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extreme precipitation (“200 mm day —1 in several location”) that interrupted the cata-
strophic wildfire season triggered a series of watershed effects from headwaters to
areas downstream. The increased runoff and erosion from burned areas disrupted water
supplies in several locations. These post-fire watershed hazards via source water con-
tamination, flash floods, and mudslides can represent substantial, systemic long-term
risks to drinking water production, aquatic life, and socio-economic activity. Scenarios
similar to the recent event in Australia are now predicted to unfold in the Western USA.
This is a new reality that societies will have to live with as uncharted fire activity, water
crises, and widespread human footprint collide all-around of the world. Therefore, we
advocate for a more proactive approach to wildfire-watershed risk governance in an
effort to advance and protect water security. We also argue that there is no easy solu-
tion to reducing this risk and that investments in both green (i.e., natural) and grey
(i.e., built) infrastructure will be necessary. Further, we propose strategies to combine

modern data analytics with existing tools for use by water and land managers worldwide
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1 | WILDFIRE RISKS TO WATER SECURITY

The 2019-2020 wildfire season in Australia was unprecedented in
recorded history (Boer et al., 2020), burning several catchments supply-
ing drinking water to the 5.5 million Sydney's inhabitants (Box 1) and
threatening many aquatic species with extinction (Pittock, 2020). Simi-
larly, the 2020 wildfires in the Western US, the greatest recorded annual
area burned in the country (4.2 million hectares?), caused dozens of mil-
lions in damages to water distribution systems (Walton, 2020) and trig-
gered widespread debris-flow warnings.? In both countries, heavy
rainfall eventually stopped fire spread, but triggered extensive runoff,
erosion, and mass movements degrading source water quality and avail-
ability, potentially for decades to come (Hanscombe, 2020; Hohner
et al., 2019; Niemeyer et al., 2020; Robinne, 2020).

Australia and Western US extreme wildfire events, among many
others, were directly linked to persistent drought and record-breaking
temperatures (Harris & Lucas, 2019; van Oldenborgh et al., 2020). As the
climate becomes increasingly hotter and drier and human activities con-
tinue to expand, threats to water security will become more prevalent
(AghaKouchak et al., 2018; Hallema et al., 2018; Robinne et al., 2018).

The growing overlap of extreme hydroclimatic events and expan-
ding human activities makes water crises more likely (Franco, 2020).
Climate warming is leading to greater fire danger, including in regions
where fire was previously uncommon (Flannigan et al, 2013;
Higuera & Abatzoglou, 2021; Shukla et al., 2019). Indeed, warmer
temperatures often lead to drier fuels in which fires can ignite sooner,
spread further, and burn more intensely (Flannigan et al., 2016). In
rainforests and wetlands, where wet conditions usually slow or stop

the spread of fires, unusually dry conditions will lead to destructive

to leverage several decades worth of data and knowledge on post-fire hydrology.

climate change, extreme events, fire regime restoration, forest ecosystem services, risk
governance, socio-hydrology, water security, watershed protection

fires impacting surface waters with sediment, carbon compounds, and
toxic metals (Abraham et al., 2017; Granath et al., 2016). Hence,
wildfire-watershed risks (WWR) represent a global challenge that
must be addressed through proactive forest and water governance,
starting with identification of areas at risk. We must then strategically
apply innovative risk reduction strategies to address long-term, large-
scale impacts from catastrophic wildfires in source watersheds (Abadi
et al., 2016; Kinoshita et al., 2016).

Building on the second World Scientists' Warning to Humanity
(Ripple et al., 2017), we argue that scientists, NGOs, water providers,
watershed managers, fire managers, policy-makers, and citizens share
the responsibility to collect, share, and use knowledge of WWR to
develop sustainable environmental policies. In this commentary, we
explain the systemic nature of these risks, illustrating the need for
regionally adaptive and proactive WWR governance. We also briefly
review existing alternatives to WWR management, and we provide
examples of forward-thinking governance schemes in at-risk
locations.

Box 1 2019-2020 fire extent, severity, and post-fire ero-
sion in municipal watersheds of New South Wales and
Australian Capital Territory (Figure 1).

