-Short-Term-Memory 

(LSTM)-based, and a Gated Recurrent Unit (GRU)-based 

recurrent neural network (RNN) model. (LSTM) and Gated 

Recurrent Unit (GRU) are two typical RNN models wildly 

 
Fig. 1. (A) Feature Encoding Flow Chart; (B) dlCAGE Model Architecture.  
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used in sequence prediction problems due to their capacity 

of learning order dependence [18, 19].  

The CNN baseline model contains one convolutional 

layer with 64 filters followed by a max pooling layer with 2 

by 2 pooling size, which is then followed by 64 unit-fully 

connected layers (FC layer) with ReLu activation, and 

another 32 units FC layer with the same ReLu activation. At 

last, a final FC layer with softmax activation. The LSTM-

based model consists of 16 units followed by a 0.4 drop out 

layers and a 2 unit FC layer. The GRU model has an almost 

identical structure as the above LSTM model, except the 

LSTM layer was replaced by a GRU layer. Both of the 

RNN-based models take 64 channels, 1024 time step as 

input, and generate a single score between zero and one as 

the prediction probability.  

We implemented all the alternative models mentioned 

above, using Keras with TensorFlow backend. We then 

trained all three alternative models with the same data and 

training strategy. We also utilized the same holdout data for 

performance evaluation and comparison. 

E. Features and feature encoding 

Each Ccr region was encoded using one-hot encoding. 
We also included 13 DNA Structure features that have been 
used in literature to identify promoter and TSS regions [12]: 
bending stiffness, stacking energy, duplex free energy, 
protein deformation, protein DNA twist, B DNA twist, Z 
DNA stability, duplex disrupt energy, propeller twist, DNA 
denaturation, A-philicity, DNA bendability, nucleosome 
positioning. Each structure feature was encoded as a size-
1,024 vector and calculated as described in the recent work 
[14]. In cases the encoded vector for one structural feature is 
shorter than the 1,024, we filled the rest of the vector using 
zeros. Stacking the thirteen encoded vectors together, we 
have a 1,024x13 structural feature matrix (Fig.1). 

In addition to the above sequence and structural features, 
DNA regulatory motifs play essential roles in gene 
transcription and are important features for CAGE-detected 
TSS identification [14, 20-22]. Instead of specifying a fixed 
number of known motifs, we incorporate the de-novo motif 

discovery model, DeepBind, into our dlCAGE pipeline. 
DeepBind is a CNN-based deep learning model for protein-
binding sequence motif identification. Trained on a huge 
number of sequences, DeepBind provides hundreds of pre-
trained models that target different protein-binding sequence 
motifs.  The resulted DeepBind score indicates the binding 
affinity between a given DNA sequence and a specific 
regulatory protein. We first applied DeepBind models to our 
training and testing sequences, and then encoded DeepBind 
binding scores as part of the input features toward TSS 
identification. In detail, DeepBind provides 927 pre-trained 

models that can produce the binding scores for each 
candidate sequence. In our deep learning models, we 
included all 927 pre-trained DeepBind models as 927 
features. For each sequence in our dataset, we used a moving 
window strategy to obtain a set of DeepBind binding score 
feature vector, the size of the window is 50 bps, and the step 
of the window is 25 bps.  

III. RESULT 

A. dlCAGE performance in comparison to alternative deep 

learning models 

We performed K-fold (K=5) cross-validation for model 

performance evaluation based on the compiled training data 

set corresponding to the H1 cell line (see Material and 

Method, Section A for details). The TSS identification task 

is a binary classification problem. We thus included five 

metrics for the performance evaluation: sensitivity, 

specificity, precision, F1 score, and accuracy. 

The above performance metrics were also used for 

dlCAGE model architecture selection, the performance 

comparison with the latest work and the case study in the 

K562 cell line. The performance of dlCAGE is overall 

constantly above 90%, suggesting dlCAGE is not likely to 

suffer from overfitting. To understand how DeepBind score 

as input features affect model performance, we also 

performed K-fold cross-validation on dlCAGE architecture 

with DeepBind model removed from the pipeline (control 

model without DeepBind). The results show that with the 

same deep learning architecture, the control model without 

DeepBind has its performance dropped in terms of all the 

metrics, and it can have its sensitivity and F1 score dropped 

below 90% for parts of the data. These results suggest the 

DeepBind score features contribute to true TSS 

identification from CAGE data noises, and dlCAGE can 

suffer from performance loss when working without 

DeepBind binding score features. 

