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We implement the unified transform method of Fokas as a numerical method to solve linear evolution
partial differential equations on the half-line. The method computes the solution at any x and ¢ without
spatial discretization or time stepping. With the help of contour deformations and oscillatory integration
techniques, the method’s complexity does not increase for large x, ¢ and the method is more accurate as
X, t increase (absolute errors are smaller, relative errors are bounded). Our goal is to make no assumptions
on the functional form of the initial or boundary functions beyond some decay and smoothness, while
maintaining high accuracy in a large region of the (x, ) plane.
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1. Introduction

Standard methods for solving linear evolution partial differential equations (PDEs), including separation
of variables and classical integral transforms, are often limited by the order of the PDE and the type of
boundary conditions. The unified transform method (UTM), also known as the method of Fokas (Fokas,
1997), is a relatively new method for analysing a large family of PDEs with general initial and boundary
conditions (Fokas, 2002a). When applied to initial boundary value problems (IBVPs) for linear, constant
coefficient PDEs, the UTM provides the solutions in terms of contour integrals involving the given initial
and boundary conditions (Deconinck ez al., 2014). This does not only give rise to new analysis, but it
also provides a new direction for numerical methods. With this integral representation of the solution it is
possible to compute the solution at any x, ¢ directly. The numerical UTM (NUTM) is a numerical method
built upon the solution formula from the UTM with the addition of systematic contour deformations.
In stark contrast to classical numerical PDE methods such as finite-difference methods, most spectral
methods and finite-element methods the NUTM can solve equations in unbounded domains, and it does
not experience accumulation of errors or stability issues. These issues that appear in standard numerical
methods for evolution PDEs do not appear in the NUTM because spatial discretization and time stepping
are not required. As a hybrid analytical-numerical method the NUTM operates in a complementary
direction to the traditional numerical methods. In practice, if one is interested in the solution on a dense
spacial and temporal grid and is satisfied with lower accuracy, traditional methods are better choices,
whereas if one is interested in the solution along some curve with high accuracy for a long time, the
NUTM is likely better. On the other hand, the NUTM can act as a benchmark tool for other numerical
methods.

Since the first paper on the NUTM in 2008 (Flyer & Fokas, 2008) the method has been applied to the
heat equation g, = g, on the half-line (Flyer & Fokas, 2008; Fokas et al., 2009) and on finite intervals
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2 B. DECONINCK ET AL.

(Papatheodorou & Kandili, 2009), to the Stokes equations g, 3¢, = 0 on the half-line (Flyer & Fokas,
2008) and on finite intervals (Kesici et al., 2018) and the advection-diffusion equation ¢, + q, = g,
on the half-line (de Barros et al., 2019). These applications of the NUTM use fixed contours that do
not depend on (x, 7), and most of them' rely on knowing closed-form expressions for the transforms of
initial and boundary data. We refer to such implementations of the NUTM as fixed contour methods
(FCMs). As we will see in Section 3.3 FCMs become less accurate for large x, ¢.

In contrast to those FCMs we propose a new implementation of the NUTM that uses contours
depending dynamically on x, ¢, and that does not severely restrict the initial or boundary conditions.
Our goal is to make no assumptions on the functional form of the initial or boundary functions, other
than to restrict them to be in certain function spaces (i.e., impose specific decay). We maintain high
accuracy in a large region of the (x, ) plane. To summarize, we build up the NUTM to include the
following features:

1. The assumptions on the initial and boundary conditions are significantly weakened compared
to the FCM. Decay and regularity conditions are necessary for the purpose of achieving high
accuracy. We emphasize that closed-form expressions for the transforms of initial or boundary
conditions are not required.

2. The method is uniformly accurate in that the computational cost to compute the solution at a point
(x, t) with given accuracy remains bounded for large x, ¢. In addition, we observe bounded relative
errors in our numerical experiments.

3. The method is spectrally accurate in that the error at fixed (x, 1), Eqypm (V. x, 1) = O(1 /Nl) for
any integer /, where N is the number of function evaluations. For certain equations such as the heat
equation, it is possible to achieve spectral accuracy uniformly as long as (x, ¢) are bounded away
fromx =0and ¢t = 0.

These features exist in the numerical inverse scattering transform we have implemented for nonlinear
integrable PDEs on the whole line (Trogdon et al., 2012; Trogdon & Olver, 2013; Deconinck et al.,
2019). Having studied the solution of the IVP of nonlinear integrable equations and the solution of
the IBVP of linear constant coefficient equations, we are set up to understand the numerical issues
associated with IBVPs for nonlinear integrable PDEs Fokas (2002b, 2005). Ultimately, we wish to
compute the solution of the IBVP of nonlinear integrable equations using the NUTM in a similar fashion.

In this paper we consider linear, constant coefficient, one-dimensional scalar evolution equations
with x > 0. Further generalizations are left for future projects. The paper is organized as follows:
Section 2 gives a brief overview of the UTM and the methods for oscillatory integrals that are required
in what follows. In Section 3, we discuss the NUTM for the heat equation where the deformation is based
on the method of steepest descent. In Section 4, we discuss the NUTM applied to the linear Schrodinger
(LS) equation, where methods other than the method of steepest descent are needed. In Section 5, we
show how to apply the NUTM to a third-order PDE with an advection term giving rise to integrands
with branch points. We believe that the best way to explain the NUTM, similar to introducing the UTM,
is to use a case-by-case study. In Section 6, we summarize the steps of the NUTM.

Numerical examples are provided throughout. In many examples, the initial and boundary conditions
are chosen to have closed-form transforms for the purpose of computing the true solution for

! In de Barros et al. (2019), one numerical example without closed-form expressions for the transforms is considered, but the
idea is not applied to nondissipative problems.
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THE NUMERICAL UNIFIED TRANSFORM METHOD 3

comparison. An example with the boundary condition that does not have a known expression for the
transform is shown at the end of Section 5.2. The proof of the uniform convergence of the NUTM
applied to the heat equation is given in the appendix.

2. Preliminaries
2.1 The UTM on the half-line

Consider a linear PDE written as

g; +w(=id)g =0, (D
for x,r > 0. We assume w (k) to be a polynomial of degree p. Note that g(x,7) = e®~*®" satisfies
(1). This definition of the dispersion relation w typically used in the UTM differs from the common
convention by a factor of i. The UTM solves IBVPs for (1) using transforms of the initial and boundary
values:

Go(k) = /0 e ® gy (x, 0) dx, )
t
go(w(k), 1) = / e?®34(0,5) ds, 3)
0
~ ! wis I’ 4
8p—1(@(k),1) 2/0 e W(O,s) ds. 4)

The number of boundary conditions required for a well-posed problem is determined by the UTM. It
is based on the order of the highest spatial derivative as well as the leading coefficient of @ (Flyer &
Fokas, 2008). The solution formula from the UTM depends on contour integrals of the type

Im _ /C, eikx—w(k)tglo(vm(k)) dk, m=1,2,...,p,

m

B, = /c I (108, (@ (k), D dk, m=0,1,...,n,

m

where p is the degree of w(k) and v, (k) is its mth symmetry”, and fn(k) is a function explicitly
determined by w(k), independent of the initial and boundary data. Thus, the solution to (1) can be
computed by quadrature. However, the integrands on the contours C! and C3 obtained by the UTM are
often highly oscillatory, and suitable methods must be applied for an accurate solution.

2 A symmetry v(k) of @ (k) satisfies @ (v(k)) = w(k). The symmetries play an important role in the UTM. The n symmetries
{vmk) :m = 1,2,..., n} exist by the fundamental theorem of algebra and can be chosen to be analytic outside a compact set
(Fokas, 2008).
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4 B. DECONINCK ET AL.

