
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=cjas20

Journal of Applied Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cjas20

Regression analysis of case-cohort studies in the
presence of dependent interval censoring

Mingyue Du, Qingning Zhou, Shishun Zhao & Jianguo Sun

To cite this article: Mingyue Du, Qingning Zhou, Shishun Zhao & Jianguo Sun (2021) Regression
analysis of case-cohort studies in the presence of dependent interval censoring, Journal of Applied
Statistics, 48:5, 846-865, DOI: 10.1080/02664763.2020.1752633

To link to this article:  https://doi.org/10.1080/02664763.2020.1752633

Published online: 14 Apr 2020.

Submit your article to this journal 

Article views: 101

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=cjas20
https://www.tandfonline.com/loi/cjas20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02664763.2020.1752633
https://doi.org/10.1080/02664763.2020.1752633
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2020.1752633
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2020.1752633
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2020.1752633&domain=pdf&date_stamp=2020-04-14
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2020.1752633&domain=pdf&date_stamp=2020-04-14


JOURNAL OF APPLIED STATISTICS
2021, VOL. 48, NO. 5, 846–865
https://doi.org/10.1080/02664763.2020.1752633

Regression analysis of case-cohort studies in the presence of
dependent interval censoring

Mingyue Dua, Qingning Zhoub, Shishun Zhaoa and Jianguo Sunc

aCenter for Applied Statistical Research and College of Mathematics, Jilin University, Changchun, People’s
Republic of China; bDepartment of Mathematics and Statistics, The University of North Carolina at Charlotte,
Charlotte, NC, USA; cDepartment of Statistics, University of Missouri, Columbia, MO, USA

ABSTRACT
The case-cohort design is widely used as a means of reducing the
cost in large cohort studies, especially when the disease rate is low
and covariate measurements may be expensive, and has been dis-
cussed bymany authors. In this paper, we discuss regression analysis
of case-cohort studies that produce interval-censored failure time
with dependent censoring, a situation forwhich there does not seem
to exist an established approach. For inference, a sieve inverse prob-
ability weighting estimation procedure is developed with the use of
Bernstein polynomials to approximate the unknown baseline cumu-
lative hazard functions. The proposed estimators are shown to be
consistent and the asymptotic normality of the resulting regression
parameter estimators is established. A simulation study is conducted
to assess the finite sample properties of the proposed approach
and indicates that it works well in practical situations. The proposed
method is applied to an HIV/AIDS case-cohort study that motivated
this investigation.
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1. Introduction

The case-cohort design is widely used as a means of reducing the cost in large cohort stud-
ies, especially when the disease rate is low and covariate measurements may be expensive
(Prentice [27]; Scheike and Martinussen [30], Self and Prentice [32]). For the situation,
instead of collecting the covariate information on all study subjects, it collects the covari-
ate information only on the subjects whose failures are observed and on a subsample of the
remaining subjects. Among others, one area where the design is often used is epidemio-
logical cohort studies in which the outcomes of interest are times to failure events such as
AIDS, cancer, heart disease and HIV infection. For such studies, in addition to the incom-
plete nature on covariate information, another feature is that the observations are usually
interval-censored rather than right-censored due to the periodic follow-up nature of the
study (Sun [34]).

By interval-censored data, we usually mean that the failure time of interest is known or
observed only to belong to an interval instead of being observed exactly. It is easy to see that
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interval-censored data include right-censored data as a special case. Furthermore, some-
times one may also face informative censoring, meaning that the failure time of interest
and the censoring mechanism are correlated (Huang andWolfe [13]; Wang et al. [37]). An
example of informatively interval-censored data may arise in a periodic follow-up study of
certain disease where study subjects may not follow the pre-speci!ed visit schedules and
instead pay clinical visits according to their disease status or how they feel with respect
their treatments. Among others, Huang and Wolfe [13] and Sun [33] discussed the issue
and pointed out that in the presence of informative censoring, the analysis that ignores it
may result in biased ormisleading results or conclusions.More discussion on informatively
interval-censored data can be found in Sun [34].

One real study that motivated this investigation is the HVTN 505 Trial to assess the
e"cacy of a DNA prime-recombinant adenovirus type 5 boost (DNA/rAd5) vaccine to
prevent human immunode!ciency virus type 1 (HIV-1) infection (Fong et al. [8]; Ham-
mer et al. [10]; Janes et al. [14]). It is well-known that HIV-1 infection is deadly as it causes
AIDS for which there is no cure and thus it is important and essential to develop a safe and
e#ective vaccine for the prevention of the infection. The original study consists of 2504men
or transgender women who had sex with men were examined periodically, thus yielding
only interval-censored data on the time to HIV-1 infection. For each subject, the informa-
tion on four demographic covariates, age, race, BMI and behavioural risk, was collected,
and in addition, for a subgroup of HIV infection cases and non-cases, a number of T cell
response biomarkers and anti-body response biomarkers were also measured. One goal of
the study is to determine or identify the important or relevant covariates or biomarkers for
HIV-1 infection.

Many authors have discussed the analysis of case-cohort studies but most of the existing
methods are for right-censored failure time data. For example, some of the early work on
this was given by Prentice [27] and Self and Prentice [32], who proposed some pseudo-
likelihood approaches based on the modi!cation of the commonly used partial likelihood
method under the proportional hazards model. By following them, Chen and Lo [3]
proposed an estimating equation approach that yields more e"cient estimators than the
pseudolikelihood estimator proposed in Prentice [27], and Chen [2] developed an esti-
mating equation approach that applies to a class of cohort sampling designs, including
the case-cohort design with the key estimating function constructed by a sample reuse
method via local averaging. AlsoMarti and Chavance [25] and Keogh andWhite [18] pro-
posed some multiple imputation methods and in particular, the latter method extended
the former by considering more complex imputation models that include time and inter-
action or nonlinear terms. In addition, Kang and Cai [17] and Kim et al. [19] developed
weighted estimating equation approaches for case-cohort studieswithmultiple disease out-
comes, where the latter method improved the e"ciency upon the former by utilizing more
information in constructing the weights.

Interval-censored failure time data naturally occur in many areas, especially in the
studies with periodic follow-ups, and a great deal of literature has been developed for
their analysis (Chen et al. [5]; Finkelstein [7]; Sun [34]; Zhou et al. [40]). In particular,
Sun [34] and Bogaerts et al. [1] provided comprehensive reviews of the existing literature
on interval-censored data. Although there also exist somemethods for either informatively
interval-censored data or the interval-censored arising from case-cohort studies, there
does not seem to exist an established procedure for informatively interval-censored data
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arising from case-cohort studies. In particular, for the analysis of informatively interval-
censored data, two types of approaches are commonly used and they are the frailty model
approach and the copulamodel approach. For example, Zhang et al. (2005, 2007) andWang
et al. [36,38] gave some frailty model estimation procedures, while Ma et al. [23,24] and
Zhao et al. (2015) proposed some copula model methods. For the analysis of the interval-
censored data arising from case-cohort studies, Gilbert et al. [9] presented a midpoint
imputation procedure and Li and Nan [20] considered a special case of interval-censored
data, current status data, where the failure time of interest is either left- or right-censored
(Jewell and van der Laan [15]). Also Zhou et al. [41] proposed a likelihood-based approach.
However, all of the three methods above assume that the interval censoring mechanism
is non-informative or independent of the failure time of interest. As discussed by many
authors and above, the informative censoring is a serious and di"cult issue and the use
of the methods that do not take it into account can yield biased or misleading results and
conclusions (Huang and Wolfe [13]; Ma et al. [23]). In the following, we will develop a
frailty model approach, a generalization of the method proposed in Zhou et al. [41], for
the analysis of the case-cohort studies yielding interval-censored data with informative
censoring.