The architecture of a deep neural network is essential to 

its learning and prediction performance. To investigate the 

influence of different deep learning model architectures on 

the TSS prediction accuracy in comparison with dlCAGE, 

we implemented three alternative deep learning models 

including a CNN baseline, a LSTM-based, and a GRU-

based model (Materials and Method section). All the 

training procedure was performed on the same 20,000 Ccr 

training sequences and 5,000 testing sequences in  H1 cell 

line. As shown in Table I, dlCAGE outperformed the three 

alternative models in terms of specificity, precision, F1 

score and accuracy. These deep learning models have 

achieved sensitivity ranging from approximately 89% to 

TABLE I.  COMPARISON OF DIFFERENT NEURAL NETWORK ARCHITECTURE 

Architecture 
Metrics 

Sensitivity Specificity Precision F1 score Accuracy 

GRU-based 0.8972 0.9042 0.9009 0.8991 0.9008 

LSTM-based 0.9022 0.8904 0.8888 0.8954 0.8962 

CNN baseline  0.9143 0.9302 0.9271 0.9207 0.9224 

dlCAGE  0.9180 0.9543 0.9512 0.9343 0.9364 
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92%, specificity ranging from 89% to 95%, F1 score and 

accuracy from 89% to 93%. In general, CNN-based deep 

learning models have better performance than LSTM-based 

and GRU-based RNN models with the current input data 

encoding mechanism. dlCAGE achieved 95% precision and 

specificity, which is much higher than all the alternative 

models, suggesting dlCAGE is less likely to identify non-

TSS CAGE signals and have a higher chance of recovering 

true CAGE TSSs comparing to the alternative models.  

B. Performance comparison with the most recent work  

We also compared dlCAGE with the most recent work on 
TSS identification from CAGE data, ADAPT-CAGE. 
ADAPT-CAGE was trained on ten Pol II motif binding 
information, 13 structure features and a TPM-based CAGE 
cluster expression score. The method involves Gradient 
Boosting Machines (GBMs) trained with Pol II motif affinity 
scores, and SVM to model the structural features. The 
combined output of the trained GBMs and SVMs was then 
used as the input of the next GBM for an overall structural 
feature score. Then the overall structural feature and the 
CAGE cluster expression scores were combined as the input 
of the final GBM that will produce a final classification 
score. Applying a cutoff on the final score, the user can 
determine the ADAPT-CAGE prediction result. The 
comparison was performed on two samples of the H9 cell 
line (12724-135G6 and 12626-134E7), respectively (see 
Material and method). We run ADAPT-CAGE with the 
default parameters. The minimum TPM value of accepted 
CAGE clusters was set as 0.5. The CAGE tags with a 
mapping quality lower than ten were filtered out, and the 
maximum required distance between discovered CAGE 
clusters was set to 50. The maximum size of the cluster was 
limited to 1 kbp. This setting resulted in a total of 121,596 
Ccr regions and TSS predictions (69,922 from the sample 
12626-134E7 and 51,674 from 12724-135G6, respectively), 
including 40,094 positive and 81,502 negative predictions. 
We applied dlCAGE on the same set of Ccr regions and 
predicted 72,155 positive and 49,441 negative TSSs. Table II 
shows the performance of dlCAGE in comparison with 

ADAPT-CAGE.  The results show that dlCAGE has a 
significant performance increase across all five metrics. For 
example, dlCAGE achieved a 88% sensitivity in contrast to 
the 33% sensitivity of ADAPT-CAGE. 

Meanwhile, dlCAGE obtained an 87% specificity value 
while ADAPT-CAGE had its specificity as 67%. This result 
suggests dlCAGE is more likely to pick up true TSSs and 
true noises from CAGE data. Similarly, dlCAGE achieved 
nearly 90% F1 score and 88% accuracy comparing to the 43% 
F1 score and 46% accuracy of ADAPT-CAGE. Further 
investigation revealed individual cases dlCAGE had 
predicted correctly. For example, Ccr regions surrounding 
chr20: 1185670, chr15: 82680533 and chr8 66870785 were 
predicted as positive TSSs by dlCAGE, but negative TSSs by 
ADAPT-CAGE. We found all these Ccrs are located within 
the +/-500bp surrounding regions of genes Transmembrane 
Protein 74B, Adaptor Related Protein Complex 3 Subunit 
Beta 2 and Minichromosome Maintenance Domain 
Containing 2, respectively. They all have H3K4me3 peaks in 
their surrounding 200bp regions. Therefore, they are most 
likely to be true TSSs. On the other hand, Ccr regions 
surrounding chr1: 214646966; chr2: 38231464 and chr5: 
83522984 were predicted as false TSSs by dlCAGE, but true 
TSSs by ADAPT-CAGE. We checked their genomic 
locations and found they are not close to any annotated TSSs. 
In the meantime, there are not H3K4me3 signals in these 
regions. They are thus most likely to be noises.  

