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Abstract

We investigate quantitative estimates in periodic homogenization of second-order elliptic
systems of elasticity with singular fourth-order perturbations. The convergence rates, which
depend on the scale κ that represents the strength of the singular perturbation and on the
length scale ε of the heterogeneities, are established. We also obtain the large-scale Lipschitz
estimate, down to the scale ε and independent of κ. This large-scale estimate, when combined
with small-scale estimates, yields the classical Lipschitz estimate that is uniform in both ε and
κ.
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1 Introduction

In this paper we aim to quantify the combined effects of homogenization and singular perturbations
for the elliptic system,

Lε(uε) = F in Ω, (1.1)

where Ω ⊂ Rd (d ≥ 2) is a bounded domain and

Lε = κ2∆2 − div(A(x/ε)∇), 0 < ε, κ < 1. (1.2)

The coefficient matrix (tensor) A(y) = (aαβij (y)), with 1 ≤ α, β, i, j ≤ d, is assumed to be real,
bounded measurable and to satisfy the elasticity condition,

aαβij (y) = aβαji (y) = aiβαj(y),

ν1|ξ|2 ≤ aαβij ξ
α
i ξ

β
j ≤ ν2|ξ|2

(1.3)

for a.e. y ∈ Rd and for any symmetric matrix ξ = (ξαi ) ∈ Rd×d, where ν1, ν2 are positive constants.
We also assume that A is 1-periodic; i.e.,

A(y + z) = A(y) for any z ∈ Zd and a.e. y ∈ Rd. (1.4)
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The elliptic operator in (1.2) arises in the study of the formation of the so-called shear bands in
elastic materials subject to severe loadings [8]. Variational functionals associated with the related
nonlinear operators are also used to model the heterogeneous thin films of martensitic materials
[20, 7]. Homogenization of the elliptic system (1.1) was first studied by Bensoussan, Lions, and
Papanicolaou in [5], where qualitative results were obtained for the case κ = ε. Also see related
work in G-convergence in [23, 24]. Later on, in [8] Francfort and Müller provided a systematic
qualitative analysis in periodic homogenization of (1.1) and the related nonlinear functionals for
the case κ = εγ , where 0 < γ < ∞. See also [22] for the related work in the stochastic setting.
Assume that A satisfies conditions (1.3) - (1.4) and κ = εγ . Let uε ∈ H2

0 (Ω;Rd) be the weak solution
of (1.1) with F ∈ H−1(Ω;Rd). Thanks to [5, 8], as ε→ 0, uε converges weakly in H1(Ω;Rd) to the
weak solution u0 in H1

0 (Ω) of the second-order elliptic system,

−div(Â∇u0) = F in Ω, (1.5)

with constant coefficients. The effective coefficient matrix Â in (1.5) depends on κ, which represents
the strength of the singular perturbation, in three cases: 0 < γ < 1; γ = 1; and γ > 1. In the
case γ > 1, the matrix Â agrees with the effective matrix for the second-order elliptic operator
−div(A(x/ε)∇), without singular perturbation. If 0 < γ < 1, the matrix Â is simply given by the
average of A over its periodic cell. In the most interesting case γ = 1, the expression for the matrix
Â depends on a corrector, which solves a cell problem for a fourth-order elliptic system. The same
is true for a general κ = κ(ε) under the assumption that

κ→ 0 as ε→ 0, and lim
ε→0

κ

ε
= ρ. (1.6)

The effective matrix Â in (1.5) depends on ρ in three cases: ρ = 0; 0 < ρ < ∞; and ρ = ∞. See
Section 3 for the details.

Our primary interest in this paper is in the quantitative homogenization of the elliptic system
(1.1). The qualitative results described above show that the singular perturbation and the homoge-
nization have combined effects in determining the effective equation for (1.1). So a natural question
is to understand the combined effects in a quantitative way. More precisely, we shall be interested
in the sharp convergence rate of uε to u0 in terms of ε and κ, as well as regularity estimates of uε,
which are uniform in ε and κ. Although much work has been done on the quantitative homoge-
nization for the second-order elliptic system −div(A(x/ε)∇uε) = F in recent years, to the best of
our knowledge, the question has not been previously addressed, with the exception of [15], where
an O(ε) rate in L2(Ω) was obtained in the case κ = ε for Dirichlet problems with homogeneous
boundary conditions.

Our first main result provides a convergence rate in L2(Ω) for a general κ satisfying (1.6).

Theorem 1.1. Let Ω be a bounded C1,1 domain in Rd, d ≥ 2, and A satisfy (1.3)-(1.4). Suppose
(1.6) holds and if ρ = 0, we also assume that A is Lipschitz continuous, i.e.,

|A(x)−A(y)| ≤ L|x− y|, for any x, y ∈ Rd. (1.7)

For F ∈ L2(Ω;Rd) and G ∈ H2(Ω;Rd), let uε ∈ H2(Ω;Rd) be a weak solution of (1.1) with
uε −G ∈ H2

0 (Ω;Rd), and u0 ∈ H1(Ω;Rd) the weak solution of its homogenized problem (1.5) with
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u0 −G ∈ H1
0 (Ω;Rd). Then

‖uε − u0‖L2(Ω)

≤
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}


C1

{
κ+ ε+

( ε
κ

)2
}

if ρ =∞,

C2

{
κ+ ε+ ρ−2

∣∣(κ
ε

)2 − ρ2
∣∣} if 0 < ρ <∞,

C3

{
κ+ ε+

(κ
ε

)2
}

if ρ = 0,

(1.8)

where C1, C2 depend only on d, ν1, ν2 and Ω, and C3 depends only on d, ν1, ν2, Ω, and L.

The O(ε) convergence rate in L2(Ω) has been established for second-order elliptic systems with
highly oscillating coefficients in various contexts. Following a general approach developed in [21, 19]
(see [18] for references on the related work), one first establishes an O(ε1/2) rate in H1(Ω) for a
two-scale expansion of uε, and then uses a duality argument to improve the rate to O(ε) in L2(Ω).
To carry this out, we introduce an operator,

Lλε = λ2ε2∆2 − div(A(x/ε)∇), (1.9)

where 0 < λ < ∞ is fixed. Let Lλ0 = −div
(
Âλ∇) denote the effective operator for Lλε in (1.9). In

Section 4 we will show that if Lλε (uε,λ) = F and uε,λ −G ∈ H2
0 (Ω;Rd), then

‖uε,λ − u0,λ‖L2(Ω) ≤ C(1 + λ)ε
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
, (1.10)

where u0,λ is the weak solution of Lλ0(u0,λ) = F in Ω with u0,λ −G ∈ H1
0 (Ω;Rd). To complete the

proof of Theorem 1.1, we observe that

Lλε = Lε and uε,λ = uε if λ = κε−1, (1.11)

and use energy estimates to bound ‖u0,λ − u0‖L2(Ω).
We note that the convergence rate in (1.8) involves three terms. The first term κ is caused by

the singular perturbation, the second term ε by homogenization, while the third term is generated

by |Âλ − Â|. One may find examples in the one-dimensional case, which show that both the

perturbation error O(κ) and the homogenization error O(ε) are sharp. Our estimates of |Âλ − Â|
in Section 3 should also be sharp as λ → 0 or ∞. As a result, we believe the convergence rates
obtained in Theorem 1.1 are sharp. On the other hand, in view of (1.10), it is interesting to point
out that for any ε > 0 and κ > 0, the solution uε may be approximated with an O(κ+ ε) error in
L2(Ω) by the solution of a second-order elasticity system with constant coefficients satisfying (1.3).
However, the coefficients depend on λ = κε−1. We remark that the proof of Theorem 1.1 also gives
a sharp estimate for a two-scale expansion,

uε − u0 − εχ(x/ε)Sε(∇u0), (1.12)

in H1(Ω;Rd), where χ(y) is the corrector for Lρε if 0 < ρ <∞, χ(y) = 0 if ρ =∞, and χ(y) is the
corrector for the operator −div(A(x/ε)∇) if ρ = 0. See Remark 4.5.

Our second main result gives the large-scale Lipschitz estimate down to the microscopic scale
ε.
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Theorem 1.2. Assume that A satisfies (1.3) and (1.4). Let uε ∈ H2(BR;Rd) be a weak solution
of Lε(uε) = F in BR, where BR = B(x0, R), R > ε, and F ∈ Lp(BR;Rd) for some p > d. Then
for ε ≤ r < R, ( 

Br

|∇uε|2
)1/2

≤ C

{( 
BR

|∇uε|2
)1/2

+R

( 
BR

|F |p
)1/p

}
, (1.13)

where C depends only on d, ν1, ν2, and p.

Under the additional smoothness condition that A is Hölder continuous:

|A(x)−A(y)| ≤M |x− y|σ for any x, y ∈ Rd, (1.14)

we obtain the classical Lipschitz estimate, which is uniform in both ε and κ, for Lε(uε) = F .

Theorem 1.3. Assume that A satisfies conditions (1.3), (1.4), and (1.14) for some σ ∈ (0, 1). Let
uε ∈ H2(Br;Rd) be a weak solution of Lε(uε) = F in Br = B(x0, r), where F ∈ Lp(Br;Rd) for
some p > d. Then

|∇uε(x0)| ≤ C

{( 
Br

|∇uε|2
)1/2

+ r

( 
Br

|F |p
)1/p

}
, (1.15)

where C depends only on d, ν1, ν2, p, and (M,σ).

Under the conditions (1.3), (1.4) and (1.14), the interior Lipschitz estimate (1.15) as well as the
boundary Lipschitz estimate with the Dirichlet condition was proved by Avellaneda and Lin in a
seminal work [3], using a compactness method. The boundary Lipschitz estimate with Neumann
conditions was established in [14]. Related work in the stochastic setting may be found in [11, 2,
1, 6, 13].

To prove Theorem 1.2, we use an approach found in [12, 6]. As in [3], the idea is to utilize
correctors to establish a large-scale C1,α estimate for 0 < α < 1, from which the large-scale Lipschitz
estimate (1.13) follows. Unlike the compactness method used in [3, 14], the approach requires a
(suboptimal) convergence rate in H1(Ω) for a two-scale expansion of uε. In order to reach down to
the microscopic scale ε, which is necessary for obtaining the classical Lipschitz estimate in Theorem
1.3, we introduce an intermediate equation,

λ2ε2∆2vε,λ − div(Âλ∇vε,λ) = F, (1.16)

with λ > 0 fixed, where Âλ is the effective matrix for Lλε in (1.9). The key observation is to use
the solution of (1.16), instead of the homogenized equation (1.5), in the two-scale expansion of
uε. The purpose is two-fold. Firstly, with the added higher-order term in the equation (1.16), one
eliminates the error caused by the singular perturbation. As a result, we are able to establish a

convergence rate in H1(Ω), uniformly in λ. Secondly, since Âλ is constant, one may prove the C1,α

estimate, uniformly in λ, for (1.16) by classical methods. We remark that as in [12, 6], the same
approach may be used to establish the large-scale Ck,α estimates down to the scale ε for any k ≥ 2.
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A more interesting problem would be the extension of the results in this paper to the stochastic
setting.

