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ABSTRACT ARTICLE HISTORY
The case-cohort design is widely used as a means of reducing the Received 6 May 2019
cost in large cohort studies, especially when the disease rate is low  Accepted 1 April 2020
and covariate measurements may be expensive, and has been dis- KEYWORDS
cussed by many authors. In this paper, we discuss regression analysis Case-cohort design;
of case-cohort studies that produce interval-censored failure time dependent interval
with dependent censoring, a situation for which there does not seem censoring; inverse

to exist an established approach. For inference, a sieve inverse prob- probability weighting;
ability weighting estimation procedure is developed with the use of ~ proportional hazards model
Bernstein polynomials to approximate the unknown baseline cumu-

lative hazard functions. The proposed estimators are shown to be

consistent and the asymptotic normality of the resulting regression

parameter estimators is established. A simulation study is conducted

to assess the finite sample properties of the proposed approach

and indicates that it works well in practical situations. The proposed

method is applied to an HIV/AIDS case-cohort study that motivated

this investigation.

1. Introduction

The case-cohort design is widely used as a means of reducing the cost in large cohort stud-
ies, especially when the disease rate is low and covariate measurements may be expensive
(Prentice [27]; Scheike and Martinussen [30], Self and Prentice [32]). For the situation,
instead of collecting the covariate information on all study subjects, it collects the covari-
ate information only on the subjects whose failures are observed and on a subsample of the
remaining subjects. Among others, one area where the design is often used is epidemio-
logical cohort studies in which the outcomes of interest are times to failure events such as
AIDS, cancer, heart disease and HIV infection. For such studies, in addition to the incom-
plete nature on covariate information, another feature is that the observations are usually
interval-censored rather than right-censored due to the periodic follow-up nature of the
study (Sun [34]).

By interval-censored data, we usually mean that the failure time of interest is known or
observed only to belong to an interval instead of being observed exactly. It is easy to see that
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interval-censored data include right-censored data as a special case. Furthermore, some-
times one may also face informative censoring, meaning that the failure time of interest
and the censoring mechanism are correlated (Huang and Wolfe [13]; Wang et al. [37]). An
example of informatively interval-censored data may arise in a periodic follow-up study of
certain disease where study subjects may not follow the pre-specified visit schedules and
instead pay clinical visits according to their disease status or how they feel with respect
their treatments. Among others, Huang and Wolfe [13] and Sun [33] discussed the issue
and pointed out that in the presence of informative censoring, the analysis that ignores it
may result in biased or misleading results or conclusions. More discussion on informatively
interval-censored data can be found in Sun [34].

One real study that motivated this investigation is the HVTN 505 Trial to assess the
efficacy of a DNA prime-recombinant adenovirus type 5 boost (DNA/rAd5) vaccine to
prevent human immunodeficiency virus type 1 (HIV-1) infection (Fong et al. [8]; Ham-
mer et al. [10]; Janes et al. [14]). It is well-known that HIV-1 infection is deadly as it causes
AIDS for which there is no cure and thus it is important and essential to develop a safe and
effective vaccine for the prevention of the infection. The original study consists of 2504 men
or transgender women who had sex with men were examined periodically, thus yielding
only interval-censored data on the time to HIV-1 infection. For each subject, the informa-
tion on four demographic covariates, age, race, BMI and behavioural risk, was collected,
and in addition, for a subgroup of HIV infection cases and non-cases, a number of T cell
response biomarkers and anti-body response biomarkers were also measured. One goal of
the study is to determine or identify the important or relevant covariates or biomarkers for
HIV-1 infection.

Many authors have discussed the analysis of case-cohort studies but most of the existing
methods are for right-censored failure time data. For example, some of the early work on
this was given by Prentice [27] and Self and Prentice [32], who proposed some pseudo-
likelihood approaches based on the modification of the commonly used partial likelihood
method under the proportional hazards model. By following them, Chen and Lo [3]
proposed an estimating equation approach that yields more efficient estimators than the
pseudolikelihood estimator proposed in Prentice [27], and Chen [2] developed an esti-
mating equation approach that applies to a class of cohort sampling designs, including
the case-cohort design with the key estimating function constructed by a sample reuse
method via local averaging. Also Marti and Chavance [25] and Keogh and White [18] pro-
posed some multiple imputation methods and in particular, the latter method extended
the former by considering more complex imputation models that include time and inter-
action or nonlinear terms. In addition, Kang and Cai [17] and Kim et al. [19] developed
weighted estimating equation approaches for case-cohort studies with multiple disease out-
comes, where the latter method improved the efficiency upon the former by utilizing more
information in constructing the weights.

Interval-censored failure time data naturally occur in many areas, especially in the
studies with periodic follow-ups, and a great deal of literature has been developed for
their analysis (Chen et al. [5]; Finkelstein [7]; Sun [34]; Zhou et al. [40]). In particular,
Sun [34] and Bogaerts et al. [1] provided comprehensive reviews of the existing literature
on interval-censored data. Although there also exist some methods for either informatively
interval-censored data or the interval-censored arising from case-cohort studies, there
does not seem to exist an established procedure for informatively interval-censored data
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arising from case-cohort studies. In particular, for the analysis of informatively interval-
censored data, two types of approaches are commonly used and they are the frailty model
approach and the copula model approach. For example, Zhang et al. (2005, 2007) and Wang
et al. [36,38] gave some frailty model estimation procedures, while Ma et al. [23,24] and
Zhao et al. (2015) proposed some copula model methods. For the analysis of the interval-
censored data arising from case-cohort studies, Gilbert et al. [9] presented a midpoint
imputation procedure and Li and Nan [20] considered a special case of interval-censored
data, current status data, where the failure time of interest is either left- or right-censored
(Jewell and van der Laan [15]). Also Zhou et al. [41] proposed a likelihood-based approach.
However, all of the three methods above assume that the interval censoring mechanism
is non-informative or independent of the failure time of interest. As discussed by many
authors and above, the informative censoring is a serious and difficult issue and the use
of the methods that do not take it into account can yield biased or misleading results and
conclusions (Huang and Wolfe [13]; Ma et al. [23]). In the following, we will develop a
frailty model approach, a generalization of the method proposed in Zhou et al. [41], for
the analysis of the case-cohort studies yielding interval-censored data with informative
censoring.

