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ABSTRACT: We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect

sea ice growth in theArctic. Sea ice volume changes are estimated from satellite observations duringwinter from 2002 to 2019 and are

partitioned into thermodynamic growth and dynamic volume change. Both components are compared with validated sea ice–ocean

models forcedby reanalysis data to extendobservations back to 1980 and tounderstand themechanisms that cause theobserved trends

andvariability.Wefind that a negative feedbackdrivenby the increasing sea ice retreat in summeryields increasing thermodynamic ice

growth duringwinter in theArcticmarginal seas eastward from theLaptev Sea to theBeaufort Sea.However, in theBarents andKara

Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative

trends in thermodynamic ice growth of22km3 month21 yr21 on average over 2002–19 as derived from satellite observations.
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1. Introduction

The Arctic is one of the hot spots of drastic changes in Earth’s

climate system, a result of global warming associated with rising

air temperatures (LandrumandHolland 2020). These changes are

accompanied by significant declining rates in sea ice concen-

tration and thickness during the last several decades (Comiso

et al. 2008; Haas et al. 2008; Kwok andRothrock 2009; Lindsay

and Schweiger 2015; Ricker et al. 2017a; Kwok 2018).

In addition, rising ocean temperatures through the inflow of

warm Atlantic Ocean water favor sea ice retreat in boreal winter

(e.g., north of Svalbard) (Onarheim et al. 2014). Here we use

winter as a synonym for the freezing season extending normally

fromNovember toMarch. The amplified oceanic heat flux into the

eastern Eurasian Basin reduces the winter sea ice formation, re-

sulting in a northward retreating ice edge as well as thinner sea ice

in the Eurasian Basin (Polyakov et al. 2017, 2020). This so-called

‘‘Atlantification’’ substantially controls the sea ice cover in the

Barents Sea (Onarheim and Årthun 2017). At the same time, we

have observed the four lowest maximum Arctic sea ice extents

within the last five years, and 2020 just marked the second lowest

minimum on record (Meier et al. 2020).

Model studies in turn show a negative feedback mechanism in

winters following summers with strong melting: that is, a stabilizing

feedback,whichallows the sea ice to recover fromsummerswith low

sea ice extents (Bitz and Roe 2004; Stroeve and Notz 2015; Stroeve

et al. 2018). The general decline of sea ice extent and thickness in

summer seems to foster a positive trend in thermodynamic ice

growth in winter over the last decades. Analyzing sea ice thickness

from CryoSat-2 satellite data and model simulations, Petty et al.

(2018) find that the negative feedback occurs in the eastern Arctic

and is likely to be intensified in the western Arctic in coming years.

But the study also stresses that this increasing winter ice growth will

not stop the general loss of Arctic sea ice. While Petty et al. (2018)

distinguish between thermodynamic and dynamic ice growth from

models, ice growth fromsatelliteobservations is assessedwith regard

to changes in thickness only.

Toquantitatively investigate thewinter sea ice growth, it is crucial

to separate the thermodynamic ice growth fromdynamic changes of

sea ice volume through advection,which has not been fully explored

yet using observational data. While the thermodynamic growth in

the Arctic is mainly controlled by surface air and ocean tempera-

tures, wind and ocean currents are the drivers for dynamic ice vol-

ume changes. Eventually, spatial sea ice volume anomalies are a

result of the interactionbetween thedynamics and thermodynamics.

We test the hypothesis that the stabilizing feedback of winter ice

growth is reduced by the rising impact of warmer ocean and surface

temperatures in the European sector of the marginal seas, including

the Barents and Kara Seas (Fig. 1). Therefore, we aim to quantify

changes and trends in winter sea ice growth based on observations.

We use satellite-derived data records of sea ice thickness, concen-

tration, and drift from2002 to 2019 to estimatewinter sea ice volume

changes andfluxes todiscriminatebetweendynamicvolumechanges

and thermodynamic ice growth. In addition, we use atmospheric

reanalysis driven sea ice–ocean model simulations and reanalysis

data of winds and air temperature covering the period 1980–2019 to

better understand themechanismsbehindour findings and to extend

the analysis based on satellite observations backward in time.