The remainder of the paper is organized as follows.Wewill begin in Section 2with intro-
ducing some notation and models to be used throughout the paper and in particular, we
will present joint frailtymodels for the failure time of interest and the underlying censoring
mechanism. To estimate regression parameters, a sieve inverse probability weighting esti-
mation procedure is then presented in Section 3 and in themethod, Bernstein polynomials
are employed to approximate unknown functions. Furthermore, we establish the consis-
tency and asymptotic normality of the resulting estimators of regression parameters and
provide a weighted bootstrap procedure for variance estimation. Section 4 presents some
results obtained from an extensive simulation study conducted to assess the !nite sample
properties of the proposed methodology and they suggest that the method works well in
practical situations. In Section 5, we apply the proposed method to the HIV/AIDS study
described above and Section 6 gives some discussion and concluding remarks.

2. Notation andmodels

Consider a failure time study that consists of n independent subjects. For subject i, let
Ti denote the failure time of interest and suppose that there exists a p-dimensional vec-
tor of covariates denoted by Zi that may a#ect Ti, i = 1, . . . , n. Also for subject i, suppose
that there exist two examination times denoted by Ui and Vi with Ui ≤ Vi and one only
observes!1i = I(Ti ≤ Ui) and!2i = I(Ui < Ti ≤ Vi), indicating if the failure time Ti is
left-censored and interval-censored, respectively.Note that hereUi andVi are randomvari-
ables and assumed to be observed and they together with !1i and !2i give the observed
interval-censored data on the Ti’s (Sun [34]; Zhou et al. [41]).

For the case-cohort studies, as mentioned above, the information on covariates is avail-
able only for the subjects who either have experienced the failure event of interest or with
!1i = 1 or!2i = 1 or are from the sub-cohort that is a random sample of the entire cohort.
De!ne ξi = 1 if the covariate Zi is available or observed and 0 otherwise, i = 1, . . . , n. For
the selection of the subcohort, by following Zhou et al. [40] and others, we will consider
the independent Bernoulli sampling with the selection probability q ∈ (0, 1). Then under
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the assumption above, the probability that the covariate Zi is observed is given by

Pr(ξi = 1) = πq(!1i,!2i) = !1i +!2i + (1 −!1i −!2i)q,

i = 1, . . . , n, and the observed data have the form

Oξ =
{
Oξi = (Ui,Vi,!1i,!2i, ξi, ξiZi); i = 1, . . . , n

}
.

In contrast, if all covariates were observed, the full cohort data would be

O′ = {Oi = (Ui,Vi,!1i,!2i,Zi); i = 1, . . . , n} .

To describe the covariate e#ects and dependent interval censoring, de!neWi = Vi − Ui,
i = 1, . . . , n. By followingMa et al. [23], wewill focus on the situationwhere the dependent
censoring can be characterized by the correlation between the Ti’s andWi’s. As mentioned
in Ma et al. [23], one example where this may be the case is follow-up studies where some
study subjects may tend to pay more or less clinical visits than the scheduled ones. More
comments on this will be given below. For the covariate e#ects, we assume that there exists
a latent variable bi with mean one and known distribution but unknown variance η and
given Zi and bi, the hazard functions of Ti andWi have the forms

λ
(T)
i (t|Zi, bi) = λt(t) exp(β ′

tZi)bi, (1)

and

λ
(W)
i (t|Zi, bi) = λw(t) exp(β ′

wZi)bi , (2)

respectively. In the above, λt(t) and λw(t) are unknown baseline hazard functions and βt
and βw are p × 1 vectors of unknown regression parameters. Also it will be assumed that
given Zi and bi,Wi is independent of Ui and Ti and Wi are independent. In other words,
the correlation between Ti and Wi is measured by the parameter η. More comments on
this are given below.

De!ne !i = (!1i,!2i) and θ = (βt ,βw,(t ,(w, η), where (t(t) =
∫ t
0 λt(u)du and

(w(t) =
∫ t
0 λw(u)du. Assume that bi is independent of (Ui,Zi) and the joint distribution

of (Ui,Zi) does not involve the parameters of interest. Tomotivate the proposed estimation
procedure, note that conditional on (Wi,Ui,Zi, bi), the likelihood of the observation from
subject i has the form

L!i|Wi,Ui,bi(θ) =
[
1 − exp{−(t(Ui) exp(β ′

tZi)bi}
]!1i [

exp{−(t(Ui) exp(β ′
tZi)bi}

− exp{−(t(Vi) exp(β ′
tZi)bi}

]!2i [
exp{−(t(Vi) exp(β ′

tZi)bi}
]1−!1i−!2i

Also note that conditional on (Zi, bi), the likelihood of the observation onWi is given by

LWi|bi =
{
λw(Wi) exp{β ′

wZi}bi exp{−(w(Wi) exp(β ′
wZi)bi}

})i .
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where )i = I(Wi < ∞). This motivates the following inverse probability weighted log-
likelihood function

lOξ (θ) =
n∑

i=1
li(θ ;Oξi ) =

n∑

i=1
pili(θ ;Oi)

=
n∑

i=1
pi log

{∫
L!i|Wi,Ui,bi(θ)LWi|bi(θ)f (bi; η) dbi

}
(3)

for estimation of θ , where f (bi; η) denotes the the density function of the bi’s and

pi = ξi
πq(!1i,!2i)

= ξi
!1i +!2i + (1 −!1i −!2i)q

.

If f is the gamma distribution, the function lOξ (θ) has a closed form as

lOξ (θ) =
n∑

i=1
pi log

{
(λw exp(β ′

wZi))
)i

[
(1 + (η(w(Wi) exp(β ′

wZi)))i)
−η−1−)i

−(1 + η(t(Ui) exp(β ′
tZi) + (η(w(Wi) exp(β ′

wZi)))i)
−η−1−)i

]!1i

×
[
(1 + η(t(Ui) exp(β ′

tZi) + (η(w(Wi) exp(β ′
wZi)))i)

−η−1−)i

−(1 + η(t(Ui + Wi) exp(β ′
tZi) + (η(w(Wi) exp(β ′

wZi)))i)
−η−1−)i

]!2i

×
[
(1 + η(t(Ui + Wi) exp(β ′

tZi) + (η(w(Wi) exp(β ′
wZi)))i)

−η−1−)i
]1−!1i−!2i

}
.

(4)

In the next section, for estimation of θ , we will discuss the maximization of the inverse
probability weighted log-likelihood function lOξ (θ).

3. Sieve inverse probability weighting estimation

De!ne the parameter space of θ

* = {θ = (βt ,βw, η,ψ) : ψ = ((t(t),(w(t))} = B ⊗ M1 ⊗ M2,

where B = {(βt ,βw, η) ∈ R2p × R+, ‖ βt ‖ + ‖ βw ‖ + ‖ η ‖≤ M} with M being a posi-
tive constant andMj denotes the collection of all bounded and continuous nondecreasing,
nonnegative functions over the interval [σj, τj], j = 1, 2. In practice, [σ1, τ1] is usually taken
to be the range of theUi’s andVi’s and [σ2, τ2] the range of theWi’s.More comments on this
are given below. For the maximization of the inverse probability weighted log-likelihood
function lOξ (θ), it is easy to see that this would not be straightforward since lOξ (θ) involves
unknown functions (t(t) and (w(t). To deal with this and by following Ma et al. [24],
Zhou et al. [40] and others, we propose !rst to approximate the two functions by Bernstein
polynomials.
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More speci!cally, de!ne the sieve space

*n = {θn = (βt ,βw, η,ψn) : ψn = ((tn(t), (wn(t))} = B ⊗ M1
n ⊗ M2

n.

with

M1
n =

{

(tn : (tn(t) =
m∑

k=0
φk1Bk(t,m, σ1, τ1),

φm1 ≥ · · · ≥ φ11 ≥ φ01 ≥ 0,
m∑

k=0
|φk1| ≤ Mn

}

,

and

M2
n =

{

(wn : (wn(t) =
m∑

k=0
φk2Bk(w,m, σ2, τ2),

φm2 ≥ · · · ≥ φ12 ≥ φ02 ≥ 0,
m∑

k=0
|φk2| ≤ Mn

}

.