The remainder of the paper is organized as follows. We will begin in Section 2 with intro-
ducing some notation and models to be used throughout the paper and in particular, we
will present joint frailty models for the failure time of interest and the underlying censoring
mechanism. To estimate regression parameters, a sieve inverse probability weighting esti-
mation procedure is then presented in Section 3 and in the method, Bernstein polynomials
are employed to approximate unknown functions. Furthermore, we establish the consis-
tency and asymptotic normality of the resulting estimators of regression parameters and
provide a weighted bootstrap procedure for variance estimation. Section 4 presents some
results obtained from an extensive simulation study conducted to assess the finite sample
properties of the proposed methodology and they suggest that the method works well in
practical situations. In Section 5, we apply the proposed method to the HIV/AIDS study
described above and Section 6 gives some discussion and concluding remarks.

2. Notation and models

Consider a failure time study that consists of n independent subjects. For subject i, let
T; denote the failure time of interest and suppose that there exists a p-dimensional vec-
tor of covariates denoted by Z; that may affect T;, i = 1,. .., n. Also for subject i, suppose
that there exist two examination times denoted by U; and V; with U; < V; and one only
observes A1; = I(T; < U;) and Ay; = I(U; < T; < V), indicating if the failure time Tj; is
left-censored and interval-censored, respectively. Note that here U; and V; are random vari-
ables and assumed to be observed and they together with Aj; and Ay; give the observed
interval-censored data on the T;’s (Sun [34]; Zhou et al. [41]).

For the case-cohort studies, as mentioned above, the information on covariates is avail-
able only for the subjects who either have experienced the failure event of interest or with
A1; = lor Ay; = 1orare from the sub-cohort that is a random sample of the entire cohort.
Define &; = 1 if the covariate Z; is available or observed and 0 otherwise,i = 1, ..., n. For
the selection of the subcohort, by following Zhou et al. [40] and others, we will consider
the independent Bernoulli sampling with the selection probability g € (0,1). Then under
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the assumption above, the probability that the covariate Z; is observed is given by
Pr(§i = 1) = mg(A1i, Azi) = Ari + Agi + (1 — A — Azi)g,
i=1,...,n, and the observed data have the form
of = { Of = (Up, Vi Arpy AoinEnEiZi); i = 1, n} .
In contrast, if all covariates were observed, the full cohort data would be
O ={0; = (U, Vi, A1i, Aiy Zi); i = 1,...,n}.

To describe the covariate effects and dependent interval censoring, define W; = V; — Uj,
i=1,...,n. Byfollowing Ma etal. [23], we will focus on the situation where the dependent
censoring can be characterized by the correlation between the T;’s and Wy’s. As mentioned
in Ma et al. [23], one example where this may be the case is follow-up studies where some
study subjects may tend to pay more or less clinical visits than the scheduled ones. More
comments on this will be given below. For the covariate effects, we assume that there exists
a latent variable b; with mean one and known distribution but unknown variance n and
given Z; and b;, the hazard functions of T; and W; have the forms

D (112, bi) = 1i(0) exp(BIZi)bi, (1)
and

A (0121 bi) = 2oy (0) exp(BLZ0 @

respectively. In the above, A;(t) and A, (t) are unknown baseline hazard functions and f;
and B,, are p x 1 vectors of unknown regression parameters. Also it will be assumed that
given Z; and b;, W; is independent of U; and T; and W; are independent. In other words,
the correlation between T; and W; is measured by the parameter 1. More comments on
this are given below.

Define A; = (A1, Apy) and 6 = (B, By, Ar, Ay, 1), where Ay(t) = fot Me(u)du and
Ay(t) = fot Aw(u)du. Assume that b; is independent of (U;, Z;) and the joint distribution
of (Uj, Z;) does not involve the parameters of interest. To motivate the proposed estimation
procedure, note that conditional on (Wj, Uj, Z;, b;), the likelihood of the observation from
subject i has the form

Lagwi,uab (@) = [1 — exp{—A(Uy) exp(ﬂ{Zi)bi}]A” [exp{—A¢(Uy) exp(B;Zi)b;}
— exp{—A((Vi) exp(B,Z)bi}] ¥ [expl—Ar(Vi) exp(B,Zi)bi}] 1 4%

Also note that conditional on (Z;, b;), the likelihood of the observation on W; is given by

Lw, b, = {Aw(W)) exp{B,,Zi} b exp{— A, (W) eXP(ﬂini)bi}}wi .
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where W; = I(W; < 00). This motivates the following inverse probability weighted log-
likelihood function

n n
lo:(0) = Y _L(0;05) = pili(6; 0y)
i=1 i=1
n
- ZP: log {/ LA,|W,,Ul,bl(Q)LW,\b,(Q)f(bb 77) dbl (3)
i=1
for estimation of 8, where f(b;; ) denotes the the density function of the b;’s and

& &
C oA A2) Ari+ Mg+ (1— Ay — Ay

pi

If f is the gamma distribution, the function [yt (9) has a closed form as

log (0) = Y pilog | o exp(B,Z0) ™ [ (1 + (A (W) exp(B 20 W) ™"~
i=1

Ay

(1 + AU exp(BIZ) + (A (Wi) exp(BlZ) W) ™ ]

x [(1 + AU exp(BIZi) + (nAyw(Wy) exp(B,Z) W) ™"~

AVS

(L A (Ui W) exp(BZ0) + (nAw(W) exp(B, Z0) W) ™ 1]

/ , —1_yg, I AL— A
x [+ nAUs+ W0 exp(B]Z0) + (AW (W) exp(Bl,Z) )™ Y] }
)

In the next section, for estimation of 8, we will discuss the maximization of the inverse
probability weighted log-likelihood function /¢ (9).

3. Sieve inverse probability weighting estimation

Define the parameter space of 6
© =1{0 = (Bt Bur W) : ¥ = (Ae(0), Aw(1)} = BOM' @ M?,

where B = {(Br, Bu»1) € R x R*, || B¢ || + Il Bw Il + || n |< M} with M being a posi-
tive constant and M/ denotes the collection of all bounded and continuous nondecreasing,
nonnegative functions over the interval [aj, rj] ,j = 1,2.In practice, [01, 71] is usually taken
to be the range of the U;’s and V;’s and [0, 72] the range of the W;’s. More comments on this
are given below. For the maximization of the inverse probability weighted log-likelihood
function [ (0), it is easy to see that this would not be straightforward since /5 (9) involves
unknown functions A(¢) and A, (¢). To deal with this and by following Ma et al. [24],
Zhou et al. [40] and others, we propose first to approximate the two functions by Bernstein
polynomials.
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More specifically, define the sieve space