2.2 Methods for oscillatory integrals
The exponential factor e**="®) ip the integrand is the main cause of oscillations. Deformations based
on the method of steepest descent (Miller, 2006) change the oscillations into exponential decay. Define

the phase function 6 (k; x, ) = ikx — w(k)t. Saddle points k satisfy

do(k;x, 1) B
dk lk=ky
Near k = k,

w” (ko)t
2

0 (k; x, 1) = ikgx — w(ko)t — (k — ko)? 4+ Ok — kg)®.

The integrand is (locally) exponentially decaying if k follows a path such that —w" (ky)(k — ko)2 is
negative and decreasing. Since the integrals along the deformed paths are exponentially localized near
the saddle point, they can be computed with high accuracy with standard quadrature methods after
appropriate truncation.

For improved accuracy, Gauss—Hermite or Gauss—Laguerre quadratures are suitable, depending on
the form of the exponentials and the paths (Huybrechs & Gibbs; Uspensky, 1928; Gibbs ef al., 2020).
We choose Clenshaw—Curtis quadrature for the deformed contour integrals for convenience, as it is
spectrally accurate and efficient in most cases (Trefethen, 2008). We note that there are situations where
the deformations are restricted and the method of steepest descent is not applicable, see Sections 4 and 5.

The region in the complex k-plane where the contour can be deformed depends on the analyticity of
the transform data g (k) and g, (w(k), r), which is related to the decay rate of the initial and boundary
data. For instance, when ¢(x, 0) and ¢(0, f) are integrable, g, is analytic and bounded in the lower-half
plane {k € C : Im (k) < 0} and g, (w(k),?) is analytic and bounded in {k € C : Re (w(k)) < 0}. Data
with faster decay give more freedom to deform the contour. We consider data with exponential decay
rate § > 0, defined by

C§' = [f € C"([0,00)), 38" > 8, such that sup P lf)| < oo] .

x€[0,00)

REMARK. For f € C§' we have fooo A" f()] dx < oo with §7 = ‘S/TJ“S > 8. The boundedness is
introduced for convenience in the proofs in the appendix, and the implied integrability is used to allow
deformation of contours, not just in the interior of regions, but also to their boundaries.

If the initial condition g, € Cj' then g is analytic and bounded in a open set containing {k € C :
Im (k) < 8}. Therefore, contour integrals of g (k) can be deformed inside a larger region. When the
contours get close to the boundary of regions in which they can be deformed highly oscillatory integrals
of the form

S@g:/mﬂmﬁWﬁM, 5)
ko

appear. Here f(k) is, in general, not analytically extendable off the real axis, k = k is the critical
point of 8(k; x,t) and w(k) € iR. This integral is highly oscillatory when the parameters x, ¢ are large,
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THE NUMERICAL UNIFIED TRANSFORM METHOD 5

and therefore with traditional numerical quadrature methods the cost to achieve a desired accuracy
increases as x, ¢ increase. Fortunately, there are methods specific to highly oscillatory integrals, such as
Filon-type and Levin-type methods, that are more accurate as oscillations increase, with a fixed number
of evaluations of the integrand. Hence, it is still possible to attain uniform accuracy without increasing
computational cost. Readers can check (Iserles er al., 2006, Section 3.3) that has a nice and concise
description of how Levin’s method works. On the other hand, unlike in the method of steepest descent,
the global error over all x, f does not, in general, decay spectrally. While we do compute solutions at
arbitrarily large x, ¢ with increasing accuracy, as x, ¢ increase improvements over our methodology in
the computation of integrals of the type given in (5) will improve the overall efficiency of our method.
Some possible directions for the improved evaluation of (5) are as follows:

1. Better computational methods for oscillatory integrals that can achieve higher order of accuracy.

2. Faster solvers that can handle more nodes/modes in Levin-type methods like the ultraspherical
polynomial spectral method (Olver & Townsend, 2012).

We emphasize that our work focuses on the integrals from the UTM, and therefore we focus on
analyticity and decay of the integrands and possible contour deformations. A complete discussion of
the treatment of (5) is beyond the scope of this paper, as any improvement is not only relevant to the
NUTM, but is also worth studying for its own sake.

In order to make use of the path of steepest descent to obtain exponential localization, we avoid
computing the solution with arbitrarily small x or z. Hence, in discussion about uniform accuracy, we
assume x, ¢ > ¢ for some constant ¢ > 0. We choose ¢ = 0.1 in most examples for convenience.

REMARK. The NUTM is less efficient for small x or z. We can use extrapolation and Taylor expansions
to get g(x, t) with small x or ¢ (Trogdon & Biondini, 2019). Traditional time-stepping methods can be
powerful and convenient if the number of time steps is small.

Methods for oscillatory integrals are also needed for computing the transforms g,g. These
transformed data are Fourier-type integrals that can be handled efficiently by Levin’s method. In Fig. 1,
the absolute errors for g, (x + i) for g (x) = e~ are plotted. The number of collocation points N = 40
is the same for Levin’s method and for Clenshaw—Curtis quadrature. The values start to diverge for large
x for Clenshaw—Curtis quadrature when the oscillations are under resolved, but Levin’s method provides
reliable approximations with decreasing errors.

3. The heat equation on the half-line

We consider the heat equation on the half-line,
4 =0qy t>0, x>0, ©6)

with Dirichlet boundary data g(0,#) = g,(¢) and initial data g(x,0) = ¢, (x). The dispersion relation
for the heat equation is w (k) = k2. The initial data qq are assumed to be in C5° for some § > 0, and
the boundary data g, are assumed to be in CJ°,° for some y > 0. The smoothness of ¢q,, g, allows
us to compute the transformed data g, g accurately. The rate of decay affects the regions where the
deformation of the integration path is allowed. The same methodology can still be applied, with less
efficiency and accuracy, when weaker conditions are satisfied.
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Levin's method ----- Clenshaw-Curtis

107101
Ry 2 3 4 5 6 7 8

Fig. 1. The absolute errors for the computation of gg(x + i) for x € [1,8]. The curves are computed using Clenshaw—Curtis

quadrature (dashed) and Levin’s method (solid). Both methods use a fixed number of nodes N = 40. The initial data is
—2x
qgox) = e “*.

REMARK. It is possible to deal with nondecaying boundary data when the asymptotics of the data
is known and can be handled by some other method. The UTM for linear PDEs with piecewise-
constant data is studied in Trogdon & Biondini (2019). Since the equation is linear, if the data is
given as a superposition of data, it may then be beneficial to obtain the solution of the full problem
as a superposition of solutions corresponding to individual pieces of data. For instance, suppose
8o(H) = hy + hy(t) where hy is a constant and h, € Cg°. The transform le(k, o) = —1/k*is a
meromorphic function in C, and there is no restriction about where the integral contour for h 1 (k,00) can
be deformed if the residue is collected correctly. The full solution is easily obtained by superimposing
the NUTM solutions for the problems corresponding to /; and &, separately.

3.1 The solution formula from the UTM

The solution to the heat equations on the half-line with Dirichlet boundary condition is given by Fokas
(2008)

1 oo B . 1 g R s
qx,1) = E/ e w(k)r%(k) dk — 7 /3D+ ko [qo(—k) + 2lkg0(a)(k),t)] dk, @)
—00

where the contour DT = {re™/* : r € [0,00)} U {re’™/* : r € [0,00)} is the boundary of the
region DT = {(rei“) :r € (0,00),u € (/4,37 /4)}, shown in Fig. 2a. The transformed data g, (k) and
8o(w(k), 1) are defined by (2) and (4), respectively.

Using the classical sine transform Deconinck er al. (2014), a different representation of the
solution is

2 * —w(k)t ; : ~
awn = | e Wsinko [sin(ky)q(y, 0) dy — kZo (e k), 1)] dk. )
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Im(k) Im(k)

D |

Re(k)

(a) (b)

FiG. 2. Regions for the heat equation. Panel (a) shows the region DT = {Re(kz) < 0} N C*. Panel (b) shows different integral
paths for By: (i) 9D the undeformed contour (dashed), (ii) Cg : the deformed contour across the saddle point &k (solid) and

(iii) ég : the deformed contour used in Flyer & Fokas (2008) (dotted).

