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Abstract
Motivated by the widespread use of large gridded data sets in the atmospheric
sciences, we propose a new model for extremes of areal data that is inspired
by the simultaneous autoregressive (SAR) model in classical spatial statistics.
Our extreme SAR model extends recent work on transformed-linear operations
applied to regularly varying random vectors, and is unique among extremes
models in being directly analogous to a classical linear model. An additional
appeal is its simplicity; given a proximity matrix W , spatial dependence is
described by a single parameter !. We develop an estimation method that min-
imizes the discrepancy between the tail pairwise dependence matrix (TPDM)
for the fitted model and the estimated TPDM. Applying this method to simu-
lated data demonstrates that it is able to produce good estimates of extremal
spatial dependence even in the case of model misspecification, and additionally
produces reasonable estimates of uncertainty. We also apply the method to grid-
ded precipitation observations for a study region over northeast Colorado, and
find that a single-parameter extreme SAR model paired with a neighborhood
structure which accounts for longer range dependence effectively models spatial
dependence in these data.
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1 INTRODUCTION

Natural hazards, such as floods and heatwaves, arise as extremes of physical processes that are inherently spatial. Figure 1
shows gridded daily total precipitation output on July 23, 1991 for a study region over northeast Colorado; we will apply
our method to this data in Section 4. The figure clearly shows the spatial extent of this event: Several cells experience
what are extreme precipitation amounts for this region. When estimating joint risk over a region due to extreme events,
for example, for planning or insurance purposes, it is essential to account for spatial dependence.

In classical spatial statistics (e.g., Cressie, 1993), two common approaches are geostatistical models and areal data
models. Geostatistical models are process models designed for point-referenced data, where we assume we have sampled
d of an infinite number of potential spatial locations. Spatial dependence is modeled via a covariance function, and is a
function of distance in the case of isotropy. In areal data models, the entire domain is partitioned into d regions and values
are associated with these regions. Areal data models are not process models but rather finite-dimensional multivariate
models incorporating spatial (neighborhood) structure. The simultaneous autoregressive (SAR; Whittle, 1954) and con-
ditional autoregressive (CAR; Besag, 1974) are two well-known areal models, and modeling their simple spatial structure
often requires estimation of only one parameter.
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F I G U R E 1 Gridded daily precipitation data from the
Climate Prediction Center (CPC) unified gauge-based
analysis on July 23, 1991 over a study region containing
northeast Colorado. Gray lines indicate state borders, and
white x’s mark three cities in Colorado

Methods for extremes differ from standard statistical methods in that they employ models specifically suited for the
distribution’s tail and estimation utilizes only a small subset of extreme data. Classical spatial statistics methods are
closely tied to mean-square prediction and Gaussian distributions and are best suited for describing central tendencies.
Consequently, there has been much interest in developing spatial models appropriate for extremes (see, e.g., Davison,
Huser, & Thibaud, 2019, for an overview). Existing models for spatial extremes, such as max-stable process models, tend
to be geostatistical in nature. Full inference for max-stable and similar models has often been limited to a moderate
number (d≈ 30) of spatial locations, and larger problems require advanced inference methods such as composite likeli-
hood (Huser & Davison, 2013; Padoan, Ribatet, & Sisson, 2010) or semiparametric methods (Buhl, Davis, Klüppelberg,
& Steinkohl, 2019) similar to what we propose in Section 4. A recent alternative to max-stable models are conditional
extremes models (Shooter, Ross, Tawn, & Jonathan, 2019; Wadsworth & Tawn, 2019) which are flexible and have been
applied at a larger number of locations, but whose complexity requires the estimation of two functional parameters of
distance. In addition to work to develop spatial models whose dependence structure arises from extreme value theory,
there is work to characterize how the nature of extreme phenomena vary over a spatial domain (e.g., Cooley, Nychka,
& Naveau, 2007; Sharkey & Winter, 2019), work which aims to characterize patterns or trends in extreme behavior (e.g.,
Cabral, Ferreira, & Friederichs, 2020; Russell, Cooley, Porter, & Heald, 2016), and work which employs alternative spatial
models to capture extreme behavior (e.g., Hazra, Reich, & Staicu, 2020; Sang & Gelfand, 2010).

Areal models have only recently become a topic of interest in the spatial extreme value analysis literature. Such models
are needed, especially in atmospheric sciences, because much of the spatial data available for analysis are indexed by
regular grids. Climate analyses often draw on gridded climate model output, or direct observations that are converted
to gridded “data products” to, among other reasons, facilitate comparison to numerical climate model output. Recently,
Reich and Shaby (2019) proposed a method for areal extremes that accounts for spatial dependence via latent clustering
of neighboring regions, but is not directly analogous to classical areal models.

The aim of this work is to develop a simple spatial extremes model that is computationally feasible for areal data
at a large number of locations. Specifically, we propose a new extreme model inspired by the classical SAR model. Our
extremal SAR models employ the framework of multivariate regular variation (MVRV) for threshold exceedances.

2 BACKGROUND

2.1 Classical SAR model

First introduced by Whittle (1954), the simultaneous autoregressive (SAR) model is a simple model for areal data which
can capture spatial dependence via a neighborhood structure. The classical SAR model can be specified by Y = SY + !,
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where Y is a d× 1 vector, S is a d× d matrix whose diagonal elements are zero, and ! is a d× 1 vector of indepen-
dent zero-mean errors. Typically, it is further assumed ! ∼ MVN(0, "2I), where I is the d× d identity matrix. If (I − S) is
nonsingular, then

Y = (I − S)−1!. (1)

This rewritten form can be thought of as beginning with an independent vector ! and inducing dependence in Y,
specifically Y ∼ N[0, "2(I − S)−1(I − S)−⊤].

To encode spatial information in S, the typical approach (e.g., Anselin, 1988; Cliff & Ord, 1973) is to let S = !W , where
! is a single spatial dependence parameter and W is a d× d spatial proximity matrix that specifies the neighborhood
structure. Many options for spatial proximity measures can be considered. In a simple case, W has entries that are 1 or
0 according to whether or not unit i and unit j are classified as neighbors (with wii = 0). Two common neighborhood
definitions are the rook’s case, in which neighbors share a common edge, and the queen’s case, in which neighbors
share a common edge or a common vertex. More complex definitions of W which extend nonzero values further can
induce longer range dependence, which we explore in Section 4.2.3. Also, it is possible to create higher order SAR models
where S = !1W1 + !2W2 + … + !kWk with {W i} specifying neighbors at different distances (Haining, 1990). However,
increasing the number of spatial parameters makes estimation more complex, and most SAR applications have had a
single spatial parameter !.

