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Abstract

We investigate quantitative estimates in periodic homogenization of second-order elliptic
systems of elasticity with singular fourth-order perturbations. The convergence rates, which
depend on the scale k that represents the strength of the singular perturbation and on the
length scale € of the heterogeneities, are established. We also obtain the large-scale Lipschitz
estimate, down to the scale £ and independent of k. This large-scale estimate, when combined
with small-scale estimates, yields the classical Lipschitz estimate that is uniform in both & and
K.
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1 Introduction

In this paper we aim to quantify the combined effects of homogenization and singular perturbations
for the elliptic system,

L.(ug)=F inQ, (1.1)
where Q C R? (d > 2) is a bounded domain and
L. =r*A? —div(A(z/e)V), 0<e k<1 (1.2)

The coefficient matrix (tensor) A(y) = (a%ﬁ(y)), with 1 < «,8,4,7 < d, is assumed to be real,
bounded measurable and to satisfy the elasticity condition,

aif(y) = a? (y) = ali(y),

(1.3)
vil¢)? < afepel < wolef?

for a.e. y € R? and for any symmetric matrix & = (%) € R?*? where vy, v are positive constants.
We also assume that A is 1-periodic; i.e.,

A(y +z) = A(y) for any z € Z% and a.e. y € RY (1.4)
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The elliptic operator in (1.2) arises in the study of the formation of the so-called shear bands in
elastic materials subject to severe loadings [8]. Variational functionals associated with the related
nonlinear operators are also used to model the heterogeneous thin films of martensitic materials
[20, 7]. Homogenization of the elliptic system (1.1) was first studied by Bensoussan, Lions, and
Papanicolaou in [5], where qualitative results were obtained for the case k = . Also see related
work in G-convergence in [23, 24]. Later on, in [8] Francfort and Miiller provided a systematic
qualitative analysis in periodic homogenization of (1.1) and the related nonlinear functionals for
the case K = €7, where 0 < 7 < oco. See also [22] for the related work in the stochastic setting.
Assume that A satisfies conditions (1.3) - (1.4) and k = 7. Let u. € H2(Q;R?) be the weak solution
of (1.1) with F € H~Y(Q;R?). Thanks to [5, 8], as ¢ — 0, u. converges weakly in H'(£2; R?) to the
weak solution ug in H} () of the second-order elliptic system,

—div(AVup) = F in €, (1.5)

with constant coefficients. The effective coefficient matrix A in (1.5) depends on «, which represents
the strength of the singular perturbation, in three cases: 0 < v < 1; v = 1; and v > 1. In the
case 7 > 1, the matrix A agrees with the effective matrix for the second-order elliptic operator
—div(A(x/e)V), without singular perturbation. If 0 < v < 1, the matrix Ais simply given by the
average of A over its periodic cell. In the most interesting case v = 1, the expression for the matrix
A depends on a corrector, which solves a cell problem for a fourth-order elliptic system. The same
is true for a general kK = k(g) under the assumption that
K

k—>0as e—0, and lim— =p. (1.6)
e—=0 €

The effective matrix A4 in (1.5) depends on p in three cases: p = 0; 0 < p < oo; and p = co. See
Section 3 for the details.

Our primary interest in this paper is in the quantitative homogenization of the elliptic system
(1.1). The qualitative results described above show that the singular perturbation and the homoge-
nization have combined effects in determining the effective equation for (1.1). So a natural question
is to understand the combined effects in a quantitative way. More precisely, we shall be interested
in the sharp convergence rate of u. to ug in terms of € and x, as well as regularity estimates of .,
which are uniform in € and k. Although much work has been done on the quantitative homoge-
nization for the second-order elliptic system —div(A(x/¢)Vu.) = F' in recent years, to the best of
our knowledge, the question has not been previously addressed, with the exception of [15], where
an O(¢g) rate in L?(2) was obtained in the case x = ¢ for Dirichlet problems with homogeneous
boundary conditions.

Our first main result provides a convergence rate in L?(Q) for a general « satisfying (1.6).

Theorem 1.1. Let Q be a bounded CY' domain in R d > 2, and A satisfy (1.3)-(1.4). Suppose
(1.6) holds and if p = 0, we also assume that A is Lipschitz continuous, i.e.,

|A(z) — A(y)| < Llz —y|,  for any z,y € R (1.7)

For F € L*>(;RY) and G € H*(Q;RY), let u. € H?(LRY) be a weak solution of (1.1) with
ue — G € H2(QRY), and ug € HY(Q;RY) the weak solution of its homogenized problem (1.5) with



ug — G € Hi(Q;RY). Then

[ue — uoll L2

2
C1{n+5+<z> } if p =00,
) | (1.8)
<{IIFll2) + IGllm2() } § Co {n+a+p 2\(;)2—p2\} if 0 < p < oo,
2
03{/<;+5+(’Z) } ifp=0,

where C1,Co depend only on d, vy, vo and 2, and Cs depends only on d, v, va, 2, and L.

The O(e) convergence rate in L?(Q2) has been established for second-order elliptic systems with
highly oscillating coefficients in various contexts. Following a general approach developed in [21, 19]
(see [18] for references on the related work), one first establishes an O(¢'/?) rate in H*(Q2) for a
two-scale expansion of u., and then uses a duality argument to improve the rate to O(e) in L?().
To carry this out, we introduce an operator,

L) = N22A? — div(A(z/e)V), (1.9)

where 0 < A < oo is fixed. Let £) = —div(;ﬁV) denote the effective operator for £2 in (1.9). In
Section 4 we will show that if £2(ue ) = F and u. \ — G € HZ(;R?), then

Juex —wollr2i) < CA+ Ne{llFllr2) + Glln2(0) } (1.10)

where ug ) is the weak solution of E())‘(uoj)\) = F in Q with ug\ — G € H} (; R?). To complete the
proof of Theorem 1.1, we observe that

E? =L. and wu.)=u. ifA= ke 1, (1.11)

and use energy estimates to bound |lugx — uo||z2(q)-
We note that the convergence rate in (1.8) involves three terms. The first term & is caused by
the singular perturbation, the second term e by homogenization, while the third term is generated

by |A* — ﬁ] One may find examples in the one-dimensional case, which show that both the

perturbation error O(x) and the homogenization error O(g) are sharp. Our estimates of |A* — X!
in Section 3 should also be sharp as A — 0 or co. As a result, we believe the convergence rates
obtained in Theorem 1.1 are sharp. On the other hand, in view of (1.10), it is interesting to point
out that for any ¢ > 0 and x > 0, the solution u. may be approximated with an O(k + €) error in
L?(£2) by the solution of a second-order elasticity system with constant coefficients satisfying (1.3).
However, the coefficients depend on A = ke~!'. We remark that the proof of Theorem 1.1 also gives
a sharp estimate for a two-scale expansion,

ue — ug — ex(x/e)S:(Vuyg), (1.12)

in H'(Q;R%), where x(y) is the corrector for £Z if 0 < p < oo, x(y) = 0 if p = oo, and x(y) is the
corrector for the operator —div(A(x/e)V) if p = 0. See Remark 4.5.
Our second main result gives the large-scale Lipschitz estimate down to the microscopic scale



Theorem 1.2. Assume that A satisfies (1.3) and (1.4). Let u. € H*(Bgr;R?) be a weak solution
of L.(uz) = F in Br, where B = B(xo,R), R > ¢, and F € LP(Bg;R?) for some p > d. Then

fore <r <R,
1/2 1/2 1/p
vﬁ) _C< vgz) R( FP) , 13
(f wwur) < {]éﬁ'“’ er(f, (113)

where C' depends only on d, vy, v, and p.

Under the additional smoothness condition that A is Holder continuous:
A(z) — A(y)| < Mlz — |7 for any 2,y € RY, (1.14)
we obtain the classical Lipschitz estimate, which is uniform in both ¢ and &, for L.(u;) = F.

Theorem 1.3. Assume that A satisfies conditions (1.3), (1.4), and (1.14) for some o € (0,1). Let
u. € H*(B;;R?) be a weak solution of L.(u:) = F in B, = B(xo,r), where F € LP(B,;RY) for

some p > d. Then
1/2 l/p
Ve (o) sc{(][ vult) e (f, 1) } (1.15)
B B

where C' depends only on d, v1, va, p, and (M, o).