2. Methods and data

a. Selected regions

We have selected six Arctic regions that coarsely follow the

boundaries of the marginal Arctic seas along the circumpolar
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coasts (Fig. 1). The northern boundaries are at 81.08N, while the

southern boundaries aremainly given by the coastline.We think

that the interplay between competing processes and mecha-

nisms is highlighted in these regions. Moreover, continuous

satellite-derived ice thickness information is limited to,81.48N.

b. Sea ice growth derived from satellites

To evaluate sea ice growth during the freezing season, we

have developed an approach to separate dynamic volume

changes and thermodynamic sea ice growth using satellite

observations. To achieve this, we first estimate sea ice volume

flux, which requires the multiplication of sea ice motion,

thickness, and concentration (Ricker et al. 2018).

In this study, we use the Centre ERS d’Archivage et de

Traitement (CERSAT) sea ice motion dataset, which is derived

from merging satellite measurements from passive microwave

and scatterometry data (Girard-Ardhuin and Ezraty 2012).

CERSAT provides a consistent and validated time series of

monthly motion vector grids with a spatial resolution of 62.5 km

for the entireArctic, starting from 1991, showing an appropriate

performance in the circumpolar regions (Krumpen et al. 2019;

Sumata et al. 2014).

FIG. 1. Overview map illustrating selected study regions and corresponding net winter (November–

March) sea ice export/import through meridional and zonal boundaries from 2002 to 2019 using satellite-

derived sea ice volume fluxes (orange slices). Bar charts illustrate mean winter dynamic ice volume growth,

mean winter thermodynamic growth, and mean winter total volume growth from 2002 to 2019 for models

NAOSIM and PIOMAS and for satellite-derived CCI CDR. Negative values indicate net export or melt of

sea ice.
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The climate data record from the ESA Climate Change

Initiative (CCI) provides monthly gridded Arctic sea ice

thickness with a spatial resolution of 25 km. The data record

covers the period from 2002–19 and is based on Envisat

(2002–12) and CryoSat-2 (2010–19) radar altimetry

(Hendricks et al. 2018a,b). Within the CCI, satellite range

measurements have been processed into sea ice freeboard

and thickness eventually, ensuring consistency between both

satellite missions (Paul et al. 2018). The retrieval method only

allows for data retrievals over the freezing season fromOctober

to April due to melt ponds in the summer months that interfere

with the separation of range measurements from the ice surface

and the sea surface (Ricker et al. 2014; Tilling et al. 2018).

Uncertainties are caused by the different sensor characteristics,

which result in different sensitivities to sea ice surface properties

(Belter et al. 2020; Khvorostovsky et al. 2020). Another im-

portant contribution to the error budget is the impact of snow.

On the one hand, the interannual variability of snow depth

(Webster et al. 2018) is not represented in the climatology,

which is applied to retrieve sea ice thickness from radar altim-

etry (Ricker et al. 2017b). On the other hand, previous studies

suggest that the snow properties can alter the altimetric mea-

surements of the satellite (Ricker et al. 2015; King et al. 2018;

Nandan et al. 2017).

For sea ice concentration, we use the climate data record

generated by the EUMETSAT Ocean and Sea Ice Satellite

Application Facility (OSI SAF), in collaboration with ESA

CCI. This record includes the interim climate data record

(2016–19; OSI-430-b) that is an extension of the OSI SAF

CDR (1980–2015; OSI-450; Lavergne et al. 2019). Sea ice

concentration is obtained from passive microwave satellite

data over the polar region and is provided daily on a grid

with a resolution of 25 km.

Sea ice motion, thickness, and concentration are repro-

jected and interpolated on monthly 25-km Equal-Area

Scalable Earth (EASE-2) grids (Brodzik et al. 2012).