To ensure invertibility of (I − !W), ! is required to satisfy !$i ≠ 1 for i= 1, … , d, where $1 < $2 < … < $d are the
ordered eigenvalues of W (Kelejian & Robinson, 1995). In practice, ! is almost always restricted to the interval ($−1

1 , $−1
d ),

or (0 , $−1
d ) when negative spatial autocorrelation is not of practical interest (Haining, 1990; Song & De Oliveira, 2012;

Wall, 2004).

2.2 Extremes and linear operations

2.2.1 Multivariate regular variation on the nonnegative orthant

We will work within the multivariate regular variation (MVRV) framework for threshold exceedances. MVRV provides a
probabilistic characterization of the joint (upper) tail of a random vector, and is defined entirely in terms of the joint tail.
The MVRV framework assumes the heavy-tailed case, that is, it implies that the joint tail decays like a power function.
We model in the nonnegative orthant to focus attention on the upper tail and in the direction of interest, for example, in
our application, we aim to model extremely large precipitation.

There are several equivalent definitions for regular variation (Resnick, 2007, theorem 6.1); the most useful for our
purposes is in terms of polar coordinates. Let Y be a random vector taking values in the nonnegative orthant Rd

+ = [0,∞)d,
and let M+(ℭ) denote the space of nonnegative Radon measures on ℭ = [0,∞]d ⧵ {0}. Given any norm || ⋅ ||, denote the
nonnegative unit sphere Sd−1

+ = {y ∈ Rd
+ ∶ ||y|| = 1}. We define “radial” and “angular” components by R= ||Y|| and ! =

||Y||−1Y, respectively. Then the random vector Y is regularly varying if there exists a sequence cn →∞ and a finite measure
H on Sd−1

+ such that for any H-continuity Borel set B ⊂ Sd−1
+ , and for r > 0,

nP
(

R
cn

> r,! ∈ B
)

v
→ r−&H(B) (2)

in M+(ℭ) as n→∞, where
v
→ denotes vague convergence of measures. The right-hand side of (2) is a product measure,

indicating that the radial and angular components become independent in the limit. H is termed the angular measure and
completely characterizes the limiting tail dependence structure of Y. The tail index & determines the power-law behavior
of the tail. We denote a d-dimensional regularly varying random vector Y with tail index & by Y ∈ RV d

+(&). We denote the
limiting measure as ', that is, for a general set  in M+(ℭ), nP

(
Y
cn

∈ ) v
→ '() = ∫(r,")∈&r−&−1dH(").

2.2.2 Transformed-linear operations and MVRV random vectors

The classical SAR construction relies on linear operations. As we model in the nonnegative orthant to focus attention on
upper tail, this raises the question of how to define a vector space on the nonnegative orthant. To this end, we employ
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“transformed-linear” operations as defined by Cooley and Thibaud (2019). Let t be a bijection from R onto (0,∞), with
t−1 its inverse, and for vectors, apply t and t−1 componentwise. Define vector addition in (0,∞)d by x1 ⊕ x2 = t{t−1(x1) +
t−1(x2)}, and for any a ∈ R, define scalar multiplication of a vector in (0,∞)d by a ◦ x= t{at−1(x)}. Define the additive
identity in (0,∞)d as t(0), and the additive inverse of any x∈ (0,∞)d as −x= t{− t−1(x)}. Then, Cooley and Thibaud (2019)
show that (0,∞)d is a vector space under these transformed-linear operations.

To apply these transformed-linear operations to regularly varying random vectors, we will use the specific transform t ∶
R → (0,∞) defined by t(v) = log{exp(v) + 1}, with inverse t−1(x) = log{exp(x) − 1}. Extending the definition of t such that
t(−∞)= 0, t−1(0)=−∞, and t(∞)= t−1(∞)=∞ yields a bijection t : [−∞,∞]d → [0,∞]d. This bijection has the important
property that limv→∞

t(v)
v = limx→∞

t−1(x)
x = 1, that is, the transform and its inverse have a negligible effect on large values. If

Y ∈ RV d
+(&), Cooley and Thibaud (2019) show that MVRV is preserved by transformed-linear operations with transform

t. Specifically, they show that if Y1,Y2 ∈ RV d
+(&) and independent, each with normalizing sequence cn and with respective

limiting measures 'Y1 and 'Y2 , then Y1 ⊕ Y2 ∈ RV d
+(&), and nP{c−1

n (Y1 ⊕ Y2) ∈ ⋅}
v
→ 'Y1(⋅) + 'Y2(⋅). They also show that

for Y ∈ RV d
+(&) with normalizing sequence cn and limiting measure 'Y and nonnegative scalar a, nP{c−1

n (a◦Y ) ∈ ⋅}
v
→

a&'Y(⋅). Cooley and Thibaud (2019) impose a lower tail condition on Y so that scalar multiplication can be extended to
negative scalars a while still preserving regular variation; here we restrict our attention to nonnegative scalars.

Matrix multiplication can be defined using transformed-linear operations, and we consider constructing regularly
varying random vectors by applying transformed-linear matrix multiplication to a vector of iid regularly varying random
variables. Recall in the nonextreme setting, by letting Y=AZ where A ∈ Rd×q and Z∼MVN(0, Iq× q), one can construct a
correlated Gaussian random vector with Cov(Y)=AAT . Let A = (a1, … , aq) ∈ Rd×q with aij ≥ 0 and max i=1,… ,daij > 0 for
all j= 1, … , q, and let Z= (Z1, … , Zq)⊤ be a vector of iid regularly varying random variables with tail index & such that
nP(c−1

n Zj > z) → z−& , j= 1, … , q. Then A ◦ Z = a1 ◦ Z1 ⊕ … ⊕ aq ◦ Zq = t{At−1(Z)} ∈ RV d
+(&), and when renormalized

by {cn} has limiting angular measure

HA ◦ Z(⋅) =
q∑

j=1
||aj||&)aj∕||aj||(⋅), (3)

where ) is the Dirac mass function. Thus, by applying the matrix A to a vector of independent regularly varying random
variables, we obtain a regularly varying random vector with extremal dependence structure described by HA ◦Z.