On = {01 = (Bt Bus 1Y) = ¥n = (An(t), Ayn()} = B M,, @ M2

with
m
M, = {Am FAw(t) =) GraBi(t,m o1, 1),
k=0
m
Om1 = - = P11 > dor 20,Z|¢k1| SMn}»
k=0
and

m
Mﬁ = {Awn T Ayu(t) = Z¢k23k(wa m, 02, 12),
k=0

m
¢m22'-'2¢122¢0220,2|¢k2|SMn}-

k=0

In the above,

t— o1 k t—o1 m—k
Bk(t) m,Ul,‘Cl) = C;’fn ( ) (1 - > 5
71 — 01 71 — 01

and
k m—k
w— 0o w—o0
Bk(W) m, oy, TZ) = Cfn (—2) (1 - 2 ) 5
T — 07 Ty — 02
k =0,...,m, which Bernstein polynomials of degree m = o(n") for some v € (0, 1). Note

that some restrictions are needed above on the parameters since A;(f) and A, (w) are
nonnegative and nondecreasing functions. However, this can be easily removed by some

reparameterization. For example, one can reparameterize the parameters {¢;, . . . , ¢} by
the cumulative sums of the parameters {exp(qb(’)kj), ... ,exp(d):‘nj)}, j=12.

Let én = (ﬁm,ﬁwn,ﬁn,f\m,f\wn) denote the estimator of 6 given by the value of
0 that maximizes the inverse probability weighted log-likelihood function Iy (6) over
the sieve space ©,. Also let 8y = (B0, Bwo> 0> Aro, Aywo) denote the true value of
0, 7§n = (,BAtnaB\Wﬁ’ ﬁn)> Uo = (.Bt0> ﬂWOs 10)> and for any 6! = (IBtla 11/) 771>A1’A11,V) and
9% = (,Btz, fV, n?, A2, A%V) in the parameter space ©, define the distance

d©',6% = {18} = B} 1” + 118y, = Ball* + In" = n*II?
1/2
+IIAL = A2 + 1AL — AZI3)7.
Here ||v|| denotes the Euclidean norm for a vector v, ||A} — Af||% = f[(A}(u) —
AFW)* + V(A (u+w) — Af(u+ w)?]dG(u, w), and ||AL, — A2 |13 = [[AL(w) —
Afv(w)]sz(u, w) with G(u, w) denoting the joint distribution function of U and W. The
following two theorems establish the asymptotic properties of 6,,.
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Theorem 3.1: Suppose that the regularity conditions (C1)-(C4) given in the Appendix
hold. Then as n — oo, we have that d(én,eo) — 0 almost surely and d(én,eo) =
Op(n_min{(l_“)/z’”’/Z}), where v € (0,1) is defined in m = o(n") and r in the regularity
condition (C3).

Theorem 3.2: Suppose that the regularity conditions (C1)-(C5) given in the Appendix hold.
Then as n — oo and if v > 1/2r, we have that

n'2 (@D, —00) = I @e) n™ 2 Y pil* (90,00 + 0p(1) — N(0, %)
i=1

in distribution, where

11— Trq(Al) AZ)

> =11 I, E{
(o) + 1 (%) (AL A7)

{I* (Do, 0)}®2} ' (9)

with v®% = v for a vector v and 1(}) and I* (8, O), given in the Appendix, denoting the
information matrix and efficient score for © = (B¢, Bw, ) based on the complete data.

The proof of the results given above is sketched in the Appendix. For the determination
of the proposed estimator 6, different methods can be used and in the numerical studies
below, the Matlab function fmincon is used. Also for the determination of én, one needs to
choose or specify the degree m of Bernstein polynomials, which controls the smoothness
of the approximation. For this, one common approach is to perform the grid search by
considering different values of 1 and choosing the one that minimizes

AIC = =210z (6,) +2 (2p + 2m + 3)

based on the AIC criterion. Note that instead of this, one may employ other criteria such
as the BIC criterion and the numerical results indicate that they give similar performance.
Also note that in the approximation of A; and A, we used the same degree m and in
practice, different m could be used too.

For inference about 99 = (810, Bwo 10), of course, one needs to estimate the covariance
matrix of 1§n = (Bm, me 1n). For this, a natural way would be to derive a consistent esti-
mator of ¥. On the other hand, one could see from the Appendix that ¥ involves the
information matrix I(¢%) and the efficient score I* (%9, O) and both of them do not have
closed forms. Thus, it would be difficult to derive a consistent estimator and instead we
propose to employ the weighted bootstraps procedure discussed in Ma and Kosorok [22],
which is easy to implement and seems to work well in the numerical studies described
below. Specifically, let {u, . . ., u,} denote n independent realizations of a bounded positive
random variable u satisfying E(u) = 1 and var(u) = €y < 0o and define the new weights
p; =uipii=1,...,n Alsolet 57’1 denote the estimator of ¢ proposed above with replac-
ing the p;’s by the p}’s. Then if we repeat this B times, one can estimate the covariance matrix
of 9, by the sample covariance matrix of the 19,’1’5. By following Ma and Kosorok [22], it
can be shown that this weighted bootstrap variance estimator is consistent.
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4. A simulation study

In this section, we report some results obtained from a simulation study conducted to
evaluate the finite sample performance of the inverse probability weighted estimation pro-
cedure proposed in the previous sections. In the study, it was assumed that the covariate Z
followed the Bernoulli distribution with the success probability of 0.5 and to generate the
subcohort, as mentioned above, we considered the independent Bernoulli sampling with
the selection probability being 0.1. For the proportion of the observed failure events or the
event rate, we studied several cases including p, = 0.05, 0.1 and 0.2. To generate interval-
censored data, we first generated the U;’s from the uniform distribution over (0, a) with a
being a positive constant and the latent variable b;’s. Then the T;’s and W;’s were generated
based on models (2.1) and (2.2) with A; = 0.2¢, 0.1t or 4t/9, A,, = 12t and the V}’s were
defined as V; = U; + W; for all i. The results given below are based on the full cohort size
n = 1000 or 2000 with 1000 replications.

Table 1 presents the results obtained on the proposed estimators Bm, ﬁwn and 7, with
n = 1000, the true values of the parameters being B = B0 = 0,0.2 or 0.5 and 19 = 0.8,
and the b;’s following the gamma distribution. The results include the estimated bias (Bias)
given by the average of the proposed estimates minus the true value, the sample standard
error (SSE), the average of the estimated standard errors (ESE) and the 95% empirical cov-
erage probability (CP). Here we took the degree of Bernstein polynomials being m = 3 and
the weighted bootstrap sample size B = 100 for variance estimation. Also for the variance
estimation, we generated the random sample {uy, . . ., u,} repeatedly from the exponential
distribution. Table 2 gives the estimation results obtained under the same set-up as above
exceptn = 2000. One can see from the two tables that the results indicate that the proposed
estimator seems to be unbiased and the weighted bootstrap variance estimation procedure
seems to work well. Also they indicate that the normal approximation to the distribution of
the proposed estimator appears to be reasonable. In addition, as expected, the estimation
results became better when the percentage of the observed failure events or the full cohort
size increased. We also considered other set-ups including different values for m and B and
obtained similar results.