Following Ricker et al. (2018), we calculate monthly sea ice

volume fluxes in the Arctic, and specifically at the two me-

ridional and two zonal boundaries for each of the six re-

gions. Due to the geography, fluxes through the southern

boundaries are nearly neglectable, with minor contributions

in the Barents Sea and Chukchi Sea (through the Bering

Strait). Then, we estimate the monthly dynamic sea ice

volume change DVdyn of a region as the net sum of the fluxes

through the boundaries of each region. Negative values

correspond to ice export, while positive values represent

import of sea ice.

In a second step, monthly sea ice volume is calculated from

sea ice thickness and concentration for each region (Ricker

et al. 2017a). Monthly sea ice volume growth DV is estimated

by a three-point Lagrangian interpolation. Therefore, we ob-

tain satellite-derived DV for November–March from 2002 to

2019, covering 17 winter seasons.

We obtain the thermodynamic sea ice volume growth

DVthd 5 DV 2 DVdyn. Negative values correspond to ice melt,

while positive values represent growth of sea ice. In this study,

we refer to the satellite-derived sea ice volume growth as CCI

CDR (Climate Change Initiative Climate Data Record).

Because of the limitations in spatial and temporal resolution

of satellite measurements, only monthly estimates of sea ice

volume flux and thickness with 25-km grid resolution are fea-

sible. The terms DVdyn and DVthd are estimated for larger re-

gions in order to reduce the level of uncertainty.

c. Sea ice growth from model simulations

The sea ice–ocean model NAOSIM (North Atlantic/

Arctic Ocean–Sea Ice Model; Gerdes et al. 2003; Kauker

et al. 2003) has demonstrated its merits in numerous studies on

the Arctic’s ocean circulation and hydrography, on sea ice vari-

ability, and in tracer studies. The sea ice part of the model uses

the viscous plastic (VP) rheology (Hibler 1979). The thermody-

namics of sea ice and snow is given by the so-called zero-layer

formulation (Semtner 1976) and the implementation is based on

Owens and Lemke (1990) with some modifications [e.g., im-

plementation of ridging like in Flato and Hibler (1991), and a

subgrid-scale parameterization of ice thickness following Castro-

Morales et al. (2014)]. The ocean part of the model is based on

theModularOceanModel, version 2 (MOM-2), developed at the

Geophysical FluidDynamics Laboratory (Pacanowski 1995), and

is coupled to the sea ice following the formulation of Hibler and

Bryan (1987). Themodel is formulated on a spherical rotated grid

covering the wholeArctic and theNorthAtlantic Ocean north of

approximately 508N. The geographical North Pole is shifted to

608E on the equator to realize nearly equidistant grid cells over

the model domain. For the current study we employ a medium-

resolution version of NAOSIM with 28 3 28km2 horizontal

resolution and 30 levels. Open boundary condition has been im-

plemented along the model boundaries following Stevens (1991).

Temperature and salinity at inflow points of the Atlantic sector

are restored toward the Polar Science Center Hydrographic

Climatology (PHC; Steele et al. 2001).

The initial condition (year 1980) for the simulation

employed here is given by a 32-yr integration (1948–80) with

theNational Centers for Environmental Prediction (NCEP)–

National Center for Atmospheric Research (NCAR) reanalysis

forcing (Kalnay et al. 1996) starting from temperature and

salinity fields given by the PHC climatology and 100% sea ice

concentration with 2-m thickness in regions where the sea

surface temperature falls below the freezing point tempera-

ture of seawater. The model is driven by 6-hourly forcing of

2-m air temperature, 2-m specific humidity, surface downward

long- and shortwave radiation, 10-m surface wind, and total

precipitation from the NCEP Climate Forecast System

Reanalysis (Saha et al. 2010) for 1980–2010 and from the

NCEP Climate Forecast System, version 2 (Saha et al. 2014),

for 2011–19.

Recently the models’ parameters have been optimized

with the help of a micro genetic algorithm, which strongly

improved the performance with respect to sea ice concen-

tration, thickness, and drift (Sumata et al. 2019a,b). Although a

variational assimilation system based on an adjoint code for

NAOSIM exists, no data are assimilated in the simulation used

here in order to allow for a homogenous quality over the period

1980–2019. The model variables analyzed in this study are the

state variables sea ice thickness and concentration and the dy-

namic and thermodynamic sea ice growth as well as the heat flux
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from the ocean into the sea ice (bottom melt). All variables are

bookkept in the model during the simulation for each time step

(5400 s) and monthly means are stored for the present analysis.