The paper is organized as follows. In Section 2 we collect some regularity estimates, which
are uniform in λ, for the operator (2.1) without the periodicity assumption. The materials in this
section are more or less known. In Section 3 we present the qualitative homogenization for the
operator (1.2) under the assumption (1.6). The proof of Theorem 1.1 is given in Section 4. In
Section 5 we establish an approximation result in H1(Ω) for uε,λ by solutions of (1.16), while the
result is used in Section 6 to prove the large-scale C1,α estimate. Finally, the proofs of Theorems
1.2 and 1.3 are given in Section 7.

The summation convention is used throughout. We also use
ffl
E u to denote the L1 average of u

over the set E.

2 Preliminaries

Consider the operator,
Lλ = Lλ1 = λ2∆2 − div(A(x)∇), (2.1)

with 0 < λ < ∞ fixed and A = A(x) satisfying the elasticity condition (1.3). The periodicity
condition (1.4) is not used in this section with the exception of Lemma 2.11 and Theorem 2.12.
Let Ω be a bounded Lipschitz domain in Rd. For F ∈ H−1(Ω;Rd) and G ∈ H2(Ω;Rd), there exists
a unique u ∈ H2(Ω;Rd) such that Lλ(u) = F in Ω and u−G ∈ H2

0 (Ω;Rd). Moreover, the solution
u satisfies the energy estimate,

λ‖∇2u‖L2(Ω) + ‖∇u‖L2(Ω) ≤ C
{
‖F‖H−1(Ω) + ‖∇G‖L2(Ω) + λ‖∇2G‖L2(Ω)

}
, (2.2)

where C depends only on d, ν1, ν2, and Ω. To see this, one considers v = u − G and applies the
Lax-Milgram Theorem to the bilinear form,

a(φ, ψ) = λ2

ˆ
Ω
∇2φ · ∇2ψ dx+

ˆ
Ω
A(x)∇φ · ∇ψ dx, (2.3)

on the Hilbert space H2
0 (Ω;Rd). The first Korn inequality is needed for proving (2.2).

2.1 Caccioppoli’s inequalities

Theorem 2.1. Let u ∈ H2(B2r;Rd) be a weak solution of Lλ(u) = F + div(f) in B2r = B(x0, 2r),
where F ∈ L2(B2r;Rd) and f ∈ L2(B2r;Rd×d). Then

λ2

ˆ
Br

|∇2u|2 dx ≤ C

r2

(
λ2

r2
+ 1

) ˆ
B2r

|u|2 dx+ C

ˆ
B2r

|F ||u| dx+ C

ˆ
B2r

|f |2 dx, (2.4)

ˆ
Br

|∇u|2 dx ≤ C

r2

ˆ
B2r

|u|2 dx+ C

ˆ
B2r

|F ||u| dx+ C

ˆ
B2r

|f |2 dx, (2.5)

where C depends only on d, ν1 and ν2.
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Proof. By translation and dilation we may assume that x0 = 0 and r = 1. For 1 < s < t < 2, let
ϕ be a cut-off function in C∞0 (B(0, t)) such that 0 ≤ ϕ ≤ 1, ϕ = 1 on Bs and |∇kϕ| ≤ C(t− s)−k
for k = 1, . . . , 4. By taking the test function uϕ4 in the weak formulation of the equation Lλ(u) =
F + div(f) and using the Cauchy inequality, we deduce that

λ2

ˆ
Bs

|∇2u|2 dx+

ˆ
Bs

|∇u|2 dx

≤ C
ˆ
B2

(
|F ||u|+ |f |2

)
dx+ Cλ2(t− s)−2

ˆ
Bt

|∇(uϕ)|2 dx

+ C
(
(t− s)−2 + λ2(t− s)−4

) ˆ
B2

|u|2 dx.

(2.6)

To eliminate the term involving |∇(uϕ)| in the right-hand side of (2.6), we use an iteration technique
found in [4], where an improved Caccioppoli inequality for a general higher-order elliptic system
was proved. We point out that Theorem 2.1 does not follow directly from [4], since we require the
constant C to be independent of the parameter λ.

Using the identity,

uϕ ·∆(uϕ) = (u∆u)ϕ2 + 2u∇(uϕ)∇ϕ− 2|u|2|∇ϕ|2 + |u|2ϕ∆ϕ,

and integration by parts as well as the Cauchy inequality, we may show that

ˆ
Bt

|∇(uϕ)|2 dx ≤ C
(ˆ

Bt

|uϕ|2 dx
)1/2(ˆ

Bt

|ϕ∆u|2 dx
)1/2

+ C

ˆ
Bt

|u|2|∇ϕ|2 dx+ C

ˆ
Bt

|u|2|ϕ||∆ϕ| dx,
(2.7)

where C depends only on d. This, together with (2.6), gives

λ2

ˆ
Bs

|∇2u|2 dx+

ˆ
Bs

|∇u|2 dx

≤ C
ˆ
B2

(
|F ||u|+ |f |2

)
dx+

λ2

2

ˆ
Bt

|∇2u|2 dx

+ C
(
(t− s)−2 + λ2(t− s)−4

) ˆ
B2

|u|2 dx.

(2.8)

For j ≥ 1, let tj = 2− τ j , where τ ∈ (0, 1) is to be determined. It follows from (2.8) that

λ2

ˆ
Btj

|∇2u|2 dx+

ˆ
Btj

|∇u|2 dx

≤ C
ˆ
B2

(
|F ||u|+ |f |2

)
dx+

λ2

2

ˆ
Btj+1

|∇2u|2 dx

+ C
(
(τ j − τ j+1)−2 + λ2(τ j − τ j+1)−4

) ˆ
B2

|u|2 dx.

(2.9)
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By iteration this leads to

λ2

ˆ
Bt1

|∇2u|2 dx+

ˆ
Bt1

|∇u|2 dx

≤ C
j∑
i=1

1

2i−1

ˆ
B2

(
|F ||u|+ |f |2

)
dx+

λ2

2j

ˆ
Btj+1

|∇2u|2 dx

+ C

j∑
i=1

1

2i−1

(
(τ i − τ i+1)−2 + λ2(τ i − τ i+1)−4

) ˆ
B2

|u|2 dx

(2.10)

for j ≥ 1. We now choose τ ∈ (0, 1) so that 2τ4 > 1. By letting j → ∞ in (2.10) we obtain (2.4)
with r = 1, and

ˆ
B1

|∇u|2 dx ≤ C(λ2 + 1)

ˆ
B2

|u|2 dx+ C

ˆ
B2

(
|F ||u|+ |f |2

)
dx, (2.11)

which gives (2.5) if λ ≤ 1. Finally, if λ > 1, we note that (2.10) yields

λ2

ˆ
Bt1

|∇2u|2 dx ≤ C
ˆ
B2

(
|F ||u|+ |f |2

)
dx+ C(1 + λ2)

ˆ
B2

|u|2 dx. (2.12)

By (2.7) we have ˆ
B1

|∇u|2 dx ≤ C
ˆ
Bt1

|u|2 dx+ C

ˆ
Bt1

|∆u|2 dx

≤ C
ˆ
B2

(
|F ||u|+ |f |2 + |u|2

)
dx,

(2.13)

where we have used (2.12) for the last inequality.

Remark 2.2. Let u be a solution of Lλ(u) = F + div(f) in B2r. Let w = λ2∆u. Since

∆w = F + div(f) + div(A∇u),

it follows from the Caccioppoli inequality for ∆ that

ˆ
Br

λ4|∇∆u|2 dx ≤ Cλ4

r2

ˆ
B3r/2

|∆u|2 dx+ Cr2

ˆ
B3r/2

|F |2 dx

+ C

ˆ
B3r/2

|f |2 dx+ C

ˆ
B3r/2

|∇u|2 dx

≤ C

r2

(
λ

r
+ 1

)4 ˆ
B2r

|u|2 dx+ C

(
λ

r
+ 1

)2 ˆ
B2r

|f |2 dx

+ Cr2

ˆ
B2r

|F |2 dx,

(2.14)

where we have used (2.4) and (2.5) for the last inequality.
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2.2 Reverse Hölder inequalities

Theorem 2.3. Let u ∈ H2(B2r;Rd) be a weak solution of Lλ(u) = F + div(f) in B2r = B(x0, 2r),
where F ∈ L2(B2r;Rd) and f ∈ L2(B2r;Rd×d). Then there exists some p > 2, depending only on
d, ν1 and ν2, such that( 

Br

|∇u|p
)1/p

≤ C

{( 
B2r

|∇u|2
)1/2

+

( 
B2r

|f |p
)1/p

+ Cr

( 
B2r

|F |2
)1/2

}
, (2.15)

where C depends only on d, ν1 and ν2.

Proof. This follows from (2.5) by the self-improvement property of the (weak) reverse Hölder in-
equalities. Let B′ = B(z, t) be a ball such that 2B′ ⊂ B(x0, 2r). Choose 1 < q1 < 2 < q2 <∞ such
that ( 

2B′
|u− E|q2

)1/q2

≤ Ct
( 

2B′
|∇u|q1

)1/q1

,

where E is the L1 average of u over 2B′. Since Lλ(u− E) = Lλ(u), it follows from (2.5) that( 
B′
|∇u|2

)1/2

≤ C
( 

2B′
|∇u|q1

)1/q1

+ Ct

( 
2B′
|F |q′2

)1/q′2
+ C

( 
2B′
|f |2

)1/2

, (2.16)

where C depends only on d, ν1 and ν2. The fact that (2.16) holds for any ball 2B′ ⊂ B implies
(2.15) [10].

Remark 2.4. Let Ω be a bounded Lipschitz domain. Fix x0 ∈ ∂Ω and define

Dr = B(x0, r) ∩ Ω and ∆r = B(x0, r) ∩ ∂Ω,

where 0 < r < r0 = c0 diam(Ω). Let u ∈ H2(D2r;Rd) be a weak solution of Lλ(u) = F + div(f) in
D2r with u = 0 and ∇u = 0 on ∆2r. Then

λ2

ˆ
Dr

|∇2u|2 dx ≤ C

r2

(
λ2

r2
+ 1

)ˆ
D2r

|u|2 dx+ C

ˆ
D2r

|F ||u| dx+ C

ˆ
D2r

|f |2 dx, (2.17)

ˆ
Dr

|∇u|2 dx ≤ C

r2

ˆ
D2r

|u|2 dx+ C

ˆ
D2r

|F ||u| dx+ C

ˆ
D2r

|f |2 dx, (2.18)

where C depends only on d, ν1 and ν2. Note that since u = 0 and ∇u = 0 on ∆2r, we have
uϕ ∈ H2

0 (D2r;Rd) for any ϕ ∈ C2
0 (B2r). The proof of (2.17) and (2.18) is exactly the same as that

of Theorem 2.1. As a consequence, we also obtain the boundary reverse Hölder inequality,( 
Dr

|∇u|p
)1/p

≤ C

{( 
D2r

|∇u|2
)1/2

+

( 
D2r

|f |p
)1/p

+ Cr

( 
D2r

|F |2
)1/2

}
, (2.19)

where C > 0 and p > 2 depend only on d, ν1, ν2 and the Lipschitz constant of B(z, r0) ∩ ∂Ω.
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Theorem 2.5. Suppose A satisfies (1.3) and Ω is a bounded Lipschitz domain. Let u ∈ H2
0 (Ω;Rd)

be a weak solution of Lλ(u) = div(f) in Ω. Then there exists p > 2, depending only on d, ν1, ν2

and Ω, such that
‖∇u‖Lp(Ω) ≤ C‖f‖Lp(Ω), (2.20)

where C depends only on d, ν1, ν2, and Ω.

