
Journal of Machine Learning Research 21 (2020) 1-6 Submitted 1/19; Revised 10/19; Published 1/20

Kymatio: Scattering Transforms in Python

Mathieu Andreux mathieu.andreux@owkin.com

Tomás Angles tomas.angles@ens.fr

Georgios Exarchakis georgios.exarchakis@ens.fr

Roberto Leonarduzzi roberto.leonarduzzi@ens-lyon.fr

Gaspar Rochette gaspar.rochette@ens.fr

Louis Thiry louis.thiry@outlook.fr

John Zarka johnzarka@gmail.com

École normale supérieure, CNRS, PSL Research University, 45, rue d’Ulm, 75005 Paris, France

Stéphane Mallat stephane.mallat@ens.fr

École normale supérieure, CNRS, PSL Research University, 45, rue d’Ulm, 75005 Paris, France

Collège de France, 11, place Marcelin-Berthelot 75231 Paris, France

Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

Joakim Andén janden@flatironinstitute.org

Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

Eugene Belilovsky eugene.belilovsky@umontreal.ca

Mila, Université de Montréal, 6666 St Urbain Street, Montreal, Quebec H2S 3H1, Canada

Joan Bruna bruna@cims.nyu.edu

Vincent Lostanlen vl1019@nyu.edu

New York University, 70 Washington Square South, New York, NY 10012, USA

Muawiz Chaudhary chaudhm@wwu.edu

Western Washington University, 516 High Street, Bellingham, WA 98225, USA

Matthew J. Hirn mhirn@msu.edu

Michigan State University, 426 Auditorium Road East Lansing, MI 48824, USA

Edouard Oyallon edouard.oyallon@lip6.fr

CNRS, LIP6, Sorbonne University, 4 place Jussieu, 75252 Paris, France

Sixin Zhang sixin.zhang@pku.edu.cn

Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China

Carmine Cella carmine.cella@berkeley.edu

University of California, Berkeley, 101 Sproul Hall, Berkeley, CA 94720, USA

Michael Eickenberg meickenberg@flatironinstitute.org

Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA

Editor: Balazs Kegl

Abstract

The wavelet scattering transform is an invariant and stable signal representation suitable
for many signal processing and machine learning applications. We present the Kymatio

software package, an easy-to-use, high-performance Python implementation of the scattering
transform in 1D, 2D, and 3D that is compatible with modern deep learning frameworks,
including PyTorch and TensorFlow/Keras. The transforms are implemented on both CPUs

c©2020 Mathieu Andreux, Tomás Angles, Georgios Exarchakis, Roberto Leonarduzzi, Gaspar Rochette, Louis Thiry,
John Zarka, Stéphane Mallat, Joakim Andén, Eugene Belilovsky, Joan Bruna, Vincent Lostanlen, Muawiz
Chaudhary, Matthew J. Hirn, Edouard Oyallon, Sixin Zhang, Carmine Cella, Michael Eickenberg.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v21/19-047.html.

Andreux et al.

and GPUs, the latter offering a significant speedup over the former. The package also has a
small memory footprint. Source code, documentation, and examples are available under a
BSD license at https://www.kymat.io.

Keywords: Scattering Transform; GPUs; Wavelets; Convolutional Networks; Invariance

1. Introduction

Many classification and regression tasks have a degree of invariance to translations and
deformations, such as those relating to images, audio recordings, and electronic densities.
The scattering transform was introduced in Mallat (2012) to build a signal representation
that is invariant to such transformations while preserving as much as possible the information
relevant to the task at hand. It is defined as a convolutional network whose filters are fixed
to be wavelet and lowpass averaging filters coupled with modulus nonlinearities. It has many
favorable theoretical properties (Mallat, 2012; Bruna et al., 2015; Waldspurger, 2017) and
enjoys considerable success as a powerful tool in modern signal processing (Adel et al., 2017;
Bruna and Mallat, 2013; Andén and Mallat, 2014; Chudáček et al., 2014; Sifre and Mallat,
2013; Eickenberg et al., 2017). It is also effective in combination with modern representation
learning approaches (Oyallon et al., 2018; Sainath et al., 2014; Zeghidour et al., 2016).