The equivalence of the expressions is shown by deforming the contour of (7) back to the real line. The
reason we do not work with (8) is twofold:

1. Deforming the contour back to the real axis is possible only when classical transforms exist.
Generally speaking, classical transforms do not exist for dispersive equations.

2. Tt is more straightforward to apply the method of steepest descent numerically to (7) than it is
to (8).

3.2 Deformations of contours based on the method of steepest descent

We write the solution (7) as

q(X, t) :11 +12+Bo, (9)
where
1 [~
I=o— | W, dk,
—00
1 (i
h==] . e ®ig (—k) dk,
1 .
By=—7-/ R ®0ikG (w k), 1) dk.
oD

The associated deformed contours for 7;, 1, and B, will be defined by C!, C} and Cg, respectively, in the
following sections. In Flyer & Fokas (2008), for the FCM, the deformed contour C~g is independent of
(x,1), and is the same for all three integrals /1, I, and B,. The contour C~g is a hyperbola parameterized
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8 B. DECONINCK ET AL.

FiG. 3. Deformed contours for the heat equation. Depending on the values of (x,7), the deformed contour for By can be inside
or outside of dDT. Solid lines represent the deformed contours. Dashed lines give dDT, where DT is the shaded region. See
Section 3.2.3 for a detailed description of these deformations.

by s € R, shown in Fig. 2,
k(s) = isin(mw/8 — is). (10)

This contour ég is also used in Fokas er al. (2009), Papatheodorou & Kandili (2009) and de Barros
et al. (2019) for different types of advection-diffusion equations. There are two major drawbacks of
using Cg : (i) the integrands of I, B, are not defined on all of CEB| and (ii) the evaluation of the integral
along ég quickly loses accuracy when ¢ increases, as it does not follow the direction of steepest descent,
and large oscillations and potential growth destroy accuracy. To fix these issues with FCMs we use
different deformations of the contours for /,,/; and B, that depend on (x,?), and the contours are
deformed to follow the direction of steepest descent as much as possible, see Fig. 3.

3.2.1 I,: the integral involving gqy(k). The phase function in the integrand is
0(k; x,1) = ikx — w(k)t = ikx — k1. (11)

There is one saddle point k = ix/2t where 6’ (k; x,f) = 0 on the imaginary axis. The phase function
0 (k; x,t) can be rewritten as

0(k;x, 1) = ikx — k*t = —t(k — ix/20)* — x* /4t.

The direction of steepest descent, along which the magnitude of ¢’ decays exponentially, is
horizontal. If Im(k,) = x/2t > §, the contour cannot be deformed to pass through the saddle
point k; because the transform of the initial data ¢ € C§° is only guaranteed to be defined for
Im(k) < 8. However, there is exponential decay in the integrand when the path is along the horizontal
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THE NUMERICAL UNIFIED TRANSFORM METHOD 9

-2

-4

-6

FiG. 4. The deformed horizontal contour C{ (solid) passing through i with § = 1, x = 4,1 = 1, kg = 2i. The undeformed contour
(dashed). The background contour plot shows the level sets of Re(0(k, x, 7)). The integrand of 7| is analytic for Im (k) < 1 when
qo € C?o.

line Im(k) = § since + > 0,x > 0. Hence, the deformed path that we choose is a horizontal line
Cl = {k € C: Im (k) = h}, with h = min(8, x/27).

=g [ k= =5t [ g
! 27 J_oo 0 27 Jel 0

The contour is shown in Fig. 4. The uniform convergence of Clenshaw—Curtis quadrature applied to I,
for x,¢ > c is established in Theorem 2 (Appendix), after proper truncation and rescaling.

3.2.2 I, the integral involving gy(—k). ~ Similar analysis can be applied to I, in (7). Here

1 .
L=—— k=BG (—k) dk.
2 2 oD+ ¢ qo( )

Because gy(—k) is analytic and bounded for Im(k) > —§, we can deform the contour DT to the
horizontal line passing through k, = ix/2t defined by C} = {k € C : Im (k) = x/21},

1 ikx—aw (k)t ~

The contour is shown in Fig. 5. The uniform convergence of Clenshaw—Curtis quadrature applied to I,
for x,¢ > c is established in Theorem 2 (Appendix), after proper truncation and rescaling.
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-2

-4

-6

FiG. 5. The deformed horizontal contour for /> (solid) through kg = 2i with § = 1, x = 4,t = 1. The undeformed contour
(dashed). The background contour plot shows the level sets of Re(0 (k, x, t)). The integrand of I, is analytic for Im (k) > —1. The
dashed line is the undeformed contour D7 .

3.2.3  By: the integral of the transform of boundary data g, (w(k),t). The integral B in (7) containing
the boundary data is more complicated compared to the integrals /1, I,. There are two important factors
that require special treatment:

1. The parameter ¢ appears both in the exponential and in the transformed boundary data g(w (k), 1),
and therefore the phase 0 (k, x, t) alone does not describe the decay of the integrand in By,.

2. The evaluation of e=*°* g(w(k), 1) is ill-conditioned due to the oscillations and growth in g(w (k), )
cancelling those from the exponential.

Example. To get a more concrete understanding consider g, (1) = e". The transform is

-~ t o, _ 1 2
gO(w(k)!t) =/0 ek SeSds = ](2—_1 (e( Dt _ 1) .

Since g, (s) = e * is bounded on the finite interval 0 < s < ¢, the transformed data g,(w(k), ) are an
entire function of k with removable poles at k = 1. The integrand of B, contains two terms:

. . . _ 2
ikx—t lketh k-t

T2 -1 =z —-1)

R ®ike (), 1) = (12)

The second term follows the horizontal direction of steepest descent, but the first term is not
exponentially localized on horizontal lines in the complex k-plane. Although the integral of the first
term on the 3D is zero, it is not possible to separate the two terms, in general, for all k.
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THE NUMERICAL UNIFIED TRANSFORM METHOD 11

FI1G. 6. The undeformed contour 8D, The solid line gives the deformed contour C(I) of I that goes through kg = 2i and turns
to rays parallel to dD1 with x = 20,7 = 5. The integrand of I is entire. The background contour plot shows the level sets of
Re (0 (k,x,1)).

General case. We write the transform g (k, ?) as

o]

~ ! K2s i k2s k2s
go(w(k),1) = A e “go(s)ds = — t e "go(s)ds + A e "go(s)ds,
for k € DT. Therefore, the integrand in By, is
ikx—k>t % ke [ ks ikx—k>t
e golw(k), 1) = —e A e gy(s+nds+e 8o(w(k), 00). (13)

The two terms on the right-hand side of (13) behave the same as the two terms in (12). Because
2o(w(k), 00) is in general not defined outside D™ a separation only exists inside D™. Without splitting
the two terms, to get exponential decay for both terms, the contour dD™ is deformed to C(I) passing
through the saddle point horizontally, and turns up when the second term in the integrand is negligible,
see Fig. 6. The corner point k; = +L + ix/2t is determined by L = max(L,, ,/y) with specified

2
—L}

tolerance €, where ‘e ‘ = € characterizes the exponential decay and ,/y allows the oblique segment

to be away from k = 0. With this choice of contour the exponential part in the second term decays
exponentially along the horizontal segment, and keeps the same magnitude along the oblique segment
while the exponential part in the first term keeps the same magnitude along the horizontal segment, and
decays exponentially along the oblique segment. Uniform accuracy is shown in Theorem 3 (Appendix)
after proper truncation and rescaling.

REMARK. For boundary data that are not exponentially decaying the transforms gg(w(k), 00) are only
defined in D" in Fig. 2. As a result, g,(w(k), ) for large ¢ is highly ill-conditioned when k leaves D™.
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0.5

0.0

0.5

0.0

F1G. 7. The solution to the heat equation (6) with exponential decay initial and boundary data g(x,0) = e¢*, g(0,1) = e~ . The
bold curves are the initial and boundary conditions.