Under the conditions (1.3), (1.4) and (1.14), the interior Lipschitz estimate (1.15) as well as the
boundary Lipschitz estimate with the Dirichlet condition was proved by Avellaneda and Lin in a
seminal work [3], using a compactness method. The boundary Lipschitz estimate with Neumann
conditions was established in [14]. Related work in the stochastic setting may be found in [11, 2,
1, 6, 13].

To prove Theorem 1.2, we use an approach found in [12, 6]. As in [3], the idea is to utilize
correctors to establish a large-scale C1'® estimate for 0 < a < 1, from which the large-scale Lipschitz
estimate (1.13) follows. Unlike the compactness method used in [3, 14], the approach requires a
(suboptimal) convergence rate in H'(f2) for a two-scale expansion of u.. In order to reach down to
the microscopic scale €, which is necessary for obtaining the classical Lipschitz estimate in Theorem
1.3, we introduce an intermediate equation,

A2e2A%y, , — div(AAVu. ) = F, (1.16)

with A > 0 fixed, where A* is the effective matrix for £ in (1.9). The key observation is to use
the solution of (1.16), instead of the homogenized equation (1.5), in the two-scale expansion of
ue. The purpose is two-fold. Firstly, with the added higher-order term in the equation (1.16), one
eliminates the error caused by the singular perturbation. é\s a result, we are able to establish a
convergence rate in H'(Q), uniformly in A. Secondly, since A* is constant, one may prove the C'1:®
estimate, uniformly in A, for (1.16) by classical methods. We remark that as in [12, 6], the same
approach may be used to establish the large-scale C*® estimates down to the scale € for any k > 2.



A more interesting problem would be the extension of the results in this paper to the stochastic
setting.

The paper is organized as follows. In Section 2 we collect some regularity estimates, which
are uniform in A, for the operator (2.1) without the periodicity assumption. The materials in this
section are more or less known. In Section 3 we present the qualitative homogenization for the
operator (1.2) under the assumption (1.6). The proof of Theorem 1.1 is given in Section 4. In
Section 5 we establish an approximation result in H'(Q) for u. ) by solutions of (1.16), while the
result is used in Section 6 to prove the large-scale C® estimate. Finally, the proofs of Theorems
1.2 and 1.3 are given in Section 7.

The summation convention is used throughout. We also use fE u to denote the L' average of u
over the set FE.

2 Preliminaries

Consider the operator,
LY = £ = N2A? — div(A(2)V), (2.1)

with 0 < A < oo fixed and A = A(zx) satisfying the elasticity condition (1.3). The periodicity
condition (1.4) is not used in this section with the exception of Lemma 2.11 and Theorem 2.12.
Let 2 be a bounded Lipschitz domain in RY. For F € H~1(Q;R?) and G € H?(Q;R?), there exists
a unique u € H2(Q; R?) such that £2(u) = F in Q and u — G € H3(;R%). Moreover, the solution
u satisfies the energy estimate,

AIV2ull 2y + [Vull 2@y < CUIF 1) + IVl + MV Gl2e}, (22)

where C' depends only on d, v, vs, and ). To see this, one considers v = v — G and applies the
Lax-Milgram Theorem to the bilinear form,

a(é, 1) = )\2/ V2 - V) da +/ A(x)Vé - Vip da, (2.3)
Q Q
on the Hilbert space HZ(;R?). The first Korn inequality is needed for proving (2.2).

2.1 Caccioppoli’s inequalities

Theorem 2.1. Let u € H?(Ba;RY) be a weak solution of £L2(u) = F +div(f) in B, = B(xo,2r),
where F' € L?(Ba,;RY) and f € L*(Bay; R¥9). Then

2
22 \V2ul? dx < (2 +1 \u|2dx+C \FHu!dw—i—C ]f\Qd:U (2.4)
B TQ 2 Bar

/ IVl dz < / \u|2d:1:+C/ \F]|u|dx—i—C/ nydx (2.5)
By

where C' depends only on d, v1 and vs.



Proof. By translation and dilation we may assume that zg =0 and r = 1. For 1 < s <t < 2, let
¢ be a cut-off function in C§°(B(0,t)) such that 0 < ¢ < 1, p = 1 on By and |[VFyp| < C(t — 5)~F
for k =1,...,4. By taking the test function u¢?* in the weak formulation of the equation £ (u) =
F + div(f) and using the Cauchy inequality, we deduce that

X"/ |V2u|2d:1:+/ |Vu|? de
S BS

<C [ (IF||ul+|f]?)dz+CN(t—s)2 | |V(up)®dz (2.6)
BQ Bt

L O((t—s) 2+ Nt - s)—4)/ 2 da.
B>

To eliminate the term involving |V (u¢)| in the right-hand side of (2.6), we use an iteration technique
found in [4], where an improved Caccioppoli inequality for a general higher-order elliptic system
was proved. We point out that Theorem 2.1 does not follow directly from [4], since we require the
constant C' to be independent of the parameter A.

Using the identity,

up - Alup) = (uAu)p® + 2uV (up) Ve — 2ul*| Ve ? + [ul>pAgp,

and integration by parts as well as the Cauchy inequality, we may show that

1/2 1/2
|V (ugp) > de < C ( \ugp]QdJ:) ( \(pAu\de>
Bt Bt

B (2.7)

o uPIVeP detC / ||| A d,
Bt Bt

where C' depends only on d. This, together with (2.6), gives

)\2/ |v2u\2dx+/ |Vu|? da
# B,
)\2
< C/ (|F|\u|+|f|2) d;v—|—2/ |V2u\2dﬂv (2.8)
By B

+C((t—s)2+/\2(t—s)4)/ luf? da.
B>

For j > 1, let t; =2 — 77, where 7 € (0,1) is to be determined. It follows from (2.8) that

)\2/ ]V2u|2da;+/ \Vul|* de
B B

tj tj

)\2
<C [ (IF||ul+f1?) der/ |V2u|? da (2.9)
By 2 b,
L (77 — 7Y g N2 (T — ) / ul? de
Bs



By iteration this leads to

/\2/ |v2u\2d:c+/ |Vu|? d
B By,

t1

J 2
1 A
SCE / Fllu| + |f|?) de + = V2ul? da

i+l

J
1 i ity — i ity —
+CZ—22.71 ((7’ —T+1) 2-1—)\2(7' —T+1) 4)/3 |u]2da:
i=1 2

(2.10)

for j > 1. We now choose 7 € (0,1) so that 27* > 1. By letting j — oo in (2.10) we obtain (2.4)

with r =1, and
/|vwwxgcu?+n/ m%m+c/10ﬂmpuﬂﬂd%
B B> Bz

which gives (2.5) if A < 1. Finally, if A > 1, we note that (2.10) yields

)\2/
B

By (2.7) we have

t1 Ba

/ |Vul*de < C \u!2da:+C/ |Aul? dz
B By, By,

<c / (IF Nl + 1 + ul?) de,
By

where we have used (2.12) for the last inequality.

Remark 2.2. Let u be a solution of £ (u) = F + div(f) in Ba,. Let w = A>Au. Since

Aw = F 4 div(f) + div(AVu),

it follows from the Caccioppoli inequality for A that

4 2 2% 2 2 2
M| VAu[*dr < —- |Au|* dx + Cr |F'|* dx
B, r By /o B2
e Uﬁm+c/ Vu|? da
B3r)2 B3r/2

4 2
§C2(>\+1>/ \u|2dx+0<>\+1>/ |f|? da
r r B2r r B27‘

+ Cr? / |F|? dz,
Ba,

where we have used (2.4) and (2.5) for the last inequality.

\V2ul? dx < C/B (1F[[u] + | f]?) dz + C(1 + )\2)/ ul? d.
2

(2.11)

(2.12)

(2.13)

(2.14)



2.2 Reverse Holder inequalities

Theorem 2.3. Let u € H?(Ba,;RY) be a weak solution of L2 (u) = F +div(f) in B, = B(xo,2r),
where F € L*(By;RY) and f € L?(Bay; R¥¥Y). Then there exists some p > 2, depending only on
d, 11 and vy, such that

<]{3r |Vup>1/p <C { (]éw !Vu|2>1/2 + (]éh |f|P) v +Cr (éw |F|2>1/2} 7 (2.15)

where C' depends only on d, v1 and vs.