Proof. The Meyers estimate (2.20) was proved in [8] by an interpolation argument. It also follows
readily from the reverse Hölder estimates (2.15) and (2.19). Indeed, by using (2.15), (2.19) and a
simple covering argument, we see that for some p > 2,

‖∇u‖Lp(Ω) ≤ C‖f‖Lp(Ω) + C‖∇u‖L2(Ω) ≤ C‖f‖Lp(Ω),

where we have used the energy estimate and Hölder’s inequality for the last step.

2.3 C1,α estimates

Lemma 2.6. Suppose A satisfies conditions (1.3) and (1.14). Let u ∈ H2(B2;Rd) be a weak
solution of Lλ(u) = 0 in B2 = B(0, 2). Then

‖u‖C1,α(B1) ≤ Cα
( 

B2

|u|2
)1/2

, (2.21)

where 0 < α < σ and Cα depends only on d, ν1, ν2, α, and (M,σ).

Proof. We first observe that if A is a constant matrix satisfying the elasticity condition (1.3), then

max
B1

|∇ku| ≤ Ck

( 
B3/2

|u|2
)1/2

, (2.22)

where Ck depends on d, ν1, ν2 and k. To see this, we note that since A is constant, ∇ku is a
solution. Thus, by (2.5) and an iteration argument,

‖u‖Hk(B1) ≤ Ck‖u‖L2(B3/2)

for any k ≥ 1. By Sobolev imbedding, this gives (2.22). Next, we use a standard perturbation
argument to show that if A is uniformly continuous and γ > 0,

ˆ
Bρ

|∇u|2 dx ≤ Cγ
( ρ
R

)d−2γ
ˆ
BR

|∇u|2 dx (2.23)

for 0 < ρ < R < r. To do this, we let v ∈ H2(BR;Rd) be the solution of

λ2∆2v − div(A∇v) = 0 in BR and v − u ∈ H2
0 (BR;Rd), (2.24)

where A =
ffl
BR

A. Since

λ2∆2(v − u)− div(A∇(v − u)) = div((A−A)∇u) in BR,
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by energy estimates,

ˆ
BR

|∇u−∇v|2 dx ≤ C‖A−A‖2L∞(BR)

ˆ
BR

|∇u|2 dx.

By (2.22), for 0 < ρ < R < r,  
Bρ

|∇v|2 ≤ C
 
BR

|∇v|2.

The rest of the argument for (2.23) is exactly the same as in the case of second-order elliptic systems
[10, pp.84-88]. An argument similar to that in [10, pp.84-88] also shows that if A satisfies (1.14),
then ( 

Br

|∇u−
 
Br

∇u|2
)1/2

≤ Cαrα
( 

B2

|u|2
)1/2

for any α ∈ (0, σ) and 0 < r < 1. This implies (2.21).

The following theorem gives the C1,α estimate, uniform in λ, for the operator Lλ.

Theorem 2.7. Suppose A satisfies conditions (1.3) and (1.14). Let u ∈ H2(B2;Rd) be a weak
solution of Lλ(u) = F in B2, where F ∈ Lp(B2;Rd) for some p > d. Then, if 0 < α < min(σ, 1− d

p),

‖u‖C1,α(B1) ≤ Cα
{
‖u‖L2(B2) + ‖F‖Lp(B2)

}
, (2.25)

where Cα depends on d, ν1, ν2, p, α, and (M,σ).

Proof. The case F = 0 was given by Lemma 2.6. The general case is proved by a perturbation
argument as in the case of second-order elliptic systems. Let 0 < r < R < 1. Let v ∈ H2(BR;Rd)
be the weak solution of Lλ(v) = 0 in BR such that v − u ∈ H2

0 (BR;Rd). Since Lλ(u − v) = F in
BR, by the energy estimate,

ˆ
BR

|∇u−∇v|2 dx ≤ CR2

ˆ
BR

|F |2 dx ≤ CRd+2(1− d
p

)‖F‖2Lp(B2), (2.26)

where C depends only on d, ν1, ν2, and p. By Lemma 2.6,

ˆ
Br

|∇v −
 
Br

∇v|2 dx ≤ C
( r
R

)d+2α
ˆ
BR

|∇v −
 
BR

∇v|2 dx

for any 0 < α < σ. This, together with (2.26), leads to

ˆ
Br

|∇u−
 
Br

∇u|2 dx ≤ C
( r
R

)d+2α
ˆ
BR

|∇u−
 
BR

∇u|2 dx

+ CR
d+2(1− d

p
)‖F‖2Lp(B2),

from which the estimate (2.25) follows, as in [10, pp.88-89]. We omit the details.
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2.4 Singular perturbations

For Ω ⊂ Rd and 0 < t < c0diam(Ω), let

Ωt = {x ∈ Ω : dist(x, ∂Ω) < t}. (2.27)

Lemma 2.8. Let Ω be a bounded Lipschitz domain in Rd. Then,

‖u‖L2(Ωt) ≤ Ct‖∇u‖L2(Ω2t) for u ∈ H1
0 (Ω), (2.28)

‖u‖L2(Ωt) ≤ Ct
1/2‖u‖1/2

L2(Ω)
‖u‖1/2

H1(Ω)
for u ∈ H1(Ω), (2.29)

and for u ∈ H2(Ω) ∩H1
0 (Ω),

‖u‖L2(Ωt) ≤ Ct
3/2‖u‖1/2

H1(Ω)
‖u‖1/2

H2(Ω)
, (2.30)

where C depends on d and Ω.

Proof. The inequalities (2.28) and (2.29) may be proved by a localization argument, while (2.30)
follows readily from (2.28)-(2.29).

Lemma 2.9. Let uλ ∈ H2(Ω;Rd) be a weak solution of Lλ(uλ) = F with uλ − G ∈ H2
0 (Ω;Rd),

where F ∈ L2(Ω;Rd), G ∈ H2(Ω;Rd), and Ω is a bounded Lipschitz domain. Let u0 ∈ H1(Ω;Rd)
be the weak solution of −div(A∇u0) = F in Ω and u0 −G ∈ H1

0 (Ω;Rd). Suppose u0 ∈ H2(Ω;Rd).
Then for 0 < λ ≤ 1,

‖∇uλ −∇u0‖L2(Ω) ≤ C
√
λ
{
‖u0‖H2(Ω) + ‖G‖H2(Ω)

}
, (2.31)

where C depends only on d, ν1, ν2, and Ω.

Proof. Let ηt be a cut-off function in C∞0 (Ω) such that 0 ≤ ηt ≤ 1, ηt(x) = 1 if x ∈ Ω\Ω2t, ηt(x) = 0
if x ∈ Ωt, and |∇kηt| ≤ Ct−k for k = 1, 2, where t > 0 is to be determined. Let ũ0 = u0 −G and

w = uλ −G− (u0 −G)ηt = uλ − u0 + ũ0(1− ηt). (2.32)

Note that w ∈ H2
0 (Ω;Rd) and

Lλ(w) = Lλ(uλ)− Lλ(u0) + Lλ
[
ũ0(1− ηt)

]
= −λ2∆2u0 + λ2∆2(ũ0(1− ηt))− div

[
A∇(ũ0(1− ηt))

]
.

It follows that for any ψ ∈ H2
0 (Ω;Rd),

|〈Lλ(w), ψ〉| ≤ λ2

ˆ
Ω
|∆u0||∆ψ| dx+ λ2

ˆ
Ω
|∆(ũ0(1− ηt))||∆ψ| dx

+ C

ˆ
Ω
|∇(ũ0(1− ηt))||∇ψ| dx.

By using the Cauchy inequality and Lemma 2.8, we obtain

|〈Lλ(w), ψ〉| ≤ λ2‖u0‖H2(Ω)‖∆ψ‖L2(Ω) + Cλ2t−1/2‖ũ0‖H2(Ω)‖∆ψ‖L2(Ω2t)

+ Ct1/2‖ũ0‖H2(Ω)‖∇ψ‖L2(Ω2t).
(2.33)
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By taking ψ = w in (2.33), t = c0λ, and using the Cauchy inequality, we see that

λ‖∆w‖L2(Ω) + ‖∇w‖L2(Ω) ≤ Cλ1/2
{
‖u0‖H2(Ω) + ‖G‖H2(Ω)

}
. (2.34)

In view of (2.32) this gives (2.31).

Theorem 2.10. Let uλ and u0 be the same as in Lemma 2.9. Also assume that Ω is a bounded
C1,1 domain and ‖∇A‖∞ ≤ L <∞. Then for 0 < λ ≤ 1,

‖uλ − u0‖L2(Ω) ≤ Cλ
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
, (2.35)

where C depends on d, ν1, ν2, L, and Ω.

Proof. Let w be given by (2.32) with t = c0λ. For F̃ ∈ L2(Ω;Rd), let w̃ = vλ − v0η̃t, where
vλ ∈ H2

0 (Ω;Rd) is the weak solution of Lλ(vλ) = F̃ in Ω and v0 ∈ H1
0 (Ω;Rd) the weak solution of

−div(A∇v0) = F̃ in Ω. The function η̃t ∈ C∞0 (Ω) is chosen so that 0 ≤ η̃t ≤ 1, η̃t = 1 in Ω \ Ω3t,
η̃t = 0 in Ω2t, and |∇kη̃t| ≤ Ct−k for k = 1, 2. Note that∣∣∣ ˆ

Ω
w · F̃ dx

∣∣∣ = |〈Lλ(w), vλ〉|

≤ |〈Lλ(w), w̃〉|+ |〈Lλ(w), v0η̃t〉|.

It follows from (2.34) that

|〈Lλ(w), w̃〉| ≤ C
{
λ‖∆w‖L2(Ω) + ‖∇w‖L2(Ω)

}{
λ‖∆w̃‖L2(Ω) + ‖∇w̃‖L2(Ω)

}
≤ Cλ

{
‖u0‖H2(Ω) + ‖G‖H2(Ω)

}
‖v0‖H2(Ω).

Also, by (2.33) and the fact that η̃t = 0 in Ω2t,

|〈Lλ(w), v0η̃t〉| ≤ λ2‖u0‖H2(Ω)‖v0η̃t‖H2(Ω)

≤ Cλ2t−1/2‖u0‖H2(Ω)‖v0‖H2(Ω),

where we have used Lemma 2.8 for the last inequality. As a result, we have proved that∣∣∣ˆ
Ω
w · F̃ dx

∣∣∣ ≤ Cλ{‖u0‖H2(Ω) + ‖G‖H2(Ω)

}
‖v0‖H2(Ω)

≤ Cλ
{
‖u0‖H2(Ω) + ‖G‖H2(Ω)

}
‖F̃‖L2(Ω),

where, for the last step, we have used the H2 estimate ‖v0‖H2(Ω) ≤ C‖F̃‖L2(Ω), which holds under
the assumption that A is Lipschitz continuous and Ω is C1,1. The estimate (2.35) now follows
readily by duality.