However, staying inside D™ requires retaining more oscillations. In the limit # — oc the saddle point
x/(2t) approaches the corner of DT, which further restricts contour deformations and makes achieving
uniform accuracy more difficult.

3.3 A numerical example

With these deformed contours we can numerically evaluate the integrals efficiently for arbitrarily large
values of the parameters x, ¢. Figure 7 shows the solution to the heat equation with initial and boundary
data gg(x) = e ¥, go() = e '. Although exact transforms can be obtained for these choices of data, in
the rest of the paper, they are only used for computing the errors and our NUTM does not make use of
the formulas.

To demonstrate the uniform accuracy for large x, ¢ we plot the absolute errors Eyyry and Egcy
along three different curves (a) + = 0.1, (b) x = 0.1 and (¢) ¢t = x% in Fig. 8. The error Expymv 1S
obtained using the contours C! ,Cé and Cg . The error Exy, is obtained using the contour C~g in (10)
Flyer & Fokas (2008). The initial and boundary conditions are g, (x) = e~ 10x, 8o = e 1 to allow
deformation in a larger region. The number of collocation points N = 120 is the same for both methods.
This is a coarse grid for the integrals with the errors approximately 10~> when s = 0.1 is small, but
it shows the efficiency of the NUTM as s grows. The true solution is computed using Mathematica’s
built-in numerical integration routine NlIntegrate along the undeformed contour 3D with sufficient
recursions and precision. This is time consuming if the transforms of the initial and boundary data need
to be computed. The truncation tolerance is set to 10~!3 for determining the truncation of the deformed
path. This value of the truncation tolerance is chosen so that it is small enough to show the trend of the
errors when x, ¢ vary and the truncation is not affected by the rounding errors. These settings are the
same for other examples in the paper unless stated otherwise.

The absolute error Eyymy decreases in all cases as x,t grow while Egpcyy grows when ¢ increases.
This can be explained simply by the fact that the contour used in the FCM does not follow the steepest
descent path. Furthermore, even when ¢ is fixed in Fig. 8(a), Egcy decreases slower than Eyymy- On
the other hand, Eyyty increases relative to the true solution. This is mainly due to the fact that the
magnitude of the solution is smaller than the truncation tolerance for x > 5, at which point the numerical
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Exvrm , ======== Eron

Exvrm s =======- Erom
2

----- lq(x,t)|, along x = s, t = 0.1 —====|g(z,t)|, along z = 0.1, t = s =====|g(z,t)|, along v =5, t =5

Fic. 8. The absolute errors of the numerical solution to the heat equation with initial condition gg(x) = e 10 ang boundary

condition go (1) = e~ 10 along (a) x = 5,1 = 0.1, (b)x = 0.1, =5, (c) x = 5,1 = st fors e [0.1, 105]. The error ENuTM 18

obtained using the contours C{ s Cé and Cg . The error Egcy is obtained using the contour (fg in Fig. 6. The absolute value of the

solution |g(x, 1) is also plotted with dashed lines for reference. The FCM loses accuracy as ¢ grows while ENyTwm decreases in all
cases as parameters increase.

solution has almost all contours truncated. In Fig. 8(b—c), ENypy Mmaintains good relative accuracy. In
Fig. 8(c), Eyyrm starts with a larger error, because ¢ = s° = 0.01 is very small and close to the initial
condition, which requires more nodes to produce the same order of errors compared with the other two
starting from ¢t = 0.1. As both the FCM and the NUTM are implemented with spectral methods, for
fixed x and ¢, both methods are spectrally accurate.

REMARK. As can be seen in (12) and (13), there is large cancellation in the exponentials. To avoid
potential overflow/underflow problems we use g (w (k), T) defined by

T
2o ®),T) = e Pl (w(k), T) = / e?®6=D g (5) ds. (14)
0

4. The LS equation on the half-line

Next, we consider a dispersive example, the LS equation:
ig,=—q,, x>0,1>0, (15)

with Dirichlet boundary data g, € C}° and initial data ¢, € C§°.

4.1 The solution formula from the UTM

The dispersion relation for (15) is w(k) = ik%. Define the transform of the initial data gp and the
transform of the Dirichlet boundary data g, by (2) and (4). The UTM provides the solution in terms of
the following contour integrals (Deconinck er al., 2014),

1 oo - R 1 o . -
genn) = 57— / !0ty dk — = /a T g b = 2gp@ ] dk(16)
-0
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Im(k)

D+

Re(k)

(a) (b)

FiG. 9. Regions for the LS equation. Panel (a) shows the region DT = {k € C* : Re(kz) < 0}. Panel (b) shows D = {k €
C: Re(kz) < y} and a schematic of the deformed contour from 9D to Cg for By in (17), see Section 4.2.3 for details of the
deformation.

where the contour dD is the positively oriented boundary of the first quadrant D" = {k € C : Re (k) >
0,Im (k) > 0}. With the assumption of the decay of g,(¢) the contour can be deformed to the lower-half

plane inside D = {k € C : Re (kz) < y} as in Fig. 9. However, this is not enough to completely
eliminate the oscillations. In general, other methods for oscillatory integrals are required when ¢ is not
sufficiently large or the saddle point k, has large modulus.

4.2 Deformations of the contours based on the method of steepest descent

We separate the different integrals in the solution formula (16)

q(x,t) =1y + I} + By, 17
where

o= [ eke®ig g ak
0 271’ oo 0 ’

1 ,
= —— ikx—aw (k)t 5 —k dk,
! 2T oD+ ¢ qo( )

1 ,
0= — ek—o®ipz (w(k), 1) dk.
2 oD+

4.2.1 I,: integral with the transform of the initial data. The phase function in I, is

0(k;x,1) = ikx — w(k)t = ikx — ik*t. (18)
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FiG. 10. The undeformed contour (dashed). The deformed horizontal contour C{ (solid) going through kg = 1, = 1, x =2,r = 1.
The background contour plot shows the level sets of Re(0(k, x, 7)). The integrand of 1 is analytic for Im (k) < 1.

There is one saddle point k, = x/2¢ on the positive real axis satisfying 6’ (ky; x, ) = 0. Near the saddle
point k,

0(k; x, 1) = ikx — ik’t = —it(k — x/26)% + ix? /4t

The directions of steepest descent are —m /4 and 37 /4. Similar to the case of the heat equation, the
transformed initial data g, (k) are bounded and analytic in Im (k) < § when g, € C§°. Hence, we choose
the deformed contour C{ ={a+ky+ib:ae (—o0,—0),b=08}U{a+ky—ia:ae[-5,00)}tobe
a horizontal ray with height Im(k) = §, and a straight-line segment with slope —1 passing through the
saddle point as shown in Fig. 10. The integral /; becomes

1 ikx—ik>t ~
I, = o C{e qo(k) dk.

422 I,: integral with the transform of the initial data qy(—k). Similar analysis can be applied to
I, with g,(—k) in (16). Since the transform g,(—k) is analytic and bounded for Im (k) > —§, we can
deform the contour dD* to

Cé =f{a+ky—ia:ae (—o00,8)}Ufa+ky—ib:aec[b00),b=75}
see Fig. 11. Therefore, I, becomes

1 ikx—ik?t
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16 B. DECONINCK ET AL.

FiG. 11. The undeformed contour (dashed). The deformed contour for /> (solid) going through kg = 1,6 = 1, x = 2,7t = 1. The
background contour plot shows the level sets of Re(0(k, x, 7)). The integrand of I is analytic for Im (k) > —1.