The angular measure HA ◦Z is discrete, consisting of point masses with locations corresponding to the normal-
ized columns of A. In fact, it is the same limiting angular measure as for the max-linear construction A×max Z =
(max j=1,… ,da1jZj, … ,max j=1,… ,dadjZj)⊤ (e.g., Fougères, Mercadier, & Nolan, 2013). Although the constructions A ◦Z
and A×max Z are similar, they differ in their realizations, as large realizations of the transformed-linear construction
have angular components near but not exactly at locations corresponding to the normalized columns of A. More impor-
tantly, transformed linear matrix multiplication has a natural inverse: if A−1 denotes the standard matrix inverse, then
A−1 ◦ (A ◦Z)=A ◦ (A−1 ◦Z)=Z.

2.2.3 Tail pairwise dependence matrix

In standard statistical practice, dependence is often analyzed via the covariance matrix, even when Gaussianity is not
assumed. Because the covariance matrix is not designed to capture dependence in the tail, we construct a matrix that
summarizes second-order properties of the angular measure. Suppose Y = (Y1, … ,Yd)⊤ ∈ RV d

+(2) such that nP(n−1∕2Y ∈
⋅)

v
→ 'Y(⋅), where 'Y(dr × d") = 2r−3drdHY(") with HY a Radon measure on the nonnegative L2 unit sphere Sd−1

+(2) =
{" ∈ Rd

+ ∶ ||"||2 = 1}. Then Cooley and Thibaud (2019) define the d× d tail pairwise dependence matrix (TPDM) as
ΣY = ("Yik)i,k=1,… ,d, where

"Yik = ∫Sd−1
+(2)

*i*kdHY(") (4)

is the extremal dependence measure defined in the bivariate case by Larsson and Resnick (2012). The assumption that
& = 2 and using the L2 norm result in the TPDM ΣY having many properties that are analogous to those of a covariance
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matrix.ΣY is positive semidefinite. The diagonal entries ofΣY provide information about the scale of the components of Y;
specifically, "Yii is equal to the square of the marginal scale parameter of Y i. For i≠ k, "Yik = 0 corresponds to asymptotic
independence of the components Y i and Y k (Cooley & Thibaud, 2019).

Regularly varying random vectors constructed via transformed-linear matrix multiplication have a special form of the
TPDM. Let A ∈ Rd×q with aij ≥ 0 and max i=1,… ,daij > 0 for all j= 1, … , q, where q≥ d, and let Z= (Z1, … , Zq)⊤ be a
vector of iid regularly varying random variables with& = 2 such that nP(c−1

n Zj > z) → z−2, j= 1, … , q. ThenΣA ◦ Z = AA⊤.

3 EXTREME SAR MODELS

In this section we propose multivariate extreme analogues of the classical SAR model presented in Section 2.1.

3.1 A SAR-inspired model for areal extremes

3.1.1 Formulation

Let Z= (Z1, … , Zd)⊤ be a vector of iid regularly varying random variables with tail index & such that nP(c−1
n Zj > z) →

z−& , j= 1, … , d. Let S be a d× d matrix whose diagonal elements are zero, and satisfying (I − S) nonsingular. Then,
using transformed-linear operations, we can define the equivalent expressions (see Supplement Section S1 for the full
expansions):

Y = S ◦ Y ⊕ Z,
⇔ (I − S) ◦ Y = Z,

⇔ Y = (I − S)−1 ◦ Z. (5)

Throughout, we follow the usual SAR single-parameter scheme, but note that the model could be extended to be
higher order as with the classical SAR (see Section 2.1). We choose to let S = !W , where ! is a single spatial dependence
parameter and W is a nonnegative spatial proximity matrix. This results in the model formulation

Y = (I − !W)−1 ◦ Z. (6)

For simplicity of notation, we denote the matrix (I − !W)−1 by A= (a1, a2, … , ad). Thus, we can write Y=A ◦Z,
matching the construction described in Section 2.2.2.

3.1.2 Condition on # and properties

Recall from Section 2.2.2 that we wish to restrict attention to A with nonnegative entries. We can show that in the case of
A = (I − !W)−1, if ! takes on a similar restriction as for the classical SAR, then A is both well-defined and nonnegative.
The proof (see Supplement Section S2) uses results from nonnegative matrix theory (e.g., Plemmons, 1977).

Proposition 1. Let W be a d× d spatial proximity matrix whose diagonal elements are zero and off-diagonal entries are
nonnegative. Let $1 < $2 < … < $d denote the ordered eigenvalues of W. If

! ∈ (0 , min {|$1|−1, |$d|−1}), (7)

then A = (I − !W)−1 exists and is a nonnegative matrix.

Note that for square lattices with W a binary proximity matrix under the rook neighborhood specification, $1 ↓ −4 and
$d ↑ 4 as d→∞ (Haining, 1990), so ! ∈ (0, 0.25) is a sufficient restriction to ensure A exists and is entrywise nonnegative.
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Henceforth, we assume that ! meets condition (7). Y as defined in (6) has angular measure given by (3). In the case
of & = 2, using the L2 norm and with cn =n1/2, the TPDM of Y simplifies to

ΣY(!) = (I − !W)−1(I − !W)−⊤, (8)

which is reminiscent of the covariance matrix in the Gaussian SAR model.

3.2 An extreme SAR model with common scale

There is an issue with the extreme SAR model as defined in Section 3.1 which could prove problematic for implementa-
tion. The diagonal elements of the TPDM given in (8) are not identical (see Figure 2, left), and thus the marginal scale
parameters of the elements of Y differ. Similar behavior is found in the classical SAR, which is not marginally station-
ary. In most classical SAR work, this issue is not addressed, and marginal distributions at the locations are allowed to
have different variances. However, like for many spatial extremes models, application of our model likely will involve a
marginal transformation. The fact that the marginal scales depend on ! poses a challenge for the often-used two-stage
inference procedure for multivariate extremes, in which one first estimates the marginal effects and then estimates the
tail dependence structure after marginal transformation. If ! was known, it would be possible to transform the marginals
accordingly, but here ! is unknown and must be estimated. To address this issue, we propose an extension, which results
in common (unit) marginal scale parameters and is thus more amenable to a two-stage inference procedure.