A proof for Theorem 2.10 in the case d = 2 may be found in [16]. As pointed out by A. Friedman
in [9], the one-dimensional example,λ2d

4u

dx4
− d2u

dx2
= 1 in (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0,
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shows that the O(λ) rate in (2.35) is sharp. However, in the case of periodic boundary conditions,
the rates in Lemma 2.9 and Theorem 2.10 can be improved.

Let C∞per(Rd;Rd) denote the space of C∞, 1-periodic Rd-valued functions in Rd. Let Hk
per(Y ;Rd)

be the closure of C∞per(Rd;Rd) in Hk(Y ;Rd), where k ≥ 1 and Y = [0, 1]d. Note that for any

F ∈ L2(Y ;Rd) with
´
Y F dx = 0, there exists a unique uλ ∈ H2

per(Y ;Rd) such that Lλ(uλ) = F in
Y and

´
Y uλ dx = 0.

Lemma 2.11. Suppose A satisfies conditions (1.3) and (1.4). Let uλ ∈ H2
per(Y ;Rd) be a weak

solution of Lλ(uλ) = F in Y with
´
Y uλ dx = 0, where F ∈ L2(Y ;Rd) and

´
Y F dx = 0. Let

u0 ∈ H1
per(Y ;Rd) be the weak solution of −div(A∇u0) = F in Y with

´
Y u0 dx = 0. Suppose

u0 ∈ H2
per(Y ;Rd). Then

‖∇uλ −∇u0‖L2(Y ) ≤ Cλ‖u0‖H2(Y ), (2.36)

where C depends only on d, ν1 and ν2.

Proof. Let w = uλ − u0. Then
Lλ(w) = −λ2∆2u0.

It follows that for any ψ ∈ H2
per(Y ;Rd),

|〈Lλ(w), ψ〉| ≤ λ2‖∆u0‖L2(Y )‖∆ψ‖L2(Y ). (2.37)

By taking ψ = w in (2.37) and using the Cauchy inequality, we obtain

λ‖∆w‖L2(Y ) + ‖∇w‖L2(Y ) ≤ Cλ‖u0‖H2(Y ), (2.38)

which yields (2.36).

Theorem 2.12. Suppose A satisfies (1.3) and (1.4). Also assume that ‖∇A‖∞ ≤ L <∞. Let uλ
and u0 be the same as in Lemma 2.11. Then

‖uλ − u0‖L2(Y ) ≤ Cλ2‖F‖L2(Y ), (2.39)

where C depends on d, ν1, ν2, and L.

Proof. The proof is similar to that of Theorem 2.10. For F̃ ∈ L2(Y ;Rd) with
´
Y F̃ dx = 0, let

w̃ = vλ − v0, where vλ ∈ H2
per(Y ;Rd) is the weak solution of Lλ(vλ) = F̃ in Y with

´
Y vλ dx = 0,

and v0 ∈ H1
per(Y ;Rd) the solution of −div(A∇v0) = F̃ in Y with

´
Y v0 dx = 0. Note that∣∣∣ ˆ

Y
w · F̃ dx

∣∣∣ = |〈Lλ(w), vλ〉|

≤ |〈Lλ(w), w̃〉|+ |〈Lλ(w), v0〉|.

It follows from (2.37) that

|〈Lλ(w), w̃〉| ≤ λ2‖∆w‖L2(Y )‖∆w̃‖L2(Y ) + C‖∇w‖L2(Y )‖∇w̃‖L2(Y )

≤ Cλ2‖u0‖H2(Y )‖v0‖H2(Y ).
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By (2.37) we obtain
|〈Lλ(w), v0〉| ≤ λ2‖∆u0‖L2(Y )‖∆v0‖L2(Y ).

Since ‖∇A‖∞ ≤ L < ∞, the H2 estimates, ‖u0‖H2(Y ) ≤ C‖F‖L2(Y ) and ‖v0‖H2(Y ) ≤ C‖F̃‖L2(Y )

hold. As a result, we have proved that∣∣∣ˆ
Y
w · F̃ dx

∣∣∣ ≤ Cλ2‖F‖L2(Y )‖F̃‖L2(Y ),

which, by duality, gives (2.39).

3 Qualitative homogenization

The qualitative homogenization for the elliptic system (1.1) was established in [5, 8] for κ = εγ ,
where 0 < γ < ∞. Here we consider a general case κ = κ(ε) under the condition (1.6). Denoting
κε−1 as λ = λ(ε), the system (1.1) may be written as

λ2ε2∆2uε,λ − div(A(x/ε)∇uε,λ) = F. (3.1)

We first fix 0 < λ <∞ and investigate the homogenization of the system (3.1).

For 1 ≤ β, j ≤ d, let P βj = yj(0, · · · , 1, . . . , 0) with 1 in the βth position. Consider the cell
problem, 

λ2∆2χλ,βj − div
[
A(y)∇(P βj + χλ,βj )

]
= 0 in Rd,

χλ,βj (y) is 1-periodic in y,´
Y χ

λ,β
j (y) dy = 0,

(3.2)

where Y = [0, 1]d. Under conditions (1.3) and (1.4), for each λ > 0, (3.2) admits a unique solution

χλ,βj = (χλ,1βj , ..., χλ,dβj ) in H3
loc(Rd;Rd). This may be proved by using the Lax-Milgram Theorem

on H2
per(Y ;Rd). Moreover, let χλ =

(
χλ,αβj

)
, then

‖χλ‖H1(Y ) ≤ C(1 + λ)−2,

‖∇2χλ‖L2(Y ) ≤ Cλ−1(1 + λ)−1,

‖∇3χλ‖L2(Y ) ≤ Cλ−2,

(3.3)

for some constant C depending only on d, ν1 and ν2. Estimates in (3.3) follow from energy estimates.
Indeed, by using the test functions χλ and ∆χλ and a Korn inequality, one obtains

λ‖∇2χλ‖L2(Y ) + ‖∇χλ‖L2(Y ) ≤ C,

and ‖∇3χλ‖L2(Y ) ≤ Cλ−2. The remaining estimates in (3.3) follow readily by Poincaré’s inequality.

If λ = 0, it is well known that (3.2) has a unique solution in H1
loc(Rd) and ‖χ0‖H1(Y ) ≤ C.

Thanks to [5], for each fixed λ ≥ 0, the homogenized operator of Lλε in (1.9) is given by

Lλ0 = −div(Âλ∇), (3.4)
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where

Âλ =

 
Y

[A(y) +A(y)∇χλ(y)] dy. (3.5)

In view of (3.3), we have |Âλ| ≤ C, where C depends only on d, ν1 and ν2.

Lemma 3.1. The constant matrix Âλ satisfies the elasticity condition (1.3) with the same ν1 and
ν2.

Proof. Let Âλ =
(
Âλ

αβ

ij

)
with 1 ≤ α, β, i, j ≤ d. Note that

Âλ
αβ

ij =

 
Y
Aαγik

∂

∂yk

[
P γβj + χλ,γβj

]
dy

=

 
Y
Atγ`k

∂

∂yk

[
P γβj + χλ,γβj

]
· ∂
∂y`

[
P tαi + χλ,tαi

]
dy + λ2

 
Y

∆χλ,βj ·∆χλ,αi dy,

where P γβj = yjδ
γβ and we have used (3.2) for the last step. It follows that Âλ satisfies the

symmetry conditions in (1.3). To prove the ellipticity condition in (1.3), we introduce the bilinear
form,

aper(φ, ψ) =

 
Y
A∇φ · ∇ψ dy + λ2

 
Y

∆φ ·∆ψ dy,

which is symmetric and nonnegative. It is known that the elasticity condition (1.3) implies

ν1

4
|ζ + ζT |2 ≤ Aζ · ζT ≤ ν2

4
|ζ + ζT |2 (3.6)

for any matrix ζ ∈ Rd×d, where ζT denotes the transpose of ζ. Let ξ = (ξβj ) ∈ Rd×d be a symmetric

matrix. Let φ = ξβj P
β
j and ψ = ξβj χ

λ,β
j . Then

Âλ
αβ

ij ξ
α
i ξ

β
j = aper(φ+ ψ, φ+ ψ)

≥
 
Y
A∇(φ+ ψ) · ∇(φ+ ψ) dy

≥ ν1

4

 
Y
|∇φ+∇ψ + (∇φ)T + (∇ψ)T |2 dy

=
ν1

4

 
Y
|∇φ+ (∇φ)T |2 dy +

ν1

4

 
Y
|∇ψ + (∇ψ)T |2 dy

≥ ν1|ξ|2,

where we have used (3.6) and the fact
´
Y ∇χ

λ dy = 0. Also, note that

Âλ
αβ

ij ξ
α
i ξ

β
j = aper(φ+ ψ, φ− ψ)

= aper(φ, φ)− aper(ψ,ψ) ≤ aper(φ, φ) ≤ ν2|ξ|2,

where we have used (3.6) for the last inequality.
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Define

A =

 
Y
A(y) dy. (3.7)

Lemma 3.2. Assume A satisfies (1.3) and (1.4). Let Âλ be defined by (3.5). Then∣∣Âλ −A∣∣ ≤ Cλ−2 for 1 ≤ λ <∞, (3.8)∣∣Âλ1 − Âλ2∣∣ ≤ C|1− (λ1/λ2)2| for 0 < λ1, λ2 <∞, (3.9)∣∣Âλ − Â0
∣∣ ≤ C̃λ2 for 0 < λ ≤ 1, if in addition ‖∇A‖∞ ≤ L, (3.10)

where C depends only on d, ν1, ν2, and C̃ depends on d, ν1, ν2 and L.

Proof. By the definitions of Âλ and A,∣∣Âλ −A∣∣ =
∣∣  

Y
A(y)∇χλ(y)dy

∣∣ ≤ C‖∇χλ‖L2(Y ),

which, together with (3.3), gives (3.8). Similarly, by the definition of Âλ ,∣∣Âλ1 − Âλ2∣∣ ≤ C‖∇χλ1 −∇χλ2‖L2(Y ). (3.11)

Since

−div
(
A(y)∇(χλ1 − χλ2)

)
+ λ2

1∆2(χλ1 − χλ2) = (λ2
2 − λ2

1)∆2χλ2 ,

by energy estimates and the H3 estimate for χλ in (3.3),

‖∇χλ1 −∇χλ2‖L2(Y ) ≤ C|λ2
2 − λ2

1|‖∇3χλ2‖L2(Y )

≤ C|1− (λ1/λ2)2|,

which, combined with (3.11), gives (3.9).
We now turn to (3.10). Note that∣∣Âλ − Â0

∣∣ =
∣∣  

Y
A(∇χλ −∇χ0)dy

∣∣ ≤ C‖∇A‖∞‖χλ − χ0‖L2(Y ), (3.12)

where we have used the integration by parts for the last inequality. It follows by Theorem 2.12 that

‖χλ − χ0‖L2(Y ) ≤ Cλ2, (3.13)

where C depends only on d, ν1, ν2 and L. This, combined with (3.12), gives (3.10).

