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Biological Networks Regulating Cell Fate Choice Are Minimally Frustrated
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Characterization of the differences between biological and random networks can reveal the design
principles that enable the robust realization of crucial biological functions including the establishment of
different cell types. Previous studies, focusing on identifying topological features that are present in
biological networks but not in random networks, have, however, provided few functional insights. We use a
Boolean modeling framework and ideas from the spin glass literature to identify functional differences
between five real biological networks and random networks with similar topological features. We show that
minimal frustration is a fundamental property that allows biological networks to robustly establish cell
types and regulate cell fate choice, and that this property can emerge in complex networks via Darwinian
evolution. The study also provides clues regarding how the regulation of cell fate choice can go awry in a
disease like cancer and lead to the emergence of aberrant cell types.
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Biological regulatory networks establish cell-type-
specific gene expression patterns [1] and regulate cell fate
choice in response to various signals. These networks
present a contradiction analogous to the famed Levinthal
paradox in protein folding [2]. Networks as large and
complex as those regulating cell fate typically exhibit a
huge number of stable states [3]. Each such stable state, or
collection of stable states with a reasonably shared pattern
of gene expression, represents a cell type [4,5]. This
relationship, however, predicts a number of cell types
much larger than that seen in multicellular organisms. A
smaller number of cell types can be attained via the
evolutionary fine-tuning of network parameters [6] or by
putting cells through a precise sequence of events during
development [7]. In both scenarios, cell fate will be highly
sensitive to intra- and extracellular perturbations, an unde-
sirable property.

Features that distinguish biological regulatory networks
from random networks may provide a clue regarding how
these networks can robustly establish the smaller than
expected number of cell types. Biological networks have
been shown to often exhibit a scale-free degree distribution
[8] which might allow these networks to define topo-
logically stable cell types [9]. Regulatory networks in
Escherichia coli and Saccharomyces cerevisiae have been
shown to be hierarchically organized [10]. Certain network
patterns, called motifs, are known to recur far more
frequently in biological networks than in random networks
[11], and often mediate cell fate choice [12]. However,
these investigations of topological differences between
biological and random networks have provided few insights
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into how the functional characteristics of biological net-
works differ from those of random networks. In this Letter,
we compare the dynamical behavior of biological regula-
tory networks with that of random networks which have
similar topological features and observe some remarkable
differences. These could hold the key to elucidating the
design principles that allow biological regulatory networks
to carry out biological functions.

Boolean modeling of biological networks.—A Boolean
modeling framework [13] has proven useful for character-
izing the behavior of large networks in cases where the use
of ordinary differential equations-based modeling frame-
works becomes challenging due to the numerous and hard
to estimate kinetic parameters involved. In this framework,
the only knowledge required is whether each regulatory
relationship between network nodes is activating or inhibi-
tory and how the inputs to a given node combine to regulate
node activity. The state of an N-node network in such a
framework may be specified via a sequence {s;} of N
binary variables: s; = +1. When modeling a biological
regulatory network, each network node represents a
molecular species such as a transcription factor or
micro-RNA. When species i (the molecular species repre-
sented by node i) is highly expressed, s; = +1, otherwise
s; = —1. If the inputs to network nodes combine additively
to activate or inhibit node activity, regulatory relationships
between molecular species can be specified by an N x N
matrix J where J;; = +1 if species j promotes the
expression of species i and J;; = —1 if species j inhibits
the expression of species i. The absence of any regulatory
relationship from species i to species j is indicated by
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Jij = 0. The discrete-time network dynamics can then be
simulated using [14]

Si([> Z/‘]ljsj =0.

The network state is updated asynchronously, i.e., at each
discrete time point, a network node is chosen at random, and
its state updated using Eq. (1). Clearly, a state {s;} is a stable
state of the network if s; is a fixed point of Eq. (1) for all i.