In the above,

Bk(t,m, σ1, τ1) = Ck
m

(
t − σ1
τ1 − σ1

)k (
1 − t − σ1

τ1 − σ1

)m−k
,

and

Bk(w,m, σ2, τ2) = Ck
m

(
w − σ2
τ2 − σ2

)k (
1 − w − σ2

τ2 − σ2

)m−k
,

k = 0, . . . ,m, which Bernstein polynomials of degreem = o(nν) for some ν ∈ (0, 1). Note
that some restrictions are needed above on the parameters since (t(t) and (w(w) are
nonnegative and nondecreasing functions. However, this can be easily removed by some
reparameterization. For example, one can reparameterize the parameters {φ0j, . . . ,φmj} by
the cumulative sums of the parameters {exp(φ∗

0j), . . . , exp(φ∗
mj)}, j = 1, 2.

Let θ̂n = (β̂tn, β̂wn, η̂n, (̂tn, (̂wn) denote the estimator of θ given by the value of
θ that maximizes the inverse probability weighted log-likelihood function lOξ (θ) over
the sieve space *n. Also let θ0 = (βt0,βw0, η0,(t0,(w0) denote the true value of
θ , ϑ̂n = (β̂tn, β̂wn, η̂n), ϑ0 = (βt0,βw0, η0), and for any θ1 = (β1t ,β1w, η1,(1

t ,(1
w) and

θ2 = (β2t ,β2w, η2,(2
t ,(2

w) in the parameter space*, de!ne the distance

d(θ1, θ2) =
{
‖β1t − β2t ‖2 + ‖β1w − β2w‖2 + ‖η1 − η2‖2

+ ‖(1
t −(2

t ‖22 + ‖(1
w −(2

w‖22
}1/2 .

Here ‖v‖ denotes the Euclidean norm for a vector v, ‖(1
t −(2

t ‖22 =
∫
[((1

t (u) −
(2

t (u))2 + ψ((1
t (u + w) −(2

t (u + w))2]dG(u,w), and ‖(1
w −(2

w‖22 =
∫
ψ[(1

w(w) −
(2

w(w)]2dG(u,w) with G(u,w) denoting the joint distribution function of U and W. The
following two theorems establish the asymptotic properties of θ̂n.



852 M. DU ET AL.

Theorem 3.1: Suppose that the regularity conditions (C1)–(C4) given in the Appendix
hold. Then as n → ∞, we have that d(θ̂n, θ0) → 0 almost surely and d(θ̂n, θ0) =
Op(n−min{(1−ν)/2, νr/2}), where ν ∈ (0, 1) is de!ned in m = o(nν) and r in the regularity
condition (C3).

Theorem 3.2: Suppose that the regularity conditions (C1)–(C5) given in the Appendix hold.
Then as n → ∞ and if ν > 1/2r, we have that

n1/2(ϑ̂n − ϑ0) = I−1(ϑ0) n−1/2
n∑

i=1
pil∗(ϑ0,Oi) + op(1) → N(0,1)

in distribution, where

1 = I−1(ϑ0) + I−1(ϑ0)E
{1 − πq(!1,!2)

πq(!1,!2)
{l∗(ϑ0,O)}⊗2

}
I−1(ϑ0)

with v⊗2 = vv′ for a vector v and I(ϑ) and l∗(ϑ ,O), given in the Appendix, denoting the
information matrix and e"cient score for ϑ = (βt ,βw, η) based on the complete data.

The proof of the results given above is sketched in the Appendix. For the determination
of the proposed estimator θ̂n, di#erent methods can be used and in the numerical studies
below, the Matlab function fmincon is used. Also for the determination of θ̂n, one needs to
choose or specify the degree m of Bernstein polynomials, which controls the smoothness
of the approximation. For this, one common approach is to perform the grid search by
considering di#erent values ofm and choosing the one that minimizes

AIC = −2 lOξ (θ̂n) + 2 (2p + 2m + 3)

based on the AIC criterion. Note that instead of this, one may employ other criteria such
as the BIC criterion and the numerical results indicate that they give similar performance.
Also note that in the approximation of (t and (w, we used the same degree m and in
practice, di#erentm could be used too.

For inference about ϑ0 = (βt0,βw0, η0), of course, one needs to estimate the covariance
matrix of ϑ̂n = (β̂tn, β̂wn, η̂n). For this, a natural way would be to derive a consistent esti-
mator of 1. On the other hand, one could see from the Appendix that 1 involves the
information matrix I(ϑ0) and the e"cient score l∗(ϑ0,O) and both of them do not have
closed forms. Thus, it would be di"cult to derive a consistent estimator and instead we
propose to employ the weighted bootstraps procedure discussed in Ma and Kosorok [22],
which is easy to implement and seems to work well in the numerical studies described
below. Speci!cally, let {u1, . . . , un} denote n independent realizations of a bounded positive
random variable u satisfying E(u) = 1 and var(u) = ε0 < ∞ and de!ne the new weights
p′
i = ui pi, i = 1, . . . , n. Also let ϑ̂ ′

n denote the estimator of ϑ proposed above with replac-
ing the pi’s by the p′

i’s. Then if we repeat thisB times, one can estimate the covariancematrix
of ϑ̂n by the sample covariance matrix of the ϑ̂ ′

n’s. By following Ma and Kosorok [22], it
can be shown that this weighted bootstrap variance estimator is consistent.



JOURNAL OF APPLIED STATISTICS 853

4. A simulation study

In this section, we report some results obtained from a simulation study conducted to
evaluate the !nite sample performance of the inverse probability weighted estimation pro-
cedure proposed in the previous sections. In the study, it was assumed that the covariate Z
followed the Bernoulli distribution with the success probability of 0.5 and to generate the
subcohort, as mentioned above, we considered the independent Bernoulli sampling with
the selection probability being 0.1. For the proportion of the observed failure events or the
event rate, we studied several cases including pe = 0.05, 0.1 and 0.2. To generate interval-
censored data, we !rst generated the Ui’s from the uniform distribution over (0, a) with a
being a positive constant and the latent variable bi’s. Then the Ti’s andWi’s were generated
based on models (2.1) and (2.2) with λt = 0.2t, 0.1t or 4t/9, λw = 12t and the Vi’s were
de!ned as Vi = Ui + Wi for all i. The results given below are based on the full cohort size
n = 1000 or 2000 with 1000 replications.