Define L0 = −div(Â∇), where

Â =

A =

 
Y
A(y) dy if ρ =∞,

Âρ if 0 ≤ ρ <∞,
(3.14)

where Âρ is given by (3.5).
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Lemma 3.3. Suppose that λ→ ρ. Then Âλ → Â.

Proof. In view of Lemma 3.2, this is obvious if 0 < ρ ≤ ∞. In the case ρ = 0, where Â = Â0,
the estimate (3.10) requires that A is Lipschitz continuous. The condition may be removed by an
approximation argument. Indeed, let B be a smooth matrix satisfying (1.3)-(1.4). Then∣∣Âλ − Â0| ≤

∣∣Âλ − B̂λ
∣∣+
∣∣B̂λ − B̂0

∣∣+
∣∣B̂0 − Â0

∣∣. (3.15)

Let τλ be the weak solution of the cell problem (3.2) with A being replaced by B. Then

λ2∆2(χλ − τλ)− div(A(y)∇(χλ − τλ)) = div
(
(A−B)∇(y + τλ)

)
.

By the reverse Hölder estimate (2.15), there exist some p > 2 and C > 0, depending only on d, ν1

and ν2, such that ‖∇τλ‖Lp(Y ) ≤ C. By energy estimates,

‖∇(χλ − τλ)‖L2(Y ) ≤ C‖A−B‖L2(Y ) + C
(  

Y
|A−B|2|∇τλ|2dy

)1/2

≤ C‖A−B‖L2(Y ) + C‖A−B‖Lq(Y )‖∇τλ‖Lp(Y )

≤ C‖A−B‖Lq(Y ),

where q = 2p/(p− 2). By the definitions of Âλ and B̂λ, we obtain that∣∣Âλ − B̂λ
∣∣ ≤ ‖A−B‖L2(Y ) + ‖∇(χλ − τλ)‖L2(Y ) ≤ C‖A−B‖Lq(Y ). (3.16)

Similarly, one can prove that∣∣Â0 − B̂0
∣∣ ≤ ‖A−B‖L2(Y ) + ‖∇(χ0 − τ0)‖L2(Y ) ≤ C‖A−B‖Lq(Y ),

which, combined with (3.15), (3.16) and (3.10) for B, gives∣∣Âλ − Â0
∣∣ ≤ C‖A−B‖Lq(Y ) + CBλ

2,

where CB depends on ‖∇B‖∞. By approximating A in Lq(Y ) with a sequence of smooth matrix

satisfying (1.3) and (1.4), we obtain Âλ → Â0 as λ→ 0.

The following theorem shows that the effective equation for (1.1) is given by L0(u0) = F .

Theorem 3.4. Suppose that A satisfies (1.3)-(1.4) and κ satisfies (1.6). Let F ∈ H−1(Ω;Rd)
and G ∈ H2(Ω;Rd), where Ω is a bounded Lipschitz domain in Rd. Let uε ∈ H2(Ω;Rd) be the
weak solution of (1.1) such that uε − G ∈ H2

0 (Ω;Rd). Let u0 ∈ H1(Ω;Rd) be the weak solution of

−div(Â∇u0) = F in Ω with u0 − G ∈ H1
0 (Ω;Rd), where Â is given by (3.14). Then as ε → 0,

uε → u0 weakly in H1(Ω;Rd), and A(x/ε)∇uε → Â∇u0 weakly in L2(Ω;Rd×d).

Proof. This is proved by using Tartar’s method of test functions. Note that since κ < 1, by the
energy estimate (2.2),

κ‖∇2uε‖L2(Ω) + ‖uε‖H1(Ω) ≤ C
{
‖F‖H−1(Ω) + ‖G‖H2(Ω)

}
, (3.17)
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where C depends on d, ν1, ν2 and Ω. Let {uε′} be a sequence such that uε′ → u weakly in
H1(Ω;Rd) and A(x/ε′)∇uε′ → H weakly in L2(Ω;Rd×d). We will show that H = Â∇u in Ω. Since
−div(H) = F in Ω, we see that −div(Â∇u) = F in Ω. By the uniqueness of weak solutions in
H1(Ω;Rd) for L0, we deduce that u = u0. As a result, we obtain that uε → u0 weakly in H1(Ω;Rd)
and A(x/ε)∇uε → Â∇u0 weakly in L2(Ω;Rd×d), as ε→ 0.

To show H = Â∇u, for notational simplicity, we let ε = ε′ and λ = κ/ε. Note that

Lε
{
P βj + εχλ,βj (x/ε)

}
= 0 in Rd. (3.18)

It follows that

λ2ε2

ˆ
Ω

∆
{
P βj + εχλ,βj (x/ε)

}
·∆(uεψ) dx

+

ˆ
Ω
A(x/ε)∇

(
P βj + εχλ,βj (x/ε)

)
· ∇(uεψ) dx = 0,

(3.19)

for any ψ ∈ C∞0 (Ω). Also note that

λ2ε2

ˆ
Ω

∆uε ·∆
{

(P βj + εχλ,βj (x/ε))ψ
}
dx

+

ˆ
Ω
A(x/ε)∇uε · ∇

{
(P βj + εχλ,βj (x/ε))ψ

}
dx = 〈F, (P βj + εχλ,βj (x/ε))ψ〉.

(3.20)

By subtracting (3.19) from (3.20), we obtain

2λ2ε2

ˆ
Ω

∆uε · ∇(P βj + εχλ,βj (x/ε))∇ψ dx

− 2λ2ε2

ˆ
Ω

∆(P βj + εχλ,βj (x/ε)) · ∇uε · ∇ψ dx

+ λ2ε2

ˆ
Ω

∆uε · (P βj + εχλ,βj (x/ε))∆ψ dx

− λ2ε2

ˆ
Ω

∆(P βj + εχλ,βj (x/ε))uε ·∆ψ dx

+

ˆ
Ω
A(x/ε)∇uε · (P βj + εχλ,βj (x/ε))∇ψ dx

−
ˆ

Ω
A(x/ε)∇(P βj + εχλ,βj (x/ε))uε · ∇ψ dx

= 〈F, (P βj + εχλ,βj (x/ε))ψ〉.

(3.21)

We now let ε → 0 in (3.21). Using (3.17) and (3.3), it is not hard to see that the first four terms

in the left-hand side of (3.21) converge to zero, while the right-hand side converges to 〈F, P βj ψ〉.
Also, the fifth term in the left-hand side converges to

ˆ
Ω
Hα
i · P

αβ
j

∂ψ

∂xi
dx = 〈F, P βj ψ〉 −

ˆ
Ω
Hβ
j ψ dx.
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Finally, we observe that by Lemma 3.3, Âλ → Â as ε→ 0, and that uε → u strongly in L2(Ω;Rd).
This implies that the last term in the left-hand side of (3.21) converges to

−
ˆ

Ω
Âαβij u

α ∂ψ

∂xi
dx =

ˆ
Ω
Âαβij

∂uα

∂xi
ψ dx,

where we have used integration by parts. Since ψ ∈ C∞0 (Ω) is arbitrary, we see that

Hβ
j = Âαβij

∂uα

∂xi
= Âβαji

∂uα

∂xi
,

where we have used the symmetry conditions of Â. Hence, H = Â∇u.

4 Convergence rates

In this section we give the proof of Theorem 1.1. To this end, we fix 0 < λ <∞ and consider the
Dirichlet problem,

Lλε (uε,λ) = F in Ω and uε,λ −G ∈ H2
0 (Ω;Rd), (4.1)

where Lλε is given by (1.9), F ∈ L2(Ω;Rd) and G ∈ H2(Ω;Rd). Let u0,λ ∈ H1(Ω;Rd) be the solution
of the homogenized problem,

−div
(
Âλ∇u0,λ

)
= F in Ω and u0,λ −G ∈ H1

0 (Ω;Rd), (4.2)

where Âλ is given by (3.5). We shall study the convergence rate of uε,λ to u0,λ as ε→ 0.
Let ηt ∈ C∞0 (Ω) be a cut-off function such that

0 ≤ ηt ≤ 1, |∇kηt| ≤ Ct−k for k = 1, 2,

ηt = 1 if x ∈ Ω\Ω4t and ηt(x) = 0 if x ∈ Ω3t,
(4.3)

where ε ≤ t < 1 and Ωt is defined in (2.27). Let

wε,λ = uε,λ − u0,λ + (u0,λ −G)(1− ηt)− εχλ(x/ε)ηtSε(∇u0,λ), (4.4)

where t = (1 + λ)ε and χλ is the corrector given by (3.2). The ε-smoothing operator Sε in (4.4) is
defined by

Sε(f)(x) =

ˆ
Rd
f(x− ς)ϕε(ς)dς,

where ϕε(ς) = ε−dϕ(ς/ε) and ϕ is a fixed function in C∞0 (B(0, 1/2)) such that ϕ ≥ 0 and
´
Rd ϕdx =

1.

Lemma 4.1. Let f ∈W 1,p(Rd) for some 1 ≤ p ≤ ∞. Then

‖Sε(f)− f‖Lp(Rd) ≤ ε‖∇f‖Lp(Rd). (4.5)
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Suppose that f, g ∈ Lploc(R
d) for some 1 ≤ p <∞ and g is 1-periodic. Then

‖gε∇kSε(f)‖Lp(O) ≤ Ckε−k‖g‖Lp(Y )‖f‖Lp(Oε) (4.6)

for k ≥ 0, where gε(x) = g(x/ε), Oε = {x ∈ Rd : dist(x,O) < ε}, and Ck depends only on d, k and
p.

Proof. See e.g., [17].

Lemma 4.2. Let Ω be a bounded Lipschitz domain in Rd. Let uε,λ, u0,λ and wε,λ be given by
(4.1), (4.2) and (4.4), respectively. Suppose u0,λ ∈ H2(Ω;Rd). Then for any ψ ∈ H2

0 (Ω;Rd) and
0 < ε < (1 + λ)−1,

|〈Lλε (wε,λ), ψ〉| ≤ C‖u0,λ‖H2(Ω)

{
ε‖∇ψ‖L2(Ω) + ε2λ2‖∆ψ‖L2(Ω)

}
+ Ct1/2

{
‖u0,λ‖H2(Ω) + ‖G‖H2(Ω)

}
‖∇ψ‖L2(Ω5t)

+ Cε2λ2t−1/2
{
‖u0,λ‖H2(Ω) + ‖G‖H2(Ω)

}
‖∆ψ‖L2(Ω5t),

(4.7)

where t = (1 + λ)ε and C depends only on d, ν1, ν2, and Ω.