Note that the dynamical behavior of a network in the
above modeling framework is equivalent to the zero-
temperature dynamics of an asymmetric spin glass on a
graph. Using this equivalence, we characterize an edge j —
i in state {s;} as frustrated [15] if J;;s;5; < 0. Then, the
frustration of a state can be defined as the fraction of
network edges that are frustrated in that state. If a network
involves regulatory relationships that conflict with one
another, all regulatory relationships cannot be satisfied in
any state. Hence, such a network will have stable states
with nonzero frustration. Further, if {s;} is a stable state of
the network, {s.} with s; = —s; will also be a stable state of
the network. The state {s’} will have the same frustration as
the state {s;}.

Comparison of biological and random networks.—We
determined the stable states of five biological networks
taken from the literature [14,16-19] [see Supplemental
Material (SM) [20], Sec. I A] and compared the frustration
of the stable states of each of these networks with the
frustration of the stable states of random networks with
similar topological features (each random network had the
same total number of nodes and edges, node in- and out-
degree distributions, and the total number of activating and
inhibitory relationships between nodes in the network as
the corresponding biological network) [Figs. 1(a)-1(e);
also see SM [20], Figs. S1-S4 and Secs. I B and I D]. In the
case of each biological network, most stable states had
frustration comparable to the frustration of the stable states
of the corresponding random networks. However, each
biological network had a set of stable states with frustration
much lower than the frustration of the stable states of
random networks. Crucially, biological networks are highly
likely to end up in one of these minimally frustrated stable
states when their dynamics is simulated starting from
random initial conditions (Fig. 1, pink violin in each panel;
also see SM [20], Fig. S5). Minimally frustrated stable
states are thus likely to be biologically significant, with
most cells in a population exhibiting gene expression
patterns corresponding to these states.

Relation between stable states and biological phenotypic
states.—We next investigated if any structural patterns
underlie the organization of stable states of biological
networks. The distribution P(g,;) of the overlap between

network states g,; = Zi(s?sf )/N was found to be very
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FIG. 1. Distribution of frustration of the stable states of
biological networks and of random networks. 500 random
networks corresponding to each biological network were con-
sidered. The orange and pink violins in each panel show the
distribution of the frustration of the states one ends up in when
simulating the dynamics of the network starting from 500 random
initial conditions (each state is thus counted as many times as it is
encountered while each stable state is counted only once in the
other two violins). Biological networks in (a)—(e) were taken
from the literature. The MYC activity network in (f) was inferred
from gene expression data (see SM [20], Sec. I G). In (b), (c), and
(), the green violin shows the distribution when only the 5000
least frustrated stable states of each random network are con-
sidered. The white circle in each violin indicates the median.
SCLC stands for small cell lung cancer.

broad when a, f# pairs were chosen randomly from the set of
stable states of biological networks. However, when the
pairs were sampled from among the minimally frustrated
stable states, P(q,5) was bimodal with peaks near +1
and —1 [Figs. 2(a) and 2(d); also see SM [20], Figs. S10
(left-hand column) and SI11]. Since gq,4 is a measure of

similarity between the states {s¢} and {sff }, a collection of
states with g, close to +1 for all pairs represents a
collection of cells with reasonably similar gene expression
profiles, to be associated with a distinct cell phenotype. A
bimodal P(q,;) for the minimally frustrated stable states of
biological networks considered here thus suggests that
these states constitute two stable phenotypic states.

In the case of the network regulating epithelial-mes-
enchymal transition (EMT) [14], minimally frustrated
stable states represent the two canonical phenotypic states,
epithelial and mesenchymal [Figs. 2(b) and 2(c); also see
SM [20], Fig. S10]. In the case of the network regulating
pluripotency and differentiation in human embryonic stem
cells [18], minimally frustrated stable states define stem
and differentiated cell types [Figs. 2(e) and 2(f)]. In
contrast, high frustration stable states of biological net-
works involve copresentation of molecular markers cor-
responding to conflicting biological behaviors—high
frustration stable states of the network regulating EMT
involve copresentation of epithelial and mesenchymal
markers [Figs. 2(b) and 2(c); also see SM [20],
Fig. S10] while high frustration stable states of the
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FIG. 2. Minimally frustrated stable states of biological networks define canonical cell types. (a),(d) P(g,s) is bimodal for the
minimally frustrated stable states of both the 72-node EMT network and the pluripotency network. (b),(c),(e),(f) Principal component
(PC) representation of the 200 000 observed stable states of the 72-node EMT network and of the pluripotency network. In each case, we
included 100 000 least frustrated and 100 000 most frustrated stable states. In (c), a high, positive score indicates an epithelial phenotype
while a low, negative score indicates a mesenchymal phenotype. In (f), a high, positive score indicates a stem cell phenotype while a low,
negative score indicates a differentiated phenotype. Clusters with extreme values of the phenotypic scores represent canonical cell types.
See SM [20], Sec. I E, for details of how the scores were defined.