New South Wales was the epicentre of the 2019-2020
extreme wildfire season, experiencing 445 fires, burning
~5.8-million hectares. The yearly average from 1989 to
2019 was 300 fires burning ~180 000 hectares, with a
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maximum area burned of 1.7 million hectares (computed
from NSW historical fire database, see Data S1). Compared
to the long-term average, in 2019-2020 there were
~1.5-times more fires, which burned 32-times greater area.
Most concerning, the wildfires affected source watersheds
that supply drinking water for 5.5-million people, including
25 catchments supplying Sydney and six catchments supply-
ing Australia's capital city Canberra. In total, 46 of 78 (59%)
water supply catchments burned to varying extents (14 over
50%) (see Data S1). Several townships had to restrict water
consumption through boil water advisories and no-
consumption advisories. These restrictions were due, in
part, to direct damage to water treatment and distribution
infrastructures and to power grid damage leading to shut-
down of water treatment facilities. As a result, the
Australian Government pledged to commit $88.1-million
AUD to create a national disaster research centre
(Australian Government, Department of Industry, Science,
Energy, and Resource, 2020).

2 | CATASTROPHIC WILDFIRES AS SOCIO-
HYDROLOGICAL EXTREMES

Anthropogenic development has long affected the occurrence and
magnitude of wildfires, droughts, and floods. These are not “true” nat-
ural hazards anymore: in many regions, most wildfires are human-cau-
sed, often fed by excessive fuel availability resulting from past fire
exclusion efforts (Pereira et al., 2019). Intensive human water use has
concurrently increased the magnitude of droughts in water-scarce
regions, such as California (AghaKouchak et al., 2015), and many
megacities struggle to meet growing water demand (McDonald
et al., 2014). Comparatively, communities with budgetary constraints,
endemic poverty, gender issues, and systemic racism are likely to be
supply
(Cross, 2001; Davies et al., 2018). Hence, urban water supply is

disproportionately impacted by water impairment
increasingly vulnerable to disruption caused by wildfires (Balch
et al.,, 2020; Keys et al., 2019) (Box 2).

WWR is inherently systemic (Deere et al., 2017): fire is a source
of socio-hydrological extreme, whereby the dynamic interactions and
dependencies between upstream source water and downstream
water demand can be disrupted due to (a) exceptional wildfire magni-
tude, (b) vulnerability of water supply infrastructure, and (c) lack of risk
governance (Di Baldassarre et al, 2018). Seeing fire as a socio-
hydrological extreme allows spatial-temporal modelling of negative
wildfire impacts on water resources and the influence of WWR reduc-
tion efforts within the larger challenges of watershed management.
Water resource managers are able to test various disaster risk scenar-
ios and adjust to envisioned consequences of future wildfires—ex

ante—and to the actual consequences of past wildfires—ex post

(Linton & Budds, 2014). Therefore, water security and forest manage-
ment are intrinsically linked; differing coping capacities of socio-
hydrosystems around the world will, however, lead to different WWR
governance regimes (Di Baldassarre et al., 2013; Fischer et al., 2016;
Kumar, 2015; Srinivasan et al., 2012).

Box 2 Global wildfire-watershed risk hotspots

Wildfire-watershed risk hotspots are locations where
water supplies and communities are susceptible to wildfire
effects, such as waterworks damages (e.g., water supply
infrastructure and reservoirs), loss of ecosystem services
(e.g., hydropower outage, fisheries collapse), degradation of
aquatic biodiversity, and potential loss of life (Dilley
et al, 2005; United Nations Office for Disaster Risk
Reduction, 2009) (Figure 2).

Examples of global wildfire-watershed risk hotspots
(with extreme wildfire years) include regions with:

Humid to sub-humid continental climate (i.e., temperate
and boreal forests): Fennoscandia (2015 wildfires), Western
Canada (2016-2019), Siberia (2019). The 2016 Horse River
Fire in Fort McMurray, Canada, caused ~$9 M in additional
water treatment expenditures (Pomeroy et al., 2019).

Semi-arid climate: Western US (2002, 2011, 2016), Iran
(2020). In 2002, the Hayman Fire in Colorado impacted
Denver's water supplies, resulting in $60 M in expenditures
for reservoir dredging (Bladon et al., 2014). In 2020, an
unusual fire season burned 50 000 ha in the Zagros moun-
tains of Iran; these mountains are critical for downstream
water supply (Kheshti, 2020).

Temperate oceanic climate: Australia (2003, 2009,
2020), Chile (2017). In 2017 in Chile, drought and poor
water distribution limited firefighting capacities, disrupting
water supply to millions in Chile's capital Santiago.

Mediterranean climate: Western US (2013, 2018),
Canada (2003), South Africa (2017), Greece (2018), Portugal
(2017). In California, the 2013 Rim Fire threatened the
Hetch-Hetchy reservoir supplying water to San Francisco.
The same year in Viseu, Portugal, water was diverted for
firefighting, disrupting water supply for 100 000 people;
water supply from several water treatment plants became
limited for months due to water contamination with ash. In
2018, the post-fire Montecito, California mudslide killed
23 persons and cost hundreds of millions in damages (Kean
et al,, 2019).