The Pan-Arctic Ice-OceanModeling andAssimilation System

(PIOMAS) consists of the thickness and enthalpy distribution

sea ice model (Schweiger et al. 2011; Zhang and Rothrock 2003)

coupled with the POP (Parallel Ocean Program) ocean model

(Smith et al. 1992). Atmospheric forcing data are identical to

NAOSIM except that precipitation and evaporation are also

derived from corresponding NCEP–NCAR reanalysis fields.

Reanalysis forcing is used to drive PIOMAS simulations, with

daily satellite sea ice concentration and sea surface temperature

assimilated. PIOMAS has been validated extensively against

observations of sea ice thickness, volume (Schweiger et al. 2011;

Laxon et al. 2013; Stroeve et al. 2014; Wang et al. 2016; Labe

et al. 2018), and ice motion (Zhang et al. 2012). It is widely used

for comparison with global climate simulates (e.g., Keen et al.

2021). Monthly mean sea ice thickness, ice concentration,

convergence of ice thickness, and net ice production due to

surface heating/cooling and ocean heat flux are used to cal-

culate sea ice volume growth due to dynamics and thermo-

dynamics. Lateral boundary conditions are provided by a

similarly configured global model also forced with NCEP–

NCAR reanalysis.

FIG. 2. (top) Mean sea ice growth, (middle) mean dynamic volume change, and (bottom) mean ther-

modynamic sea ice growth over winter (November–March) seasons from 2002 to 2019 by (left) CCI CDR,

(right) PIOMAS, and (center) NAOSIM. The green grid corresponds to the selected regions given

in Fig. 1.
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d. Sea ice age

This data record is retrieved from NSIDC (National Snow

and Ice Data Center) and provides weekly estimates of sea ice

age for the Arctic Ocean derived from satellite products of sea

icemotion and sea ice extent (Tschudi et al. 2019).We here use

the version-4 dataset, which covers the period from 1984 to

2019. Sea ice is classified into 16 age classes, from which we

pool together sea ice age .5 years.

e. Reanalysis data records

Reanalysis data of atmospheric parameters are provided by the

National Oceanic and Atmospheric Administration (NOAA).

Here we use the NCEP–DOE Reanalysis 2 that provides air

temperature at 2m above surface and northward/eastward wind

velocity components on Gaussian grids at 10 m above sur-

face from 1980 to 2019 (Kanamitsu et al. 2002).

3. Results and discussion

a. Spatial patterns of sea ice growth

Figure 2 shows the spatial patterns of mean winter (November–

March) ice growth from CCI CDR, NAOSIM, and PIOMAS,

averaged over the period 2002–19. The different behavior of

the models in the Chukchi Sea can be attributed to open

boundary effects of NAOSIM, which is a regional pan-Arctic

model with a boundary in the Bering Strait. Figure 2 also

presents both ice growth components. For CCI CDR, due to

FIG. 3. (a) Mean winter dynamic sea ice volume change (November–March) and (b) mean winter

thermodynamic sea ice volume growth for circumpolar regions, given by PIOMAS, NAOSIM, and the CCI

CDR dataset. Blue shading represents the standard deviation of the satellite-derived CCI CDR retrievals

for each winter season. MSTD is the mean standard deviation of monthly volume growth rates from the

different data records (km3 month21). Linear trends for 2002–19 are given on the right of the figure;

numbers, if shown, indicate that the given linear regression coefficient (trend) is significant.
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the retrieval method, we only obtain individual values for

dynamic and thermodynamic ice growth for each region,

while the models provide spatial patterns.