Let Z= (Z1, … , Zd)⊤ be a vector of iid regularly varying random variables with tail index & = 2 such that nP(n−1∕2Zj >
z) → z−2, j= 1, … , d. Let A = (I − !W)−1 as before, and let D= diag(||A1⋅||2, … , ||Ad⋅||2) denote the diagonal matrix of
the L2 norms of the rows of A. Then the common-scale model is defined as follows:

Y = Ã ◦ Z = D−1A ◦ Z. (9)

Note that D, like A, depends on the value of !.
Because we assume ! meets condition (7), A is nonnegative and has positive row norms. Thus Ã is also nonnegative,

and the modified formulation (9) results in the TPDM

ΣY(!) = ΣÃ ◦ Z = ÃÃ⊤ = D−1AA⊤D−1, (10)

which has diagonal elements "Yii = ||Ai⋅||−1
2 ||Ai⋅||22||Ai⋅||−1

2 = 1 (Figure 2, right). This means each component of Y has
a marginal scale parameter of 1, that is, nP(n−1∕2Yi > y) → y−2, i= 1, … , d. The limiting angular measure for this
common-scale model is

HY(⋅) = HÃ ◦ Z(⋅) =
d∑

j=1
||ãj||22 )ãj∕||ãj||2(⋅), (11)
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where ãj denotes the jth column of Ã, for j= 1, … , d.

4 ESTIMATION AND INFERENCE

The beauty of classical areal models such as the SAR and CAR is their simplicity: spatial dependence is induced by a single
parameter ! and predetermined spatial proximity matrix W . However, this overly simplistic representation of dependence
can lead to difficulties for inference. For example, Besag and Kooperberg (1995) note that a common issue with the CAR
is that appreciable correlations between neighboring sites require parameter values extremely close to the boundary of
the parameter space.

The discrete nature of the limiting angular measure of the extreme SAR model poses a challenge to estimation. To
our knowledge, likelihood-based inference has not been attempted for existing extremes models with discrete angular
measures, such as max-linear models (Fougères et al., 2013; Wang & Stoev, 2011). Instead, several minimum distance
methods have been proposed. Yuen and Stoev (2014) propose an M-estimator based on the continuous ranked probability
score of multivariate cumulative distribution functions. Einmahl, Kiriliouk, Krajina, and Segers (2016) also propose an
M-estimator, theirs based on the stable tail dependence function, which is related to the upper tail of the underlying
cumulative distribution function. Einmahl, Kiriliouk, and Segers (2018) extend the previous approach with an adaptive
weighted least-squares procedure. The max-linear examples examined in the aforementioned studies are of dimension at
most d= 10, whereas in this section we consider an extreme SAR model of dimension d= 400.

Least squares fitting of nonextreme spatial models is common, often by minimizing the difference between
empirical and model variograms (Cressie, 1993, section 2.6). Below, we propose a novel least squares method
for estimation of ! based on the TPDM. After providing details of our method, we apply it to three types of
data sets: simulated data from the extreme SAR model, simulated data from a max-stable process, and gridded
precipitation data.

4.1 Model fitting via the TPDM

The TPDM ΣY(!) is a useful summary of the extremal dependence induced by the SAR model. The goal of this approach is
to find the value of ! whose corresponding theoretical TPDM most closely matches the observed tail pairwise dependence
structure with respect to the Frobenius norm. Implementing this method involves several considerations. First, we must
obtain an estimate of the TPDM, Σ̂Y, from the data. We use a threshold-based estimator defined using a d-dimensional
vector norm. It is well known that in cases of moderate to weak extremal dependence, threshold-based estimators tend to
overestimate dependence (Huser, Davison, & Genton, 2016). To mitigate this bias, we propose a simple method to obtain
a bias-corrected estimate of the TPDM, Σ̃Y. Finally, we find !̂ such that we minimize the squared Frobenius norm of
ΣY − Σ̃Y, defined as ||ΣY − Σ̃Y||2F = ∑d

i=1
∑d

j=1 |"Yij − "̃Yij|2. We estimate uncertainty via bootstrapping. Below we describe
each of these steps in more detail.

4.1.1 Estimation of the TPDM

The estimator we use for the TPDM was proposed by Cooley and Thibaud (2019), and extends an estimator given by
Larsson and Resnick (2012) to dimension d > 2. This estimator replaces the true angular measure with an empirical
estimate. Let yt = (yt1, yt2, … , ytd), t = 1, … , n, denote our observations with the appropriate regularly varying marginals.
Note that this may require first performing a suitable marginal transformation. Let the radial component rt = ||yt||2, and
the angular component "t = ytr−1

t . Set a suitably high threshold r0 for the radial components, and let nexc =
∑n

t=1 I(rt > r0)
be the number of threshold exceedances. In practice, it is convenient to define r0 in terms of an empirical quantile of the
data, which we will denote by qr0 . We define

"̂Yij = m̂∫Sd−1
+(2)

*i*jdN̂Y(") =
m̂

nexc

n∑
t=1

*ti*tjI(rt > r0), (12)
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where NY(⋅)=m−1HY(⋅), and m̂ is an estimate of HY(Sd−1
+(2)). In application, because we either simulate or preprocess our

data to have common unit scale, m= d and does not need to be estimated.
Let Σ̂Y = ("̂Yij)i,j=1,… ,d. Note that Σ̂Y is symmetric and positive semidefinite, as Σ̂Y = n−1

excm̂!̂⊤!̂, where !̂ is a matrix
whose rows are the vectors "t for which rt > r0. The estimator (12) is of a form widely used in extreme analyses.
Resnick (2004) and Larsson and Resnick (2012) show consistency of such estimators using intermediate asymptotic
arguments common to extremes.