Proof. This follows from (2.5) by the self-improvement property of the (weak) reverse Holder in-
equalities. Let B’ = B(z,t) be a ball such that 2B’ C B(xg,2r). Choose 1 < ¢1 < 2 < g2 < 0o such

that
1/g2 /¢
<f yu—E\fn) gCt(f qu\m) ,
2B’ 2B/

where E is the L' average of u over 2B’. Since £ (u — E) = £L*(u), it follows from (2.5) that

1/2 1/q AV 1/2
<][ |Vu\2> gc(f yvurh) +Ct(][ Fyqz> +c<][ ]f\2> . (216)
4 2B’ 2B’ 2B’

where C' depends only on d, v; and v5. The fact that (2.16) holds for any ball 2B C B implies
(2.15) [10]. 0

Remark 2.4. Let 2 be a bounded Lipschitz domain. Fix xy € 092 and define
D, = B(xzg,r)NQ and A, = B(xg,r) N1,

where 0 < r < rg = ¢pdiam(Q). Let u € H?(Da,;R?) be a weak solution of £ (u) = F + div(f) in
Dy, with u = 0 and Vu = 0 on As,. Then

2
)\2/ |V2u|? de < % <A2+1>/ |u|2dx+C'/ yF|\u|dx+c/ |f)? da, (2.17)
D, r r D2r D2r D2r

C
/ VuPdr< S [ juPde o ]F|\u|d:v+0/ \F[2 da, (2.18)
DT» r D2r D2r D2'r

where C' depends only on d, v; and vo. Note that since u = 0 and Vu = 0 on As,., we have
wp € HE(Doy; RY) for any ¢ € C2(Ba,). The proof of (2.17) and (2.18) is exactly the same as that
of Theorem 2.1. As a consequence, we also obtain the boundary reverse Holder inequality,

(][T ’Vu\p> v <C { <][DQT !Vu|2)1/2 + <]{DQT \f|P> w +Cr <][DQT ]F]2>1/2} 7 (2.19)

where C' > 0 and p > 2 depend only on d, vy, v and the Lipschitz constant of B(z,rg) N 0S.



Theorem 2.5. Suppose A satisfies (1.3) and 2 is a bounded Lipschitz domain. Let u € H3(;R?)
be a weak solution of LN(u) = div(f) in Q. Then there exists p > 2, depending only on d, vi, vo
and ), such that

IVull ey < Cllfllzr (), (2.20)

where C' depends only on d, vy, ve, and Q.

Proof. The Meyers estimate (2.20) was proved in [8] by an interpolation argument. It also follows
readily from the reverse Holder estimates (2.15) and (2.19). Indeed, by using (2.15), (2.19) and a
simple covering argument, we see that for some p > 2,

IVullLe) < Cllf ) + CliVull 2@y < Cllif e,
where we have used the energy estimate and Holder’s inequality for the last step. O

2.3 (Ch@ estimates

Lemma 2.6. Suppose A satisfies conditions (1.3) and (1.14). Let u € H?*(By;R?) be a weak
solution of L*(u) = 0 in By = B(0,2). Then

1/2
[ullnogsy < Ca (é w) , (2.21)
2

where 0 < a < o and C,, depends only on d, vy, va, o, and (M, o).

Proof. We first observe that if A is a constant matrix satisfying the elasticity condition (1.3), then

1/2
max |VFu| < Cy ][ |ul? , (2.22)
B B3 /o

where C}, depends on d, v1, 15 and k. To see this, we note that since A is constant, VFu is a
solution. Thus, by (2.5) and an iteration argument,

lullgr(sy) < Crllull2(s, )

for any £k > 1. By Sobolev imbedding, this gives (2.22). Next, we use a standard perturbation
argument to show that if A is uniformly continuous and ~ > 0,

d—2
/ IVul?dz < C, (ﬁ) 7/ Vu|? da (2.23)
B, R Br

for 0 < p < R < r. To do this, we let v € H?(Bg;R?) be the solution of
MA%Zy —div(AVv) =0 in Bg and v —u € Ha(Bgr;R?), (2.24)
where A = fBR A. Since

MNA% (v —u) — div(AV(v — u)) = div((A — A)Vu) in Bg,



by energy estimates,

/ \Vu — Vo? dx < C||A—A\%M(BR)/ \Vul|? dz.
BR BR

By (2.22), for0< p< R<,

][ Vo> < C |Vol|2.
B, Br

The rest of the argument for (2.23) is exactly the same as in the case of second-order elliptic systems
[10, pp.84-88]. An argument similar to that in [10, pp.84-88] also shows that if A satisfies (1.14),

then
1/2 1/2
<][ ]Vu—][ Vu]2> < Cyr® <][ ]u\Q)
T T BQ

for any a € (0,0) and 0 < r < 1. This implies (2.21). O
The following theorem gives the C'1* estimate, uniform in \, for the operator £*.

Theorem 2.7. Suppose A satisfies conditions (1.3) and (1.14). Let u € H?(By;R?) be a weak
solution of L*(u) = F in By, where F € LP(Bg;RY) for some p > d. Then, if 0 < a < min(o, 1—%),

lullereqsry < Ca{lullzas,) + 1l o) }- (2.25)
where Cy, depends on d, v1, va, p, o, and (M, o).

Proof. The case F' = 0 was given by Lemma 2.6. The general case is proved by a perturbation
argument as in the case of second-order elliptic systems. Let 0 < r < R < 1. Let v € H?(Bg;R%)
be the weak solution of £} (v) = 0 in By such that v — u € H2(Bg;R?). Since L (u —v) = F in
Bpr, by the energy estimate,

/B IVu — Vo2 dz < 0R2/ |F|? da < CRd+2<1—%>||F\|i,,(B2), (2.26)
R

Br

where C' depends only on d, v1, 1o, and p. By Lemma 2.6,

d+2a
/ Vv — ][ Vol?dz < C <£> / Vo — Vol? dx
B, B, R Br Bgr

for any 0 < o < ¢. This, together with (2.26), leads to

d+2o
/ Vu —][ Vul*de < C <1> / |[Vu — Vu|? dz
B, B, R Br Br

d _d
+ ORI FIR, 4y,

from which the estimate (2.25) follows, as in [10, pp.88-89]. We omit the details. O

10



2.4 Singular perturbations
For Q C R? and 0 < t < codiam(92), let
Q= {z € Q: dist(x,00) < t}. (2.27)
Lemma 2.8. Let Q be a bounded Lipschitz domain in R%. Then,
lullz2 (0 < CHIVUll 20 for u € Hy(%), (2.28)
leall 2y < CE/2ull oty lull17 for ue H'(), (2.29)
and for uw € H*(Q) N HL(Q),
ez < CF2llulliigy lull 12y, (2:30)
where C' depends on d and €.

Proof. The inequalities (2.28) and (2.29) may be proved by a localization argument, while (2.30)
follows readily from (2.28)-(2.29). O

Lemma 2.9. Let uy € H*(Q;RY) be a weak solution of L N(uy) = F with uy — G € HZ(;RY),
where F € L2(Q;RY), G € H*(Q;RY), and Q is a bounded Lipschitz domain. Let ug € H'(;R?)
be the weak solution of —div(AVug) = F in Q and ug — G € HE (Q;R?). Suppose ug € H*(Q;RY).
Then for 0 < A <1,

IVux = Vol z2(0) < OV luoll 20y + 1G] 20} (2.31)

where C' depends only on d, vy, ve, and Q.

Proof. Let n; be a cut-off function in C§°(£2) such that 0 <, < 1, n(z) = Lif x € Q\Qa, me(x) =0
if 2 € Q, and |VFn| < Ct~F for k = 1,2, where t > 0 is to be determined. Let %y = ug — G and

w=uy—G— (ug — G)n = ux — up + up(1l — ny). (2.32)
Note that w € H2(2;R?) and

E)‘(w) = E)‘(uA) — E)‘(uo) + L [ﬂo(l — 77t)]
= =N A% + NA%(TUo(1 — me)) — div[AV (U (1 — my))].