To estimate volume changes in the selected regions, the

modeled dynamic and thermodynamicmonthly ice growth fields

are multiplied with the ice-covered area, also given by the

models. Monthly DVdyn and DVthd for each region are then de-

rived by summing up the gridcell volumes of the dynamic and

thermodynamic contributions. We finally retrieve time series of

monthly DV, DVdyn, and DVthd from satellite observations (CCI

CDR) and the two models (NAOSIM, PIOMAS).

b. Winter sea ice growth in selected Arctic regions

In this study, we define thermodynamic sea ice growth

DVthd as a result of freezing or melting, and dynamic volume

changes DVdyn as a result of sea ice advection.We find that the

total volume growth DV is dominated by DVthd in the

Beaufort Sea (BES), Chukchi Sea (CHS), and East Siberian

Sea (ESS) as illustrated in Fig. 1. Sea ice in the BES and CHS

is mainly advected by the Beaufort Gyre, causing significant

exchange of sea ice through the meridional and zonal

sections defining the boundaries of the selected regions

(Fig. 1). But sea ice export out of the BES, CHS, or ESS is

mostly balanced by sea ice import from other regions, re-

sulting in a mean DVdyn in winters of 2002–19 of less than 5%

of the total DV.
The Barents Sea (BAS), Kara Sea (KAS), and Laptev Sea

(LAS) show different characteristics. LAS and KAS are re-

gions with negative DVdyn, meaning that sea ice volume is

decimated by sea ice export, mainly through the Northern

boundaries. For LAS and KAS, the mean DVdyn over winter

is 2107 and 268 km3 month21, respectively. The mean winter

DV of BAS is relatively small in comparison with the other

regions, with a relative contribution of 55% by DVdyn and 45%

by DVthd.

Sea ice–ocean model simulations with NAOSIM and PIOMAS

are analyzed for the period 1980–2019. The models reveal sim-

ilar relations between DVdyn and DVthd for the various regions

but differ in magnitudes (Fig. 1).

Figure 3 shows DVdyn and DVthd time series averaged over

the winter seasons for the selected regions. The range of

magnitudes of mean winter DVdyn and DVthd of the three dif-

ferent products is measured by the ensemble mean standard

deviation (MSTD). We find the largest MSTD in ESS for

DVthd, and in KAS for DVdyn. The smallest MSTD is found in

LAS for DVthd and in BAS for DVdyn.

Table 1 provides a summary of root-mean-square deviation

(RMSD), mean bias and correlation coefficients between the

three sources of DVdyn and DVthd for 2002–19. We find better

agreement between models and the satellite-derived product

for DVdyn than for DVthd. This is likely due to the lower var-

iability of DVthd and because the satellite-derived DVthd

is obtained indirectly from DV 2 DVdyn, adding additional

uncertainties. NAOSIM and PIOMAS use similar underlying

FIG. 4. Normalized mean monthly thermodynamic volume

growth through the winter season, grouped into four decades, de-

rived from (a) NAOSIM and (b) PIOMAS.

TABLE 1. Intercomparison between winter thermodynamic ice growth DVdyn and dynamic volume change DVthd retrievals from CCI

CDR, NAOSIM, and PIOMAS, with respect to Pearson correlation coefficient r, root-mean-square deviation (RMSD), and mean

bias (bias).

DVthd DVdyn

r RMSD (km3) Bias (km3) r RMSD (km3) Bias (km3)

PIOMAS–NAOSIM 0.77 61 46 0.75 60 212

NAOSIM–CCI CDR 0.35 83 12 0.81 41 6

PIOMAS–CCI CDR 0.38 103 58 0.71 65 27
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physics explaining the better agreement among the modeled

estimates of DVthd.

c. Trends in winter sea ice growth

Annual trends of mean monthly DVdyn and DVthd during

winter are estimated using a linear regression model and are as-

sessed with regard to their significance at the 95% confidence

level. Over the period 2002–19, we only find significant positive

trends for DVdyn in the KAS (PIOMAS, NAOSIM) and in the

BAS (PIOMAS). LAS, ESS, CHS, and BES reveal substantial

interannual variability and no significant trends ofDVdyn (Fig. 3a).

There is no clear evidence for a long-term change in DVdyn.