4.1.2 Bias correction of the estimated TPDM

We anticipate that finite-sample estimates of ΣY will be biased. In particular, threshold-based estimators are known to
overestimate dependence when true dependence is moderate to weak (Huser et al., 2016), such as is the case when the
distance between grid cell pairs is moderate to large for the extreme SAR. Naively minimizing ||ΣY(!) − Σ̂Y||2F would
result in an overestimate of !. Instead, we propose an intermediate step to obtain a bias-corrected estimate of the TPDM,
denoted by Σ̃Y. Our bias correction approach assumes that the true pairwise tail dependence should be close to zero at
large distances. This assumption is based on knowledge of the spatial extent of the modeled phenomenon relative to the
size of the study area; the localized behavior of extreme precipitation events in the study region shown in Figure 1 indicate
this is a reasonable assumption for our application. We provide more details about the bias correction when we apply to
data in Section 4.2.1.

4.1.3 Estimation of #

Recall from Section 3.2 that the theoretical TPDM for the common-scale formulation of the extreme SAR model is

ΣY(!) = ÃÃ⊤ = diag(1∕||A1⋅||2, … , 1∕||Ad⋅||2)AA⊤diag(1∕||A1⋅||2, … , 1∕||Ad⋅||2), (13)

where A = (I − !W)−1. After estimating Σ̂Y and performing bias correction to obtain Σ̃Y, the final step is to find

!̂ = arg min!∈(0 , min {|$1|−1,|$d|−1})||ΣY(!) − Σ̃Y||2F , (14)

where $1 < … < $d are the ordered eigenvalues of W , and the restriction on ! follows from Proposition 1. We find !̂ using
numerical optimization in R (R Core Team, 2018).

We estimate uncertainty via a nonparametric bootstrap procedure. Specifically, we first sample with replacement from
the original n observations (each of which is d-dimensional), ensuring the preservation of the dependence structure. In
cases where marginal transformation is required, doing the resampling after transformation would not include uncer-
tainty in !̂ resulting from the transformation. For each bootstrap replicate, we perform the inference procedure described
above, starting with estimating the TPDM and ending with estimating !. We then obtain 95% confidence intervals using
the percentile method.

4.2 Application to simulated and observed data

We investigate our estimation and inference procedure on three different data categories of increasing inferential chal-
lenge. Each data set will consist of n realizations or observations of a 20× 20 spatial field. Note that this differs from the
typical setup in spatial statistics, which includes only one observation of a spatial field, but is standard for the analysis of
multivariate and spatial extremes.

4.2.1 Simulation from the true extreme SAR model

To demonstrate our method, we begin by simulating realizations from the true extreme SAR model (9). Let W be
the 400× 400 binary proximity matrix following the rook neighborhood specification. We select two values of ! for
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F I G U R E 3 Results of estimating ΣY for data simulated from the true extreme simultaneous autoregressive model with ! = 0.2,
qr0 = 0.99, and no added noise. True values {"Yij} (blue circles) are plotted against pairwise Euclidean distances. The left panel compares the
true values to means of the estimates {"̂Yij} at each distance (gray x’s). The right panel compares the true values to means of bias-corrected
estimates {"̃Yij} at each distance (red x’s)

simulations: ! = 0.1 (weaker dependence) and ! = 0.2 (stronger dependence). For each value of !, we simulate n= 10, 000
independent realizations of a d= 400-dimensional random vector Ziid∼ Fréchet(& = 2, scale = 1), that is, P(Zj ≤ z) =
exp(−z−2) for j= 1, … , 400. Each realization of Z represents values found on a 20× 20 square lattice. To each realization
of Z, we apply transformed-linear multiplication with the Ã matrix corresponding to W and the given value of !, to obtain
n independent realizations of Y. These realizations {yt}n

t=1 are independent temporal replicates of heavy-tailed spatial
fields whose spatial extremal dependence is specified by (9).

Since we do not believe that real-world data will follow the true model exactly, it is important to investigate how our
estimation and inference procedures react to deviations from the true model. A first step is to add light-tailed noise. For
purposes of illustration, we add $ t

iid∼Exp(2) to each realization yt. At moderate thresholds we expect this independent
noise to dilute the spatial dependence and lead to underestimation of !. Because the noise is light-tailed, we expect its
effect to diminish as the threshold increases.

For simulations from the true extreme SAR model, we know both the true ! and the true ΣY(!). Below, we use the base
case of data simulated from the true model with ! = 0.2 with no added noise to illustrate our modeling choices in each
of the steps described in Section 4.1. Estimation of ΣY and hence of ! depends on the threshold quantile. We choose the
0.99 quantile for our initial illustration. We then explore the effect of varying the threshold quantile, and present results
for various combinations of the true !, threshold quantile, and presence of light-tailed noise.

Estimation of the TPDM
The left panel Figure 3 shows results of estimating the TPDM for the base case using the estimator defined in

Section 4.1.1. As expected, this estimator tends to overestimate the tail pairwise dependence, especially at moderate to
large distances when true dependence is weak.

Bias correction of the estimated TPDM
Based on the results of estimating ΣY, we propose a simple bias correction method which reflects our knowledge that

the true pairwise extremal dependence should be close to zero when the distance is large enough between grid cell centers.
We temporarily view "̂Yij as a function of pairwise distance, and fit the curve "̂ = -0e−-1∗distance + -2 to the estimated TPDM
values (see Supplement Figure S2, left). Then -̂2 is our estimate for the horizontal asymptote. In the base case of ! = 0.2
and qr0 = 0.99, we obtain -̂2 = 0.134. Note that "Yii is unbiased on average, so it is only necessary to bias-correct the
off-diagonal entries of Σ̂Y. We make a simplifying assumption of constant bias for pairwise distances greater than zero.
Our bias-corrected estimate of the TPDM is then Σ̃Y = ("̃Yij)i,j=1,… ,d, where

"̃Yij =
{

"̂Yij, i = j,
("̂Yij − -̂2)+, i ≠ j.

(15)
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We take the positive part in the latter case because we know that ΣY is entrywise nonnegative for the true extreme
SAR under our model specifications. The right panel of Figure 3 compares the bias-corrected Σ̃Y to the true ΣY for the
base case.