Warm humid (sub)tropical climates: Brazil (2019), Indo-
nesia (2015, 2019), India (2016). News reports on reduced
post-fire water quality in these regions are available, but
detailed documentation of fire impacts on water resources
is difficult to obtain or unavailable.
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Estimated burn severity and estimated erosion in New South Wales and Australia Capital Territory. Panel (a): Wildfire severity

values derived from very-high resolution Sentinel-2 satellite imagery using the fire extent and severity mapping algorithm from the Department
of Planning, industry and environment (see Data S1). Panel (b): Estimated hillslope erosion values for the month of February 2020 calculated using
the revised universal soil loss equation (RUSLE) model (see Data S1). Estimated erosion rates were higher for high burn severity. Municipal
watersheds supply drinking water to Sydney and Canberra, among other communities. Data from: https://www.environment.nsw.gov.au/,

https://www.seed.nsw.gov.au/, and https://data.nsw.gov.au/data/dataset

2.1 | Wildfire-watershed risk governance

Stakeholders hold different degrees of risk knowledge, perception,
and tolerance to risk (Klinke & Renn, 2012); WWR governance can
account for these varying risk cultures. Effective WWR governance
must also account for the compound effects of catastrophic wildfires,
water supply vulnerabilities, and ecological, social, and economic

stresses that can cascade towards socio-hydrosystem collapse

(Figure 3) (Balch et al., 2020; United Nations Office for Disaster Risk
Reduction, 2019; van Asselt & Renn, 2011).

Community and water assets that are vulnerable to wildfire often
display different risk profiles due, for instance, to different wildfire
regimes. As such, post-fire outcomes for the US and Australia do not
directly apply to Chile, India, or Canada (Nunes et al., 2018). Socio-
economic development, land-use history, public health, and relation-
ships to water also often diverge (Linton & Budds, 2014; Miller
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FIGURE 2

Existing and emerging global wildfire-watershed risk hotspots. (a) Water-stressed watersheds (i.e., annual water withdrawal

exceeds annual water supply, see Data S1) with a median wildfire-watershed risk index >24 (n = 8280) (Robinne et al., 2018). (b) Occurrence of
extreme wildfire events recorded between 2002 to 2013 (n = 478; Bowman et al., 2017). (c) Cities (n = 252) that declared current and expected
water supply challenges linked to decreasing water quantity, decreasing water quality, and/or increasing water demand (see Data S1)

et al., 2017; Murphy et al., 2020). Given the social-ecological complex-
ity involved, advancing WWR governance requires synthesis of
knowledge among hydrologists, wildfire scientists, citizens, water pro-
viders, land managers, and various levels of governments responsible
for watershed planning (Clark et al., 2016; Ostrom, 1996; Wheater &
Gober, 2015; Parkes et al., 2010).

Understanding and embedding contextual factors is one major chal-
lenge in the development of locally-relevant decision-support tools for
WWR governance (Blair & Buytaert, 2016; Hallema et al., 2019; Paté-
Cornell, 2012; Ruckelshaus et al., 2015). Parameterizing and adapting
such tools rely heavily on data availability (Fischer et al., 2016;
Kumar, 2015). Reliable hydrological data from fire-impacted areas is
hard to obtain even in economically developed countries, due to the dif-
ficulties inherent to predicting future fire activity and limited available
research funds to deploy and maintain hydrological monitoring net-
works. Where data exist, there may be restrictive access policies and
data inconsistencies. Risk governance, based on a collaborative
approach to knowledge production, will help gather missing information
towards the reduction of socio-hydrosystems' vulnerability, leading to
more relevant and accurate WWR-reduction tools as a result (Canning
et al, 2020; Hallema et al., 2018; Lowndes et al., 2017; Thompson
et al., 2019; Wheater & Gober, 2015).

Even so, it may never be possible to exactly predict WWR
(Gannon et al., 2019; O. D. Jones et al., 2014). Therefore, investing in
risk prevention and literacy, as well as stakeholder preparedness
through transparent communication, will help devise locally appropri-
ate responses towards risk reduction (Boisramé et al., 2019; Kinoshita
et al., 2016; McWethy et al., 2019). Working this way will help reach
consensus towards the definition of regional risk profiles warranting
tailored watershed policies for successful risk management; such ini-
tiatives will also facilitate the social acceptability of risk and of the
actions aiming at its reduction (Blair & Buytaert, 2016; Hamilton
et al,, 2019; Wheater & Gober, 2015).