Table 1 presents the results obtained on the proposed estimators β̂tn, β̂wn and η̂n with
n = 1000, the true values of the parameters being βt0 = βw0 = 0, 0.2 or 0.5 and η0 = 0.8,
and the bi’s following the gamma distribution. The results include the estimated bias (Bias)
given by the average of the proposed estimates minus the true value, the sample standard
error (SSE), the average of the estimated standard errors (ESE) and the 95% empirical cov-
erage probability (CP). Here we took the degree of Bernstein polynomials beingm = 3 and
the weighted bootstrap sample size B = 100 for variance estimation. Also for the variance
estimation, we generated the random sample {u1, . . . , un} repeatedly from the exponential
distribution. Table 2 gives the estimation results obtained under the same set-up as above
exceptn = 2000.One can see from the two tables that the results indicate that the proposed
estimator seems to be unbiased and the weighted bootstrap variance estimation procedure
seems to work well. Also they indicate that the normal approximation to the distribution of
the proposed estimator appears to be reasonable. In addition, as expected, the estimation
results became better when the percentage of the observed failure events or the full cohort
size increased.We also considered other set-ups including di#erent values form and B and
obtained similar results.

In the proposed estimation procedure, it has been assumed that the distribution of the
latent variables bi’s is known up to a variance parameter. Hence in practice, one question
of interest may be the robustness of the estimation procedure with respect to the distri-
bution. To investigate this, we repeated the simulation study above giving the results in
Table 1 with pe = 0.1 except that we generated the bi’s from the log-normal distribution
instead of the gamma distribution but assumed that they followed the gamma distribution.
Table 3 presents the results obtained on the proposed estimators β̂tn and β̂wn, including the
Bias, the SSE, the ESE and the 95% empirical CP. As before, they suggest that the proposed
methodology seems to work well or the estimators β̂tn and β̂wn appear to be robust with
respect to the distribution of the latent variables.

For the problem discussed here, instead of the inverse probability weighting method
proposed above, there exist two commonly used naive approaches that estimate regres-
sion parameters by using the regular likelihood approaches. One is to base the estimation
only on the selected sub-cohort and the other is to base the estimation on a simple ran-
dom sample that has the same size as the case-cohort sample. Let β̂tsub and β̂tsrs denote
the estimators of βt given by the two naive methods above, respectively, and here we only
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Table 1. Estimation of regression parameters with n = 1000.

pe Parameter Bias SSE ESE CP

5% βt = 0 −0.0107 0.3920 0.3903 0.9510
βw = 0 −0.0026 0.3180 0.3247 0.9460
η = 0.8 −0.0034 0.2778 0.2863 0.9330
βt = 0.2 0.0074 0.4045 0.3958 0.9450
βw = 0.2 0.0163 0.3259 0.3273 0.9480
η = 0.8 0.0180 0.2722 0.2852 0.9520
βt = 0.5 0.0272 0.4070 0.4032 0.9490
βw = 0.5 0.0203 0.3469 0.3330 0.9380
η = 0.8 0.0200 0.2789 0.2813 0.9470

10% βt = 0 −0.0163 0.3428 0.3377 0.9330
βw = 0 −0.0047 0.2976 0.3106 0.9540
η = 0.8 0.0347 0.2475 0.2544 0.9420
βt = 0.2 −0.0003 0.3413 0.3394 0.9530
βw = 0.2 0.0158 0.3127 0.3096 0.9400
η = 0.8 0.0347 0.2509 0.2493 0.9410
βt = 0.5 0.0117 0.3447 0.3438 0.9470
βw = 0.5 0.0291 0.3146 0.3130 0.9410
η = 0.8 0.0386 0.2500 0.2440 0.9370

20% βt = 0 −0.0067 0.3058 0.3022 0.9480
βw = 0 0.0074 0.2766 0.2740 0.9400
η = 0.8 0.0071 0.2202 0.2159 0.9240
βt = 0.2 −0.0022 0.3066 0.3027 0.9410
βw = 0.2 0.0134 0.2757 0.2756 0.9480
η = 0.8 0.0132 0.2178 0.2150 0.9340
βt = 0.5 0.0021 0.3089 0.3058 0.9410
βw = 0.5 0.0223 0.2786 0.2791 0.9440
η = 0.8 0.0165 0.2220 0.2155 0.9230

focus on the estimation of βt . Table 4 gives the estimation results given by the proposed
method and the two naive approaches under the set-up similar to that for Table 2 with
pe = 0.1. Note that here for comparison, we also considered the approach given by Zhou
et al. [40], which treated the observation process to be independent of the failure time of
interest or ignored the correlation between the failure time and the observation process.
The resulting estimator of βt is denoted by β̂tin in the table. One can see from Table 4 that
the proposed estimate clearly gave better performance than the two naive estimates and
one would get biased results if ignoring the correlation between the failure time of interest
and the observation process.

As pointed out by a reviewer and motivated by the real data discussed below, we also
repeated the study that gave the results in Table 1 with pe = 0.05 in which we generated
the subcohort in the same way as before but only from none-case subjects instead of all
subjects as above. In other words, the goal here is to assess the performance of the proposed
approach for case–control studies. The obtained estimation results are presented in Table 5
and one can see that they are similar to those given in Table 1. In other words, it seems that
the proposed estimation approach seems to give good performance for and can be applied
to case–control studies too.

5. An application

In this section, we will apply the methodology proposed in the previous sections to the
HVTN 505 Trial discussed above. It is a randomized, multiple-sites clinical trial of men or
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Table 2. Estimation of regression parameters with n = 2000.

pe Parameter Bias SSE ESE CP

5% βt = 0 −0.0106 0.2718 0.2707 0.9480
βw = 0 0.0007 0.2255 0.2270 0.9470
η = 0.8 0.0117 0.1945 0.2094 0.9620
βt = 0.2 0.0080 0.2772 0.2751 0.9480
βw = 0.2 0.0112 0.2299 0.2289 0.9510
η = 0.8 0.0089 0.1872 0.2085 0.9730
βt = 0.5 0.0170 0.2813 0.2781 0.9440
βw = 0.5 0.0052 0.2299 0.2313 0.9510
η = 0.8 0.0205 0.1877 0.2015 0.9660

10% βt = 0 −0.0046 0.2345 0.2344 0.9440
βw = 0 0.0081 0.2097 0.2148 0.9500
η = 0.8 0.0346 0.1722 0.1847 0.9660
βt = 0.2 0.0058 0.2404 0.2371 0.9400
βw = 0.2 0.0060 0.2130 0.2172 0.9580
η = 0.8 0.0371 0.1827 0.1830 0.9410
βt = 0.5 0.0083 0.2371 0.2407 0.9540
βw = 0.5 0.0151 0.2208 0.2193 0.9450
η = 0.8 0.0372 0.1705 0.1830 0.9570

20% βt = 0 −0.0023 0.2083 0.2106 0.9500
βw = 0 −0.0096 0.1897 0.1928 0.9550
η = 0.8 0.0060 0.1609 0.1671 0.9520
βt = 0.2 0.0011 0.2114 0.2122 0.9600
βw = 0.2 0.0099 0.1918 0.1938 0.9540
η = 0.8 0.0075 0.1575 0.1645 0.9560
βt = 0.5 −0.0034 0.2197 0.2137 0.9370
βw = 0.5 0.0040 0.1953 0.1958 0.9430
η = 0.8 0.0036 0.1597 0.1628 0.9430

Table 3. Estimation of regression parameters with
n = 1000, pe = 0.1 and misspecified frailty distribution.

Parameter Bias SSE ESE CP

βt = 0 0.0040 0.3192 0.3221 0.9500
βw = 0 −0.0017 0.2682 0.2600 0.9470
βt = 0.2 0.0025 0.3218 0.3238 0.9500
βw = 0.2 0.0014 0.2711 0.2617 0.9410
βt = 0.5 −0.0035 0.3356 0.3289 0.9410
βw = 0.5 0.0090 0.2728 0.2678 0.9510

Table 4. Comparisonof theproposedandnaive estimators forβtwith
n = 2000 and pe = 0.1.