Estimation of !
For the base case, minimizing the squared Frobenius norm ||ΣY(!) − Σ̃Y||2F results in an estimate of !̂ = 0.197, which

is quite close to the true value of ! = 0.2. The corresponding 95% bootstrap confidence interval based on 1,000 bootstrap
replicates is (0.192, 0.202), which covers the true value.

Estimation of a risk region occurrence probability
We can also compare the probability of an event occurring in a given risk region between the true and fitted extreme

SAR models. Let us define a risk region by

 = {y ∈ Rd
+ ∶ max

i∈
yi > y0}, (16)

where  ⊂  = {1, … , d}. Our goal is to estimate p = P(Yt ∈ ). We choose this particular form of the risk region
for ease of calculation, but note that occurrence probabilities can be estimated in a similar manner for any risk region of
interest.

For the extreme SAR model,

'() = ∫"∈Sd−1
+(2)

max
i∈

(
*i
y0

)2
dH(") = 1

y2
0

d∑
j=1

max
i∈

Ãij
2. (17)

Next we obtain our occurrence probability estimate. We assume n is fixed and large enough such that nP
(

Y
cn

∈ ⋅
)
≈

'(⋅), where the appropriate normalizing constant in this case is cn =n1/2. So we get

nP(n−1∕2Yt ∈ n−1∕2) ≈ '(n−1∕2)
⇒ P(Yt ∈ ) ≈ n−1'(n−1∕2) ≈ '(), (18)

where the last approximation follows from the scaling property of '. Since the risk region occurrence probability depends
on Ã, which in turn depends on !, we will use the notation p(!).

As an example, suppose  = {174,193, 194,195, 214}, corresponding to a plus-shaped region of grid cells within the
20× 20 grid, and let y0 = 30. For the true extreme SAR model with ! = 0.2, we can use (17) and (18) to obtain p(!) ≈
4.57 × 10−3. Our fitted model with !̂ = 0.197 yields the estimate p̂ = p(!̂) ≈ 4.63 × 10−3, which is very similar. Plugging
in our 1,000 bootstrapped estimates for !, we obtain a corresponding 95% confidence interval for the probability estimate
of (4.52× 10−3, 4.70× 10−3), which covers the true p(!). For reference, the empirical occurrence probability based on our
simulation of 10,000 grids was 5.70× 10−3.

Sensitivity to threshold selection, true dependence, and noise
Estimation of ΣY, and therefore of !, depends on the choice of threshold. Figure 4 illustrates the effect of threshold

selection on estimates of !. We let the threshold r0 be the empirical qr0 -quantile of data simulated from the true model, for
qr0 = 0.95, 0.975, 0.99, 0.995, and 0.999. Figure 4 shows the corresponding estimates for ! using our chosen bias-corrected
method (in red) as well as the estimates we would have obtained if we did not bias correct Σ̂Y and instead minimized
||ΣY(!) − Σ̂Y||2F (in black). We see that as qr0 increases, point estimates from both methods get closer to the true value
of !. Also in both cases, the uncertainty increases with qr0 since the sample size (number of exceedances) decreases. As
we would expect based on the consistency of Σ̂Y, omitting bias correction of Σ̂Y leads to accurate estimates of ! when
qr0 is high enough (e.g., when qr0 = 0.999). However, at less extreme threshold quantiles corresponding to a reasonable
number of exceedances in practice, our bias-corrected method performs much better and is effective in reducing the bias
in estimation of !.

In addition to varying the threshold quantile, we also explored different values of the true ! and the effect of adding
light-tailed noise. Table 1 gives point estimates for ! along with 95% confidence intervals based on 1,000 bootstrap repli-
cates for four cases. The first row starts with the base case of ! = 0.2, qr0 = 0.990, and no added noise. Each subsequent
row of the table represents a change to either the true !, the norm threshold quantile, or the presence of light-tailed noise,
from this base case. We see that the estimates for ! are slightly biased low in all cases, and as expected the bias increases
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F I G U R E 4 Effect of varying threshold quantile qr0 on estimates of ! using our proposed bias-corrected method (red) and estimates
without bias-correction (black) for data simulated from the true extreme simultaneous autoregressive model with ! = 0.2 (left) and ! = 0.1
(right). Dashed lines indicate the true value of !. Solid vertical lines represent 95% bootstrap confidence intervals

T A B L E 1 Results from fitting via the TPDM for data simulated
from the true model

# qr0 Noise #̂ 95% CI

0.2 0.990 No 0.197 (0.192, 0.202)

0.1 0.990 No 0.098 (0.097, 0.103)

0.2 0.975 No 0.196 (0.193, 0.200)

0.2 0.990 Yes 0.196 (0.191, 0.202)

Note: Columns represent (from left to right): the true value of !, norm
threshold quantile, presence of light-tailed noise, point estimate, and 95%
bootstrap CI for !.
Abbreviations: CI, confidence interval; TPDM, tail pairwise dependence
matrix.

when the threshold is lowered or noise is added. However, the 95% bootstrap confidence interval covers the true value of
! in all cases.

Finally, we assess coverage for the base case by repeating our simulation 100 times. In each repetition, we simulate
n d-dimensional fields from the true extreme SAR model, then estimate ! and the corresponding occurrence probability
for the risk region defined previously. We obtain 95% bootstrap intervals based on 1,000 bootstrap replicates, and find an
empirical coverage rate of 96% for both ! and p(!).

4.2.2 Simulation from a Brown–Resnick process

Our second category of data comprises simulations from a Brown–Resnick process (Brown & Resnick, 1977; Kabluchko,
Schlather, & de Haan, 2009). Brown–Resnick processes form a flexible class of max-stable processes constructed from
intrinsically stationary Gaussian processes parameterized by variograms. As a more realistic deviation from the true model
(9), we simulate n= 10, 000 independent realizations from a Brown–Resnick process at the set of d= 400 grid cell centers.
We use the variogram 2.(s, s′) = 2(||s − s′||2∕$)/ , where s, s′ denote locations of grid cell centers, and $ > 0 and / ∈ (0, 2]
control the range and the smoothness, respectively (Thibaud, Aalto, Cooley, Davison, & Heikkinen, 2016). We simulate
our processes to have Fréchet (& = 2, scale = 1) marginals. Although the Brown–Resnick processes are max-stable, the
processes observed at a finite number of locations are also multivariate regularly varying.