3 | BEYOND FIREFIGHTING

Appropriate forest management maintains natural water storage
and increase drought resistance, while reducing the negative
impacts of unwanted fires in source watersheds (Boisramé
et al, 2019; van Wagtendonk, 2007). Active forest management,
including mechanical thinning and prescribed burning, can be effec-
tive at reducing fuel loads and mitigating wildfire effects (Gannon
et al, 2019; K. W. Jones et al., 2017; Lydersen et al., 2017).
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FIGURE 3 Risk governance in the wildfire-watershed value chain. Wildfire-watershed risks are recognized through the identification of
interactions between upstream wildfire hazard (i.e., likelihood of a wildfire event of a given, potentially harmful, magnitude), watershed
vulnerability, and downstream water security. After identification of water security vulnerabilities and their social and economic consequences,
effective wildfire-watershed risk governance will offer a set of options to deal with existing at-risk situations. Rapid, slow, and prolonged onset
drivers refer to the speed and depth at which changes in fire and forest management can occur: Rapid onset drivers can be acted upon quickly
and have immediate effects (e.g., biomass reduction), while slow onset drivers are deeply ingrained and affect fire activity on the long term, even
after changes have been made (e.g., fire exclusion policies). Icons made by Freepik and Eucalip

However, fuel management alone is not a panacea due to large-
scale spatial, technical, and financial constraints (K. W. Jones
et al., 2017; North, Brough, et al., 2015; Price & Bradstock, 2012).
The return on investment of fuel treatment also is variable (Gannon
et al., 2019; K. W. Jones et al., 2017), suggesting that complemen-
tary investments in other elements of the WWR value chain are
necessary (Figure 3).

Watershed restoration offers such a complementary solution. For
instance, regions where fire suppression turned historically open tree-
savannas into dense closed-canopy forests, ecosystem water use
increased significantly due to increased evapotranspiration (Boisramé
et al.,, 2019; Roche et al., 2018), leading to reduced streamflow. Safely
using naturally-occurring wildfires to restore overstocked source
watersheds can increase water security by reducing the likelihood of
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extreme fire events while simultaneously increasing streamflow and
subsurface water storage (Boisramé et al., 2019; Roche et al., 2018);
this option must, however, be carefully reviewed, as water demand
from post-fire regrowth can offset gains in water availability
(Brookhouse et al., 2013; Niemeyer et al., 2020).

Degradation of wetlands and their biodiversity worldwide has led
to a greater occurrence of wildfires, particularly in peat landscapes
(Turetsky et al., 2015; Wilkinson et al., 2018). Restoring wetlands, bio-
diversity, and natural fire regimes where the ecosystems have co-
evolved with fire will help maintain the water table closer to the sur-
face, keeping water in the landscape, preventing extreme fires, regu-
lating water flows, and enhancing water quality (Fairfax &
Whittle, 2020; Granath et al., 2016; Wilkinson et al., 2018).

Upfront investments in wildfire prevention, biomass reduction,
and watershed restoration are more successful and cost-effective
than firefighting and post-fire slope stabilization (North, Stephens,
et al,, 2015). Simultaneously improving watershed health and water
supply infrastructures will reduce vulnerability (Box 3). Likewise, pay-
ments for ecosystem services schemes, whereby downstream com-
munities financially support the protection of forested headwaters,
are gaining traction (UNECE and FAO, 2018). There is, however, no
easy solution: WWR mitigation must rely on a combination of grey
(e.g., infrastructure retrofitting) and green infrastructures
(e.g., watershed restoration) adapted to current and projected risk
levels.

Box 3 Building on existing WWR governance

The following locations where WWR has been identi-
fied are proactively dealing with wildfires and their
consequences.

Melbourne, Victoria, Australia: Melbourne relies on for-
ested catchments for 80% of its water supply, in which
Eucalyptus forests are highly flammable. The terrain is steep
and prone to high hillslope erosion rates post-fire, leading to
sediment loads >100 times greater than normal. Water
entering treatment facilities is unfiltered, therefore small
changes in colour and turbidity significantly impact disinfec-
tion efficacy and drinking water quality. Modelling indicates
a large wildfire in the Upper Yarra Reservoir could result in
water being untreatable for a year or more. Although desali-
nated water is available, it is expensive and cannot meet
demand should the major water supply catchment go offline
due to fire-caused contamination. Thus, Melbourne Water
has invested millions in research programs to inform fuel
reduction, firefighting efforts, and post-fire response
(Canning et al., 2020).