Parameter Bias SSE ESE CP

βt = 0.8 β̂t -0.0129 0.2544 0.2546 0.9550
β̂tsub −0.0379 0.5391 0.5308 0.9470
β̂tsrs −0.0031 0.3677 0.3697 0.9600
β̂tin −0.1840 0.2142 0.2161 0.8610

βt = 1 β̂t −0.0027 0.2534 0.2595 0.9540
β̂tsub 0.0151 0.5655 0.5635 0.9560
β̂tsrs −0.0249 0.3959 0.3853 0.9390
β̂tin −0.2282 0.2117 0.2206 0.8040

transgender women who had sex with men for assessing the e"cacy of the DNA/rAd5
vaccine for HIV-1 infection (Fong et al. [8]; Hammer et al. [10]; Janes et al. [14]).
As mentioned above, the original study consists of the subjects randomly assigned to
receive either the DNA/rAd5 vaccine or placebo, and in the following, we will focus



856 M. DU ET AL.

Table 5. Estimation of regression parameters for case–
control studies with n = 1000 and pe = 0.05.

Parameter Bias SSE ESE CP

βt = 0 -0.0048 0.4015 0.4086 0.9560
βw = 0 0.0060 0.3196 0.3283 0.9570
η = 0.8 0.0022 0.3048 0.3189 0.9390
βt = 0.2 −0.0177 0.3930 0.4108 0.9570
βw = 0.2 −0.0158 0.3176 0.3290 0.9590
η = 0.8 0.0143 0.3076 0.3226 0.9550
βt = 0.5 −0.0015 0.3960 0.4003 0.9570
βw = 0.5 0.0055 0.3287 0.3354 0.9610
η = 0.8 0.0250 0.3266 0.3179 0.9450

only on the 1253 subjects in the vaccine group. It is well-known that HIV-1 infection
is deadly as it causes AIDS for which there is no cure and thus it is important and
essential to develop a safe and e#ective vaccine for the prevention of the infection. For
each subject, four demographic covariates were observed and they are age, race, BMI
and behavioural risk. In addition, to assess their relationship with the HIV infection,
a number of T cell response biomarkers and antibody response biomarkers were mea-
sured for a cohort of 150 subjects consisting of all HIV infection cases (25) and other
125 randomly selected subjects among the vaccine recipients. The failure time of inter-
est here is the time to true HIV-1 infection and for which, only interval-censored data are
available.

In all previous analyses, the authors simpli!ed the observed data into right-
censored data and also did not consider the possibility of informative censoring (Fong
et al. [8]; Hammer et al. [10]; Janes et al. [14]). They identi!ed the T cell response
biomarker Env CD8+ polyfunctionality score and the antibody response biomarker
IgG.Cconenv03140CF.avi that may have signi!cant e#ects on the HIV infection time. For
simplicity, below we will refer these two biomarkers as to Env CD8 Score and IgG, respec-
tively. For the analysis below, by following Fong et al. [8] and Janes et al. [14], we will focus
on the cohort of 150 vaccine recipients, which can be treated as a case–control design
with the full cohort being all subjects in the vaccine group, and investigate the relation-
ship between the HIV infection time and the four demographic covariates plus the two
biomarkers.

Table 6 presents the estimation results given by the application of the methodology pro-
posed in the previous sections to the HVTN 505 Trial, including the estimated covariate
e#ects β̂tn and β̂wn, the estimated standard errors (ESE) and the p-values for testing the
covariate e#ect being zero. Here for the degree of Bernstein polynomials, we tried sev-
eral values, includingm = 2, 3, 4, 5, 6 and 7, and the results above were obtained based on
m = 3, which gave the smallest AIC de!ned above, and B = 500. One can see fromTable 6
that the proposed estimation procedure suggests that among the six covariates considered
here, two demographic covariates, race and behavioural risk, seem to be correlated with
the HIV infection time and the two biomarkers also appear to have signi!cant prognostic
e#ects on the development of HIV infection. On the other hand, the age and BMI did not
seem to have any e#ects on the HIV infection. In addition, the race and behavioural risk
appear to have signi!cant e#ects on the observation process too.
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Table 6. Estimated covariate effects for the HVTN 505 Trial.

Proposed method

Covariate β̂tn SSE p-value β̂wn SSE p-value

age -0.2116 0.2523 0.4018 0.0287 0.3174 0.9279
race −0.7962 0.4676 0.0886 1.7492 0.6204 0.0048
BMI −0.1560 0.3020 0.6055 0.1813 0.3621 0.6166
behavioural risk 1.1079 0.5677 0.0510 2.2763 0.6781 0.0008
Env CD8 Score −0.9575 0.2286 0.0000 0.2661 0.4628 0.5652
IgG −0.5085 0.1610 0.0016 0.2744 0.1611 0.0886
η 0.0030 2.0820 0.9989

Method given in Zhou et al. [40]

Covariate β̂tin SSE p-value

age -0.2114 0.2580 0.4125
race −0.7985 0.4996 0.1100
BMI −0.1561 0.2832 0.5814
behavioural risk 1.1086 0.7482 0.1385
Env CD8 Score −0.9574 0.2846 0.0008
IgG −0.5089 0.1620 0.0017

For comparison, we also applied the method given in Zhou et al. [40], which assumed
that the HIV infection time and the observation process were independent, to the data
and included the estimated covariate e#ects, which are denoted by β̂tin , in the table along
with the estimated standard errors and the p-values. One can see from the table that one
di#erence between the results given by the two methods is on the estimation of the e#ect
of the behavioural risk factor, which did not see to have any e#ect on the development of
HIV infection based on the method given in Zhou et al. [40]. One explanation for this
may be due to the fact that the method given in Zhou et al. [40] ignored the existence of
informative censoring.

6. Discussion and concluding remarks

This paper discussed the analysis of case-cohort studies that yield informatively interval-
censored failure time data arising from the proportional hazards model. As discussed
above, a great deal of literature has been developed for the analysis of case-cohort stud-
ies that give right-censored data. In practice, however, the observed information on the
failure time is more likely and naturally given in the form of interval-censored data,
which is especially the case for longitudinal or periodic follow-up studies. One major
di#erence between right-censored data and interval-censored data is that the latter has
a much more complex structure than the former, which makes the analysis of the lat-
ter much more di"cult. Although a large amount of literature has also been estab-
lished for the analysis of either interval-censored data or case-cohort studies, there is
no method available for the informative censoring situation discussed above. As pointed
out before and seen in Section 5, informative censoring often occurs naturally and for
the situation, the analysis that ignores it could result in biased or misleading results and
conclusions.

As discussed in Sections 4 and 5, a type of studies that is similar to case-cohort studies
is the case–control study and the key di#erence between the two is the generation of the
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subcohort. With the case-cohort design, the subcohort is sampled from all study subjects,
while the case–control design samples the subcohort only from the subjects who do not
experience the failure event of interest during the follow-up. It is apparent that the data
structures under the two designs are di#erent but on the other hand, the simulation study
suggested that the proposed estimation approach seems to be valid too for the case–control
design. A possible explanation for this is that the resulting data may carry similar informa-
tion about the model and the regression parameters of interest given the low percentage of
the event rate.