Importantly, there is no true ! value for the Brown–Resnick model. In order to evaluate the model fitting procedure,
we choose $ = 0.431 and / = 1.148 to minimize the squared error between TPDM values from the SAR model with ! = 0.2
and pairwise extremal dependence measures for the Brown–Resnick model (derived in Supplement Section S3). We do
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F I G U R E 5 Comparison of the tail pairwise dependence matrix
ΣY(!̂) for the fitted extreme simultaneous autoregressive model (red)
and the true ΣBR of the Brown–Resnick process with $ = 0.431 and
/ = 1.148 (blue)

not compare the SAR model fit to that of a fitted Brown–Resnick model to this data, as fitting a Brown–Resnick model to
400 locations is an arduous task.

Estimation and bias correction of the TPDM
Applying the estimator defined in Section 4.1.1 to the base Brown–Resnick case similarly overestimates pairwise tail

dependence at most distances (see Supplement Figure S3, left). Using the same bias correction procedure as before, we
obtain a bias-corrected estimate Σ̃Y with entries given by (15) with -̂2 = 0.045 (see Supplement Figure S2, right). As before,
this procedure mitigates bias especially at moderate to large distances (see Supplement Figure S3, right).

Estimation of !
For the base Brown–Resnick case, minimizing ||ΣY(!) − Σ̃Y||2F results in an estimate of !̂ = 0.192 with a correspond-

ing 95% bootstrap confidence interval of (0.188, 0.199). Although there is no true ! in the case of the Brown–Resnick
simulations, we can assess our performance based on the known pairwise tail dependence. Figure 5 compares the the-
oretical TPDM ΣY(!̂) based on the fitted extreme SAR model to the true pairwise extremal dependence measures {"BR

ij }
of the Brown-Resnick process that we simulated from. Even though we are fitting the wrong model to the data, we are
able to estimate dependence well. Compared with the true pairwise dependence, the fitted extreme SAR model slightly
underestimates dependence, especially at shorter distances.

Estimation of a risk region occurrence probability
We can also compare the theoretical occurrence probability for a given risk region to the estimated probability based

on the fitted extreme SAR model. Again, we define a risk region  by (16). For the Brown–Resnick process, we can use
the known exponent measure V(⋅) to calculate pBR = P(Yt ∈ ). Specifically,

P(Yt ∈ ) = 1 − P(Yti ≤ y0 for all i ∈ )
= 1 − exp{−V(y0)}, (19)

where y0 = (y0, … , y0) is a vector of dimension card (). For the same plus-shaped example of  =
{174,193, 194,195, 214} and y0 = 30 as before, we obtain pBR = 4.18 × 10−3. In comparison, the probability estimate
for the fitted extreme SAR model is p(!̂) = 4.71 × 10−3, with a corresponding 95% bootstrap confidence interval of
(4.60× 10−3, 4.77× 10−3). By fitting the extreme SAR model to simulations from a Brown–Resnick process, we slightly
overestimate the occurrence probability. For our particular form of risk region, this corresponds to slightly underesti-
mating the tail dependence, as we already saw from Figure 5. For reference, the empirical occurrence probability for our
10,000 simulated Brown–Resnick fields was 4.30× 10−3.

Sensitivity to threshold selection and true dependence
We investigate the effect of threshold selection on our estimation and inference of ! in the same manner as we did for

simulations from the extreme SAR model. We let the threshold r0 be the empirical qr0 -quantile of data simulated from a
given Brown–Resnick process, for qr0 = 0.95, 0.975, 0.99, 0.995, and 0.999, and consider estimates with and without bias
correction. Similarly as before, as qr0 increases, the point estimates from the two methods get closer to each other, while
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T A B L E 2 Results from fitting via the TPDM for data simulated
from a Brown–Resnick process

& ' qr0 #̂ 95% CI

0.431 1.148 0.990 0.192 (0.188, 0.199)

0.254 1.341 0.990 0.101 (0.091, 0.112)

0.431 1.148 0.975 0.186 (0.183, 0.191)

Note: Columns represent (from left to right): the range and smoothness
parameters of the Brown–Resnick simulations, norm threshold quantile,
point estimate, and 95% bootstrap CI for !.
Abbreviations: CI, confidence interval; TPDM, tail pairwise dependence
matrix.

the uncertainty of these estimates increases (see Supplement Figure S4). This is consistent with our familiar bias-variance
tradeoff for threshold selection.

For easy comparison with Table 1, Table 2 gives point estimates for ! along with 95% confidence intervals based
on 1,000 bootstrap replicates for three cases. The first row starts with the base case of qr0 = 0.99 and Brown–Resnick
parameters $ = 0.431 and / = 1.148, which give rise to the TPDM values closest to the extreme SAR model with ! = 0.2.
Each subsequent row of the table represents a change to either the Brown–Resnick parameters (to those which minimize
the squared error to TPDM values for the extreme SAR model with ! = 0.1) or the norm threshold quantile from this
base case.

4.2.3 Gridded precipitation observations

For our data application (recall Figure 1), we use the Climate Prediction Center (CPC) unified gauge-based analysis of
daily precipitation (National Oceanic and Atmospheric Administration, 2010). This is a gridded product with 0.25◦ res-
olution over the contiguous United States and daily observations for the 59 years between 1948 and 2006. We choose a
region of 20× 20 grid cells containing northeastern Colorado, and restrict our attention to precipitation between May 1
and September 30 of each year for a total of n= 9, 027 daily observations of this region.

Unlike the simulated data in Sections 4.2.1 and 4.2.2, which already have appropriate regularly varying marginals, the
precipitation data requires transforming the marginal distributions to be approximately Fréchet with & = 2 and scale =
1 before fitting our dependence model. There are many possible ways to implement such a marginal transformation. In
Section S5 of the Supplement, we describe our chosen procedure, which uses a parametric form for the upper tail and a
nonparametric form below a marginal threshold. Figure 6 shows the same precipitation data as in Figure 1, after applying
the marginal transformation.