423 By: integral of the transform of boundary data gy(w(k),t). The issues discussed in
Section 3.2.3 also appear in the case of the LS equation. However, now the region where we can
deform the contour is restricted. The same decomposition as in (13) gives

o0
MR (k) 1) = —e* / F5go(s + 1) ds + K13 (w (k). 00). (19)
0

For generic g, (), if the contour of By, is along the — /4 direction at the saddle point k, = x/2t, the
first term in (19) grows exponentially as x — oo since Re (ikx) > 0. On the other hand, g,(w(k), 00)
may not be extendable outside D*. With the assumption that g, € C}° it becomes possible to deform
the path to the lower-half plane to obtain some exponential decay. The steps of the deformation are the
following:

1. The region DV is extended to D. The transformed data 8o(w(k),00) are analytic in D and
continuous up to dD.

2. The contour D™ is deformed to Cg <Y Cg » Y Cg . as shown in Fig. 12, where Cg p 1s the straight-
line segment passing through the saddle point along the steepest-descent direction up to aD, and

Cg P Cg . are the unbounded curved segments along 0D.

3. Using that e~ @®1 [ g0®sg (5) ds is bounded and analytic in D, we can replace g,(w(k), 1)
with gq(w(k), 00) using Jordan’s lemma,

1 , 1 .
0= — e ®iiz (w(k), 1) dk = — R e® Lz (w(k), 00) dk.  (20)
27 Jap+ 21 Jep uck,uck.
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15

10

FiG. 12. The undeformed contour (dashed). The deformed contour for Bg (solid) through kg = 1 withx = 2,1 = 1,y =1, see
Section 4.2.3 for details of the deformation. The background contour plot shows the level sets of Re(6 (k, x, 1)).

4. The integral along Cg . 1s decomposed into two parts to maximize decay along the steepest descent
direction:

/ o0y (w(k), 00) dk = / =0y (w(k), 1) dk + / =W Ee (W (k), 1) dk,
cB B B

0,a CO,d CO,a
where
o0
go(w(k), 1) = / e gy (s) ds,
t

is the complementary transform of g,.

5. The integral along Cg . is decomposed into two parts:

/C | kg (@ (k) 00) dk = / | W (kg (0 (k). 00) = koo (@ (ko). 00)) dk

0,c 0,c

+ /CB eikxiw(k)t2k0§0 (w (k())s 00) dk.
0,e

The second integral on the right-hand side is deformed to follow the direction of steepest descent.
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2

0
20

FiG. 13. The plot of the real part of the solution of the LS equation with go(x) = 0, go(f) = te~". The bold solid curve shows the
initial and boundary conditions.

6. With the above steps we obtain

1
"2 e,
1
g Cg,h
1
=
1
2 g,

. 1 -
WG @ (k). 1) Ak + — / OG0 (k). 1) dk
T JC

0,d

T eDN0EE (@ (K), 00) dk
Fme®NDRg (@ k), 00) — 2koZo (@ (ky), 00)] dk

ek o®nK 50 (@ (ky), 00) dk.

Using the deformed contour, for large x, ¢, the integral is exponentially localized near the saddle point
on Cg - When the integrand is not sufficiently small near the endpoints of Cg 5> the oscillations in the

integrand along Cg . and Cg 4 become important. Most of the potential error comes from the integral

along Cg .» as the integrand along Cg’ 4 has exponential decay from the ¢ factor. The contour Cg .
asymptotically approaches the real axis. We use the Levin collocation method (Iserles et al., 2006) for
the integrals along Cg . and Cg 4 to maintain accuracy for large x, ¢. The rest of the integrals in By, as well
as those making up /; and I,, are computed using Clenshaw—Curtis quadrature.

4.3 A numerical example

Consider the initial condition gy(x) = 0, and the Dirichlet boundary condition g,(#) = te™". The real
part of the solution to (15) with this choice of data is shown in Fig. 13. Dispersive waves quickly emerge
from the boundary, becoming more oscillatory for large x. The absolute error and the magnitude of the
solution evaluated along (a) t = 0.1, (b) x = 0.1, (¢) t = X% are shown in Fig. 14. The errors shown in
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"""" Exvrm, N =20

Enura, No= 400 e Exurm, N =20

Exurm, N =40 ss=eemes Exura, N =20

Exurym, N =40

----- lq(z,t)|, along z = s, t = 0.1 —====|q(z,t)|, along z = 0.1, t = s -====|q(x,t)|, along v = s, t = &*

01 1 10 100 1000 10% 10° ° 0.1 1 10 100 1000 10¢ 10° °

(a)

FiG. 14. The absolute errors ENyTMm of the numerical solution to the LS equation (15) along three curves: (a) x = s, = 0.1,
®x=0.1,r=s(c)x=s1=s*fors e [0.1,10°].

dotted curves are computed with N = 20 collocation points for each part of the contour in B, while the
errors shown in solid curves are computed with N = 40 collocation points. The absolute errors decrease
as x, t increase. In Fig. 14(a), we see that although the initial condition is zero, at ¢+ = 0.1 the solution
q(x,t) only decreases algebraically. This makes traditional time-stepping method inefficient even if we
ignore issues related to the highly oscillatory nature of the solution.

5. A multi-term third-order PDE

The deformations for higher-order equations are more involved and the integrands may have branch
points that are fixed by the equation, and not by the initial or boundary data. The NUTM is implemented
in a systematic way, as long as one can solve the PDE using the UTM with additional care for the branch
points. Consider a multi-term third-order PDE,

Q[ = qx + qxxxv X > 07 > 0’ (21)

with Dirichlet boundary data g, € C}°, Neumann boundary data g, € C}° and initial data g, € C§°.
The dispersion relation is @ (k) = —ik + ik’ and D* = {k € CT : Re (w(k)) < 0} = D} UDJ as shown
in Fig. 15.

Using the UTM it is known that the problem requires two boundary conditions at x = 0 (Deconinck
et al., 2014). By solving w (v(k)) = w (k) we find two symmetries of the dispersion relation,

v (k) = (—k — V4 = 342)/2,
vy (k) = (—k + V4 = 312)/2,

with branch cut [—2/+/3,2/+/3]. Here, v, is the branch of v that tends to (—1/2 4 iv/3/2)k =
kexp(2mi/3) as k — oo and v, is the other branch. The solution formula is given by’

q(x,t)=11+12+13 +BO+BI’ (22)

3 Although some parts of the contours lie on the branch cut the integrands are well defined if the values are taken as limits from
the interior of DV,
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20 B. DECONINCK ET AL.

FiG. 15. The region D™ for (21). The shaded region in the top left is DT. The shaded region in the top right is Dzr. The branch
cut is shown as a jagged line.

with
1 o[>
I =5 l=o®ig (k) dk,
—00
1 N
=g | @ g k) dk.
1
1 i R
== . F e ®ig, (v, (k) dk,
2
1 . 1 )
By=—=— [ 00k — Dgg0®). ) dk— — [ TP 0I%) — kg (w k), 1) dk,
2w apt 2 oD+
1 2
1 . 1 .
B =—— R o® Gk — v (), (@ k), 1) dk — — R oW1k — vy (k)3 (w0 (k), 1) dk.
2 aD‘l*' 27 BD;

For convenience, we impose the following initial and boundary conditions to focus on the deformation
of B,

q(x,0) =0, g(0,1) = gy(1), g € Cy°, ¢,(0,7) = 0.

For inhomogeneous initial and Neumann data the deformation of B; follows the same steps as the
deformation of B, and the deformations of I, I, I; follow the same steps as in Iy, I, in the heat equation
or the LS equation case.
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Im(k)

FiG. 16. The region D and the deformation for B across the saddle points kj and ky. The branch cut is shown as a jagged line.

5.1 Deformations of the contour of B based on the method of steepest descent

With homogeneous initial and Neumann boundary conditions, the solution reduces to

q(x,t) = By = BO|D1+ +BO|D2+’

where
— ! ikx—aw k)t 1,2 2\ =
Balo: =~ [ @O0 R0, ke
__ ! ikv—aw (k) (2 2y5
BO|DZ+ =5 - e (v (k) — k7)go(w(k), 1) dk.