In practice, interval-censored datamay be given in di#erent forms (Sun [34]). For exam-
ple, instead of the form discussed here, one may have case K or mixed interval-censored
data (Wang et al. [37]). Note that for the analysis, one can still apply the proposed estima-
tion procedure to these situations by expressing the data using the format described here.
However, the derivation or establishment of the asymptotic properties may be di#erent
and one may need some other assumptions similar to those described in Huang [11] and
Wang et al. [37]. In the previous sections, the focus has been on the informative censor-
ing that can be characterized by models (2.1) and (2.2) or through latent variables. More
speci!cally, it has been assumed that the magnitude of the informative censoring can be
measured by the parameter η. It is apparent that as with most of frailty model approaches,
a natural question would be if one can test η = 0. Unfortunately it does not seem to exist
an established procedure for it in the literature. Another related question is the possibility
of performing the goodness-of-!t tests on models (2.1) and (2.2). For this, if η = 0, one
may apply the test procedures given in Ren and He [28] and McKeague and Utikal [26],
respectively, to test them separately. However, it would be di"cult or not straightforward
to generalize either of them to the situation discussed here.

As mentioned above, to deal with the informative censoring, another commonly used
method is the copula model approach, which directly models the joint distribution of the
failure time of interest and censoring variables (Sun [34]). For example, Cui et al. [6] and
Ma et al. [24] developed two such methods for regression analysis of current status data
with informative censoring, a special case of interval-censored data where each subject is
observed only once. Among others, Ma et al. [23] proposed a copula model approach for
regression analysis of general interval-censored data. An advantage of the copula model
approach is that it allows one to work or model the marginal distribution and the asso-
ciation parameter separately but it has the limitation that one needs to assume that the
underlying copula function is known.

It is well-known that although the proportional hazards model is one of the most
commonly used models for regression analysis of failure time data, sometimes one may
prefer a di#erent model or a di#erent model may !t the data or describe the prob-
lem of interest better (Kalb$eisch and Prentice [16]). For example, the additive hazards
model is usually preferred if the excess risk is of interest and one may want to consider
the linear transformation model if the model $exibility is more important. Some liter-
ature has been developed for these and other models for regression analysis of general
interval-censored data or the analysis of case-cohort studies that yield right-censored data.
However, there does not seem to exist an established estimation procedure for the prob-
lem discussed here under other models. In other words, it would be useful to generalize
the proposed method to the situation under the additive hazards or linear transformation
model.
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Appendix Proofs of the asymptotic properties of θ̂n

In this appendix, we will sketch the proof of the asymptotic properties of the proposed estimator θ̂n.
Let τ denote the length of study. Then a single observation can be written as

Oξ = {U, )W, ) = I(W < τ − U), !1 = I(T ≤ U), !2 = I(U < T ≤ U +)W), ξZ, ξ}.
To establish the asymptotic properties, we need the following regularity conditions, which are com-
monly used in the studies of interval-censored data and usually satis!ed in practice (Huang and
Rossini [12]; Zhang et al. [39]; Ma et al. [23]; Zhou et al. [40]).

(C1) The distribution of the covariate Z has a bounded support in Rp and is not concentrated on
any proper subspace of Rp.

(C2) The true parameters (βt0,βw0, η0) lie in the interior of a compact set B in R2p × R+.
(C3) The !rst derivative of(t0(·) and(w0(·), denoted by((1)

t0 (·) and((1)
w0(·), is Holder continuous

with exponentγ ∈ (0, 1]. That is, there exists a constantK > 0 such that |((1)
t0 (t1) −(

(1)
t0 (t2)| ≤

K|t1 − t2|γ for all t1, t2 ∈ [σ , τ ], where 0 < σ < τ < ∞. Let r = 1 + γ .
(C4) There exists a constant K > 0 such that Pl(θ ,Oξ ) − Pl(θ0,Oξ ) ≤ −Kd(θ , θ0)2 for every θ in a

neighbourhood of θ0, where l(θ ,Oξ ) is the weighted log-likelihood function based on a single
observation Oξ .

(C5) The matrix E({l∗(ϑ0,O)}⊗2) is !nite and positive de!nite, where v⊗2 = vv′ for a vector
v, and l∗(ϑ ,O) is the e"cient score for ϑ = (βt ,βw, η) based on the complete observation
O = {U,)W,) ,!1,!2,Z} and will be given in the proof of Theorem 2.

For the proof, we will mainly employ the empirical process theory and some nonparametric tech-
niques. Let Pf =

∫
f (y)dP denote the expectation of f (Y) under the probability measure P, and

Pnf = n−1 ∑n
i=1 f (Yi), the expectation of f (Y) under the empirical measure Pn. De!ne the covering

number of the classLn = {l(θ ,Oξ ) : θ ∈ *n}, where l(θ ,Oξ ) is theweighted log-likelihood function
based on a single observation Oξ . Also for any ε > 0, de!ne the covering number N(ε,Ln, L1(Pn))
as the smallest positive integer κ for which there exists {θ (1), . . . , θ (κ)} such that

min
j∈{1,...,κ}

1
n

n∑

i=1

∣∣∣l(θ ,Oξi ) − l(θ (j),Oξi )
∣∣∣ < ε

for all θ ∈ *n, where {Oξ1 , . . . ,O
ξ
n} represent the observed data and for j = 1, . . . , κ , θ (j) =

(β
(j)
t ,β(j)

w , η(j),((j)
t ,((j)

w ) ∈ *n. If no such κ exists, de!neN(ε,Ln, L1(Pn)) = ∞. Also for the proof,
we need the following two lemmas, whose proofs are similar to those for Lemmas 1 & 2 in Zhou
et al. [40] and thus omitted.

Lemma A.1: Assume that the regularity conditions (C1)–(C3) given above hold. Then we have that
the covering number of the class Ln = {l(θ ,Oξ ) : θ ∈ *n} satis!es

N
(
ε,Ln, L1(Pn)

)
≤ KM2(m+1)

n ε−(2p+2m+3)

for a constant K, where m = o(nν) with ν ∈ (0, 1) is the degree of Bernstein polynomials, and
Mn = O(na) with a> 0 controls the size of the sieve space*n.
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Lemma A.2: Assume that the regularity conditions (C1)–(C3) given above hold. Then we have that

sup
θ∈*n

∣∣Pnl(θ ,Oξ ) − Pl(θ ,Oξ )
∣∣ → 0

almost surely.

Proof of Theorem 3.1: We !rst prove the strong consistency of θ̂n. Let l(θ ,Oξ ) denote the weighted
log-likelihood function based on a given single observation Oξ and consider the class of functions
Ln = {l(θ ,Oξ ) : θ ∈ *n}. By Lemma A.1, the covering number of Ln satis!es

N
(
ε,Ln, L1(Pn)

)
≤ KM2(m+1)

n ε−(2p+2m+3).

Furthermore, by Lemma A.2, we have

sup
θ∈*n

∣∣Pnl(θ ,Oξ ) − Pl(θ ,Oξ )
∣∣ → 0 almost surely. (A1)

Note that E(p|O) = 1, then Pl(θ ,Oξ ) = P{pl(θ ,O)} = Pl(θ ,O) and θ0 maximizes Pl(θ ,Oξ ). Let
M(θ ,Oξ ) = −l(θ ,Oξ ), and de!ne Kε = {θ : d(θ , θ0) ≥ ε, θ ∈ *n} for ε > 0 and

ζ1n = sup
θ∈*n

|PnM(θ ,Oξ ) − PM(θ ,Oξ )|, ζ2n = PnM(θ0,Oξ ) − PM(θ0,Oξ ).