Proof. Note that wε,λ ∈ H2
0 (Ω;Rd) and

Lλε (wε,λ) = −div
{

(Âλ −A(x/ε))∇u0,λ

}
− λ2ε2∆2(u0,λ) + Lλε

{
(u0,λ −G)(1− ηt)

}
− Lλε

{
εχλ(x/ε)ηtSε(∇u0,λ)

}
= −div

{
(Âλ −A(x/ε))(∇u0,λ − ηtSε(∇u0,λ))

}
− λ2ε2∆2(u0,λ) + Lλε

{
(u0,λ −G)(1− ηt)

}
− div

{
Bλ(x/ε)ηtSε(∇u0,λ)

}
− λ2ε div

{
∆χλ(x/ε)∇[ηtSε(∇u0,λ)]

}
− 2λ2ε2∆

{
∇χλ(x/ε)∇[ηtSε(∇u0,λ)]

}
− λ2ε3∆

{
χλ(x/ε)∆[ηtSε(∇u0,λ)]

}
+ εdiv

{
χλ(x/ε)A(x/ε)∇[ηtSε(∇u0,λ)]

}
,

where
Bλ(y) = λ2∇∆χλ(y)−A∇χλ(y)−A(y) + Âλ. (4.8)
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It follows that for any ψ ∈ H2
0 (Ω;Rd),

|〈Lλε (wε,λ), ψ〉| ≤ C
ˆ

Ω
|[∇u0,λ − ηtSε(∇u0,λ)]∇ψ| dx+ ε2λ2

ˆ
Ω
|∆u0,λ||∆ψ| dx

+ λ2ε2

ˆ
Ω
|∆[(u0,λ −G)(1− ηt)]||∆ψ| dx

+ C

ˆ
Ω
|∇[(u0,λ −G)(1− ηt)]||∇ψ| dx

+ C
∣∣∣ ˆ

Ω
Bλ(x/ε)ηtSε(∇u0,λ)∇ψ dx

∣∣∣
+ Cε

ˆ
Ω
|χλ(x/ε)∇

[
ηtSε(∇u0,λ)

]
∇ψ| dx

+ Cελ2

ˆ
Ω
|∇2χλ(x/ε)∇

[
ηtSε(∇u0,λ)

]
∇ψ| dx

+ Cε2λ2

ˆ
Ω
|∇χλ(x/ε)∇2

[
ηtSε(∇u0,λ)

]
∇ψ| dx

+ Cε3λ2

ˆ
Ω
|χλ(x/ε)∇3

[
ηtSε(∇u0,λ)

]
∇ψ| dx

= I1 + I2 + · · ·+ I9.

Using Lemma 4.1 and the Cauchy inequality, it is not hard to see that

I1 ≤ C
{
‖∇u0,λ‖L2(Ω5t)‖∇ψ‖L2(Ω5t) + ε‖∇2u0,λ‖L2(Ω\Ω2t)‖∇ψ‖L2(Ω)

}
. (4.9)

Next, we observe that

I2 + I3 + I4 ≤ ε2λ2‖∆u0,λ‖L2(Ω)‖∆ψ‖L2(Ω) + Cλ2ε2t−1/2‖u0,λ −G‖H2(Ω)‖∆ψ‖L2(Ω4t)

+ Ct1/2‖u0,λ −G‖H2(Ω)‖∇ψ‖L2(Ω4t).
(4.10)

To bound I5, we note that by (3.3), we have ‖Bλ‖L2(Y ) ≤ C, where C depends only on d, ν1 and

ν2. Moreover, by the definition of Bλ = (Bλ
ij), 1 ≤ i, j ≤ d,

∂yiB
λ
ij = 0 and

ˆ
Y
Bλ
ij dy = 0. (4.11)

This allows us to construct a matrix of 1-periodic flux correctors Bλ
kij(y) such that

Bλ
kij = −Bλ

ikj , ∂ykB
λ
kij(y) = Bλ

ij(y), ‖Bλ
kij‖H1(Y ) ≤ C,

with C depending only on d, ν1 and ν2. It follows that

I5 ≤ Cε‖Bλ(x/ε)∇(ηtSε(∇u0,λ))∇ψ‖L1(Ω)

≤ C‖∇u0,λ‖L2(Ω5t)‖∇ψ‖L2(Ω5t) + Cε‖∇2u0,λ‖L2(Ω\Ω2t)‖∇ψ‖L2(Ω),
(4.12)

where we have used the fact εt−1 ≤ 1. Using (3.3) and (4.6), we also obtain

I6 + I7 + I8 + I9 ≤ C‖∇u0,λ‖L2(Ω5t)‖∇ψ‖L2(Ω5t) + Cε‖∇2u0,λ‖L2(Ω\Ω2t)‖∇ψ‖L2(Ω). (4.13)

By collecting estimates for I1, I2, . . . , I9, we obtain the desired estimate (4.7).
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Lemma 4.3. Let uε,λ, u0,λ and wε,λ be the same as in Lemma 4.2. Assume that u0,λ ∈ H2(Ω;Rd).
Then

λε‖∆wε,λ‖L2(Ω) + ‖∇wε,λ‖L2(Ω) ≤ C
(
(1 + λ)ε

)1/2{‖u0‖H2(Ω) + ‖G‖H2(Ω)

}
, (4.14)

where C depends only on d, ν1, ν2, and Ω.

Proof. Note that wε,λ ∈ H2
0 (Ω;Rd). The estimate (4.14) follows readily by letting ψ = wε,λ in (4.7)

and using the Cauchy inequality as well as the first Korn inequality.

The next theorem gives the sharp convergence rate in L2(Ω) for Lλε with λ fixed.

Theorem 4.4. Suppose A satisfies conditions (1.3) and (1.4). Let Ω be a bounded C1,1 domain,
F ∈ L2(Ω;Rd) and G ∈ H2(Ω;Rd). Let uε,λ be the weak solution of (4.1) and u0,λ the solution of
the homogenized problem (4.2), where 0 < λ <∞. Then for any 0 < ε < (1 + λ)−1,

‖uε,λ − u0,λ‖L2(Ω) ≤ C(1 + λ)ε
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
, (4.15)

where C depends only on d, ν1, ν2, and Ω.

Proof. For F̃ ∈ C∞0 (Ω;Rd), let vε,λ ∈ H2
0 (Ω;Rd) be the weak solution of Lλε (vε,λ) = F̃ in Ω and

v0,λ the solution in H1
0 (Ω;Rd) of the homogenized problem −div(Âλ∇v0,λ) = F̃ in Ω. Note that

since Ω is C1,1, we have ‖v0,λ‖H2(Ω) ≤ C‖F̃‖L2(Ω) and

‖u0,λ‖H2(Ω) ≤ C
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
,

where C depends only on d, ν1, ν2, and Ω. Let

w̃ε,λ = vε,λ − v0,λη̃t − εχλ(x/ε)η̃tSε(∇v0,λ), (4.16)

where t = (1 + λ)ε and η̃t is a function in C∞0 (Ω) such that 0 ≤ η̃t ≤ 1, |∇kη̃t| ≤ Ct−k for k = 1, 2,
η̃t(x) = 1 if x ∈ Ω \ Ω8t, and η̃t(x) = 0 if x ∈ Ω7t.

Let wε,λ be given by (4.4). Note that∣∣∣ ˆ
Ω
wε,λ · F̃ dx

∣∣∣ = |〈Lλε (wε,λ), vε,λ〉|

≤ |〈Lλε (wε,λ), w̃ε,λ〉|+ |〈Lλε (wε,λ), v0,λη̃t〉|+ |〈Lλε (wε,λ), ζε,λ〉|
= J1 + J2 + J3,

(4.17)

where
ζε,λ = εχλ(x/ε)η̃tSε(∇v0,λ). (4.18)

Observe that

J1 ≤ ε2λ2‖∆wε,λ‖L2(Ω)‖∆w̃ε,λ‖L2(Ω) + C‖∇wε,λ‖L2(Ω)‖∇w̃ε,λ‖L2(Ω)

≤ C(1 + λ)ε
{
‖u0,λ‖H2(Ω) + ‖G‖H2(Ω)

}
‖v0,λ‖H2(Ω),

(4.19)

where we have used (4.14) for the last inequality. To bound J2, we use (4.7) to obtain

J2 ≤ C(1 + λ)ε
{
‖u0,λ‖H2(Ω) + ‖G‖H2(Ω)

}
‖v0,λ‖H2(Ω). (4.20)
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To handle J3, we note that by (3.3) and (4.6),

‖∇ζε,λ‖L2(Ω) ≤ C(1 + λ)−2‖v0,λ‖H2(Ω), (4.21)

‖∆ζε,λ‖L2(Ω) ≤ Cε−1(1 + λ)−2‖v0,λ‖H2(Ω). (4.22)

Since ζε,λ = 0 in Ω5t, it follows from (4.7) that

J3 ≤ Cε‖u0,λ‖H2(Ω)‖∇ζε,λ‖L2(Ω) + Cε2λ2‖u0,λ‖H2(Ω)‖∆ζε,λ‖L2(Ω)

≤ Cε‖u0,λ‖H2(Ω)‖v0,λ‖H2(Ω).
(4.23)

In view of (4.17), (4.19), (4.20) and (4.23), we have proved that∣∣∣ ˆ
Ω
wε,λ · F̃ dx

∣∣∣ ≤ C(1 + λ)ε
{
‖u0,λ‖H2(Ω) + ‖G‖H2(Ω)

}
‖v0,λ‖H2(Ω)

≤ C(1 + λ)ε
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
‖F̃‖L2(Ω).

By duality this implies that

‖wε,λ‖L2(Ω) ≤ C(1 + λ)ε
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
.

Hence,
‖uε,λ − u0,λ‖L2(Ω) ≤ ‖wε,λ‖L2(Ω) + ‖(u0,λ −G)(1− ηt)‖L2(Ω)

+ ‖εχλ(x/ε)ηtSε(∇u0,λ)‖L2(Ω)

≤ C(1 + λ)ε
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
,

which completes the proof.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let uε ∈ H2(Ω;Rd) be a weak solution of Lε(uε) = F in Ω with uε−G ∈
H2

0 (Ω), and u0 ∈ H1(Ω;Rd) the solution of the homogenized equation −div(Â∇u0) = F in Ω with
u0 −G ∈ H1

0 (Ω;Rd). Let λ = κ/ε. Then Lλε (uε) = Lε(uε) = F in Ω. Let u0,λ ∈ H1(Ω;Rd) be the

solution of −div(Âλ∇u0,λ) = F in Ω with u0,λ −G ∈ H1
0 (Ω;Rd). Note that

‖uε − u0‖L2(Ω) ≤ ‖uε − u0,λ‖L2(Ω) + ‖u0,λ − u0‖L2(Ω)

≤ C(κ+ ε)
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
+ ‖u0,λ − u0‖L2(Ω),

(4.24)

where we have used Theorem 4.4 for the last inequality. To estimate u0,λ − u0, we observe that
u0,λ − u0 ∈ H1

0 (Ω;Rd) and

−div(Â∇(u0 − u0,λ)) = div((Â− Âλ)∇u0,λ)

in Ω. By energy estimates,

‖u0 − u0,λ‖H1(Ω) ≤ C|Â− Âλ|‖∇u0,λ‖L2(Ω)

≤ C|Â− Âλ|
{
‖F‖L2(Ω) + ‖G‖H1(Ω)

}
,

(4.25)

where C depends only on d, ν1, ν2, and Ω. This, together with Lemma 3.2 and (4.24), gives
(1.8).
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Remark 4.5. Let χ(y) be the corrector for Lρε if 0 < ρ < ∞, χ(y) = 0 if ρ = ∞, and χ(y) the
corrector for the operator −div(A(x/ε)∇) if ρ = 0. Under the same assumptions as in Theorem
1.1, one may show that

‖uε − u0 − εχ(x/ε)Sε(∇u0)‖H1(Ω)

≤
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}


C1

{
(κ+ ε)1/2 +

( ε
κ

)2
}

if ρ =∞,

C2

{
(κ+ ε)1/2 + ρ−2

∣∣(κ
ε

)2 − ρ2
∣∣} if 0 < ρ <∞,

C3

{
(κ+ ε)1/2 +

(κ
ε

)2
}

if ρ = 0,

(4.26)

where C1, C2 depend only on d, ν1, ν2 and Ω, and C3 depends only on d, ν1, ν2, Ω, and L. To see
this, let ωε,λ be given by (4.4) with λ = κ/ε, and

ω̃ε = uε − u0 − εχ(x/ε)Sε(∇u0).