In the proposed estimation procedure, it has been assumed that the distribution of the
latent variables b;’s is known up to a variance parameter. Hence in practice, one question
of interest may be the robustness of the estimation procedure with respect to the distri-
bution. To investigate this, we repeated the simulation study above giving the results in
Table 1 with p, = 0.1 except that we generated the b;’s from the log-normal distribution
instead of the gamma distribution but assumed that they followed the gamma distribution.
Table 3 presents the results obtained on the proposed estimators By, and By, including the
Bias, the SSE, the ESE and the 95% empirical CP. As before, they suggest that the proposed
methodology seems to work well or the estimators ,Bm and ,Bwn appear to be robust with
respect to the distribution of the latent variables.

For the problem discussed here, instead of the inverse probability weighting method
proposed above, there exist two commonly used naive approaches that estimate regres-
sion parameters by using the regular likelihood approaches. One is to base the estimation
only on the selected sub-cohort and the other is to base the estimation on a simple ran-
dom sample that has the same size as the case-cohort sample. Let Btsub and By, denote
the estimators of B; given by the two naive methods above, respectively, and here we only
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Table 1. Estimation of regression parameters with n = 1000.

De Parameter Bias SSE ESE CcP
5% Bt=0 —0.0107 0.3920 0.3903 0.9510
Bw =0 —0.0026 0.3180 0.3247 0.9460
n=08 —0.0034 0.2778 0.2863 0.9330
Bt =02 0.0074 0.4045 0.3958 0.9450
Bw =02 0.0163 0.3259 0.3273 0.9480
n=08 0.0180 0.2722 0.2852 0.9520
Bt =05 0.0272 0.4070 0.4032 0.9490
Bw =05 0.0203 0.3469 0.3330 0.9380
n=208 0.0200 0.2789 0.2813 0.9470
10% Bt=0 —0.0163 0.3428 0.3377 0.9330
Bw =0 —0.0047 0.2976 0.3106 0.9540
n=08 0.0347 0.2475 0.2544 0.9420
Bt =02 —0.0003 0.3413 0.3394 0.9530
Bw =02 0.0158 0.3127 0.3096 0.9400
n=08 0.0347 0.2509 0.2493 0.9410
Bt =05 0.0117 0.3447 0.3438 0.9470
Bw =05 0.0291 0.3146 0.3130 0.9410
n =038 0.0386 0.2500 0.2440 0.9370
20% Bt=0 —0.0067 0.3058 0.3022 0.9480
Bw=0 0.0074 0.2766 0.2740 0.9400
n=08 0.0071 0.2202 0.2159 0.9240
Bt =02 —0.0022 0.3066 0.3027 0.9410
Bw =02 0.0134 0.2757 0.2756 0.9480
n =038 0.0132 0.2178 0.2150 0.9340
Bt =05 0.0021 0.3089 0.3058 0.9410
Bw =05 0.0223 0.2786 0.2791 0.9440
n=208 0.0165 0.2220 0.2155 0.9230

focus on the estimation of B;. Table 4 gives the estimation results given by the proposed
method and the two naive approaches under the set-up similar to that for Table 2 with
Pe = 0.1. Note that here for comparison, we also considered the approach given by Zhou
et al. [40], which treated the observation process to be independent of the failure time of
interest or ignored the correlation between the failure time and the observation process.
The resulting estimator of f; is denoted by f;, in the table. One can see from Table 4 that
the proposed estimate clearly gave better performance than the two naive estimates and
one would get biased results if ignoring the correlation between the failure time of interest
and the observation process.

As pointed out by a reviewer and motivated by the real data discussed below, we also
repeated the study that gave the results in Table 1 with p, = 0.05 in which we generated
the subcohort in the same way as before but only from none-case subjects instead of all
subjects as above. In other words, the goal here is to assess the performance of the proposed
approach for case-control studies. The obtained estimation results are presented in Table 5
and one can see that they are similar to those given in Table 1. In other words, it seems that
the proposed estimation approach seems to give good performance for and can be applied
to case—control studies too.

5. An application

In this section, we will apply the methodology proposed in the previous sections to the
HVTN 505 Trial discussed above. It is a randomized, multiple-sites clinical trial of men or



JOURNAL OF APPLIED STATISTICS ‘ 855

Table 2. Estimation of regression parameters with n = 2000.

De Parameter Bias SSE ESE CcP
5% Bt=0 —0.0106 0.2718 0.2707 0.9480
Bw =0 0.0007 0.2255 0.2270 0.9470
n=08 0.0117 0.1945 0.2094 0.9620
Bt =02 0.0080 0.2772 0.2751 0.9480
Bw =02 0.0112 0.2299 0.2289 0.9510
n=08 0.0089 0.1872 0.2085 0.9730
Bt =05 0.0170 0.2813 0.2781 0.9440
Bw =05 0.0052 0.2299 0.2313 0.9510
n =038 0.0205 0.1877 0.2015 0.9660
10% Bt=0 —0.0046 0.2345 0.2344 0.9440
Bw=0 0.0081 0.2097 0.2148 0.9500
n=08 0.0346 0.1722 0.1847 0.9660
Bt =02 0.0058 0.2404 0.2371 0.9400
Bw =10.2 0.0060 0.2130 0.2172 0.9580
n=08 0.0371 0.1827 0.1830 0.9410
Bt =05 0.0083 0.2371 0.2407 0.9540
Bw =05 0.0151 0.2208 0.2193 0.9450
n =038 0.0372 0.1705 0.1830 0.9570
20% Bi=0 —0.0023 0.2083 0.2106 0.9500
Bw =0 —0.0096 0.1897 0.1928 0.9550
n=08 0.0060 0.1609 0.1671 0.9520
Bt =02 0.0011 02114 0.2122 0.9600
Bw =0.2 0.0099 0.1918 0.1938 0.9540
n=08 0.0075 0.1575 0.1645 0.9560
Bt =05 —0.0034 0.2197 0.2137 0.9370
Bw =05 0.0040 0.1953 0.1958 0.9430
n =038 0.0036 0.1597 0.1628 0.9430
Table 3. Estimation of regression parameters with

n = 1000, p. = 0.1 and misspecified frailty distribution.