The phase function in B, is

0(k; x,1) = ikx — w(k)t = ikx — (—ik + ik>)t.

There are two saddle points k| , = £+/x/(37) + 1/3 on the real axis satisfying 0’ (k;x,t) =0,k € Df'
and k, € D; . Since the saddle points and contours are symmetric with respect to the imaginary axis, we
only need to analyse the deformation for D; and use the mirror image about the imaginary axis for DT.

Near the saddle point k,, € has the expansion

O(k;x,1) = gi(t\/g(t—:_x) +x\/3(tjx)) - it\/3(t+x) k — k)? + Ok — ky)>.

t

The direction of steepest descent is along the angles — /4 and 37 /4. The integrands need to be extended
to the lower half plane similar to the steps in Section 4.2.3. A sketch of the deformation of the contour

is shown in Fig. 16.
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—29.4

—245

—19.6

— 147

Fig. 17. The deformed contour for By|p, when x > 37 (solid), the undeformed contour (dashed). The background contour plot
shows the level sets of Re(0(k, x, 1)). The branch cut is shown as a jagged line.

5.1.1 Deformations of the contour of By for x > 3t. In this case the saddle points k;,k, lie outside
branch cut [—2/+/3,2+/3]. We proceed as follows:

1.

The region D™ = {k € C* : Re (w(k)) < 0} is extended to D=k € C:Re(w(k) < y). The
transformed data g,(w(k), 0o) are analytic in D and continuous up to dD.
The contour D™ is deformed to Cg Y Cg p Y Cg . as shown in Fig. 17. Cg » is the curve passing

through the saddle point up to 3D, keeping Im (0 (k;x, 1)) constant along the steepest-descent
direction and Cga, Cgc are the unbounded curve segments along dD.

. Using that ke ftoo e“’(k)sgo (s) ds is bounded and analytic in D, we can replace gg(w(k), 1)

with gy( (k). 00),
1

ikx—aw (k)t 7, 2 2.~
Bolo; =2 Joe © O3k — k)go(w (k). 1) dk

1 ,
=— MWW (k) — K)o (w (k), 00) dk.
27 Jep uck,uck.

The integral along C’g ,, 18 decomposed into two parts to maximize decay along the steepest-descent
direction:

[, 630 — Bzt (.00 dk =
0,a

/C ) T oWl 2 (k) — k)35 (w (k), 1) dk + / ’ B2 (k) — k) g (@ (k) 1) dk,
0,a

0.d
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where

85w k), 1) = / h e?® g (s)ds,

t

is the complement of the transform gy(w(k),t) and Cg 4 is extended from Cg »» keeping
Im (0 (k; x, 1)) constant along the steepest-descent direction.

5. The integral along Cgc is decomposed into two parts to separate the leading-order contribution in
the oscillatory integral:

/ R OB (2 (k) — )70 (@ (K), 00) dk = / OB (k) — )y (@ (ky), 00) dk
CB I

0.c CO,e

+ [, @O 03w — Dk ®.00) — 130 ~ DRy, | ok

0,c

The contour Cge is extended from Cg »» keeping Im (6 (k; x, 1)) constant along the steepest-descent
direction.

6. Finally, we obtain

_ 1 T 2)5¢ ! @3 2
Bolog =37 Jo, & 030~ KR @00 dkt o /cg, T (0~ k), dk
1 eikxfw(k)r(vg(k) _ k2)§0(a)(k), 00) dk
2 Jeg,
| - ) .
= . eRo®I 02 (k) — k) go(w(k), 00) — (V3 (ky) — k3)8o (e (ky), 00) dk
0,c
1 ikx— P
— ok w(k)t(vg(kz) — k%)go(a) (kp), 00) dk.
T Cg,e

The integrals along Cg b,Cg 4 and Cg . are computed using Clenshaw—Curtis quadrature, and the
integrals along Cga and Cgc are computed using Levin’s method.

The contour integral B| DY is deformed in a symmetrical way. For real-valued data we can use the
symmetry and compute g(x, r) with only the contour integral B,| D}

g(x,1) = 2Re (B0| D;) .

5.1.2  Deformations of the contour for BO|D§r forx < 3t. When x < 3t the saddle points k;, k, lie on

branch cut [—2/+/3,2/+/3]. To maximize the use of the steepest-decent direction we choose a different
branch cut for v, shown in Fig. 18 in red. The new branch cut starts from the branch point 2/ \/5 and
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FiG. 18. The deformed contour for By|p, when x < 3t (solid). The undeformed contour (dashed). The background contour plot
shows the level sets of Re (6 (k, x, t)). The original branch cut is shown as a jagged line and the new branch cut is shown in red. A
zoomed plot of the contour near the new branch cut is shown in the right panel.

goes along the curve with Im (6 (k;x,t)) constant in the lower half plane. The corresponding v, (k) is
defined as the analytic continuation of v, (k) from the interior of D;' . We use the following steps:

1. The region D = {k € C* : Re (w(k)) < 0} is extended to D= {k € C:Re(w(k) < y}. The
transformed data g(w(k), 00) are analytic in D and continuous up to dD.

2. The contour BD; is deformed to Cga U Cg » U Cge U (—Cgf) U Cgf U Cgc as shown in Fig. 18. The
contour Cg » 18 the curve passing through the saddle point up to dD with Im (6 (k; x, ) constant
along the steepest-descent direction. The contours CB, @ C(Ii , and C(I{ . are along dD. The contours
—Cg £ and Cgf are the two segments on the new branch cut with opposite orientations. The contour
- g,f points towards the branch point and Cg f points away from the branch point.

3. Using that ek—@®1 ftoo e‘”(k)sgo (s) ds is bounded and analytic in D, we can replace g, (w(k), 1)

Bolos =35 oy &30 = w80
1
2 Jeg e ocg,
1
“a

eF DT (k) — k) (w(k), 00) dk

. 1 i
elkx—w(k)t"}%(k—)go(a)(k), OO) dk + 2_/ elkx_w(k)tﬁzz(k+)go(w (k)’ OO) dk’
T cgf

where k™ and k= denote the limit from the left/right of the curve, respectively.
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4. The integral along Cg ., 1s decomposed into two parts to maximize decay along the steepest-descent
direction:

/c . R e®I (G2 (k) — k)3, (w (k), 00) dk
0,a

- / PTG (k) — k)8 (w k), 1) dk - + / PO G2 (k) — k) gy (w (k), 1) dk.
CB B

0.,d

5. We obtain

1 ; 1 4
Bolpg =7 |, @Y B0 = )@ ®). 0 dht 5 /C | @0~ K)o (@ k). 1) dk
0,d

+ 5 DI G2 (k) — k)3 (@ (k), 00) dk
1 o () -
L eF N2 (k) — k)3 (w (k), 00) dk
T CO,cUCO.c
1 - 1 i
= elkx—w(k)tﬁ%(k+)g0(w(k)’oo) dk + _/ elkx_w(k)tﬁzz(k+)§0(w(k),OO) dk.
T 2 s,

The integrals along Cg b Cg & CB and CO ¢ are computed using Clenshaw—Curtis quadrature, and

the integrals along Cga,CgC and Cge are computed using Levin’s method. The contour integral
By Dt is deformed symmetrically.

5.1.3 Improving the accuracy near the branch point.  Since v, (k) is not differentiable at the branch
pointk, =2/ /3, Clenshaw—Curtis quadrature loses spectral accuracy for the integrals along CO £ C

and Cg , in the critical case x = 3¢. With the change of variables 2 =k— ky, we get

Dy(8) 1= vy (2 4 ky) = (—24/3 — 35 — 3745/ 4 + /352) /6.

The new symmetry ¥, (s) is smooth near s = 0. Clenshaw—Curtis quadrature maintains spectral accuracy
for the integrals on Cg 5 and Cg f after this change of variables.