It follows that for any v € HZ(Q;R?),
(L (w), )] < A2 /Q Al | Ag] dr + X2 /Q AGEo(1 — )| A da

+C [ 9@t = m))IVe| da.
Q
By using the Cauchy inequality and Lemma 2.8, we obtain

(L (w), )| < N ol 2 () | A% | 2 () + O3 ol 120 | A% | £2(220)

(2.33)
+ Ct1/2||u0HH2(Q) ”vw”LQ(Qm)

11



By taking ¥ = w in (2.33), t = ¢\, and using the Cauchy inequality, we see that
AAw| 20y + Vwl 2y < CXN2{||uoll () + 1G] a2y }- (2.34)
In view of (2.32) this gives (2.31). O

Theorem 2.10. Let uy and ug be the same as in Lemma 2.9. Also assume that ) is a bounded
CH! domain and |VA| s < L < 0o. Then for 0 < A <1,

Jux —uollr2() < CMIF | r2(0) + 1Gll 2 }» (2.35)
where C' depends on d, vy, vs, L, and 2.
Proof. Let w be given by (2.32) with t = coA. For F e L2(Q;RY), let @ = vy — voij, where
vy € HE(Q;RY) is the weak solution of £*(v)) = F in Q and vy € H}(Q;RY) the weak solution of
—div(AVwg) = F in Q. The function 7, € C5°(€) is chosen so that 0 <7, < 1, 7 = 1 in Q\ Q3,
nt = 0 in Qg, and |VF7;| < Ct~F for k = 1,2. Note that
| [ Fa| = (€2 (w), v
Q
< LM w), @Y + (L (w), voiie) |-
It follows from (2.34) that
(LM (w), @)| < C{MAw| 2 () + Vel o) HA A 20 + V@l 220 }
< CMuoll 2y + 1Gl g2 }Hlvoll 2 (o) -
Also, by (2.33) and the fact that 7 = 0 in Qo,
(LM (w), vorie)| < N|uoll 2o llvoriel 2y
< N2 o] 2oy llvo 2

where we have used Lemma 2.8 for the last inequality. As a result, we have proved that

’/Qw : ﬁdm’ < CMJuoll 20 + 1G] 20 }lvoll a2 ()
< OM|luoll 2 () + 1G |2 HIF || 222y

where, for the last step, we have used the H? estimate ||vol|g2(0) < C”ﬁHLQ(Q), which holds under
the assumption that A is Lipschitz continuous and € is C1!. The estimate (2.35) now follows
readily by duality. O

A proof for Theorem 2.10 in the case d = 2 may be found in [16]. As pointed out by A. Friedman
in [9], the one-dimensional example,

d*v  d%u
2 o .
i 1 in (0,1),

u(0) = u(1) = u'(0) = v'(1) =0,

A
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shows that the O(\) rate in (2.35) is sharp. However, in the case of periodic boundary conditions,
the rates in Lemma 2.9 and Theorem 2.10 can be improved.
Let CPe, (R4 R?) denote the space of C*, 1-periodic R%valued functions in RY. Let H* (Y;R%)

per

be the closure of C2 (R%RY) in H*(Y;R?), where k& > 1 and Y = [0,1]%. Note that for any

per
F e L*(Y;R%) with [}, F dx = 0, there exists a unique uy € H2,(Y;R?) such that £*(uy) = F in
Y and fY uy dx = 0.

Lemma 2.11. Suppose A satisfies conditions (1.3) and (1.4). Let uy € HZ, (Y; RY) be a weak
solution of LMuy) = F in Y with [, uxdx = 0, where F € L*(Y;R?) and [, Fdx = 0. Let
ug € H;ET(Y;]Rd) be the weak solution of —div(AVug) = F in Y with [, ugdz = 0. Suppose
ug € H2,.(Y;R?). Then

per

IVuy — VUOHLQ ) < C')\Hu()HH2 Y)> (2.36)

where C' depends only on d, v1 and vs.

Proof. Let w = uy) — ug. Then
LM w) = —\2A2y,.

It follows that for any ¢ € HZ, (Y;R?),

(L2 (w), )] < A2 Auol| 2 | AY L2 vy - (2.37)

By taking ¥ = w in (2.37) and using the Cauchy inequality, we obtain
MAw| r2¢vy + [[Vwl| 2y < CAlluol| g2y (2.38)
which yields (2.36). O

Theorem 2.12. Suppose A satisfies (1.3) and (1.4). Also assume that |VA| < L < 0o. Let uy
and ug be the same as in Lemma 2.11. Then

lux = wollL2(vy < CN(IF |2y, (2.39)
where C' depends on d, v1, v9, and L.

Proof. The proof is similar to that of Theorem 2.10. For F e L2(Y;R%) with fyﬁdaz =0, let
W = vy — vy, where vy € H2, (Y;R?) is the weak solution of £ (vy) = F in Y with fY vydr =0,

per

and vy € H! . (Y;R%) the solution of —div(AVvy) = F in Y with [y vodx = 0. Note that

per

| [ Faa| = 1), )
< (LM w), B + | (£ (w), v0).
Tt follows from (2.37) that
(L (1), B)| < N[ Aw]| g2y |AT 2y + IVl 2 | VT 22

< C)‘QHUOHHQ(Y)”UOHH?(Y)
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By (2.37) we obtain
(LA (w), vo)| < N[ Auo|l g2y | Avoll L2y -

Since ||VAl|oo < L < 00, the H? estimates, uollgr2(vy < ClF|2(vy and |lvolg2yvy < C’Hﬁ’HLz(y)
hold. As a result, we have proved that

| [ - Fao| < CX1Plagr) 1Pl

which, by duality, gives (2.39). O

3 Qualitative homogenization

The qualitative homogenization for the elliptic system (1.1) was established in [5, 8] for k = &7,
where 0 < v < co. Here we consider a general case £ = r(e) under the condition (1.6). Denoting
kel as A = A(e), the system (1.1) may be written as

Ne? A%y, — div(A(z/e)Vue )) = F. (3.1)

We first fix 0 < A < oo and investigate the homogenization of the system (3.1).
For 1 < 3,7 < d, let Pf = y;(0,---,1,...,0) with 1 in the 8" position. Consider the cell
problem,
A, . A, .
)\2A2Xj F_ div [A(y)V(Pf + X 6)] =0 inR%
X;"ﬁ(y) is 1-periodic in y, (3.2)
A
Jy x;P () dy =0,

where Y = [0,1]¢. Under conditions (1.3) and (1.4), for each A > 0, (3.2) admits a unique solution

X;\ﬁ = (X;.\’w7 _..,X;"dﬁ) in H? (R%RY). This may be proved by using the Lax-Milgram Theorem
on ngr(Y;Rd). Moreover, let x* = (X;"Q’B), then

My < CL+A)72,
IV M r2yy < CATHL+ ), (3.3)
IV M r2vy < CA72,

for some constant C' depending only on d, v; and v,. Estimates in (3.3) follow from energy estimates.
Indeed, by using the test functions y* and Ax* and a Korn inequality, one obtains

AV r2vy + 1IVX 20y < C

and || V3x | r2(v) < CA~2. The remaining estimates in (3.3) follow readily by Poincaré’s inequality.
If A =0, it is well known that (3.2) has a unique solution in H}_(R?) and ”XOHHl(Y) <C.
Thanks to [5], for each fixed A > 0, the homogenized operator of £2 in (1.9) is given by

L) = —div(A V), (3.4)
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where
D= f Ay) + AWV ()] dy. (3.5)
Y

In view of (3.3), we have ];1}| < C, where C depends only on d, 1 and vs.

Lemma 3.1. The constant matriz A* satisfies the elasticity condition (1.3) with the same vy and
Vy.

—~ —~ap
Proof. Let A = (AA; ) with 1 < @, 8,4, j < d. Note that

—~af 8
P ay_Y | piB A8
A _fyAik o P77 077 dy

0 0
_ A 2 P-%B A8 Y pte Ata d )\2][ A AB A Ao d
fY 175 ayk { j + X] :| 8y£ |: i T Xi :| Y+ v XJ X; Y,

where ij = y;07% and we have used (3.2) for the last step. It follows that AX satisfies the
symmetry conditions in (1.3). To prove the ellipticity condition in (1.3), we introduce the bilinear
form,

tpr(9,0) = | A6 Vibdy+ 3 f Ao Ay,
Y Y
which is symmetric and nonnegative. It is known that the elasticity condition (1.3) implies

TIC+CTP < AC-¢T < g+ (TP (3.6)

for any matrix ¢ € R%*? where ¢ denotes the transpose of ¢. Let £ = (fjﬁ) € R4 be a symmetric
matrix. Let ¢ = ngf and 1) = gijﬁ. Then

—~af
A/\ij gzag]ﬁ = aper(qZ5 + 7/)7 qb + ¢)
> f AV -+ ) V(6+v)dy
Y
> 2 (Vo Vo4 (VO + (Vo) Py
Y

=2 196+ (V0 P dy+ 5 f 90+ (V)T Py

Z V1|€|27
where we have used (3.6) and the fact [, Vx*dy = 0. Also, note that

D (64,6 — )
= aper((lsa d’) - aper(q/}a w) < aper(d)v ¢) < V2|§‘27

where we have used (3.6) for the last inequality. O
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Define
A= ][ A(y) dy.
Y

Lemma 3.2. Assume A satisfies (1.3) and (1.4). Let A be defined by (3.5). Then
(A —A| <CA? for1<A< oo,
[AN = A2] < CJ1— (M/X)?| for 0< Ap,Ag < oo,
|AX — 20| < CX2 for 0 < A< 1, if in addition ||V Al < L,
where C' depends only on d, vy, vs, and C depends on d, v1, vy and L.