It follows by Lemma 4.3 that

‖wε,λ‖H1(Ω) ≤ C(ε+ κ)1/2
{
‖F‖L2(Ω) + ‖G‖H2(Ω)

}
.

Note that

‖wε,λ − ω̃ε‖H1(Ω) ≤ ‖u0,λ − u0‖H1(Ω) + ‖(u0,λ −G)(1− ηt)‖H1(Ω)

+ ε‖χλ(x/ε)ηtSε(∇u0,λ)− χ(x/ε)ηtSε(∇u0)‖H1(Ω)

+ ε‖χ(x/ε)(1− ηt)Sε(∇u0)‖H1(Ω).

The desired estimate follows from (4.25) and Lemma 3.2 as well as the estimates of ‖χλ − χ‖H1(Y )

in the proof of Lemma 3.2. We omit the details.

5 Approximation

Fix 0 < λ <∞. Let Lλε be defined as in (3.1). The goal of this section is to establish the following.

Theorem 5.1. Suppose A satisfies (1.3) and (1.4). Let uε,λ ∈ H2(B2r;Rd) be a solution to
Lλε (uε,λ) = F in B2r, where F ∈ Lp(B2r;Rd) and B2r = B(z, 2r) for some z ∈ Rd. Assume that
p > d and ε ≤ r <∞. Then there exists vε,λ ∈ H2(Br;Rd) such that

ε2λ2∆2vε,λ − div
(
Âλ∇vε,λ

)
= F in Br, (5.1)

and ( 
Br

|∇vε,λ|2
)1/2

≤ C
( 

B2r

|∇uε,λ|2
)1/2

, (5.2)( 
Br

|∇uε,λ −∇vε,λ − (∇χλ)(x/ε)∇vε,λ|2
)1/2
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≤ C
(ε
r

)σ {( 
B2r

|∇uε,λ|2
)1/2

+ r

( 
B2r

|F |p
)1/p

}
, (5.3)

where C > 0 and 0 < σ < 1 depend only on d, ν1, ν2, and p.

To prove Theorem 5.1, we introduce an intermediate Dirichlet problem,

λ2ε2∆2vε,λ + Lλ0(vε,λ) = F in Ω and vε,λ −G ∈ H2
0 (Ω;Rd), (5.4)

where Lλ0 = −div(Âλ∇) and Âλ is defined by (3.5). We will establish a (suboptimal) convergence
rate in H1(Ω) for uε,λ − vε,λ, where uε,λ is the solution to the Dirichlet problem,

Lλε (uε,λ) = F in Ω and uε,λ −G ∈ H2
0 (Ω;Rd), (5.5)

with F ∈ L2(Ω;Rd) and G ∈ H2(Ω;Rd). Let

wε,λ = uε,λ − vε,λ − εχλ(x/ε)ηεSε(∇vε,λ), (5.6)

where ηε, Sε and χλ are the same as in (4.4).

Lemma 5.2. Let Ω be a bounded Lipschitz domain. Let uε,λ, vε,λ be the weak solutions of (5.5)
and (5.4), respectively, and wε,λ be given by (5.6). Then

λε‖∆wε,λ‖L2(Ω) + ‖∇wε,λ‖L2(Ω) ≤ C‖∇vε,λ‖L2(Ω5ε) + Cε‖∇2vε,λ‖L2(Ω\Ω2ε) (5.7)

for 0 < ε < 1, where C depends only on d, ν1, ν2, and Ω.

Proof. The proof is similar to that of (4.14). Let (g)ε = g(x/ε). By direct calculations, we deduce
that

Lλε (wε,λ) = Lλ0(vε,λ) + λ2ε2∆2vε,λ − Lλε (vε,λ)− Lλε
(
ε(χλ)εSε(∇vε,λ)ηε

)
= −div

{
Âλ∇vε,λ −Aε∇vε,λ + λ2ε3∆∇[(χλ)εSε(∇vε,λ)ηε]

− εAε∇[(χλ)εSε(∇vε,λ)ηε]
}

= −div
{

(Aε − Âλ)[Sε(∇vε,λ)ηε −∇vε,λ] + (Bλ)εSε(∇vε,λ)ηε

+ λ2ε3∆∇[Sε(∇vε,λ)ηε](χ
λ)ε + λ2ε2(∇χλ)ε∆[Sε(∇vε,λ)ηε]

+ 2λ2ε2∇2[Sε(∇vε,λ)ηε](∇χλ)ε + λ2ε(∆χλ)ε∇[Sε(∇vε,λ)ηε]

+ 2λ2ε(∇2χλ)ε∇[Sε(∇vε,λ)ηε]− εAε(χλ)ε∇[Sε(∇vε,λ)ηε]
}
, (5.8)

where (Bλ)ε = Bλ(x/ε) and Bλ is given by (4.8). Thus for any ψ ∈ H2
0 (Ω;Rd),

|〈Lλε (wε,λ), ψ〉| ≤ C
ˆ

Ω

∣∣[∇vε,λ − Sε(∇vε,λ)ηε]∇ψ
∣∣ dx+ C

∣∣∣ˆ
Ω

(Bλ)εηεSε(∇vε,λ)∇ψ dx
∣∣∣

+ Cλ2ε3

ˆ
Ω

∣∣(χλ)ε∇3[Sε(∇vε,λ)ηε]∇ψ
∣∣ dx
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+ Cλ2ε2

ˆ
Ω

∣∣(∇χλ)ε∇2[Sε(∇vε,λ)ηε]∇ψ
∣∣ dx

+ Cλ2ε

ˆ
Ω

∣∣(∇2χλ)ε∇[Sε(∇vε,λ)ηε]∇ψ
∣∣ dx

+ Cε

ˆ
Ω

∣∣(χλ)ε∇[Sε(∇vε,λ)ηε]∇ψ
∣∣ dx

.
= I1 + · · ·+ I6. (5.9)

It is not hard to see that

I1 ≤ C‖∇vε,λ − Sε(∇vε,λ)‖L2(Ω\Ω3ε)‖∇ψ‖L2(Ω) + C‖∇vε,λ‖L2(Ω4ε)‖∇ψ‖L2(Ω4ε)

≤ C
{
‖∇vε,λ‖L2(Ω4ε) + Cε‖∇2vε,λ‖L2(Ω\Ω2ε)

}
‖∇ψ‖L2(Ω).

To handle I2, we use the matrix of flux correctors, as in the proof of Lemma 4.2, to obtain

I2 = C
∣∣∣ ˆ

Ω
ε∂xk

(
Bλ
kij(x/ε)∂xiψ

)
Sε(∂xjvε,λ)ηεdx

∣∣∣
≤ Cε

ˆ
Ω
|ηεBλ(x/ε)Sε(∇2vε,λ)∇ψ| dx+ Cε

ˆ
Ω
|Bλ(x/ε)Sε(∇vε,λ)∇ηε∇ψ| dx

≤ Cε‖∇ψ‖L2(Ω)‖∇2vε,λ‖L2(Ω\Ω2ε) + C‖∇ψ‖L2(Ω4ε)‖∇vε,λ‖L2(Ω5ε),

where, for the last step, we have used (4.6).
To bound I3, we use the Cauchy inequality, (3.3) and (4.6) to deduce that

I3 ≤ Cλ2ε3‖(χλ)ε∇3Sε(∇vε,λ)‖L2(Ω\Ω3ε)‖∇ψ‖L2(Ω)

+ Cλ2
{
‖Sε(∇vε,λ)(χλ)ε‖L2(Ω4ε) + ε‖Sε(∇2vε,λ)(χλ)ε‖L2(Ω4ε)

+ ε2‖∇Sε(∇2vε,λ)(χλ)ε‖L2(Ω4ε)

}
‖∇ψ‖L2(Ω4ε)

≤ Cε‖∇2vλ,ε‖L2(Ω\Ω2ε)‖∇ψ‖L2(Ω) + C‖∇vε,λ‖L2(Ω5ε)‖∇ψ‖L2(Ω4ε).

Likewise,

I4 + I5 + I6 ≤ C‖∇vε,λ‖L2(Ω5ε)‖∇ψ‖L2(Ω) + Cε‖∇2vε,λ‖L2(Ω\Ω2ε)‖∇ψ‖L2(Ω).

By taking the estimates on I1, . . . , I6 into (5.9), it yields

|〈Lλε (wε,λ), ψ〉| ≤ C‖∇vε,λ‖L2(Ω5ε)‖∇ψ‖L2(Ω) + Cε‖∇2vε,λ‖L2(Ω\Ω2ε)‖∇ψ‖L2(Ω),

which gives (5.7) by choosing ψ = wε,λ ∈ H2
0 (Ω;Rd) and using the Cauchy inequality.

Now we are prepared to prove Theorem 5.1.

Proof of Theorem 5.1. By dilation and translation, it suffices to consider the case where r = 1
and z = 0. Let uε,λ be a solution of Lλε (uε,λ) = F in B2, and vε,λ the solution to the Dirichlet
problem,

λ2ε2∆2vε,λ + Lλ0(vε,λ) = F in B3/2 and vε,λ − uε,λ ∈ H2
0 (B3/2;Rd).
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Let wε,λ be defined by (5.6). We apply Lemma 5.2 with Ω = B3/2 to obtain

‖∇wε,λ‖L2(B3/2) ≤ C‖∇vε,λ‖L2(B3/2\B(3/2)−5ε)
+ Cε‖∇2vε,λ‖L2(B(3/2)−2ε)

. (5.10)

Since Âλ is constant, we may apply (2.5) to the function ∇vε,λ. This gives

ˆ
B
|∇2vε,λ|2 dx ≤

C

r2

ˆ
2B
|∇vε,λ|2 dx+ C

ˆ
2B
|F |2 dx,

for any 2B = B(x0, 2r) ⊂ B2. It follows that

ˆ
B(3/2)−2ε

|∇2vε,λ|2 dx ≤ C
ˆ
B(3/2)−ε

|∇vε,λ(x)|2

[δ(x)]2
dx+ C

ˆ
B(3/2)−ε

|F |2 dx

≤ Cqε−1− 2
q

(ˆ
B3/2

|∇vε,λ|q dx

)2/q

+ C

ˆ
B2

|F |2 dx,

where δ(x) = dist(x, ∂B3/2), q > 2 and we have used Hölder’s inequality for the last step. In view
of (5.10) we deduce that for any q > 2,

‖∇wε,λ‖L2(B3/2) ≤ Cε
1
2
− 1
q ‖∇vε,λ‖Lq(B3/2) + Cε‖F‖L2(B2). (5.11)

Next, we observe that uε,λ − vε,λ ∈ H2
0 (B3/2) and

λ2ε2∆2(uε,λ − vε,λ)− div
(
Âλ∇(uε,λ − vε,λ)

)
= div

(
(A(x/ε)− Âλ)∇uε,λ

)
(5.12)

in B3/2. By energy estimates this gives (5.2) with r = 1. It follows by Theorem 2.5 that there exist
some q > 2 and C > 0, depending only on d, ν1 and ν2, such that

ˆ
B3/2

|∇(uε,λ − vε,λ)|q dx ≤ C
ˆ
B3/2

|∇uε,λ|q dx.