Following the same procedure as for simulations from the true model and simulations from a Brown–Resnick process,
we first estimate the TPDM from the data, using qr0 = 0.99 as our threshold quantile. We then bias-correct to obtain Σ̃Y.
As a first attempt, we assume W to be a binary proximity matrix following the rook neighborhood structure. Minimizing
||ΣY(!) − Σ̃Y||2F leads to an estimate of !̂ = 0.236, with corresponding 95% bootstrap confidence interval (0.230, 0.241). The
left panel of Figure 7 compares the fitted TPDM ΣY(!̂) to the means at each distance of the bias-corrected {"̃Yij}. The
discrepancy shown here indicates that the model with the simple rook structure is not able to fully capture the longer
range dependence (i.e., larger storm sizes) apparent in the data.

A natural way to adapt our extreme SAR model for longer range dependence is to modify the neighborhood structure
encoded by the proximity matrix W . Instead of the simple rook structure, which puts weights of 1 at the four nearest
neighbors, exploration leads us to use a larger template based on a Gaussian kernel that assigns weights to second- and
third-order neighbors as shown in Figure 8. Now, letting W be the new spatial weights matrix corresponding to this larger
template, (7) gives us an upper bound for ! of 0.078, and fitting the extreme SAR model results in an estimate of !̂ = 0.070
(0.068, 0.072). The right panel of Figure 7 compares the fitted TPDM ΣY(!̂) to the bias-corrected Σ̃Y estimated from the
precipitation data. We can see that using the larger template allows us to better match the observed tail dependence
structure, especially in terms of capturing longer-range dependence.

As previously done with the simulated data, we consider a risk region  defined by (16). Now the set of component
indices  = {174,193, 194,195, 214} corresponds to the grid cell containing Wray, Colorado, and its four nearest neigh-
bors. As before, we let y0 = 30. Our risk region occurrence probability can be interpreted as the probability of transformed
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F I G U R E 6 Example of marginal transformation:
gridded precipitation data over the study region from the
Climate Prediction Center (CPC) unified gauge-based
analysis for the same example day as Figure 1, after
transformation to Fréchet(& = 2, scale = 1) marginals

F I G U R E 7 Results from fitting an extreme simultaneous autoregressive model to gridded precipitation observations, using two
different neighborhood structures: the simple rook neighborhood (left) and a larger template (right). The tail pairwise dependence matrix
ΣY(!̂) for the fitted model (pink) is compared with means of the bias-corrected estimate Σ̃Y (purple)

daily precipitation exceeding 30 units in at least one of the five grid cells under consideration, which is approximately the
0.999 quantile at each of these five locations. Based on the fitted extreme SAR model, we estimate this probability to be
p(!̂) = 4.0 × 10−3 with 95% bootstrap confidence interval (3.6× 10−3, 4.3× 10−3). Although we do not know the true risk
region occurrence probability, we can compare to the empirical probability estimate, which is 3.1× 10−3 with 95% boot-
strap confidence interval (2.0× 10−3, 4.3× 10−3). Based on these results, it seems that our simple spatial extremes model
provides reasonable estimates of risk.

5 DISCUSSION

Inspired by the SAR model from classical spatial statistics, we have proposed a new model for extremes of areal data
which utilizes recent results on transformed-linear operations applied to regularly varying random vectors. The model’s
common-scale extension renders the model amenable to extremes practice where a common marginal distribution is
assumed in order to more simply characterize the dependence structure. Because the limiting angular measure is known,
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F I G U R E 8 Illustration of the larger template used for
fitting an extreme SAR model to gridded precipitation
observations. The weights shown are assigned to 24
neighbors of a cell at the origin. By contrast, the default rook
structure would only assign weights of 1 to each of the four
nearest neighbors
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the model can be used to assess the probability of landing in any risk region of interest. Our fitting procedure, which
optimizes agreement between the sample and model TPDM, is quite fast: for d= 400, obtaining !̂ takes approximately 3 s
on a Macbook Pro laptop (2.6-GHz Intel Core i5, 8 Gb memory). We note that our simulated and actual spatial data sets
are large by extremes standards, and our methods could be applied to problems of much greater size.

The appeal of this model is its simplicity; given a spatial proximity matrix W , spatial dependence is described by
a single parameter !. Although realized fields from the extreme SAR model could be viewed as overly simplistic, we
illustrate that the model is able to produce reasonable estimates of extremal dependence and corresponding risk region
occurrence probabilities even in the case of model misspecification. By using a larger template, the model was able to
capture longer range dependence found in the precipitation data. Like max-stable process models, the extreme SAR
model only describes dependence in the asymptotically dependent setting. Current models which account for asymptotic
independence (Shooter et al., 2019; Wadsworth & Tawn, 2019) are more complex.

We proposed a simple bias correction procedure for the estimated TPDM, but results could alternatively be obtained
by letting the bias correction vary by distance. We also explored bias-correction via shrinkage or tapering, but there was
not a clear choice of shrinkage target or taper function. These extensions could be avenues of future investigation.

For our application, we performed a marginal transformation of the data prior to fitting the spatial model. This is
common practice in spatial and multivariate extremes applications, but it does have consequences. Our bootstrap-based
confidence intervals did not include the uncertainty arising from estimation of the marginal distributions, as this would
have greatly increased the computational cost of the bootstrap procedure. We did perform a sensitivity analysis where
we repeated the application with a rank-based marginal transformation at each location, rather than the parametric and
spatially smoothed marginal transformation we presented. The estimate of ! changed from 0.070 to 0.073, showing that
the choice of how the marginal transformation is performed will somewhat affect dependence estimates.

A potential future use of the extreme SAR model could be in a hierarchical setting. In many extremes problems,
marginal behavior is of primary interest, such as in estimating high quantiles (return levels) or occurrence probabilities at
individual locations. In such cases, it may be effective and computationally efficient to use hierarchical approaches (e.g.,
Cooley et al., 2007) that spatially model the parameters of univariate extremes. Most such hierarchical models assume
extremes at different spatial locations are independent conditional on the latent processes. This conditional independence
assumption ignores the fact that multiple locations can be affected by the same event (e.g., storm). Replacing the condi-
tional independence assumption with a spatial extremes model is challenging (Ribatet, Cooley, & Davison, 2012), but the
extreme SAR model’s simplicity could make it appealing for this purpose.
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