Parameter Bias SSE ESE CcP

Bi=0 0.0040 0.3192 0.3221 0.9500
Bw=0 —0.0017 0.2682 0.2600 0.9470
Bt =02 0.0025 0.3218 0.3238 0.9500
Bw =02 0.0014 0.2711 0.2617 0.9410
Bt =05 —0.0035 0.3356 0.3289 0.9410
Bw =05 0.0090 0.2728 0.2678 0.9510

Table 4. Comparison of the proposed and naive estimators for 8; with

n = 2000 and p, = 0.1.

Parameter Bias SSE ESE CcP

Bt =08 B -0.0129 0.2544 0.2546 0.9550
3% —0.0379 0.5391 0.5308 0.9470
Bt —0.0031 03677 03697 0.9600
Er,n —0.1840 0.2142 0.2161 0.8610

Bt =1 Bt —0.0027 0.2534 0.2595 0.9540
Btas 0.0151 0.5655 05635 0.9560
3&,5 —0.0249 0.3959 0.3853 0.9390
3r,,, —0.2282 0.2117 0.2206 0.8040

transgender women who had sex with men for assessing the efficacy of the DNA/rAd5
vaccine for HIV-1 infection (Fong et al. [8]; Hammer et al. [10]; Janes et al. [14]).
As mentioned above, the original study consists of the subjects randomly assigned to
receive either the DNA/rAd5 vaccine or placebo, and in the following, we will focus
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Table 5. Estimation of regression parameters for case—
control studies with n = 1000 and p, = 0.05.

Parameter Bias SSE ESE cpP

Bt=0 -0.0048 0.4015 0.4086 0.9560
By=0 0.0060 0.3196 0.3283 0.9570
n =038 0.0022 0.3048 0.3189 0.9390
B =02 —-0.0177 0.3930 0.4108 0.9570
Bw =02 —0.0158 0.3176 0.3290 0.9590
n =028 0.0143 0.3076 0.3226 0.9550
Bt =05 —0.0015 0.3960 0.4003 0.9570
Bw =05 0.0055 0.3287 0.3354 0.9610
n =028 0.0250 0.3266 0.3179 0.9450

only on the 1253 subjects in the vaccine group. It is well-known that HIV-1 infection
is deadly as it causes AIDS for which there is no cure and thus it is important and
essential to develop a safe and effective vaccine for the prevention of the infection. For
each subject, four demographic covariates were observed and they are age, race, BMI
and behavioural risk. In addition, to assess their relationship with the HIV infection,
a number of T cell response biomarkers and antibody response biomarkers were mea-
sured for a cohort of 150 subjects consisting of all HIV infection cases (25) and other
125 randomly selected subjects among the vaccine recipients. The failure time of inter-
est here is the time to true HIV-1 infection and for which, only interval-censored data are
available.

In all previous analyses, the authors simplified the observed data into right-
censored data and also did not consider the possibility of informative censoring (Fong
et al. [8]; Hammer et al. [10]; Janes et al. [14]). They identified the T cell response
biomarker Env CD8+ polyfunctionality score and the antibody response biomarker
IgG.Cconenv03140CFE.avi that may have significant effects on the HIV infection time. For
simplicity, below we will refer these two biomarkers as to Env CD8 Score and IgG, respec-
tively. For the analysis below, by following Fong et al. [8] and Janes et al. [14], we will focus
on the cohort of 150 vaccine recipients, which can be treated as a case—control design
with the full cohort being all subjects in the vaccine group, and investigate the relation-
ship between the HIV infection time and the four demographic covariates plus the two
biomarkers.

Table 6 presents the estimation results given by the application of the methodology pro-
posed in the previous sections to the HVTN 505 Trial, including the estimated covariate
effects ﬁtn and ,éw,,, the estimated standard errors (ESE) and the p-values for testing the
covariate effect being zero. Here for the degree of Bernstein polynomials, we tried sev-
eral values, including m = 2, 3, 4, 5, 6 and 7, and the results above were obtained based on
m = 3, which gave the smallest AIC defined above, and B = 500. One can see from Table 6
that the proposed estimation procedure suggests that among the six covariates considered
here, two demographic covariates, race and behavioural risk, seem to be correlated with
the HIV infection time and the two biomarkers also appear to have significant prognostic
effects on the development of HIV infection. On the other hand, the age and BMI did not
seem to have any effects on the HIV infection. In addition, the race and behavioural risk
appear to have significant effects on the observation process too.



JOURNAL OF APPLIED STATISTICS e 857

Table 6. Estimated covariate effects for the HVTN 505 Trial.

Proposed method

Covariate ﬁm SSE p-value ,Bwn SSE p-value
age -0.2116 0.2523 0.4018 0.0287 0.3174 0.9279
race —0.7962 0.4676 0.0886 1.7492 0.6204 0.0048
BMI —0.1560 0.3020 0.6055 0.1813 0.3621 0.6166
behavioural risk 1.1079 0.5677 0.0510 2.2763 0.6781 0.0008
Env CD8 Score —0.9575 0.2286 0.0000 0.2661 0.4628 0.5652
19G —0.5085 0.1610 0.0016 0.2744 0.1611 0.0886
n 0.0030 2.0820 0.9989

Method givenin Zhou et al. [40]

Covariate B, SSE p-value
age -0.2114 0.2580 0.4125
race —0.7985 0.4996 0.1100
BMI —0.1561 0.2832 0.5814
behavioural risk 1.1086 0.7482 0.1385
Env CD8 Score —0.9574 0.2846 0.0008
l9G —0.5089 0.1620 0.0017

For comparison, we also applied the method given in Zhou et al. [40], which assumed
that the HIV infection time and the observation process were independent, to the data
and included the estimated covariate effects, which are denoted by létin’ in the table along
with the estimated standard errors and the p-values. One can see from the table that one
difference between the results given by the two methods is on the estimation of the effect
of the behavioural risk factor, which did not see to have any effect on the development of
HIV infection based on the method given in Zhou et al. [40]. One explanation for this
may be due to the fact that the method given in Zhou et al. [40] ignored the existence of
informative censoring.

6. Discussion and concluding remarks

This paper discussed the analysis of case-cohort studies that yield informatively interval-
censored failure time data arising from the proportional hazards model. As discussed
above, a great deal of literature has been developed for the analysis of case-cohort stud-
ies that give right-censored data. In practice, however, the observed information on the
failure time is more likely and naturally given in the form of interval-censored data,
which is especially the case for longitudinal or periodic follow-up studies. One major
difference between right-censored data and interval-censored data is that the latter has
a much more complex structure than the former, which makes the analysis of the lat-
ter much more difficult. Although a large amount of literature has also been estab-
lished for the analysis of either interval-censored data or case-cohort studies, there is
no method available for the informative censoring situation discussed above. As pointed
out before and seen in Section 5, informative censoring often occurs naturally and for
the situation, the analysis that ignores it could result in biased or misleading results and
conclusions.