Sydney, New South Wales, Australia: The extensive
2019-2020 wildfires burned 35% of Sydney's largest water
supply catchment, Warragamba. In 2019, the Greenwattle

Creek fire was followed by intense rainfall exceeding

200 mm in one day, resulting in substantial ash and sedi-
ment transfer into the water storage, Lake Burragorang.
Hence, Sydney Water led risk mitigation efforts—ash, sedi-
ment, and contaminant transfer modelling into the lake; sed-
iment plume monitoring; water quality monitoring. The
vertically flexible design of the offtake at the dam wall
enabled water to be extracted from outside of the plume
zone (Canning et al., 2020).

Denver, Colorado, USA: The Upper South Platte water-
shed (~6900 km?) provides 80% of the municipal water
supply. Denver Water delivers water to 1.4-million cus-
tomers. After wildfires impacted water supply and distribu-
tion in the 1990s, multi-stakeholder partnerships were
started to plan and implement watershed-scale wildfire risk
assessments, fuel reduction, and ecosystem restoration. The
Upper South Platte provides an example of watershed
investment programs, or payment for ecosystem services
focused on wildfire risk reduction for the protection of
water supplies. Through the US Forest Service Forests to
Faucets program, Denver Water invested $16.5-million,
partly covered by a $27 fee charged to each household
served by the utility. In the first five years of the program,
wildfire mitigation measures were applied to over 470 000
hectares in the watershed.

Fort Collins, Colorado, USA: Following the 2012 High
Park fire in the source watershed of Fort Collins, the munici-
pality closed the river water intake and relied on a second-
ary reservoir. The installation of an in-stream turbidity
sensor expanded upstream monitoring and provided an
early warning system for water treatment operators;
unusual turbidity signals triggered intake pipeline shut
down, protecting conveyance infrastructure from destruc-
tive debris flows and sediment overloads. Additionally, the
municipality constructed a pre-sedimentation basin to
dampen the effects of post-fire turbidity loads on treatment
process performance. Collectively, these measures allowed
for continuous delivery of safe drinking water. Fifteen part-
ner organizations are now working together towards forest
restoration in upstream watersheds through the Northern
Front Range Collaborative Watershed Resilience Project. In
2020, the municipal water supply was again threatened by
the Cameron Peak Fire, which burned ~85 000 hectares in
the Poudre River watershed and triggered water
restrictions.®

Manchester, United Kingdom: The 2018 Saddleworth
Moor wildfire was one of England's largest in recorded his-
tory, burning over 18 km? of upland terrain that supplies the
greater Manchester area with drinking water and has ele-
vated heavy metal concentrations from past industrial activ-
ity. The water supplier, United Utilities, acted promptly in
collaboration with scientists, treating burned hillslopes and

gullies with biodegradable erosion prevention measures.

WILEY_|7*1t
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This also prompted modelling contamination potential from
future fires in unburned catchments in this region for future
risk mitigation.

Lisbon, Portugal: Fires in 2013 and 2017 threatened
water supplies of Lisbon, Portugal, managed by Empresa
Portuguesa das Aguas Livres. After 2013, an additional
water treatment line was built to address potential short-
term water quality issues. After 2017, key parts of the
watersheds received emergency slope stabilization. Ongoing
monitoring and numerical modelling efforts will help better
assess WWR and evaluate the cost-effectiveness of pre-fire
watershed management, post-fire slope intervention, and
water treatment measures.

Western Cape Province, Republic of South Africa: The
“Working for Water programme” focuses on invasive alien
vegetation clearing for water provision. It directly links to
wildfire risk management as many invasive species (e.g., the
tree species Acacia mearnsii) increase fuel loads and connec-
tivity, allowing fire to spread into riparian zones at higher
rates and severity. This poses a threat for water quality and
freshwater ecosystem health as it degrades bank stability
and increases erosion, leading to excess sediment and ash
delivery into streams. This case exemplifies the enhance-
ment of positive feedbacks between ecological perturba-
tions (invasive species and wildfire) in the current context of
global change. A standard practice within this program is the

creation of firebreaks to reduce wildfire risk.

4 | CONCLUSION

Planning for a future where watershed response to wildfire are highly
non-stationary will be challenging (O'Connor et al., 2017). Stake-
holders involved in water security must actively seek a better
socio-hydrological understanding of existing wildfire hazards in their
water-supply areas. Research and management efforts are particularly
urgent in areas where WWR are emerging and where wildfire and
hydrological sciences remain underfunded. To this end, advancing
WWR governance will promote collaboration and knowledge transfer,
prevention, and preparedness to face extreme wildfire events and cas-
cading disastrous consequences on water ecosystem services, like
those experienced in Australia, Western North America, and else-
where (Khan et al, 2015; Martin, 2016; McWethy et al., 2019;
Robinne et al., 2018).
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