5.1.4  Improving the accuracy near the saddle point. Large numerical rounding errors can arise if
the parametrization along C 0.5 18 not smooth. For instance, the parametrization of CO » using Re (k) by
mapping the curve to the real line has a square root singularity at the saddle point. Other than seeking
an optimal parametrization we use line segments to approximate the curve near the saddle point.

5.2 Numerical examples

Consider the Dirichlet boundary condition g, (f) = te™!, the homogeneous initial condition gox) =0
and the Neumann boundary condition g, (#) = 0. The solution to (21) is shown in Fig. 19. For small time
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FiG. 19. The numerical solution of equation (21) with gy(x) = 0, go(t) = te™!, g1 (t) = 0. The bold curves are the initial
and Dirichlet boundary conditions. For small 7 dispersive waves emanate from the boundary while the waves start to turn back
following the advection as 7 grows.

"""" Exvryv, N =20 ===== Exurm, N =40 ----evs Expry, N=20 —==—== Eyyry, N =40 semsmss Eyurag, N =200 =====Exyry, N =40

lq(z,t)| , along x =s,t=0.1 —— g(x,t)|, along z =01, t=s

lq(z, 1), along w=3s, t =5

0 1074 W
108 10 \‘\
ST _--"‘l—\’v"‘\/‘\
10712 10-12
1070 N 10716
2%
s s
0.1 1 10 100 1000 10¢ 10° ® 0.1 1 10 100 1000  10*  10° 0.1 1 10 100 1000 10*  10°
(a) (b) (c)

FiG. 20. The absolute error ENyTm of the numerical solution to (21) along (a) x = 5,1 = 0.1, (b) x = 0.1, =5, (c) x =35, =5
for s € [0.1,10°]. The computation using N = 20 points for each segment in the contour (dotted) and using N = 40 points for
each segment in the contour (dashed) are plotted.

the dispersive waves emanate from the boundary and the solution looks similar to Fig. 13. As ¢t grows
the advection dominates and the waves turn back to the boundary. The absolute error and the magnitude
of the solution evaluated along (a) t = 0.1, (b) x = 0.1, (c) x = 3¢ are shown in Fig. 20. The errors
shown in dotted curves are computed with N = 20 collocation points for each part of the contour in B,
while the errors shown in solid curves are computed with N = 40 collocation points. The absolute errors
tend to zero as x, t increase. To demonstrate spectral accuracy, the absolute errors Eypry €valuated at
x = 1,3,5,t = 1 are plotted against the number of collocation points per segment in Fig. 21. With the
change of variables used in Section 5.1.3 the NUTM remains spectrally accurate, even when the branch
point is on the contour of integration.
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1072+
1070}
""" Exyrm v= 1,1t =1
108 NN~ mmmmees Exvrm z=3,t =1
Exyrm =5,t =1
10-111
10—14 L
0 20 40 60 80 100 120

FiG. 21. The absolute error ENyTm against the number of collocation points N per segment: computed with x = 1,7 = 1 (dashed),
x =3,r =1 (dotted) and x = 5,7 = 1 (solid). The truncation tolerance is 105 for this example.

=

v\\&

0.0
=02

40

Fi1G. 22. The numerical solution of (21) with gg = sin(21)¢ (t/(2r)) with ¢ () defined in (23). The bold curves are the initial and
Dirichlet boundary conditions. For small 7, dispersive waves emanate from the boundary, but the waves start to turn back because
of advection as ¢ grows. Panel (a) shows the solution for x € [0,40], ¢ € [0, 30]. Panel (b) shows the solution from a different
angle in a shorter time interval 7 € [0, 15].

All our examples use boundary conditions with transforms that can be computed explicitly. This is
to allow us to estimate the error of our method by comparing with the built-in integration routine in
Mathematica. To show the NUTM is not limited to this, in Fig. 22, we show a plot of the solution g(x, )
with g (f) = sin(2t)¢ (t/(27)), where

exp(—1/(1 =) 1] <1,

0=, It > 1.

(23)

The initial data and the Neumann data are zero. We see a similar wave pattern as in Fig. 19 with
dispersive waves propagating in the positive x direction, before turning back.
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6. Summary of the steps in the NUTM

. The solution formula depends on (x, ) explicitly through e

1. For PDE:s of type

q,+w(—=id)g =0

we construct the solution formula using the UTM.

2. The solution formula from the UTM requires transforms of the known initial and boundary data

o (k) =/0 e "™ qy(x,0) dx,

o0
#o(@ k), 00) = / ¢ ®4(0, 5) ds,
0

B 00 a)(k)sap_lq
fam.o = [Tl 0.9d

For most k values used on the deformed contour these integrals are oscillatory. We apply Levin’s
method to compute these integrals.

te=o®) - Generally, each connected

component of D contains saddle points. The contour D™ is deformed to pass through the saddle
points along the steepest descent directions until it hits the boundary of D (a slightly enlarged
version of D), where the transforms of the initial and boundary data are analytic. The size of D
is determined by the decay rate of the initial and boundary data. The path follows D in the same
direction as D . The contour deformations may be impacted by singularities such as branch cuts
and poles.

. The integrals along the steepest descent direction are nonoscillatory and they are computed using

standard quadrature rules. The integrals along 9D are oscillatory and they are computed using
Levin’s method.
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A. Appendix: The proof of uniform convergence of the NUTM applied to the heat equation

In this appendix, we prove the uniform convergence for Clenshaw—Curtis quadrature applied to the
contour integrals for the heat equation in Section 3.2. We use the following result to estimate the error
of Clenshaw—Curtis quadrature. The constant K for the integrals I;, I, and B is given in Theorem 2
and Theorem 3.

THEOREM 1. See Trogdon, 2015, for example.
Let u(k; x,t) be so that form = 0,1,...,M, Bl’c"u(k; x, 1) are absolutely continuous for fixed x, ¢ and
satisfy supyeq_y iy |98+ uthix, 0| < K for all x,r. Define iu(+x,0) = [ u(kix,) dk and i,(uC:x,1)

to be the approximation of i(u(-;x,)) obtained with Clenshaw—Curtis quadrature. Then i, (u(-;x,1))
converges to i(u(-; x, f)) uniformly in x, . More precisely, there exists N > 0 such that forn > N,

i (u(..x t))| < 32K
N = 5M@n + 1 — MyM®

sup |i(u(~;x, 1) —
Xt

In Theorem 2 and Theorem 3, we estimate the upper bound K for each part of the integral in (9).
The uniform convergence is considered in the domain bounded away from # = 0 and x = 0. For ¢ > 0
we define the region,

. ={x1):x>c t>c}.

TaEOREM 2. Uniform convergence of /; and I, in (9) for the heat equation.
For any §,€,c > 0, assume g, € C5° and let IT be the truncation of the integral*
1 .
I =— [ P e®ig k) dk, (A.1)
2 c!
such that
sup |1, — If| < C(qq.8,0)e.  Cy(gqy.8,¢) > 0.
(x,H)ER

Then Clenshaw—Curtis quadrature applied to /] converges uniformly on £2... Hence, C{ ={a+ih:ac
R} and & = min(x/2t,§) is as defined in Section 3.2.1. Similarly, with the same assumptions, let 5 be
the truncation of the integral

1

—— [ ™R (k) dk, (A2)
2w cl

12=

such that

sup |12 — I§| < Cy(gp,8,0)e,  Cy(qq,8,¢) > 0.
(x,H) e

Then Clenshaw—Curtis quadrature applied to I5 converges uniformly on §2.. Hence, Cl = {a+ix/2t:
a € R}.

Tueorem 3. Uniform convergence of By in (9) for the heat equation.

* The truncation depends on the prescribed tolerance €. As g is bounded on the contour, we can use the exponential to get a
good choice for the truncation. See the proof for how the truncation is done.