network regulating the neuroendocrine-mesenchymal
transition [16] involve copresentation of neuroendocrine
and mesenchymal markers (see SM [20], Fig. S10). These
stable states thus represent ambiguous cell fate choices.
Such ambiguous phenotypic states have been reported in
cancer cells across disease subtypes [16,34], but appear to
be suppressed in healthy tissue.

Effect of noise in network dynamics.—Thus far, we
have neglected stochasticity in our analyses. Noise in
gene expression can have significant implications for
cellular function [35]. We defined a pseudo-Hamiltonian
H=-3%;Jis;s; and used the finite-temperature
Metropolis Monte Carlo algorithm [36,37] to probe net-
work behavior under noisy dynamics (see SM [20], Sec. I
H). As node dynamics become increasingly noisy, biologi-
cal networks become more and more likely to exhibit states
with high frustration [Figs. 3(a) and 3(e); also see SM [20],
Figs. S13 (top row) and S14]. Functionally, this manifests
as more and more cells in a population presenting with
ambiguous cell fate choices [Figs. 3(c) and 3(g)]. Since
cells in healthy tissue rarely exhibit ambiguous cell fate
choice, we hypothesize that healthy cells must have low
noise levels at which the regulatory network exhibits one of
the low frustration network states.

Effect of network mutations.—Another scenario in which
cells presenting ambiguous cell fate choices are frequently
observed in our modeling framework is if the biological
network becomes mutated [Figs. 3(b) and 3(f); also see SM
[20], Figs. S13 (bottom row) and S15]. We observe here

that the studied biological networks are relatively robust,
and it is only after a significant number of mutations have
accumulated that a significant fraction of cells in the
population start exhibiting noncanonical phenotypic states.

Emergence of biological characteristics in random net-
works.—Under selection for networks with low frustration
states, a population of randomized 26-node EMT networks
can evolve to exhibit the behavior reported herein for the
corresponding biological network (Fig. 4; see SM [20],
Sec. 11, for details of the simulation). This includes the
existence of minimally frustrated states that are frequently
encountered when starting from random initial conditions
[Fig. 4 (top)] and a bimodal P(q,s5) when a, f§ pairs are
sampled from among these minimally frustrated states
[Fig. 4 (bottom)]. That such an evolutionary process is
feasible lends crucial support to the hypothesis that the
existence of minimally frustrated stable states is a feature
that has been acquired by complex biological networks
over evolutionary time. Finally, preliminary data suggest
that one can relax the assumption of a Boolean modeling
framework without changing the conclusion—biological
regulatory networks differ from random networks in their
dynamical behavior (see SM [20], Sec. IJ and
Figs. S15-S18).

Discussion—In the energy landscape description of
protein folding [38,39], the existence of minimally
frustrated structural conformations distinguishes biological
proteins from random heteropolymers. Here, we have
shown that the existence of minimally frustrated stable
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FIG. 3. High frustration network states are increasingly occu-
pied under noisy dynamics or if the biological network accu-
mulates mutations. (a),(e) Frustration of observed biological
network states under noisy node dynamics. The dynamics
become more and more noisy as the pseudotemperature is
increased. (b),(f) Frustration of observed states when mutations
are introduced into biological networks (without noise in the
network dynamics). (c),(d) Epithelial scores of observed states
under different levels of noise in the network dynamics (c) and
when the network is mutated (d). (g),(h) Stemness scores of
observed states under different levels of noise (g) and when the
network is mutated (h). The white circle in each violin indicates
the median.