As a result, there exists some q > 2 such that

‖∇wε,λ‖L2(B3/2) ≤ Cε
1
2
− 1
q ‖∇uε,λ‖Lq(B2) + Cε‖F‖L2(B2). (5.13)

Note that for x ∈ B1,

∇wε,λ = ∇uε,λ −∇vε,λ − (∇χλ)εSε(∇vε,λ)− ε(χλ)εSε(∇2vε,λ).

It follows from (5.13) that

‖∇uε,λ −∇vε,λ − (∇χλ)ε∇vε,λ‖L2(B1)

≤ Cε
1
2
− 1
q ‖∇uε,λ‖Lq(B2) + Cε‖F‖L2(B2)

+ ‖(∇χλ)ε
(
∇vε,λ − Sε(∇vε,λ)

)
‖L2(B1) + ε‖(χλ)εSε(∇2vε,λ)‖L2(B1). (5.14)
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By (4.6), the last term in the right-hand side of (5.14) is bounded by

Cε‖∇2vε,λ‖L2(B5/4) ≤ Cε
1
2
− 1
q ‖∇uε,λ‖Lq(B2) + Cε‖F‖L2(B2).

To handle the third term in the right-hand side of (5.14), we use the C1,σ estimate for the operator

λ2ε2∆2 − div(Âλ∇) to obtain

‖∇vε,λ‖C0,σ(B5/4) ≤ C‖∇vε,λ‖L2(B3/2) + C‖F‖Lp(B3/2), (5.15)

where 0 < σ < 1− d
p . It follows that

‖(∇χλ)ε
(
∇vε,λ − Sε(∇vε,λ)

)
‖L2(B1) ≤ C‖(∇χλ)ε‖L2(B1)‖∇vε,λ − Sε(∇vε,λ)‖L∞(B1)

≤ Cεσ‖∇vε,λ‖C0,σ(B5/4)

≤ Cεσ
{
‖∇vε,λ‖L2(B3/2) + ‖F‖Lp(B2)

}
≤ Cεσ

{
‖∇uε,λ‖L2(B3/2) + ‖F‖Lp(B2)

}
. (5.16)

In summary, we have proved that if 0 < σ < min(1
2 −

1
q , 1−

d
p), then

‖∇uε,λ −∇vε,λ − (∇χλ)ε∇vε,λ‖L2(B1) ≤ Cεσ
{
‖∇uε,λ‖Lq(B3/2) + ‖F‖Lp(B2)

}
, (5.17)

where 2 < q < q̄ and q̄ depends only on d, ν1 and ν2.
Finally, we use the reverse Hölder estimate (2.15) to obtain

‖∇uε,λ‖Lq(B3/2) ≤ C
{
‖∇uε,λ‖L2(B2) + ‖F‖L2(B2)

}
, (5.18)

where q > 2 and C depends only on d, ν1 and ν2. This, together with (5.17), gives (5.3) with
r = 1.

6 Large-scale C1,α estimates

Recall that P βj (x) = xj(0, . . . , 1, . . . , 0) with 1 in the βth position. Let

Hλ1,ε =
{
h(x) : h(x) = b+ Eβj (P βj (x) + εχλ,βj (x/ε))

for some b ∈ Rd and E = (Eβj ) ∈ Rd×d
}
.

(6.1)

Theorem 6.1. Assume that A satisfies (1.3) and (1.4). Let uε,λ ∈ H1(BR;Rd) be a solution of
Lλε (uε,λ) = F in BR = B(x0, R), where R > ε and F ∈ Lp(BR;Rd) for some p > d. Then for any
ε ≤ r < R and 0 < α < 1− d

p ,

inf
h∈Hλ1,ε

( 
Br

|∇uε,λ −∇h|2
)1/2

≤ C
( r
R

)α{( 
BR

|∇uε,λ|2
)1/2

+R

( 
BR

|F |p
)1/p

}
, (6.2)

where C depends only on d, ν1, ν2, p, and α.
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Proof. By translation and dilation, we may assume that x0 = 0 and R = 2. We also assume that
ε < r < (1/8), as the estimate (6.2) is trivial for r ≥ (1/8). Let vε,λ be the weak solution of
ε2λ2∆2vε,λ +Lλ0(vε,λ) = F given by Theorem 5.1. Let ε < tr < r < 1, where 0 < t < (1/4) is to be
determined, and

h = ∇vε,λ(0)(P (x) + εχλ(x/ε)),

where P = (P βj (x)). We obtain( 
Btr

|∇uε,λ −∇h|2
)1/2

+ tr

( 
Btr

|F |p
)1/p

≤
( 

Btr

|∇uε,λ −∇vε,λ − (∇χλ)ε∇vε,λ|2
)1/2

+

( 
Btr

|∇vε,λ + (∇χλ)ε∇vε,λ −∇h|2
)1/2

+ Ct1−d/pr

( 
B2r

|F |p
)1/p

. (6.3)

Denote the first two terms in the right-hand side of (6.3) by (6.3)1, (6.3)2. Thanks to Theorem 5.1,

(6.3)1 ≤ Ct−d/2
( 

Br

|∇uε,λ −∇vε,λ − (∇χλ)ε∇vε,λ|2
)1/2

≤ Ct−d/2
(ε
r

)σ {( 
B2r

|∇uε,λ|2
)1/2

+ r

( 
B2r

|F |p
)1/p

}
. (6.4)

On the other hand, by the C1,α estimate of vε,λ,

(6.3)2 ≤
( 

Btr

|∇vε,λ −∇vε,λ(0)|2
)1/2

+

( 
Btr

|(∇χλ)ε[∇vε,λ −∇vε,λ(0)]|2
)1/2

≤ C(tr)γ‖∇vε,λ‖C0,γ(Btr)

≤ Ctγ
{( 

Br

|∇vε,λ|2
)1/2

+ r

( 
Br

|F |p
)1/p

}

≤ Ctγ
{( 

B2r

|∇uε,λ|2
)1/2

+ r

( 
B2r

|F |p
)1/p

}
, (6.5)

where 0 < γ < 1− d
p and we have used (5.2) for the last inequality.

Taking (6.4) and (6.5) into (6.3) and using the fact Lλε (h) = 0 for any h ∈ Hλ1,ε, we derive that

inf
h∈Hλ1,ε

{
1

(rt)α

( 
Btr

|∇uε,λ −∇h|2
)1/2

+ tr

( 
Btr

|F |p
)1/p

}

≤ C inf
h∈Hλ1,ε

{
t−d/2−α

(ε
r

)σ
+ tγ−α

}

× 1

(2r)α

{( 
B2r

|∇uε,λ −∇h|2
)1/2

+ r

( 
B2r

|F |2
)1/2

}
.
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For any 0 < α < 1 − d
p , we first choose γ ∈ (α, 1 − d

p) and then t > 0 so small that Ctγ−α ≤ 1/4.
As a result, if r ≥ N0ε, where N0 > 1 is so large that

Ct−d/2−α
(ε
r

)σ
≤ 1/4,

then

inf
h∈Hλ1,ε

{
1

(tr)α

( 
Btr

|∇uε,λ −∇h|2
)1/2

+ tr

( 
Btr

|F |p
)1/p

}

≤ 1

2
inf

h∈Hλ1,ε

{
1

(2r)α

( 
B2r

|∇uε,λ −∇h|2
)1/2

+ r

( 
B2r

|F |p
)1/p

}
.

By iteration, this implies that

inf
h∈Hλ1,ε

{
1

(tr)α

( 
Btr

|∇uε,λ −∇h|2
)1/2

+ tr

( 
Btr

|F |p
)1/p

}

≤ inf
h∈Hλ1,ε

{( 
B2

|∇uε,λ −∇h|2
)1/2

+

( 
B2

|F |p
)1/p

}
(6.6)

for any r ≥ N0ε. The case ε ≤ r < N0ε follows easily from the case r = N0ε.

As a corollary, we obtain a Liouville theorem for the operator Lλ.

Theorem 6.2. Suppose A satisfies conditions (1.3) and (1.4). Let u ∈ H2
loc(Rd;Rd) be a weak

solution of
λ2∆2u− div(A∇u) = 0 in Rd.

Suppose that there exist C > 0 and σ ∈ (0, 1) such that( 
B(0,R)

|u|2
)1/2

≤ CR1+σ

for all R > 1. Then there exist b ∈ Rd and E = (Eβj ) ∈ Rd×d such that

u(x) = b+ Eβj (P βj + χλ,βj (x)) in Rd.

Proof. This follows readily from Theorem 6.1 with ε = 1 and F = 0.

7 Proof of Theorems 1.2 and 1.3

Theorem 7.1. Assume that A satisfies (1.3) and (1.4). Let uε,λ ∈ H2(BR;Rd) be a solution of
Lλε (uε,λ) = F in BR, where F ∈ Lp(BR;Rd) for some p > d. Then for any ε ≤ r < R,( 

Br

|∇uε,λ|2
)1/2

≤ C

{( 
BR

|∇uε,λ|2
)1/2

+R

( 
BR

|F |p
)1/p

}
, (7.1)

where C depends only on d, ν1, ν2, and p.
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Proof. This follows from Theorem 6.1, as in the case of second-order elliptic equations [12, 6]. We
omit the details.

Proof of Theorem 1.2. Since Lε = Lλε with λ = κε−1, Theorem 1.2 follows directly from Theo-
rem 7.1.

Proof of Theorem 1.3. By translation and dilation we may assume r = 1 and x0 = 0. If
ε ≥ (1/2), the Hölder norm of Aε = A(x/ε) is uniformly bounded. The Lipschitz estimate (1.15)
follows directly from the C1,α estimate in Theorem 2.7. Consider the case 0 < ε < (1/2). Let
uε ∈ H2(B1;Rd) be a weak solution of Lε(uε) = F in B1 = B(0, 1), where F ∈ Lp(B1;Rd) for some
p > d. Let v(x) = εuε(εx). Then

(κε−1)2∆2v − div(A∇v) = Fε,

where Fε(x) = εF (εx). By Theorem 2.7,

|∇uε(0)| = |∇v(0)| ≤ C

{( 
B1

|∇v|2
)1/2

+

( 
B1

|Fε|p
)1/p

}

= C

{( 
Bε

|∇uε|2
)1/2

+ ε

( 
Bε

|F |p
)1/p

}

≤ C

{( 
B1

|∇uε|2
)1/2

+

( 
B1

|F |p
)1/p

}
,

where we have used (1.13) with R = 1 for the last inequality.
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