As discussed in Sections 4 and 5, a type of studies that is similar to case-cohort studies
is the case—control study and the key difference between the two is the generation of the
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subcohort. With the case-cohort design, the subcohort is sampled from all study subjects,
while the case—control design samples the subcohort only from the subjects who do not
experience the failure event of interest during the follow-up. It is apparent that the data
structures under the two designs are different but on the other hand, the simulation study
suggested that the proposed estimation approach seems to be valid too for the case—control
design. A possible explanation for this is that the resulting data may carry similar informa-
tion about the model and the regression parameters of interest given the low percentage of
the event rate.

In practice, interval-censored data may be given in different forms (Sun [34]). For exam-
ple, instead of the form discussed here, one may have case K or mixed interval-censored
data (Wang et al. [37]). Note that for the analysis, one can still apply the proposed estima-
tion procedure to these situations by expressing the data using the format described here.
However, the derivation or establishment of the asymptotic properties may be different
and one may need some other assumptions similar to those described in Huang [11] and
Wang et al. [37]. In the previous sections, the focus has been on the informative censor-
ing that can be characterized by models (2.1) and (2.2) or through latent variables. More
specifically, it has been assumed that the magnitude of the informative censoring can be
measured by the parameter 7. It is apparent that as with most of frailty model approaches,
a natural question would be if one can test 7 = 0. Unfortunately it does not seem to exist
an established procedure for it in the literature. Another related question is the possibility
of performing the goodness-of-fit tests on models (2.1) and (2.2). For this, if = 0, one
may apply the test procedures given in Ren and He [28] and McKeague and Utikal [26],
respectively, to test them separately. However, it would be difficult or not straightforward
to generalize either of them to the situation discussed here.

As mentioned above, to deal with the informative censoring, another commonly used
method is the copula model approach, which directly models the joint distribution of the
failure time of interest and censoring variables (Sun [34]). For example, Cui et al. [6] and
Ma et al. [24] developed two such methods for regression analysis of current status data
with informative censoring, a special case of interval-censored data where each subject is
observed only once. Among others, Ma et al. [23] proposed a copula model approach for
regression analysis of general interval-censored data. An advantage of the copula model
approach is that it allows one to work or model the marginal distribution and the asso-
ciation parameter separately but it has the limitation that one needs to assume that the
underlying copula function is known.

It is well-known that although the proportional hazards model is one of the most
commonly used models for regression analysis of failure time data, sometimes one may
prefer a different model or a different model may fit the data or describe the prob-
lem of interest better (Kalbfleisch and Prentice [16]). For example, the additive hazards
model is usually preferred if the excess risk is of interest and one may want to consider
the linear transformation model if the model flexibility is more important. Some liter-
ature has been developed for these and other models for regression analysis of general
interval-censored data or the analysis of case-cohort studies that yield right-censored data.
However, there does not seem to exist an established estimation procedure for the prob-
lem discussed here under other models. In other words, it would be useful to generalize
the proposed method to the situation under the additive hazards or linear transformation
model.
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Appendix Proofs of the asymptotic properties of é,,

In this appendix, we will sketch the proof of the asymptotic properties of the proposed estimator 6,,.
Let T denote the length of study. Then a single observation can be written as

Of ={U, YW, U =IW<71-U), A1 =I(T<U), A =IU<T<U+WYW), £Z, &}.

To establish the asymptotic properties, we need the following regularity conditions, which are com-
monly used in the studies of interval-censored data and usually satisfied in practice (Huang and
Rossini [12]; Zhang et al. [39]; Ma et al. [23]; Zhou et al. [40]).

(C1) The distribution of the covariate Z has a bounded support in R? and is not concentrated on
any proper subspace of RP.

(C2) The true parameters (B0, B0, o) lie in the interior of a compact set B in R? x R*.

(C3) The first derivative of Ao(-) and A ,0(-), denoted by A’ (-) and A} (), is Holder continuous

with exponent y € (0, 1]. That s, there exists a constant K > 0 such that IA%) (t) — Ag(l)) ()| <
K|ty — t;|” forall t),t, € [0, 7], where0 <0 <7 <o0o.Letr =1+ y.

(C4) There exists a constant K > 0 such that PI(0, 05 ) — Pl(6y, O5) < —Kd(6, 6y)? for everyf ina
neighbourhood of 6, where I(8, O%) is the weighted log-likelihood function based on a single
observation O .

(C5) The matrix E({I*(%, 0)}®?) is finite and positive definite, where v®2 = v/ for a vector
v, and I* (9, O) is the efficient score for ¥ = (B4, B, 1) based on the complete observation
O ={U,¥YW,W¥, A}, Ay, Z} and will be given in the proof of Theorem 2.

For the proof, we will mainly employ the empirical process theory and some nonparametric tech-
niques. Let Pf = [ f(y)dP denote the expectation of f(Y) under the probability measure P, and
Puf = n1 Y | f(Y;), the expectation of f(Y) under the empirical measure P,,. Define the covering
number of the class £,, = {I(0, Of) : 6 € ®,,}, where (9, OF) is the weighted log-likelihood function
based on a single observation 0. Also for any € > 0, define the covering number N(e, L, L1 (Py))
as the smallest positive integer « for which there exists {81, . ..,0®)} such that

1 « ,
in — Y [l6,05) — 16D, 0}
jeg{}gk}ngl( D —109,05)| <€
for all 6 € ©®,, where {Oé,...,Of,} represent the observed data and for j=1,...,k, 69 =

(,Bt(j), 55), n%, Ay), Ag)) € Oy,.Ifno such « exists, define N(¢, L, L1 (P,)) = 00. Also for the proof,
we need the following two lemmas, whose proofs are similar to those for Lemmas 1 & 2 in Zhou
et al. [40] and thus omitted.

Lemma A.1: Assume that the regularity conditions (C1)-(C3) given above hold. Then we have that
the covering number of the class L, = {1(6,0%) : 6 € ©,)} satisfies

N(G,En,Ll (Pn)) < KMﬁ(m+l)E—(2P+2m+3)

for a constant K, where m = o(n”) with v € (0,1) is the degree of Bernstein polynomials, and
M, = O(n*) with a > 0 controls the size of the sieve space ©,,.
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Lemma A.2: Assume that the regularity conditions (C1)-(C3) given above hold. Then we have that

sup |P4l(6,0%) — PI(H,0%)| — 0
0e®,

almost surely.