This article presents Kymatio, a scattering transform implementation that is user-friendly,
well-documented, fast, and compatible with existing automatic differentiation libraries. It
brings together transforms in 1D, 2D, and 3D under a unified application programming
interface (API). The scattering network is also traversed depth-first to reduce memory
requirements, enabling efficient processing in limited-memory environments, such as GPUs.

2. Implementing the Scattering Transform

Definition We consider signals defined on a grid of size N1×· · ·×Nd for d = 1, 2, 3. Given
two signals x[n] and y[n] on this grid, we denote their periodic convolution by x⊛ y[n]. The

second-order scattering transform is defined using two wavelet filter banks {ψ
(1)
λ1

[n]}λ1∈Λ1

and {ψ
(2)
λ2

[n]}λ2∈Λ2
, where λ1 and λ2 are frequency indices in the sets Λ1 and Λ2. It also

includes a lowpass filter φJ [n], where the integer J > 0 specifies the averaging scale 2J of
the filter. Together with a non-linearity ρ(t), these filters define the scattering transform.

The zeroth-order scattering coefficient S0x[n] is the local average given by S0x[n] =

x⊛ φJ [n]. Convolving x[n] with the first-order wavelet filter bank {ψ
(1)
λ1

[n]}λ1∈Λ1
, applying

ρ(t), and convolving with φJ [n], we obtain the first-order scattering coefficients

S1x[n, λ1] = ρ
(

x⊛ ψ
(1)
λ1

)

⊛ φJ [n], λ1 ∈ Λ1. (1)

The modulus of the first wavelet transform acts as a demodulation, shifting its energy to
the low frequencies. However, only some of these frequencies are covered by the low-pass

filter φJ . We recover the remaining frequencies by decomposing ρ(x ⊛ ψ
(1)
λ1

[n]) using the

second filter bank, but this is done only for a subset Λ2(λ1) of Λ2 since ρ(x⊛ ψ
(1)
λ1

[n]) is a
low-frequency signal. Typically, we have Λ2(λ1) = {λ ∈ Λ2, |λ| > |λ1|}. The result is then
passed through ρ(t) and averaged, yielding the second-order coefficients

S2x[n, λ1, λ2] = ρ
(

ρ
(

x⊛ ψ
(1)
λ1

)

⊛ ψ
(2)
λ2

)

⊛ φJ [n], λ1 ∈ Λ1, λ2 ∈ Λ2(λ1). (2)

2

Kymatio: Scattering Transforms in Python

dimension gpu diff. core devs. license language

ScatNet 1D, 2D 5 Apache 2.0 MATLAB
ScatNetLight 2D 2 GPLv2 MATLAB
PyScatWave 2D X 3 BSD-3 Python
Scattering.m 1D 1 GPLv3 MATLAB
PyScatHarm 3D X 1 BSD-3 Python
Wavelet Toolbox 1D N/A Proprietary MATLAB
Kymatio 1D, 2D, 3D X X 15 BSD-3 Python

Table 1: Comparison to existing scattering transform packages.

The energy of higher-order scattering coefficients is typically small and does not greatly
influence results (Waldspurger, 2017; Bruna and Mallat, 2013; Andén and Mallat, 2014).
On the other hand they can be computationally intensive. We have thus chosen to restrict
our scope to second-order coefficients, which is what is used in most works.