We find positive trends of DVthd in the LAS, ESS, CHS,

and BES, but only significant in the CHS for CCI CDR

(4.8 km3 month21 yr21) and in LAS for PIOMAS (4.54 km3

month21 yr21). While individually not statistically significant,

the fact that these adjacent regions collectively have all slightly

positive trends is evidence for the continued negative winter ice

growth feedback in response to summer melt.

In contrast, DVthd reveals significant negative trends for

BAS and KAS among almost all DVthd estimates (Fig. 3b). The

DVthd trends derived from CCI CDR in the BAS (21.39 km3

month21 yr21) and KAS (22.73 km3 month21 yr21) are in be-

tween trends found for NAOSIM and PIOMAS. Except for

CHS and BES, trends in DVthd are consistent with regard to

their tendencies among all the three products, but with dif-

ferent magnitudes. The broad agreement of observational and

modeled ice change components provides confidence that

model simulations can be used to further probe the underlying

mechanism for the observed changes.

We use the model simulations to extend the time series of

winter ice growth into the past starting in 1980. Figure 4 shows

the mean monthly DVthd of NAOSIM and PIOMAS in the

winter seasons from 1980–2019, grouped into four time pe-

riods of a length of one decade. As a consequence of delayed

or slowed freeze up, LAS, ESS, CHS, and BES show a de-

crease for October in the NAOSIM simulations, followed

by a steep increase for November, where winter ice growth in

the last decade most of the times exceeds growth in previous

decades. For PIOMAS, this is only the case in the LAS and

ESS. Both model simulations reveal an increasing monthly

DVthd over the November–March period from 1980 to 2019

for LAS, ESS, CHS, and BES. In contrast, NAOSIM and

PIOMAS indicate a decrease inDVthd for almost all months in

the BAS and KAS.

There is evidence that these regional trends have strength-

ened within the last two decades. Tables 2 and 3 add trends

from 1980 to 2002 to trends given in Fig. 3 from 2002 to 2019.

We find stronger trends for the 2002–19 period and especially

for the decrease of DVthd in the BAS and KAS. In fact, the only

TABLE 2. Linear trends of mean winter dynamic sea ice volume change (km3 month21 yr21) with corresponding standard error. Trends

are given for marginal seas, the European marginal seas (EMS), and the North America–Asia marginal seas (NAMS). For EMS and

NAMS we consider ensemble means over PIOMAS, NAOSIM, and CCI CDR. Boldface values indicate significance using a significance

level of 5%.

1980–2002 2002–19

PIOMAS NAOSIM PIOMAS NAOSIM CCI CDR

Barents Sea 20.35 6 0.70 20.31 6 0.80 2.69 6 1.03 20.11 6 1.04 20.44 6 1.33

Kara Sea 20.87 6 1.82 20.43 6 1.05 2.82 6 1.32 2.13 6 0.89 2.01 6 1.09

Laptev Sea 0.22 6 0.86 0.52 6 1.05 22.84 6 2.69 0.45 6 1.55 21.89 6 2.10

East Siberian Sea 0.20 6 1.53 0.81 6 1.82 0.21 6 3.87 20.80 6 2.02 0.84 6 1.95

Chukchi Sea 0.87 6 1.52 1.44 6 1.16 23.16 6 2.01 21.82 6 1.33 22.36 6 1.74

Beaufort Sea 0.95 6 1.55 20.14 6 1.07 3.48 6 2.96 20.05 6 1.59 0.53 6 1.90

Ensemble mean Ensemble mean

EMS 20.98 6 1.75 3.03 6 1.72

NAMS 2.44 6 3.07 22.47 6 4.98

TABLE 3. As in Table 2, but for mean winter thermodynamic sea ice volume growth (km3 month21 yr21).