Proof of Theorem 3.1: We first prove the strong consistency of 6. Let 1(, Of) denote the weighted
log-likelihood function based on a given single observation Of and consider the class of functions
L, ={l(6,0%) : 6 € ©,}. By Lemma A.1, the covering number of £, satisfies

N(€>£naLl(Pn)) < KMﬁ(m+l)E—(2P+2m+3).

Furthermore, by Lemma A.2, we have

sup |Pnl(0, OS) — Pl(o, O§)| — 0 almost surely. (A1)
0e®,
Note that E(p|O) = 1, then PI(8,0%) = P{pl(0, 0)} = PI(#, 0) and 6y maximizes PI(#, O%). Let
M(8,0%) = —I(6, O%), and define K. = {# : d(8,6;) > €,0 € ®,} fore > 0and

Cin = sup |P,M(8,0%) — PM(0,0%)|, {an = PuM(6p, OF) — PM(6p, OF).
0e®,

Then
inf PM(®, 0%) = inf {PM(G, Of) — P,M(9,0%) + P,M(6, O° )} < Gin +inf P,M(O, 0%). (A2)

If 6, € K¢, then we have

inf P, M (6, O%) = PyM(8,, 0%) < P,M(6p, O°) = Lo + PM(6o, OF). (A3)

Define 6. = infx, PM(6, 0%) — PM(6,, O%). Under Condition (C4), we have 8. > 0. It follows
from A2 and A3 that

inf PM(®, O%) < Lin + Can + PM(60, OF) = &y + PM (65, O%)

with ¢, = {14 + &2n, and hence ¢, > 8¢.This gives {én € K¢} € {¢n > 8¢}, and by Al and the strong

law of large numbers, we have both ¢;, — 0and ¢, — 0almost surely. Therefore, U,C(’il ﬂZik {én €
Ke} S U2, N22, {¢n > 8¢}, which proves that d(O,,00) — 0 almost surely.

Now we will show the convergence rate of , by using Theorem 3.4.1 of van der Vaart and
Wellner [35]. Below we use K to denote a universal positive constant which may differ from place
to place. First note from Theorem 1.6.2 of Lorentz [21] that there exists a Bernstein polynomial
Amo and Ao such that | Amo — Aplleo = O(m—r/Z) and [|Awno — Awolloo = O(m_r/2)~ Define
B0 = (Bi0> Bwos 10> Ao Awno). Then we have d(6,0,600) = O(n~"/2). For any p > 0, define the
class of functions F, = {10, 05) — (B0, OF) : 0 € Oy, p/2 < d(8,0,0) < p} for a given single
observation O%. One can easily show that P(I(6g, O%) — I(B0, 0%)) < Kd(60,6,0) < Kn~"/2. From
Condition (C4), for large n, we have

P(1(0, OF) — (B0, OF)) = P(I(8, OF) — 1(8p, O%)) + P(I(6o, OF) — 1B, O%))
< _kpZ +I"<n—rv/2 — _I”{va,

for any 1(6, O5) — 10, O%) € F.

Following the calculations in Shen and Wong [32](p. 597), we can establish that for 0 < ¢ < p,
log Ny (e, Fpp, L2(P)) < KN log(p/¢e) with N = 2(m + 1). Moreover, some algebraic manipulations
yield that P(I(8, O%) — I(6n9, O5))?> < Kp? for any 1(8, 05) — I(80, 0%) € F,. Under Conditions
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(C1)-(C3), it is easy to see that F, is uniformly bounded. Therefore, by Lemma 3.4.2 of van der
Vaart and Wellner [35], we obtain

Ji , Fo,Loy(P
Ep| !By - P)| -, < Ky {p,fp,LxP)}[ ”{pp"/()}]

where Jij{p, Fp,L2(P)} = [{'[1 +log Nyj{e, Fp, Lo (P)}]/2de < KN'2p. This yields ¢,(p) =
NY2p + N/n'/2 1t is easy to see that ¢,(p)/p is decreasing in p, and rﬁqﬁn(l/rn) =r,NV2 4+
rﬁN/nl/2 < Kn!'/?, where r, = N~Y2pl/2 = n(1-v)/2,

Finally note that P, {I(0,, Of) — (6,0, O%)} > 0 and d(0,,0,0) < d(By,60) + d(0o,6m0) — 0 in
probability. Thus by applying Theorem 3.4.1 of van der Vaart and Wellner [35], we have
n1=972d(8,,,0,9) = Op(1). This together with d(6n0,60) = O(n™"/?) yields that d(,,6) =
Op(n’(l’”)/2 + n~"/2) and the proof is completed. ]

Proof of Theorem 3.2: Now we will prove the asymptotic normality of 1§n = (ﬁm, ﬁwn, ). First we
will establish the asymptotic normality for the estimator based on the complete observation O =
{U, W, W, A, Ay, Z}. With a little abuse of notation, we still denote the complete-data estimator
as vy,.

Let V denote the linear span of ® — 6y and define the Fisher inner product for v,v € V as <
VY >= P{I(OO,O)[V]I(QO, 0)[7]} and the Fisher norm for v € V as ||v||*> =< v,v >, where

dl(0g + sv, O)

60, 0¥ = ==———|

denotes the first order directional derivative of [(6, O) at the direction v € V (evaluated at 6;). Also
let V be the closed linear span of V under the Fisher norm. Then (V, || - |)) is a Hilbert space. Fur-
thermore, for a vector of (2p + 1) dimension b = (b}, b}, b3)' with ||b]| < 1 and any v € V, definea
smooth functional of 6 as h(9) = b} B1 + b,B2 + bsn and

dh(6y + sv)

o)) = —————=|

whenever the right hand-side limit is well defined. Then by the Riesz representation theorem, there
exists v* € V such that /i(6p)[v] =< v,v* > forallv € Vand |[v*|| = [|(6)) . Also note that h(8) —
h(6p) = h(6p)[6 — 6]. It thus follows from the Cramér-Wold device that to prove the asymptotic
normality for l§n, ie. nl/z(f?n —99) — N(,I"'(9)) in distribution, it suffices to show that

12 <6, — 0y, v >—4 N0, 6T (89)b) (A4)

since b’ (l‘/‘ — ) = h(@n) — h(6y) = h(@o)[e — 6] =< 9 — 09, v* > .Infact, A4 holds since one
can show that n1/2 < 8, — 60, v* >—>4 N(O Iv*11?) and ||v 1> =v1" 1(190)19