Then

inf
Kε

PM(θ ,Oξ ) = inf
Kε

{
PM(θ ,Oξ ) − PnM(θ ,Oξ ) + PnM(θ ,Oξ )

}
≤ ζ1n + inf

Kε
PnM(θ ,Oξ ). (A2)

If θ̂n ∈ Kε , then we have

inf
Kε

PnM(θ ,Oξ ) = PnM(θ̂n,Oξ ) ≤ PnM(θ0,Oξ ) = ζ2n + PM(θ0,Oξ ). (A3)

De!ne δε = infKε PM(θ ,Oξ ) − PM(θ0,Oξ ). Under Condition (C4), we have δε > 0. It follows
from A2 and A3 that

inf
Kε

PM(θ ,Oξ ) ≤ ζ1n + ζ2n + PM(θ0,Oξ ) = ζn + PM(θ0,Oξ )

with ζn = ζ1n + ζ2n, and hence ζn ≥ δε .This gives {θ̂n ∈ Kε} ⊆ {ζn ≥ δε}, and by A1 and the strong
law of large numbers, we have both ζ1n → 0 and ζ2n → 0 almost surely. Therefore,∪∞

k=1 ∩∞
n=k {θ̂n ∈

Kε} ⊆ ∪∞
k=1 ∩∞

n=k {ζn ≥ δε}, which proves that d(θ̂n, θ0) → 0 almost surely.
Now we will show the convergence rate of θ̂n by using Theorem 3.4.1 of van der Vaart and

Wellner [35]. Below we use K̃ to denote a universal positive constant which may di#er from place
to place. First note from Theorem 1.6.2 of Lorentz [21] that there exists a Bernstein polynomial
(tn0 and (wn0 such that ‖(tn0 −(t0‖∞ = O(m−r/2) and ‖(wn0 −(w0‖∞ = O(m−r/2). De!ne
θn0 = (βt0,βw0, η0,(tn0,(wn0). Then we have d(θn0, θ0) = O(n−rν/2). For any ρ > 0, de!ne the
class of functions Fρ = {l(θ ,Oξ ) − l(θn0,Oξ ) : θ ∈ *n, ρ/2 < d(θ , θn0) ≤ ρ} for a given single
observationOξ . One can easily show that P(l(θ0,Oξ ) − l(θn0,Oξ )) ≤ K̃d(θ0, θn0) ≤ K̃n−rν/2. From
Condition (C4), for large n, we have

P(l(θ ,Oξ ) − l(θn0,Oξ )) = P(l(θ ,Oξ ) − l(θ0,Oξ )) + P(l(θ0,Oξ ) − l(θn0,Oξ ))

≤ −K̃ρ2 + K̃n−rν/2 = −K̃ρ2,

for any l(θ ,Oξ ) − l(θn0,Oξ ) ∈ Fρ .
Following the calculations in Shen and Wong [32](p. 597), we can establish that for 0 < ε < ρ,

logN[](ε,Fρ , L2(P)) ≤ K̃N log(ρ/ε) with N = 2(m + 1). Moreover, some algebraic manipulations
yield that P(l(θ ,Oξ ) − l(θn0,Oξ ))2 ≤ K̃ρ2 for any l(θ ,Oξ ) − l(θn0,Oξ ) ∈ Fρ . Under Conditions
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(C1)–(C3), it is easy to see that Fρ is uniformly bounded. Therefore, by Lemma 3.4.2 of van der
Vaart and Wellner [35], we obtain

EP
∥∥n1/2(Pn − P)

∥∥
Fρ ≤ K̃J[]

{
ρ,Fρ , L2(P)

}
[

1 +
J[]

{
ρ,Fρ , L2(P)

}

ρ2n1/2

]

where J[]{ρ,Fρ , L2(P)} =
∫ ρ
0 [1 + logN[]{ε,Fρ , L2(P)}]1/2dε ≤ K̃N1/2ρ. This yields φn(ρ) =

N1/2ρ + N/n1/2. It is easy to see that φn(ρ)/ρ is decreasing in ρ, and r2nφn(1/rn) = rnN1/2 +
r2nN/n1/2 ≤ K̃n1/2, where rn = N−1/2n1/2 = n(1−ν)/2.

Finally note that Pn{l(θ̂n,Oξ ) − l(θn0,Oξ )} ≥ 0 and d(θ̂n, θn0) ≤ d(θ̂n, θ0) + d(θ0, θn0) → 0 in
probability. Thus by applying Theorem 3.4.1 of van der Vaart and Wellner [35], we have
n(1−ν)/2d(θ̂n, θn0) = Op(1). This together with d(θn0, θ0) = O(n−rν/2) yields that d(θ̂n, θ0) =
Op(n−(1−ν)/2 + n−rν/2) and the proof is completed. !

Proof of Theorem 3.2: Now we will prove the asymptotic normality of ϑ̂n = (β̂tn, β̂wn, η̂n). First we
will establish the asymptotic normality for the estimator based on the complete observation O =
{U,)W,) ,!1,!2,Z}. With a little abuse of notation, we still denote the complete-data estimator
as ϑ̂n.

Let V denote the linear span of *− θ0 and de!ne the Fisher inner product for v, ṽ ∈ V as <
v, ṽ >= P{l̇(θ0,O)[v]l̇(θ0,O)[ṽ]} and the Fisher norm for v ∈ V as ‖v‖2 =< v, v >, where

l̇(θ0,O)[v] = dl(θ0 + sv,O)

ds

∣∣∣
s=0

denotes the !rst order directional derivative of l(θ ,O) at the direction v ∈ V (evaluated at θ0). Also
let V̄ be the closed linear span of V under the Fisher norm. Then (V̄ , ‖ · ‖) is a Hilbert space. Fur-
thermore, for a vector of (2p + 1) dimension b = (b′

1, b′
2, b3)′ with ‖b‖ ≤ 1 and any v ∈ V , de!ne a

smooth functional of θ as h(θ) = b′
1β1 + b′

2β2 + b3η and

ḣ(θ0)[v] = dh(θ0 + sv)
ds

∣∣∣
s=0

whenever the right hand-side limit is well de!ned. Then by the Riesz representation theorem, there
exists v∗ ∈ V̄ such that ḣ(θ0)[v] =< v, v∗ > for all v ∈ V̄ and ‖v∗‖ = ‖ḣ(θ0)‖. Also note that h(θ) −
h(θ0) = ḣ(θ0)[θ − θ0]. It thus follows from the Cramér-Wold device that to prove the asymptotic
normality for ϑ̂n, i.e. n1/2(ϑ̂n − ϑ0) → N(0, I−1(ϑ0)) in distribution, it su"ces to show that

n1/2 < θ̂n − θ0, v∗ >→d N(0, b′I−1(ϑ0)b) (A4)

since b′(ϑ̂n − ϑ0) = h(θ̂n) − h(θ0) = ḣ(θ0)[θ̂n − θ0] =< θ̂n − θ0, v∗ > . In fact, A4 holds since one
can show that n1/2 < θ̂n − θ0, v∗ >→d N(0, ‖v∗‖2) and ‖v∗‖2 = b′I−1(ϑ0)b.

We !rst prove that n1/2 < θ̂n − θ0, v∗ >→d N(0, ‖v∗‖2). Let δn = n−min{(1−ν)/2,rν/2} denote the
rate of convergence obtained in Theorem 3.1, and for any θ ∈ * such that d(θ , θ0) ≤ δn, de!ne the
!rst order directional derivative of l(θ ,O) at the direction v ∈ V as

l̇(θ ,O)[v] = dl(θ + sv,O)

ds

∣∣∣
s=0

and the second-order directional derivative at the directions v, ṽ ∈ V as

l̈(θ ,O)[v, ṽ] = d2l(θ + sv + s̃ṽ,O)

ds̃ds

∣∣∣
s=0

∣∣∣
s̃=0

= dl̇(θ + s̃ṽ,O)[ṽ]
ds̃

∣∣∣
s̃=0

.