Implementation Signals obtained by filtering and applying ρ(t) are low-frequency, so
intermediate results are downsampled to reduce computational load as in Andén et al. (2014).
In 1D and 2D, we use Morlet wavelets which are close to analytic (i.e., complex-valued
with low energy in the negative frequencies) and the non-linearity is the complex modulus
ρ(t) = |t| for t ∈ C (Andén and Mallat, 2014; Bruna and Mallat, 2013). The 3D transform is
calculated using solid harmonic wavelets ψλ1

= ψj,ℓ,m, where j indexes the scale, and ℓ,m are
the azimuthal and magnetic quantum numbers. In this case the non-linearity ρ : C2ℓ+1 → R

is defined, with a slight abuse of notation, as ρ(x⊛ ψj,ℓ) =
√
∑

m |x⊛ ψj,ℓ,m|2 (Eickenberg
et al., 2017). Following Oyallon et al. (2018), we compute the scattering transform in a
depth-first manner, reducing the number of intermediate signals stored at a given time.
Since convolutions are all periodic, they may be efficiently calculated using fast Fourier
transforms.

3. Project vision

Code quality Adopting the philosophy of scikit-learn (Pedregosa et al., 2011), the goal
of Kymatio is not to maximize the number of features, but to provide a stable and easy-
to-use framework. To this end, we make heavy use of unit tests, minimize the number of
dependencies, and strive for intuitive interfaces inspired by modern deep learning paradigms.
Kymatio also provides an extensive user guide, including an API reference, a tutorial,
installation instructions, and easy-to-understand examples, several of which feature real-
world applications.

Community and bug tracking Kymatio is free and open-source software with a 3-clause
BSD license. The members of its core development team all have experience implementing
scattering transforms in other packages. A key goal of Kymatio is to combine these efforts
and foster a community effort in order to produce high-quality software and maintain a
critical mass of contributors for its maintenance. The package was released publicly on
GitHub November 17th, 2018. The main communication channel is the GitHub page for
questions, bug reports, and feature requests. There is also a dedicated Slack channel.

3

Andreux et al.

Relation to previous software Aside from the emphasis on code quality and usability,
Kymatio provides several improvements over previous scattering implementations:

• Python is the de facto standard for data science software, but most existing scattering
packages are implemented in MATLAB. In contrast, Kymatio provides a completely
Pythonic implementation, enabling integration with the scientific Python ecosystem.

• GPU compatibility is critical to many data science workloads. Kymatio offers an
easy-to-use GPU implementation for scattering transforms in 1D, 2D, and 3D.

• Frontends are provided for many frameworks, including NumPy, scikit-learn, PyTorch,
and TensorFlow/Keras, allowing for seamless integrating scattering transforms in a
variety of pipelines. In particular, the PyTorch, and TensorFlow/Keras frontends
allow for inclusion into many deep learning workflows.

• Differentiability of the scattering transform simplifies applications in reconstruction
and generative modeling, among others.

Table 1 provides a detailed comparison of existing implementations: ScatNet (Andén
et al., 2014), ScatNetLight (Oyallon and Mallat, 2015), PyScatWave (Oyallon et al., 2018),
Scattering.m (Lostanlen and Mallat, 2015), PyScatHarm (Eickenberg et al., 2018), and the
scattering transform implemented in the MATLAB Wavelet Toolbox.

4. User Interface and Documentation

Interface The interface is designed to be flexible and consistent across inputs and frontends.
Let us consider the PyTorch frontend. We first create a scattering object by specifying the
averaging scale J and the input signal shape.

from kymatio.torch import Scattering1D, Scattering2D, HarmonicScattering3D

S = Scattering1D(J, shape=(length,))

S = Scattering2D(J, shape=(height, width))

S = HarmonicScattering3D(J, shape=(height, width, depth))

The resulting object S acts like a nn.Module object in PyTorch. The scattering transform S

is applied through calls of the form

x = torch.randn((28, 28))

output = S(x)

Switching from GPU or CPU functionality also follows the API of nn.module.

S.cuda() # Run on GPU

S.cpu() # Run on CPU

Documentation and examples Several examples are provided with the code, illustrating
the power of Kymatio. These include image reconstruction and generation from scattering
(Angles and Mallat, 2018), hybrid scattering and CNN training on CIFAR and MNIST
(Oyallon et al., 2018), regression of molecular properties on QM7/QM9 using solid harmonic
scattering (Eickenberg et al., 2017), and classifying recordings of spoken digits.