C. Case study(K562 cell line) 

For a more comprehensive comparison, we performed an 

additional test on the K562 cell line (sample: CNhs11250). 

We identified in total 25,707 Ccr regions in the K562 

sample, from which dlCAGE predicted 7,935 as positive 

TSSs and 17,772 as negative TSSs. Table III shows the 

overall performance. We observed that dlCAGE achieved a 

75% F1 score and 80% accuracy. In contrast, ADAPT-

CAGE obtained a 4% F1 score and 50% accuracy. In fact, 

out of 7,935 positive TSS predictions made by dlCAGE, 

7,770 (98%) contains H3K4me3 and are located within +/-

500 bp surrounding regions of annotated TSSs. Only 165 

(2%) do not contain H3K4me3 peaks and are located 

outside the +/- 500 bp region of annotated TSSs, and thus 

are likely false predictions. In the meantime, out of the 

17,772 negative TSSs predicted by dlCAGE, 12,728 do not 

contain H3K4me3 peaks and are located outside +/-500 bp 

surrounding regions of annotated TSSs. On the other hand, 

ADAPT-CAGE predicted 553 positive TSSs and 25,154 as 

negative TSSs. Only 280 of the 553 positive-predicted Ccr 

TABLE II.  PERFORMANCE COMPARISON WITH ADAPT-CAGE  

Tools 
Metrics 

Sensitivity Specificity Precision F1 score Accuracy 

dlCAGE -12626-134E7 0.8789 0.8846 0.9166 0.8974 0.8812 

dlCAGE -12724-135G6 0.8863 0.8550 0.9203 0.9030 0.8755 

ADAPT-CAGE - 12626-
134E7 

0.3385 0.6688 0.5961 0.4318 0.4736 

ADAPT-CAGE - 12724-

135G6 
0.3199 0.6745 0.6499 0.4288 0.4426 

dlCAGE-overall 0.8823 0.8732 0.9183 0.8999 0.8788 

ADAPT-CAGE-overall 0.3302 0.6710 0.6184 0.4305 0.4605 

 

TABLE III.  CASE STUDY IN THE K562 CELL LINE 

Tools 
Metrics 

Sensitivity Specificity Precision F1-score Accuracy 

dlCAGE 0.6115 0.9873 0.9792 0.7529 0.8016 

ADAPT

-CAGE 
0.0220 0.9790 0.5063 0.0422 0.5060 
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regions (0.506) are located within the +/-500 bp surrounding 

regions of annotated TSSs and contain H3K4me3 peaks. We 

found that there were 273 Ccr regions predicted as positive 

TSSs by ADAPT-CAGE and negative TSSs by dlCAGE 

that do not have H3K4me3 peaks and are not located close 

to annotated TSSs. For example, the Ccr regions 

surrounding the genomic locations: chr7: 120889267, chr18: 

9744585, and chr7, 26224223. In the meantime, we found 

7,588 Ccr regions predicted as negative TSSs by ADAPT-

CAGE were identified as positive TSSs by dlCAGE. All of 

these Ccr regions are located within the +/-500bp regions of 

annotated TSSs and also overlap with H3K4me3 peaks in 

the K562 cell line. For example, the Ccr regions 

surrounding genomic locations: chr1: 32797313,  chr19: 

51226649, and chr12: 95467315, overlap with three 

annotated TSSs of genes: Histone Deacetylase 1, C-Type 

Lectin Domain Containing 11A and nuclear receptor 

subfamily 2 group C member 1, respectively.  

IV. CONCLUSION 

In this article, we introduced dlCAGE, a deep learning 

model, to distinguish true TSSs from transcriptional noises 

in CAGE data. Identifying TSSs is essential to the discovery 

of transcription initiation mechanisms and further 

understanding of gene transcriptional regulation. Deep 

learning methods have been widely applied in many 

bioinformatics problems and achieved outstanding 

performance, but have not been seen in TSS identification 

from CAGE data. In the meantime, current work on TSS 

identification from CAGE data is mostly based on a limited 

number of sequence and structural features. dlCAGE was 

developed to exploit the current development of deep 

learning and also take advantage of the genome-wide motif 

discovery methods for feature identification. With VGG16-

based deep learning architecture, dlCAGE integrated scores 

from 927 DeepBind motif binding models as part of 

sequence features to identify TSSs in addition to the one-hot 

encoded sequence surrounding the Ccrs and 13 Structure 

features. Applying dlCAGE to several human embryonic 

cell lines and K562, we showed dlCAGE is able to achieve 

outstanding performance in TSS prediction in comparison 

with the most recent work. We also shown integrating de-

novo protein binding motif models such as DeepBind into 

the TSS prediction pipelines can improve the overall 

prediction performance.  
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