1980–2002 2002–19

PIOMAS NAOSIM PIOMAS NAOSIM CCI CDR

Barents Sea 21.07 6 1.10 20.32 6 0.42 28.34 6 1.48 21.28 6 0.47 21.39 6 0.86

Kara Sea 20.29 6 1.10 20.65 6 0.94 22.46 6 0.98 23.11 6 1.09 22.73 6 0.95

Laptev Sea 20.50 6 0.98 20.37 6 0.64 4.54 6 1.91 2.01 6 1.14 2.88 6 1.84

East Siberian Sea 0.64 6 1.66 0.08 6 1.32 2.60 6 2.67 2.43 6 2.10 3.88 6 2.38

Chukchi Sea 2.61 6 0.99 20.04 6 0.95 0.67 6 1.70 0.02 6 1.37 4.80 6 1.74
Beaufort Sea 0.78 6 0.97 20.34 6 0.75 1.31 6 2.30 20.67 6 1.48 2.59 6 1.41

Ensemble mean Ensemble mean

EMS 21.16 6 1.17 26.43 6 1.23

NAMS 1.43 6 2.74 9.02 6 4.14
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significant trend for the 1980–2002 period is given for DVthd

(PIOMAS) in the CHS (2.61 km3 month21 yr21).

This observational evidence, corroborated by modeling

studies, suggests that the winter Arctic can be separated into

two regions: The North America–Asia marginal seas (NAMS)

including LAS, ESS, CHS, and BES and the European mar-

ginal seas (EMS) including BAS and KAS. In fact, considering

the ensemble means over PIOMAS, NAOSIM, and CCI CDR,

we find a significant negative trend in DVthd for the EMS

(26.43 km3 month21 yr21) and a significant positive trend for

the NAMS (9.02 km3 month21 yr21) in the 2002–19 period

(Table 3).

The increase inwinterDVthd in theNAMS can be expected in

response to increased summer melt, consistent with the nega-

tive ice growth feedback stabilization mechanism. However,

there is no evidence of an active ice growth feedback in the

EMS, suggesting that a different mechanism dominates. What

are these different processes and mechanisms?

d. Processes and mechanisms that drive changes in winter

ice growth

We use information of satellite-derived ice conditions, simu-

latedmelt through ocean heat flux, and reanalysis air temperature

and wind data, to understand observed changes and variability in

DVdyn and DVthd.

Sea ice conditions at the beginning of the winter are im-

portant for the following ice growth period (Stroeve et al. 2018;

Petty et al. 2018). Figure 5 shows the ice age and corresponding

area, together with effective sea ice thickness in November

from satellite observations and models. BAS, KAS, and LAS

are characterized by first-year ice (FYI), and occasionally

second-year ice. ESS and CHS reveal a decrease in multiyear

sea ice (MYI), with a fraction of ,50% in recent years, while

MYI in the BES still dominates, although older ice (.2 yr) has

shrunk significantly over the last decades. The retreat of older

sea ice goes along with a decrease in sea ice thickness, indicated

by models and satellite observations. We find significant trends

in CCI CDR sea ice thickness in November in the KAS

(20.01m yr21) and LAS (20.02myr21) over 2002–19. Also,

the ice area is shrinking showing significant negative trends in

the BAS, KAS, LAS, and ESS. The observed reduced ice area

and thickness in November favors the negative ice growth

feedback.

In addition to the initial conditions in November, we in-

vestigate winter surface air temperatures, ocean heat fluxes

fromNAOSIM and PIOMAS, and wind velocities (Fig. 6). We

FIG. 5. Effective sea ice thickness (grid cell ice volume divided by grid cell area), ice area, and age for circumpolar

regions in November. Gray-shaded areas provide total area and its partitioning by age. Blue shading represents

uncertainties of the CCI CDR retrieval. Linear regression coefficients a1 (2002–19) of CCI CDR ice thickness

(black) and sea ice area (gray) are given where trends are significant at the 95% confidence level. The regressions

are highlighted as dashed lines.
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find increasing surface temperatures with significant trends

over 2002–19 in all regions. The strongest trend is found in the

BAS with 0.388C yr21.