Note that by Condition (C3) and Theorem 1.6.2 of Lorentz [21], there exists9nv∗ ∈ *n − θ0 such
that ‖9nv∗ − v∗‖ = O(n−νr/2). Furthermore, under the assumption ν > 1/2r, we have δn‖9nv∗ −
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v∗‖ = o(n−1/2). De!ne r[θ − θ0,O] = l(θ ,O) − l(θ0,O) − l̇(θ0,O)[θ − θ0] and let εn be any posi-
tive sequence satisfying εn = o(n−1/2). Then by the de!nition of θ̂n, we have

0 ≤ Pn[l(θ̂n,O) − l(θ̂n ± εn9nv∗,O)]

= ∓εnPnl̇(θ0,O)[9nv∗] + (Pn − P)
{
r[θ̂n − θ0,O] − r[θ̂n ± εn9nv∗ − θ0,O]

}

+ P
{
r[θ̂n − θ0,O] − r[θ̂n ± εn9nv∗ − θ0,O]

}

= ∓εnPnl̇(θ0,O)[v∗] ∓ εnPnl̇(θ0,O)[9nv∗ − v∗] + (Pn − P)
{
r[θ̂n − θ0,O]

− r[θ̂n ± εn9nv∗ − θ0,O]
}

+ P
{
r[θ̂n − θ0,O] − r[θ̂n ± εn9nv∗ − θ0,O]

}

= ∓εnPnl̇(θ0,O)[v∗] ∓ I1 + I2 + I3.

We will investigate the asymptotic behaviour of I1, I2 and I3. For I1, it follows from Conditions
(C1)–(C3), Chebyshev inequality and ‖9nv∗ − v∗‖ = o(1) that I1 = εn × op(n−1/2). For I2, by the
mean value theorem, we obtain that

I2 = (Pn − P)
{
l(θ̂n,O) − l(θ̂n ± εn9nv∗,O) ± εnl̇(θ0,O)[9nv∗]

}

= ∓εn(Pn − P)
{
(l̇(θ̃ ,O) − l̇(θ0,O))[9nv∗]

}
,

where θ̃ lies between θ̂n and θ̂n ± εn9nv∗. By Theorem 2.8.3 of van der Vaart and Wellner [35], we
know that {l̇(θ ,O)[9nv∗] : ‖θ − θ0‖ ≤ δn} is Donsker class. Therefore, by Theorem 2.11.23 of van
der Vaart and Wellner [35], we have I2 = εn × op(n−1/2). For I3, note that

P(r[θ − θ0,O]) = P{l(θ ,O) − l(θ0,O) − l̇(θ0,O)[θ − θ0]}

= 2−1P{l̈(θ̃ ,O)[θ − θ0, θ − θ0] − l̈(θ0,O)[θ − θ0, θ − θ0]}

+ 2−1P{l̈(θ0,O)[θ − θ0, θ − θ0]}

= 2−1P{l̈(θ0,O)[θ − θ0, θ − θ0]} + εn × op(n−1/2),

where θ̃ lies between θ0 and θ and the last equation follows from Taylor expansion and Conditions
(C1)–(C3). Therefore,

I3 = −2−1{‖θ̂n − θ0‖2 − ‖θ̂n ± εn9nv∗ − θ0‖2} + εn × op(n−1/2)

= ±εn < θ̂n − θ0,9nv∗ > +2−1‖εn9nv∗‖2 + εn × op(n−1/2)

= ±εn < θ̂n − θ0, v∗ > +2−1‖εn9nv∗‖2 + εn × op(n−1/2)

= ±εn < θ̂n − θ0, v∗ > +εn × op(n−1/2) ,

where the last equality holds due to the facts δn‖9nv∗ − v∗‖ = o(n−1/2), Cauchy-Schwartz inequal-
ity, and ‖9nv∗‖2 → ‖v∗‖2. Combining the above facts, together with Pl̇(θ0,O)[v∗] = 0, we can
establish that

0 ≤ Pn{l(θ̂n,O) − l(θ̂n ± εn9nv∗,O)}

= ∓εnPnl̇(θ0,O)[v∗] ± εn < θ̂n − θ0, v∗ > +εn × op(n−1/2)

= ∓εn(Pn − P){l̇(θ0,O)[v∗]} ± εn < θ̂n − θ0, v∗ > +εn × op(n−1/2).

Therefore, we obtain ∓n1/2(Pn − P){l̇(θ0,O)[v∗]} ± n1/2 < θ̂n − θ0, v∗ > +op(1) ≥ 0 and then
n1/2 < θ̂n − θ0, v∗ >= n1/2(Pn − P){l̇(θ0,O)[v∗]} + op(1) →d N(0, ‖v∗‖2) by the central limit
theorem and ‖v∗‖2 = ‖l̇(θ0,O)[v∗]‖2.
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Next we will prove that ‖v∗‖2 = b′I−1(ϑ0)b. For each component ϑq, q = 1, 2, . . . , (2p + 1), we
denote by ψ∗

q = (b∗
1q, b∗

2q) the value of ψq = (b1q, b2q) minimizing

E
{
lϑ · eq − lb1 [b1q] − lb2 [b2q]

}2
,

where lϑ is the score function for ϑ , lbj is the score operator for (j, j = 1, 2, and eq is a
(2p + 1)-dimensional vector of zeros except the q-th element equal to 1.

De!ne the q-th element of l∗(ϑ ,O) as lϑ · eq − lb1 [b∗
1q] − lb2 [b∗

2q], q = 1, . . . , (2p + 1), and
I(ϑ) as E({l∗(ϑ ,O)}⊗2). By Condition (C5), the matrix I(ϑ0) is positive de!nite. Furthermore, by
following similar calculations in Chen et al. [4](sec. 3.2), we obtain

‖v∗‖2 = ‖ḣ(θ0)‖2 = sup
v∈V̄ :‖v‖>0

|ḣ(θ0)[v]|2

‖v‖2
= b′

[
E
(
{l∗(ϑ0,O)}⊗2)

]−1
b = b′I−1(ϑ0)b .

Thus, we have shown that n1/2(ϑ̂n − ϑ0) → N(0, I−1(ϑ0)) in distribution for the estimator ϑ̂n
based on the complete data.

Now consider the estimator ϑ̂n based only on the case-cohort data. Note that the weight p =
ξ/πq(!1,!2) is bounded and does not depend on θ , and E{p|O} = 1. By Theorem 3.2 of Saegusa
and Wellner [29], we have

n1/2(ϑ̂n − ϑ0) = I−1(ϑ0) n−1/2
n∑

i=1
pil∗(ϑ0,Oi) + op(1),

where I(ϑ) and l∗(ϑ ,O), de!ned above, are the information and e"cient score for ϑ based on the
complete data. Note that

var{pl∗(ϑ0,O)} = var
{
E{pl∗(ϑ0,O)|O}

}
+ E

{
var{pl∗(ϑ0,O)|O}

}

= var{l∗(ϑ0,O)} + E

{

var(ξ |O)
{l∗(ϑ0,O)}⊗2

π2
q (!1,!2)

}

= I(ϑ0) + E
{1 − πq(!1,!2)

πq(!1,!2)
{l∗(ϑ0,O)}⊗2

}
.

Thus, we have
n1/2(ϑ̂n − ϑ0) → N(0,1)

in distribution, where

1 = I−1(ϑ0) + I−1(ϑ0)E
{1 − πq(!1,!2)

πq(!1,!2)
{l∗(ϑ0,O)}⊗2

}
I−1(ϑ0).

!
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