We first prove that n1/2 <6, — 6, v* >—>4 N(O, [|[v*||). Let 8, = n~mir{(1=v)/2v/2} denote the
rate of convergence obtained in Theorem 3.1, and for any 6 € © such that d(0,6y) < 8,, define the
first order directional derivative of /(6, O) at the direction v € V as

dl(6 + sv, 0O)

16,0)[v] = i

s=0
and the second-order directional derivative at the directions v, ¥ € V as

d2

_di® +57,0)[7]

i(6,0)[v,7] = <o & =0

dsds

Note that by Condition (C3) and Theorem 1.6.2 of Lorentz [21], there exists I1,v* € ®, — 6y such
that || IT,,v* — v*|| = O(n™""/2). Furthermore, under the assumption v > 1/2r, we have 8,,||TT,v* —

s=0
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v¥|| = o(n~/?). Define r[0 — 6, O] = 1(8, 0) — 1(8y, O) — (6, O)[0 — 6] and let &, be any posi-
tive sequence satisfying &, = o(n~'/2). Then by the definition of 6,,, we have

0 < Py[l(0n, 0) — 16, % £4T1,7*, 0)]
= FeaPal(60, O) [T + (P — P {10, — 60,01 = r[d + enTv* — 60,01}
+ P{r[én — 6, O] — r[6, £ £, T1,,v* — 6, O]}
= FeuPal(00, O)[V'] F £nPal00, O)[Mv* = v*] + (P, — P) {116, — 60,0
— (6, £ £,TT 0" — 6y, O]} + P{r[én — 60,0] — r[by % £, T, — 65, O]}

= Fe P00, OV ] F 1 + L + L.

We will investigate the asymptotic behaviour of I;, I and I5. For Iy, it follows from Conditions
(C1)-(C3), Chebyshev inequality and ||IT,v* — v*|| = o(1) that I} = &, X op(n_l/z). For I, by the
mean value theorem, we obtain that

L =P, — P){l(é,,, 0) — 16, + £,T1,v*, 0) =+ £,1(6o, O)[l'[nv*]}
= Feu(P, — P){ (16, 0) — 160, 0)[M,*1],

where 0 lies between én and én =+ £,I1,v*. By Theorem 2.8.3 of van der Vaart and Wellner [35], we

know that {I(8, O)[T1,v*] : |6 — 6ol < 8,} is Donsker class. Therefore, by Theorem 2.11.23 of van
der Vaart and Wellner [35], we have I, = ¢, X op(n_l/z). For I3, note that

P(r[0 — 6o, O]) = P{I(8, 0) — 189, O) — I(6, 0)[6 — 6]}
=271P{i(0,0)[0 — 60,6 — o] — (69, 0)[6 — 60,6 — 6]}
+ 271 P{i(0y, 0)[6 — 60,6 — 651}
= 27" P{i(6y, 0)[6 — 60,0 — Bol} + en x 0p(n~"/?),

where 6 lies between 6 and 6 and the last equation follows from Taylor expansion and Conditions
(C1)-(C3). Therefore,

Iy = =27 {16, — 601> — 16 & £ TLv* — 601>} + £0 x 0p(n~"/%)
= e, < 0y — 00, Ty* > +27 e, TLv* |12 + &4 x 0p(n7 %)
= te, < 0y — 00,7 > +27 e TLV* |2 + &4 X 0p(n~V?)
= e, < 0y — 00, V" > +ep x op(nfl/Z) ,

where the last equality holds due to the facts 8, || I[T,,v* — v*|| = o(n=1/2), Cauchy-Schwartz inequal-

ity, and [|TT,,v*||> — |v*||2. Combining the above facts, together with PI(6p, O)[v*] = 0, we can
establish that

0< Pn{l(én> 0) — l(én + gnnnv*’ O)}
= FenPul(00, O) V'] £ &4 < By — 0o, v* > +ey x 0p(n %)
= Fen(Py — P) (0o, O)[V*1} £ £ < by — 00, v* > +en x 0p(n~"/?).

Therefore, we obtain Fn'/2(P, — P){Z(HQ,O)[V*]} +nl/? < éy, — 6o, v* > 40p(1) > 0 and then
n'/2 < 8, — 6o, v* >= n'/2(P, — P){I(6p, O)[v*]} + 0,(1) =4 N(O, [[v*]|*) by the central limit
theorem and ||v*||2 = [|1(6o, O)[v*]||>.
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Next we will prove that ||[v*||2 = b'T~!(99)b. For each component Vg q=1,2,...,(2p+ 1), we
denote by w;‘ = (b’{‘q, b}‘q) the value of ¥; = (b14, bag) minimizing

2
Elly - e — I, [bg] = Iy, [b2q) ]

where Iy is the score function for @, I, is the score operator for Aj, j =1, 2, and ¢; is a
(2p + 1)-dimensional vector of zeros except the g-th element equal to 1.

Define the g-th element of I*(¥,0) as Iy - e; — lbl[b’fq] — lbz[qu], q=1,...,2p+1), and
1(®) as E{I* (¥, 0)}®?). By Condition (C5), the matrix I(1%9) is positive definite. Furthermore, by
following similar calculations in Chen et al. [4](sec. 3.2), we obtain

1h(60)[v]?

V1 = 1A 1> =
HE

= b’[E({l*(ﬁo, O)}®2)]_lb = VI ()b,
veV:|v|>0

Thus, we have shown that n/2(d, — 9) — N(0,I (%)) in distribution for the estimator ¥,
based on the complete data.

Now consider the estimator 9, based only on the case-cohort data. Note that the weight p =
&/m4(Ay, Az) is bounded and does not depend on 6, and E{p|O} = 1. By Theorem 3.2 of Saegusa
and Wellner [29], we have

n
n' 2Dy — Do) = I (@) /2 pil* (9, 05) + 0p(1),
i=1
where I(¢) and I* (¢, O), defined above, are the information and efficient score for ¥ based on the
complete data. Note that

var{pl* (99, 0)} = var{E{pl* (8%, 0)|O}} + E{var{pl* (8, 0)|O} }

{I* (9, 0)} 2 }

= var{l*(9,0)} + E {Var@'O) T2(A1, A)
7(A1,

1- ﬂq(Al, AZ)

= I(% E
o)+ { 7o(Ar A7)

{I* (Do, O>}®2} .

Thus, we have
n'2(®, — 99) — N(0, %)

in distribution, where

1 — (A1, Ag)

> =I"1®) + I (¥ E{
(o) + 1" (Do) g(Ar A2)

{I* (Do, 0)}®2} I ().
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