Proof. By the definitions of ;1\* and A,
AN — 4] = \]{VA(y)VxA(y)dy\ < CIVxML2rys

which, together with (3.3), gives (3.8). Similarly, by the definition of A ,
AN — %] < OV = V2 gy
Since
—div(A(Y VO = x*) + AN —x M) = (A - A)A%,
by energy estimates and the H? estimate for x* in (3.3),
VXM = VX2 r2ivy < CIA3 = MV [l 2y
< CIL = (M/R)?,

which, combined with (3.11), gives (3.9).
We now turn to (3.10). Note that

—_  ~

MhﬁﬂzyiAWf—VfﬂwS@WM&MMWWHM,

(3.7)

(3.11)

(3.12)

where we have used the integration by parts for the last inequality. It follows by Theorem 2.12 that

Ix* = X°llz2(vy < CA%,
where C' depends only on d, vi, v and L. This, combined with (3.12), gives (3.10).
Define Ly = —diV(A\V), where

A:][A(y)dy it p = o0,
Y

Ap if0 < p < oo,

A=

where A is given by (3.5).
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Lemma 3.3. Suppose that A — p. Then ;13‘ — A.

Proof. In view of Lemma 3.2, this is obvious if 0 < p < co. In the case p = 0, where A= :4\0,
the estimate (3.10) requires that A is Lipschitz continuous. The condition may be removed by an
approximation argument. Indeed, let B be a smooth matrix satisfying (1.3)-(1.4). Then

| A% — A0 < |A> — B + | B* — BO| + | B0 — A7), (3.15)
Let 7 be the weak solution of the cell problem (3.2) with A being replaced by B. Then
NA2 (N =7 = div(A(y) V(X — ) = div((A — B)V(y + 7).

By the reverse Holder estimate (2.15), there exist some p > 2 and C' > 0, depending only on d, 14
and v9, such that HVT’\HLp(y) < C. By energy estimates,

1/2
VG = )lzawy < 1A = Bluagy + (14— B9 Pdy)
< C|A = Blr2(vy + CllA = Bllrag) IV 1o vy
< Ol A= BllLayy,
where ¢ = 2p/(p — 2). By the definitions of AX and 1/3\’\, we obtain that
A~ B < |4 = Bllar) + 190 = ™) 20 < CIA = Bllagy, (3.16)
Similarly, one can prove that
| A° — BO| < [[A = Bl 2y + [V(X® = ) l2(v) < CllA = Bllagyy,
which, combined with (3.15), (3.16) and (3.10) for B, gives
| A% — 40| < C[|A = Bl|ay) + C)2,

where Cp depends on ||VB||«. By approximating A in L?(Y") with a sequence of smooth matrix
satisfying (1.3) and (1.4), we obtain A* — A% as A — 0. O

The following theorem shows that the effective equation for (1.1) is given by Lo(ug) = F.

Theorem 3.4. Suppose that A satisfies (1.3)-(1.4) and x satisfies (1.6). Let F € H~'(Q;RY)
and G € H*(Q;RY), where Q is a bounded Lipschitz domain in R?. Let u. € H*(Q;R?) be the
weak solution of (1.1) such that ue — G € HZ(Q;RY). Let ug € HY(Q;RY) be the weak solution of
—div(AVug) = F in Q with ug — G € H}(Q;RY), where A is given by (3.14). Then as e — 0,
ue — ug weakly in H'(;RY), and A(z/e)Vue — AVug weakly in L2(Q; R9x9),

Proof. This is proved by using Tartar’s method of test functions. Note that since k < 1, by the
energy estimate (2.2),

Kl Vel r20) + el m@) < C{IFr-19) + 1G] m2@) }» (3.17)
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where C depends on d, vi, v and Q. Let {u-} be a sequence such that us — wu weakly in
HY(Q;R?) and A(z/e')Vue — H weakly in L2(9; R4?). We will show that H = AVu in €. Since
—div(H) = F in Q, we see that —div(ﬁVu) F in Q. By the uniqueness of weak solutions in
H'(Q;R?) for Ly, we deduce that u = ug. As a result, we obtain that u. — uo weakly in H LQ;RY)
and A(z/e)Vue — AVUO weakly in L2(Q;R¥9) as e — 0.

To show H = AVu for notational simplicity, we let ¢ = ¢’ and A = k/e. Note that

A .
e P +ex) @/e)f =0 iR (3.18)
It follows that

222 /Q A{P? + ex P (a/e)} - Aluct) da

(3.19)
+ / Ax/e)V (P +ex)(/e)) - V(ucyp) du =
Q
for any ¢ € C5°(€2). Also note that
222 /Q Aue - A{(PP +ex (u/2))0} da
(3.20)
+ [ Alw/e)Tue V(P + e (@)} do = (F.(P) + o) /o)),
Q
By subtracting (3.19) from (3.20), we obtain
22222 / Aue - V(PP +ex P (w/e) Vi da
Q
— 2222 /Q AP +exP(x/e)) - Vue - Vi da
+ A%e2 /Q Aug - (P] +ex)’ (x /) A do
a2 / AP? +ex M (w/e)ue - Apda (3.21)
Q

+ /Q A(/2) Ve - (PP + x> (2/2)) Vi da
- /Q A(w/)V (PP + ex (5/e))ue - Vi da
= (F, (PJ-B + €X?’ﬁ($/€))¢}>-

We now let ¢ — 0 in (3.21). Using (3.17) and (3.3), it is not hard to see that the first four terms
in the left-hand side of (3.21) converge to zero, while the right-hand side converges to (F, Pjﬁ ).
Also, the fifth term in the left-hand side converges to

/Hg.p;ﬁ o 4 = (F,P}y) - /H%dx
Q Ox;
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Finally, we observe that by Lemma 3.3, A Aase 0, and that u. — u strongly in L?(€; R%).
This implies that the last term in the left-hand side of (3.21) converges to

_/gqﬁuawd£:/2958“ Vda,
Q Y 0 Q

X K 83:1

where we have used integration by parts. Since ¢ € C§°(12) is arbitrary, we see that

¥%; auo‘ _ Ba aua

H — A% — A?
J Y 0x; 7 Oy’
where we have used the symmetry conditions of A. Hence, H = AVu. O

4 Convergence rates

In this section we give the proof of Theorem 1.1. To this end, we fix 0 < A < oo and consider the
Dirichlet problem,

L2(uep)=F inQ and wu.\—G € HIQRY, (4.1)

where £ is given by (1.9), F € L*(Q;R9) and G € H(Q;R?). Let ugy € H'(Q;R?) be the solution
of the homogenized problem,

—div(AAVug,) =F inQ and wgy— G € HY(QRY), (4.2)

where A* is given by (3.5). We shall study the convergence rate of u. » to ug as ¢ — 0.
Let n; € C§°(£2) be a cut-off function such that

0 < ui < 17 ’vknt| < Ct_k for k = 1727

4.3
=1 ifzxeQ\Qy and m(x) =0 if x € Qg (43)

where ¢ <t < 1 and € is defined in (2.27). Let
wep = e — g+ (o r — G) (1 — 1) — ex(@/e)meSe(Vug ), (4.4)

where ¢ = (14 A\)e and x* is the corrector given by (3.2). The e-smoothing operator S: in (4.4) is
defined by

5P = [ 7= (s

where ¢.(¢) = e%p(s/e) and ¢ is a fixed function in C§°(B(0,1/2)) such that ¢ > 0 and [, pdz =
1.