states similarly distinguishes biological regulatory net-
works from random networks. These minimally frustrated
stable states represent canonical cell types, and because
most random initial conditions dynamically evolve to one
of the minimally frustrated stable states, biological net-
works can robustly establish cell types and regulate cell fate
choice between these types. The number of commonly
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FIG. 4. Evolution of biological behavior by a population of
random networks under selection for networks with low frus-
tration states. Top: Frustration of the least frustrated observed
state averaged over the networks in a population of 500 networks.
Different curves indicate independent simulation runs. Inset:
State frustration averaged over the end states of simulations
starting from 50 random initial conditions for each network
followed by averaging over the networks in the population. The
initial population of 500 random networks was generated from
the 26-node EMT network. Bottom: P(q,s) at different time
points during the evolution simulation, shown for one of the
simulation runs. To construct one of the histograms shown, we
calculated g, for each network using the end states of simu-
lations starting from 50 random initial conditions. This led to a
total of (520) = 1225 values for each network. Each histogram
shows the g, values for all the networks (a total of 500) in the
population at a given time [total of 500 x (3?) = 612500 values].

observed cell fates is thus limited to the number of
expression patterns in these minimally frustrated stable
states. The minimal frustration property distinguishes
stable states corresponding to canonical cell types from
other possible stable states of the biological network. In
contrast, while a random network may have a collection of
stable states with an expression pattern similar to that of a
canonical cell type, these stable states will in no way be
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special as compared to the numerous other stable states the
random network can exhibit. Note that in the present study,
we have only analyzed biological networks that regulate
binary cell fate choice, which we argue are representative of
cell fate decision making in biology (see SM [20], Sec. I
A). The results presented here may not generalize to other
biological networks such as signaling cascades or meta-
bolic networks. Further, in this study, the dynamics of
networks do not involve complex logic-based rules which
often govern how different inputs to a network node
combine to regulate node behavior. However, preliminary
data involving the analysis of another network (shown in
SM [20], Figs. S7 and S8) suggest that the ideas presented
here can easily be generalized to networks whose dynamics
are governed by more complex rules. Finally, a regulatory
network inferred from gene expression data using an
unsupervised, data-driven approach exhibited the same
behavior as the regulatory networks taken from the liter-
ature [Fig. 1(f); also see SM [20], Sec. I G and Fig. S9].
This suggests that the results presented here are not simply
an outcome of any network curation that may have been
carried out in the studies from which the networks have
been taken.

Cancer cells exhibit very noisy gene expression, which
can be driven by multiple factors [40—44]. Our results
suggest that given the high gene expression noise, cancer
cells must frequently exhibit ambiguous cell fate choices.
Such behavior has been widely reported, and noncanonical
phenotypic states in cancer cells have been shown to be
associated with disease aggressiveness. For example,
hybrid epithelial-mesenchymal cells have been implicated
in the metastatic aggressiveness of solid tumors [34].
Populations of small cell lung cancer cells treated with
anticancer drugs have been shown to enrich for hybrid
neuroendocrine-mesenchymal cells [16]. Lowering of
network frustration upon the deletion from the EMT
network of factors known to stabilize hybrid epithelial-
mesenchymal cells (shown in SM [20], Fig. S12) further
bolsters the evidence for a connection between noncanoni-
cal phenotypic states and high frustration in biological
networks. Our model thus provides a new perspective on
how noise in the dynamics of regulatory networks in cancer
cells can contribute toward the failure of anticancer
therapies—noise can facilitate the emergence of cancer
cells that exhibit noncanonical phenotypic states.
Additionally, accumulation of mutations in biological net-
works, another characteristic associated with cancer pro-
gression, will also promote aberrant cell fate choice.
Estimation of network frustration from cancer cell gene
expression data will be a direct test of the role of cell fates
associated with high frustration states in cancer progression.
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