4

Kymatio: Scattering Transforms in Python

5. Conclusion

Kymatio provides a well documented, user-friendly, and fast implementation for the scattering
transform. It can be used with the PyTorch and TensorFlow/Keras deep learning frameworks
and supports a variety of applications that have been previously inaccessible to non-experts
including hybrid deep learning, generative modeling, and 3D chemistry applications. Future
work includes further optimization for speed, flexibility, and backend support.

Acknowledgments

We thank Laurent Sifre, Sergey Zagoruyko and Gabriel Huang for their helpful comments.
The project was supported by ERC InvariantClass 320959. EB is funded by a Google Focused
Research Award and IVADO. MJH is partially supported by Alfred P. Sloan Fellowship
#FG-2016-6607, DARPA Young Faculty Award #D16AP00117, and NSF grant #1620216.
The Flatiron Institute is a division of the Simons Foundation.

References

T. Adel, T. Cohen, M. Caan, M. Welling, et al. 3D scattering transforms for disease
classification in neuroimaging. NeuroImage: Clinical, 14:506–517, 2017. doi: 10.1016/j.
nicl.2017.02.004.

J. Andén et al. Scatnet. Computer Software, 2014. URL http://www.di.ens.fr/data/

software/scatnet.

J. Andén and S. Mallat. Deep scattering spectrum. IEEE Trans. Signal Process., 62(16):
4114–4128, Aug 2014. doi: 10.1109/TSP.2014.2326991.

T. Angles and S. Mallat. Generative networks as inverse problems with scattering transforms.
In Proc. ICLR, 2018.

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Trans. Pattern

Anal. Mach. Intell., 35(8):1872–1886, 2013. doi: 10.1109/TPAMI.2012.230.

J. Bruna, S. Mallat, E. Bacry, and J.-F. Muzy. Intermittent process analysis with scattering
moments. Ann. Statist., 43(1):323–351, 02 2015. doi: 10.1214/14-AOS1276.

V. Chudáček et al. Scattering transform for intrapartum fetal heart rate variability fractal
analysis: A case-control study. IEEE Trans. Biomed. Eng., 61(4):1100–1108, 2014. doi:
10.1109/TBME.2013.2294324.

M. Eickenberg et al. Solid harmonic wavelet scattering: Predicting quantum molecular energy
from invariant descriptors of 3D electronic densities. In Proc. NIPS, pages 6540–6549,
2017.

M. Eickenberg et al. Solid harmonic wavelet scattering for predictions of molecule properties.
The Journal of Chemical Physics, 148(24):241732, 2018. doi: 10.1063/1.5023798.

V. Lostanlen and S. Mallat. Wavelet scattering on the pitch spiral. In Proc. DAFx, 2015.

5

Andreux et al.

S. Mallat. Group invariant scattering. Comm. Pure Appl. Math., 65(10):1331–1398, 2012.
doi: 10.1002/cpa.21413.

E. Oyallon and S. Mallat. Deep roto-translation scattering for object classification. In Proc.

CVPR, June 2015.

E. Oyallon et al. Scattering networks for hybrid representation learning. IEEE Trans.

Pattern Anal. Mach. Intell., 41(9):2208–2221, 2018. doi: 10.1109/TPAMI.2018.2855738.

F. Pedregosa et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res., 12(Oct):
2825–2830, 2011.

T. N. Sainath et al. Deep scattering spectra with deep neural networks for LVCSR tasks. In
Proc. Interspeech, 2014.

L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proc. CVPR, 2013. doi: 10.1109/CVPR.2013.163.

I. Waldspurger. Exponential decay of scattering coefficients. In Proc. SampTA, pages
143–146, 2017. doi: 10.1109/SAMPTA.2017.8024473.

N. Zeghidour et al. A deep scattering spectrum–deep siamese network pipeline for un-
supervised acoustic modeling. In Proc. ICASSP, pages 4965–4969. IEEE, 2016. doi:
10.1109/ICASSP.2016.7472622.

6

	Introduction
	Implementing the Scattering Transform
	Project vision
	User Interface and Documentation
	Conclusion