Lemma 4.1. Let f € WYP(R?) for some 1 < p < co. Then

1S(f) = fllomay < eV fl oo (may- (4.5)
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Suppose that f,g € LF (RY) for some 1 < p < oo and g is 1-periodic. Then

loc

95V (Pll ooy < Coe gllnrll Flwon 0

for k>0, where ¢°(z) = g(z/e), O° = {x € R : dist(z,0) < e}, and Cy depends only on d, k and
p.

Proof. See e.g., [17]. O

Lemma 4.2. Let Q be a bounded Lipschitz domain in R%. Let Ug x, Upx and w. y be given by
(4.1), (4.2) and (4.4), respectively. Suppose ugx € H*(Q;R?). Then for any ¢ € HZ(Q;RY) and
0<e<(14+AN)71,

(L2 wer)y )] < Clluoallrey {£l Tl 2@y + =202 Av 120
+ Ct 2 { Juoll (@) + 1G] 2@ JIVE 20, (4.7)
+ C2 2 Yo a2y + Gl 2oy PIAY ] L2():
where t = (1 4+ X)e and C' depends only on d, v, va, and €.
Proof. Note that w, \ € H3(;R?) and

L2 (we ) = *diV{(;\ — A(z/€))Vuor} — Ne?A%(ug ) + L2{ (uop — G)(1 =) }
— LM ex Mz /e)neSe(Vuo\) }
= —div{(A* — A(z/e))(Vuo — 1Se(Vug )}
— N22A%(ugp) + L2{ (ugp — G)(1 —me) }
— diV{BA(x/s)ntSs(Vuoy)\)} — N\ div{Ax’\(x/e)V[ntsg(Vuw\)}}
—2X2E2A{V M2 /e) V[0S (Vug p)|} — N3A{x (/e) AneS=(Vug,\)] }
+ediv{x*(a/e)A(z/e)VImS: (Vuo )]},

where

B (y) = MVAX (y) — AV (y) — A(y) + AN (4.8)
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It follows that for any ¢ € HZ(Q;R%),
(€2 () )] < C [ [[Fu0r = mSe(Tuo Vol do + 2237 [ Aug,l|Av] do
Q Q
#2222 [ 1Al ~ G)(1 - no)|Av] o
Q
+C [ Wl - @)1 - m)|ve do
Q
+ C‘ / BN /e)neSe(Vug ) Vip dﬂ?‘
Q
4O /Q 0 (/)Y [ (Vo )] Vb dr
+Cen? / V2 (/) [ (Vo )] V)| dr
Q
+ Ce?\? / VXM /e) V2 1S (Vo)) | VY| da
Q

+ Ce3\? /Q X (/) V3 1S (Vug \)] VY| da
=L+ L+ +1o
Using Lemma 4.1 and the Cauchy inequality, it is not hard to see that
1 < C{IVuo Al 2000 IV 22(050) + 211 V20 20050 | V200 - (4.9)
Next, we observe that
I+ Is + Iy < X% Aug |l 20 | A% L2 () + CA22t 2 Jug n — Gl 2oy 1A% L2 () (4.10)
+ Ot |ug ) — Gz VYl 22(04)-

To bound I35, we note that by (3.3), we have ||B/\||L2(y) < C, where C depends only on d, vy and
va. Moreover, by the definition of B = (Bf‘j), 1<4,j<d,

0y, By =0 and /YBjj dy = 0. (4.11)

This allows us to construct a matrix of 1-periodic flux correctors %gij(y) such that
%gij = —’B?kja ayk%zij(y) = B{\j(y)a H’BﬁinHl(y) <C,
with C' depending only on d, v; and vy. It follows that
I5 < Ce||BMa/e)V (S (Vuo ) V| 11(q)
< CIVuoll 2 s I V¥l 2050 + Cell V0 22 (0000 [ VN 12(0)
where we have used the fact et~! < 1. Using (3.3) and (4.6), we also obtain

Is + I + Is + Iy < O Vgl 2050 I V¥ 22 (050) + Cell V0]l 22(00\000) IV [ £2(00)- (4.13)

(4.12)

By collecting estimates for Iy, Io, ..., Iy, we obtain the desired estimate (4.7). O
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Lemma 4.3. Let u. x, up and we y be the same as in Lemma 4.2. Assume that up ) € HQ(Q;]Rd).
Then 12
Ael|Awe 2 @) + IVwe 2y < C((L+ Ne) " {lluollpz) + 1Gl 2@} (4.14)

where C' depends only on d, vy, vs, and §2.

Proof. Note that w. y € HZ(Q;R?). The estimate (4.14) follows readily by letting ¥ = w; ) in (4.7)
and using the Cauchy inequality as well as the first Korn inequality. O

The next theorem gives the sharp convergence rate in L2(Q) for £2 with X fixed.

Theorem 4.4. Suppose A satisfies conditions (1.3) and (1.4). Let Q be a bounded C1' domain,
F e L*(Q;RY) and G € H*(Q;RY). Let u. ) be the weak solution of (4.1) and ugy the solution of
the homogenized problem (4.2), where 0 < A\ < 0o. Then for any 0 <e < (1 +\)~!

lues = wollLz(e) < CA+ Ne{llFlL2() + Gl a2} (4.15)

where C' depends only on d, vy, vs, and 2.

Proof. For F € Ce(Q;RY), let vey € HZ(Q;RY) be the weak solution of L2 (v. ) = F in Q and
vo,x the solution in H(Q;R?) of the homogenized problem —div(AMVug y) = F in Q. Note that
since Q is C11, we have |lvg x|l p2(q) < C||FHL2 and

luorllz2) < CUIFI 2@ + G2}
where C depends only on d, v1, vo, and €. Let
{Ds,)\ = Vg X — UO,Xﬁt - 5X)\(x/5)77tss(vv0,)\)v (4'16)

where ¢ = (1+ \)e and 7; is a function in C$°(9) such that 0 < 7j, < 1, |[V*7j,| < Ct7F for k = 1,2,
m(z) =11if x € Q\ Qg¢, and () = 0 if & € Q7.
Let w, ) be given by (4.4). Note that

| /Qws,A P da| = [(£2(wep), ve)

4.17
< (L2 we), o)l + LR ) vopi)| + (L2 wer) el 1T
=J1+ o+ Js,

where
Cep = X (@/2)nS:(Vvo ). (4.18)
Observe that
Jl < 52)\QHAU1€ /\HLQ(Q HAU}E )\HL2 ) (4 19)
< C(1+ Ne{lluonllaz) + ||GHH2(Q)
where we have used (4.14) for the last inequality. To bound Ja, we use (4.7) to obtain
Jo < C(L+ Ne{lluollaz ) + |Gl 29 }lvoll r2o)- (4.20)
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To handle J3, we note that by (3.3) and (4.6),

IV¢nllzz@y < C(L+ A) 2 lvoall a2, (4.21)
1Al z2() < Ce 1+ A) 2 lvoall a2 (- (4.22)

Since (. y = 0 in Qs, it follows from (4.7) that

Js < Cellugall 2 lIVEanlirz) + CE2 AN luoall g2yl Al L2

(4.23)
< Celluoallaz ) lvoll m2(0)-
In view of (4.17), (4.19), (4.20) and (4.23), we have proved that
| [ e Fda| < €0+ Nel ol + Gl mion}enaleco
< O+ Ne{|IFll 2 + 1Gl 20y HIFl 220
By duality this implies that
lwellz2) < CA+ Nef{l|Fll2@) + |Gl g2 }-
Hence,
Juer —wonlzz) < weallzz) + [[(wox — G)( = m)l[2(q)
+ llex (@ /e)mSe(Vuo )|l 2 ()
< CA+Ne{lIFl2) + 1G9}
which completes the proof. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let u. € H%(Q;RY) be a weak solution of L. (u.) =FinQwithu.—G €
HZ(Q), and up € H'(;R?) the solution of the homogenized equation —div(AVug) = F in Q with
ug — G € HH Q4 RY). Let A = k/e. Then L2 (u.) = Lo(u:) = F in Q. Let ug € HY(;R?) be the

—~Z

solution of —div(A*Vug ) = F in Q with ug ) — G € H} () R%). Note that
lue — uollz2(0) < llue — uonllz2(@) + lluox — uollz2(o)
< C(e+e){lIFllr2@) + Gl n2) } + lluox — uollz2(q),

where we have used Theorem 4.4 for the last inequality. To estimate ug ) — ug, we observe that
Up,\ — Uy € H&(Q;Rd) and