120z dunf Z0 U0 J8sn 0%/G2Z18 Ad Z1.0.G1.9/2000BIP/WNUBWI/EE0L "0 /10p/a[oIE-80UBAPE/EUlRWI/WOD"dNO"0ILISPEDE//:SARY WO PAPEOUMOQ



THE NUMERICAL UNIFIED TRANSFORM METHOD 31

Forany y,e,c > 0, assume g € C }°,° and let Bg be the truncation of the integral5

1 . 1 N
By=— / MR kg (K2, 1) dk + — MR 0ikg (K2, 1) dk, (A3)
T cg,a 2” C(I)3,17+c(l)g.c
such that

sup |BO _B(E)| < C(go’ V,C)E, C(go’ V,C) > 0.
(x,1)E2,

Then Clenshaw—Curtis quadrature applied to Bf converges uniformly on £2... The contour is defined in
Section 3.2.3, where Cg . =1La+ix/2t:a € [0, 1], e‘Lz’ = €} is the horizontal segment of the contour,
and Cfl, = {L + ix/2t + Lye™%a : a € [0,00),e 12" = ¢}, Cf, = (=L + ix/2t + Lye ™*a : a €
(—0c, 0], e~L2¥ = ¢} are the oblique segments of the contour with given tolerance € > 0.

Proof of Theorem 2. For given tolerance € > 0, I; is truncated to I] of length 2L with e L — e, We
introduce the change of variables k = La + ih. The integral with a > 1 is cut off:

Le™
21

o0
11 — / elLax*(LCH“lh)zléo(La + lh) da
—0o0
Le—h* 1 , Le— ) .
Mt / eilbax—Latihlt (14 4 ih) da + —— glLax=Lati*ta (14 4 ih) da
2 J 2 Jia>1

Le—hx
2w

=If + / oltex=Lati’ty, (14 + ih) da.
la|>1

The second integral is dropped and the induced truncation error is bounded by

Le— ™ . . Le™ ™ ; i
e / pilax—(Latin®ty (4 4 ih) da| <=2 / gllax—(Lati’ta (1q 4 ih)‘ da
27 Jja>1 27 Jyjal>1
Le*hx )
< / e |5 (La + i) da
27 Jia>1

—h(x—h
lle—(kr)e/ aeiLz[(dz*l) da
2r lal>1

—h(x—ht) [e'e)
N . e 72
S||qo('+lh)||oo—e/0 oI5 g

=lgo(- + M)l

2
—h%t .
<llgo(- + ih)ll oo T

Since ¢ is bounded from below L is bounded from above. The truncation error is therefore O(e),
uniformly in (x,?) € £2...

3 As with Theorem 2, the truncation procedure is described in the proof.
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Uniform convergence to Ij requires the derivative of the integrand in I to satisfy

82 (el'LdX*(LLH“ih)ztéo(La + lh))‘ < M,

ag[-1,1] 27

for all x, 7. Notice that the derivatives of the exponential only introduce polynomial terms, and g, (k) is
bounded and analytic in {k : Im (k) < 8}, which implies that 3,g, (k) and 8,3310 (k) are bounded on the
contour. It suffices to show

s (Le ™ i (avingis Le ™ e (Lavinys 2
sup |92 | —=—— - e atiiy (1a+in) )| < sup | —— - LAt Py [x, 121, Lhr)
a 0
ael—1.1] 2 ael-1,11| 27
Le™
— sup e L P 1x 121, Lhn)|
ae[-1,1] 27

where P is a polynomial with positive coefficients.
When h = x/2t < 6,

Le—x2 J4t—L2ta>

Le™™ o, 2 2
sup -e P(a,Lx,L°t,Lht)| = sup ‘P(a,Lx,L t,Lx/Z)‘
ael-1.1] 27 ael—1,1] 2
—x2 /4t
<

0(x*/41 <M, < oo,

1
where Q is a polynomial with positive coefficients and we have used that L?f is constant.

When h = § < x/2t,

Le™™ 200 2 —8x/2—L21a? 2
sup -e P(a,Lx,L°t,Lht)| < sup e P(a,Lx,L°t,Lx/2)
agl—1,1] 27 agl—1,1]

< sup e“sx/zQz(x) <M, < oo,
ae[-1,1]

where O, is a polynomial with positive coeffcients. As a result the second derivative of the integrand
of (A.1) is uniformly bounded by M = max(M,, M,) independent of x, t. Together with the smoothness
of the integrand uniform convergence is obtained using Theorem 1. We skip the calculation for I, as it
follows the calculation for /;. O

Proof of Theorem 3. First, we prove the uniform convergence for the integral along Cgﬂ. Introduce the
change of variables k = La + ix/2t.

1 ikx—k>tn = 12
Le—x /2t 1 o
=0 / el (Latix2071) (1 g 4 ix/26)3o ((La + ix/21)?, 1) da
T -1

Le /4

1 2 t .
- / oLl (La + ix/2t)/ e(L‘H'”‘/Z’)ZSg(s) dsda.
T -1 0
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Using Theorem 1, uniform convergence requires the boundedness of the second derivative of the
integrand

Le= /4 2,2 ! a2
B,= sup —— Bge_L 4" (La + ix/2t)/ elLatix/2n) STVSg(s)e?  ds
acl0,1] T 0

SM’

for all (x,1) € £2,. Since || ge? ) loo < 00, after a lengthy computation,

e’ )
B < sup lge” Voo

2 2 2
PR /4tP + e VX /ZtP )’
T gel0,1]|—4a22 + 4y 2 — diatx + x2| 3 ( : 2

where P, P, are polynomials in x, ¢ and a, with positive coefficients, and the growth for large x, 7 is
controlled by the exponential and the denominator in front of P;,P,. As a result B, < M and the
integral on Cg , 1s computed with uniform accuracy.

Lastly, we show the uniform convergence for the integral along the oblique segment Cg - The

proof for the integral along C . follows directly by symmetry. We introduce the change of variables
k=L+4ix/2t+ Ly(1 + i)a. The integral with a > 1 is separated:

Ly(1+1i) /l /Oo le—k2ty~ 2
B = ! rk k o1 | d
oleg, P o )¢ Bolk.1) keLtin/ 20 Lo (1)

Ly(1+1i) [* . 2, .
=Blop + 22— / K gy 20| da.
oleg, T ¢ 8ol )k=L+ix/2r+L2(1+i)a “

The second integral is dropped and the induced truncation error is bounded by

Lye—LP1=x/(4n)

<2e / ‘e—ZLLZ’“ (Lt +Lota+ )go((L +ix/2t + Ly(1 + D)%, t)‘ da
m |

€
‘BOlc(l)gh N BO |Cg,[7

2 ) —Loxa—x%/(4t)—yt _ —L21—2LL21a)
2™ /@0 ghe? O o (e e

Lt + Lyta + )

P (L —x/(20)(2aly + L + x/(21)) —

2 2
<o /(41D ”goe)/(') lloo (e—sz—ytP3 + oL t—2LL2rP4) i

where P5, P, are polynomials of x, t with positive coefficients. Since the decaying exponentials dominate
the growth of the polynomial the truncation error is O(e), uniformly in (x,7) € §2, with e 22¥ = € and
L= e Using Theorem 1 uniform convergence requires the boundedness of the second derivative of
the integrand

Ly | o (it o 2
B, = sup 02 (™12 (02,0 =N =m,,
aclo,] 27 k=Lrtix/2t+Lyeim/4a
for all x, t. After computing the derivatives
B, < sup lgoe” Vlloo ( o LP1=2aLLot—x2 /(41) P+ o Vi—alax—x2/(20) P6),
ae[o 1|4y 2 — Lt + (2 + 2i)aL,t + ix)?|3

where Ps, Pq are polynomials of x,,a with positive coefficients. The poles are removable since the
integrand is analytic in k. In this case the exponentials dominate the growth of the polynomial. Hence,
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B, < M. The second derivative of the integrand of (A.l) is uniformly bounded by M, indepen-
dent of x,t. Together with the smoothness of the integrand uniform convergence is obtained using
Theorem 1. 0
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