(4.24)

—div(AV (ug — ug.p)) = div((A — AN Vg )
in Q. By energy estimates,

luo — woll () < CIA — AM||Vug sl 20

I (4.25)
< ClA = A {IFll L2 + 1Gll 1) }

where C' depends only on d, vy, vo, and €. This, together with Lemma 3.2 and (4.24), gives
(1.8). O
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Remark 4.5. Let x(y) be the corrector for ££ if 0 < p < oo, x(y) = 0 if p = oo, and x(y) the
corrector for the operator —div(A(z/e)V) if p = 0. Under the same assumptions as in Theorem
1.1, one may show that

llue —uo — EX(QT/E)Ss(VUO)HHl(Q)

C1{(n+5)1/2+<2)2} if p = o0,

I O R (4.26)
< {IFllzz) + 1Gl e } § Co{ (4 0) 2 +572(5)* = 2|} if0<p <o,
Cg{(m+€)1/2+<:>2} if p=0,

where C1, Cy depend only on d, v, o and €2, and Cs depends only on d, vy, vo, 2, and L. To see
this, let w, x be given by (4.4) with A = k/¢, and

We = ue — ug —ex(x/e)Se(Vug).
It follows by Lemma 4.3 that
lweallar ) < Cle+r)*{IIF 2@ + Gl a2 }-
Note that

|wex — @ell 1) < lluo — wollzre) + [ (wox — G) (1 —me) [ 1)
+ el (@/e)neS=(Vuon) — x(2/)meSe (Vo) || (o
+ellx(x/e)(1 = m)Se(Vuo) | g (-

The desired estimate follows from (4.25) and Lemma 3.2 as well as the estimates of ||[x* — x/| HI(Y)
in the proof of Lemma 3.2. We omit the details.

5 Approximation

Fix 0 < A < oo. Let £2 be defined as in (3.1). The goal of this section is to establish the following.

Theorem 5.1. Suppose A satisfies (1.3) and (1.4). Let u.\ € H?(Ba;R?) be a solution to
Eé‘(uak) = F in B, where F € LP(By,;R?) and By, = B(z,2r) for some z € R, Assume that
p>dande <r <oo. Then there exists v ) € H?(B,;R%) such that

62>\2A205,)\ — div(;ﬁva,,\) =F in B,, (5.1)

1/2 1/2
(f ]V%AF) <C (]i \VuE,AP) , (5.2)
T 2r

1/2
<][ |Vue x — Vg ) — (VX)‘)(x/a)Vv&,\F)

T

and
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< () {(f, ) (f, ) 6

where C' > 0 and 0 < 0 < 1 depend only on d, v, vs, and p.

To prove Theorem 5.1, we introduce an intermediate Dirichlet problem,

Ne2A%u \+ LY(vep) =F inQ  and v, — G € HZ(QRY, (5.4)

where £ = —div(Zl\)‘V) and A* is defined by (3.5). We will establish a (suboptimal) convergence
rate in Hl(Q) for ue  — ve x, where u, ) is the solution to the Dirichlet problem,

L2(uep)=F inQ and wu.\—G € HIQRY, (5.5)

with F € L2(Q;R?) and G € H?(Q;R?). Let
Wen = tiey — Ve — X (/)05 (Ve p), (5.6)

where 7., S. and x* are the same as in (4.4).

Lemma 5.2. Let Q2 be a bounded Lipschitz domain. Let u. x, v\ be the weak solutions of (5.5)
and (5.4), respectively, and w, \ be given by (5.6). Then

AellAweallzz ) + [Vweallzz) < ClIVvellzz s, + CellVAveallzz o0z (5.7)

for 0 < e < 1, where C depends only on d, vi, va, and €.

Proof. The proof is similar to that of (4.14). Let (¢)° = g(z/e). By direct calculations, we deduce
that

L2(wep) = L3 (vep) + N220%0 y = L2(v:2) = £2 (0N Se(Voen.)
= ~div{ Vv \ — A7Vv\ + N2PAVIC) S (V)]
— ATV 8L (Voo \ )] |
= —div{(4° = A)[S.(Voop)n: — Voo p] + (BY)S(Toe )i
+ NS AVIS (Ve el () + N2 (VXN A[S (Ve )]
+ 2NV (S (Vue e (V)® + Ae(Ax ™) V[S:(Vve)ne]
+ 2X26(VA)VIS: (Voo n )] — A% () VST )] (5.8)

where (B*)¢ = BX(z/¢) and B” is given by (4.8). Thus for any v € HZ(Q;R%),
(£ (we)y 0 < C [ [[Fous = SulToon)n] V] do+ | [ (BYon5.(V0.0) Ve

+C’)\23/‘ Se (Ve n) navw}dx
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+Oa2e? / (VXTI (Ve )0l V| da
Q
+ oA / (V2 V(8- (Voe )] V| da

—i—Cs/‘ Se(Vuea nevw‘dx
=1+ -+ (59)
It is not hard to see that

Ty < Ol Vvexr — Se(Vve )l 2 9\935 WVl z2@) + ClIVve Ml 2000 IV 22(040)
)}||v¢||L2(Q)-

To handle Z,, we use the matrix of flux correctors, as in the proof of Lemma 4.2, to obtain

Iy = C‘ /anxk (’Bﬁij(x/a)@wiw)Sg(axjv&,\)ngdx‘

< Ce / 082 (2/2) . (V20 1) V| i + Ce / 192 (2/2) S (Voo ) Ve V|
Q Q
< Cel| VY 2 V0 Al 2 @\000) + CIVI L2 (0200) V0 M 220250

where, for the last step, we have used (4.6).
To bound Z3, we use the Cauchy inequality, (3.3) and (4.6) to deduce that

13 < C/\Qgg\\(X/\)EVBSs(VUs,UHL2(Q\935)HVW\B(Q)
+ {11 (Vo )0 e + €15 (T20e ) 0 2@
+ VS (V20e0) 0 20000) IV 2000
WYY L2 ) + ClIVUeallL2@s0) I VY 2 (040 -

Likewise,
Iy + Is + Ts < C|| Vel 2 s IV 12(q) + CellV20e Ml 200 000) I V¥ £2(00)-
By taking the estimates on 7y, ...,Zs into (5.9), it yields
(L2 (wep), )] < ClIVVellz2(@5) V¥l 2(0) + Cell VPveall 200020 IVl L2 (0.
which gives (5.7) by choosing 1) = w. \ € Hg (5 R%) and using the Cauchy inequality. O
Now we are prepared to prove Theorem 5.1.

Proof of Theorem 5.1. By dilation and translation, it suffices to consider the case where r = 1
and z = 0. Let u. ) be a solution of Eg\(um) = F in B, and v, ) the solution to the Dirichlet
problem,

)\252A2v57,\ + Eé(vg,,\) =F inBg;y and vy —u € Hg(Bg/Q;Rd).

26



Let we x be defined by (5.6). We apply Lemma 5.2 with Q = B/, to obtain

IVweallz2(B,,5) < ClIVUeallzz + Ce|| V20 ull 2By 2y o) (5.10)

B3/9\B(3/2)—5¢)

Since A is constant, we may apply (2.5) to the function Vu, . This gives

C
/|V2v€,>\|2d:v§ 2/ |Vv5,,\\2dx+C’/ |F|? d,
B " J2B 2B

for any 2B = B(xg,2r) C Bs. It follows that
\V4 2
V20, 5|2 dz < C Neen@l” 4 o |F|? da
B ’ B [6()]? B
(3/2)—2¢ (3/2)—¢ (3/2)—¢

2/q
< Cpeth / Vool da +0/ P da,
Bs/o By

where §(z) = dist(z,0Bs/2), ¢ > 2 and we have used Holder’s inequality for the last step. In view
of (5.10) we deduce that for any ¢ > 2,

1_1
IVweAllL2(B, ) < Ce2 1 [Vveallnas, ) + CellFllr2(m,)- (5.11)

Next, we observe that u.  — v, ) € Hg(B3/2) and
A262A% (1 — vey) — div(AAV (e — v2p)) = div((A(z/2) — AN)Vu ) (5.12)

in Bs/y. By energy estimates this gives (5.2) with r = 1. It follows by Theorem 2.5 that there exist
some g > 2 and C > 0, depending only on d, 11 and v, such that

/ |V(uen —vep)|Tde < C |Vue |7 da.
B3 /s B3 /o

As a result, there exists some ¢ > 2 such that
1_1
IVwe Al L2(B,,,) < C2 1| VueallLapy) + Cell FllL2(p,)- (5.13)
Note that for x € By,
sz,)\ = vus,)\ - vvs,)\ - (VX)\)ESE(V'UE,/\) - E(X)\)aSE(VQUE,)\)'
It follows from (5.13) that

Hvus,)\ - vvs,)\ - (VX)\)SVUE,)\HLQ(BI)
1 1
< Ce2 4« ||Vu5,>\ ‘Lq(BQ) + C€HFHL2(32)
+ (VXN (Ve = S (Vo)) lzz(sy) + el () S-(V20e ) | 2(sy)- (5.14)
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By (4.6), the last term in the right-hand side of (5.14) is bounded by
11
Cc||Vvenlli2(s,,) < C? 0 VueallLasy) + CellFllr2(s,)-

To handle the third term in the right-hand side of (5.14), we use the C'"“ estimate for the operator
A2e2A? — div(A4*V) to obtain

||V’U57)\Hco,o( ) < C||VUE,AHL2(B3/2) + CHFHLP(B3/2)7 (5.15)

Bs 4

where 0 <o <1 — %. It follows that

IOV (Ve = Se(Voe ) 2y < CHVXD) N2 I V0en = Se(Voen )l (sy)
< Ce7|| Ve llcoe sy,
< CgU{Hva,A
< Cg"{HVug,)\

L%(B3/2) + ”FHLP(BQ)}
12(Byp) + 1 FllLe(sy) }- (5.16)

In summary, we have proved that if 0 < o < min(% — %, 1-— %), then

Ve x = Voo n = (VX)) Voo ullzas,) < Ce¥{IVuellna(s, ) + I1Fllr(sy) } (5.17)

where 2 < ¢ < ¢ and ¢ depends only on d, v; and vs.
Finally, we use the reverse Holder estimate (2.15) to obtain

IVuellLa(s,,0) < CLIVuell2s,) + 1 Fll 28, ) (5.18)

where ¢ > 2 and C depends only on d, v; and ve. This, together with (5.17), gives (5.3) with
r=1. O]

6 Large-scale C'* estimates

Recall that Pf(:c) =2;(0,...,1,...,0) with 1 in the Bt position. Let

1. :{h(:c) . W(z) = b+ BV (PP (a) +ex)(a/e)) o
for some b € R? and E = (Ef) € Rdx‘i}.

Theorem 6.1. Assume that A satisfies (1.3) and (1.4). Let u.x € HY(Bg;R%) be a solution of

L2(u. ) = F in Br = B(xo, R), where R > ¢ and F € LP(Bg;R?) for some p > d. Then for any
€§r<RandO<a<1—%,

1/2 A\ 1/2 1/p
wt (f 1Vua-vi2) sc () (F 1wal) (£ mr) T e
her) . \JB, R Br Br

where C' depends only on d, vy, vs, p, and a.
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Proof. By translation and dilation, we may assume that o = 0 and R = 2. We also assume that
e < r < (1/8), as the estimate (6.2) is trivial for r > (1/8). Let v, be the weak solution of
e2X2A2%u, ) + L) (ve,\) = F given by Theorem 5.1. Let e < tr < r < 1, where 0 < t < (1/4) is to be

determined, and B
h = Vo A(0)(P(x) +ex*(w/e)),

where P = (P]”B(m)) We obtain
1/2 1/p
<][ |Vue \ — Vh|2) +tr <][ |F|p>
By By,
1/2
S (][ |vue,)\ - vvs,)\ - (VX)\)EVUE,)\P)
Bty

N1/2
" (][ [Voea + (VX)) Voo = Vh|2> + /ey (7[
Btr

Denote the first two terms in the right-hand side of (6.3) by (6.3)1, (6.3)2. Thanks to Theorem 5.1,

1/p
|F\p> . (6.3)

1/2
(6.3); < Ct~4/? < f Ve y — Ve — (VXA)EV%,AP)

T

<ot ({(h, mot) oo (f ) e

On the other hand, by the C1® estimate of Ve s

(6:3)2 < <]itr [Vve = VU&,A(O)|2> 1/2 + <]€3ﬂ (V) [Voen — VUE,A(O)HQ) 1/2

< C(tr)||Voeallcon (B,

cer{(f o) el )
<cp { (]i Vs 2) L <7{9 \pr)l/p} , (6.5)

where 0 <y <1 — % and we have used (5.2) for the last inequality.
Taking (6.4) and (6.5) into (6.3) and using the fact £2(h) = 0 for any h € 7—[1\75, we derive that

1 1/2 1/p
inf <][ Ve — Vh\2> ttr (f pr)
nerd, | (rt)* \J/s,, Bir

<C inf {td/QO‘ (;)U +t’7a}

A
heH?,

< oy { (f, 7o V“)m or(f,, 7) 1/2} |
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Forany 0 < o < 1 — %, we first choose v € (o, 1 — g) and then ¢ > 0 so small that Ct7~* < 1/4.
As a result, if r > Nye, where Ny > 1 is so large that

Ct—d/2-e (§>g <1/4,

r

1 , 1/2 1/p
inf ¢ —— Vu:. — Vh + tr (][ Fp)
ner | (tr)® (][Bt,«| = | > Bw‘ |
1 1 , 1/2 1/p
< — inf ][ Vu. — Vh > +T<][ Fp) .
2 h Hi\,s (27’)& < BQr | 87}‘ | B2T ‘ ‘

By iteration, this implies that

1 ) 1/2 1/p
inf Vu. — Vh + tr ][ F p)
hGH{\,s (t’l”)a <][;tr ‘ 87)\ ‘ ) < BtT ‘ ’
1/2 1/p
< inf { <][ Ve ) — wﬂ) + (][ \F\p> } (6.6)
heHy . Bo By

for any r > Nge. The case € < r < Nye follows easily from the case r = Nye. O]

then

As a corollary, we obtain a Liouville theorem for the operator £.

Theorem 6.2. Suppose A satisfies conditions (1.3) and (1.4). Let u € H} (R4GRY) be a weak
solution of

NA%y — div(AVu) =0 in RY
Suppose that there exist C > 0 and o € (0,1) such that

1/2
][ |u‘2 < CRI“FO’
B(0,R)

for all R > 1. Then there exist b€ R and E = (Ejﬁ) € R4 sych that
u(@) =b+ B (P +x}"(x)) inRY
Proof. This follows readily from Theorem 6.1 with ¢ = 1 and F' = 0. O

7 Proof of Theorems 1.2 and 1.3

Theorem 7.1. Assume that A satisfies (1.3) and (1.4). Let u.x € H*(Bp;R%) be a solution of
LX(u. ) = F in Bg, where F € LP(Bg;R?) for some p > d. Then for anye <r < R,

<]ér |Vue,A\2>1/2 <C { <]éR !Vue,xl2>l/2 +R <]€33 |F|p> Up} 7 (7.1)

where C' depends only on d, vy, va, and p.
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Proof. This follows from Theorem 6.1, as in the case of second-order elliptic equations [12, 6]. We

omit the details. O
Proof of Theorem 1.2. Since L. = £? with A = ke~!, Theorem 1.2 follows directly from Theo-
rem 7.1. O
Proof of Theorem 1.3. By translation and dilation we may assume r = 1 and zg = 0. If

e > (1/2), the Holder norm of A* = A(x/¢) is uniformly bounded. The Lipschitz estimate (1.15)
follows directly from the C1® estimate in Theorem 2.7. Consider the case 0 < ¢ < (1/2). Let
ue € H?(B1;R?) be a weak solution of L.(u.) = F in By = B(0,1), where F € LP(By;R%) for some
p > d. Let v(z) = cus(ex). Then

(ke 1)2A% — div(AVY) = F.,

where F,(z) = eF(ex). By Theorem 2.7,

Vue(0)] = [Vo(0)] < O { (f, 1v¢) e (f,17) l/p}
ef(fme) () )
<C { (7{% \Vus|2> " <7{91 |F|”> l/p} :

where we have used (1.13) with R = 1 for the last inequality. O
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