Reduced growth of sea ice through ocean heat flux has in-

tensified over the last two decades with significant trends in

BAS, KAS, and LAS. Here the impact of ocean heat flux is

translated into sea ice melt, that is, reduction of sea ice and

therefore valued negative. The strongest trends are found in

the BAS (NAOSIM: 20.012m month21 yr21; PIOMAS:

20.017 m month21 yr21) and KAS (NAOSIM: 20.022m

month21 yr21; PIOMAS: 20.011m month21 yr21). We note

that in the BAS and KAS, PIOMAS and NAOSIM differ in

magnitude, but show similar variability and trends. In fact,

the differences in ocean heat flux also explain the differences

in DVthd in these regions (Fig. 3). CHS and BES reveal in-

creasing ocean heat flux into the sea ice over the last years,

but trends are only significant for PIOMAS. Translated into

total volume melt, we find that simulated melt rates due to

ocean heat flux, including the entire region area, are on the

level of DVthd for BAS, KAS, and CHS.

Predominant southerly wind directions are found in KAS

and LAS, while CHS shows predominant northerly winds

(Fig. 6). We could not find significant trends of mean zonal and

meridional wind components during winters from 2002 to 2019

in any of the regions. To investigate the drivers of changes in

ice growth components DVdyn and DVthd, we compute corre-

lation coefficients between DVdyn and DVthd, between DVdyn

and wind fields, and between DVthd and October ice volume,

surface temperature and ocean heat flux (Fig. 7). All time se-

ries have been detrended beforehand.

The terms DVdyn and DVthd are anticorrelated; that is, in-

creased export of sea ice correlates with an increase inDVthd in

that area (Fig. 7a). This anticorrelation is particularly strong in the

LAS, considered as a main source area of sea ice. Themechanism

is illustrated in sea ice growth maps in Fig. 1. When sea ice is

advected away from the Siberian coast, we find negative DVdyn

and simultaneously increased DVthd in these areas because dy-

namically displaced ice is replaced by new thermodynamically

grown ice. Therefore, a positive trend in ice volume export (i.e.,

negative trend in DVdyn in a region) will foster increasing DVthd.

Significant anticorrelation between DVdyn and southerly

winds in the BAS, LAS, ESS, and CHS points to wind-driven

ice import/export through the northern boundaries of the se-

lected areas. Export through the northern boundary of the

KAS seems to be driven also by ocean currents. Significant

(anti)correlations with westerly winds in the ESS and BES

point to wind-driven ice transport through meridional bound-

aries (Fig. 7b).

FIG. 6. Mean winter wind velocities and directions (gray panels), mean winter melt due to ocean heat flux from

NAOSIM and PIOMAS, and mean winter 2-m air temperature from NCEP reanalysis data. Linear regression

coefficients (2002–19) are given where trends are significant at the 95% confidence level. The regressions are

highlighted as dashed lines.
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We find significant anticorrelations between the sea ice

volume in October and DVthd estimates in the ESS and LAS

(Fig. 7c). Anticorrelations can be also found in the CHS and

BES, but less strong. This relationship reflects the negative

feedback mechanism that links lower ice volume at the be-

ginning of the winter to increased thermodynamic ice growth.

The reason why we do not see this effect in the EMS is likely

due to the dominant impact of surface and ocean temperatures.

We expect enhanced anticorrelations between DVthd and

mean winter air temperatures for regions dominated by sea-

sonal ice (BAS, KAS, LAS, and ESS), while thicker MYI, as

present in the CHS and BES, grows much more slowly and

therefore the effect of temperature changes on DVthd is

smaller. Indeed, we find significant anticorrelations in the BAS,

KAS, LAS, and ESS (Fig. 7c), but it seems that temperature-

driven variability of DVthd is partly compensated by the nega-

tive feedback driven by the initial ice conditions in autumn, and

ocean heat flux.

Increased ocean heat flux points to warmer water masses in

the upper ocean advected from the south and reducing DVthd.

Simulated melt through ocean heat flux shows a positive cor-

relationwithDVthd from satellite observations andmodels in the

BAS, but only significant for NAOSIM (Fig. 7c). However, the

increasing ocean heat flux in the BAS and KAS (Fig. 6), and at

the same time decreasing DVthd (Fig. 3), indicate the increasing

role of ocean heat in Arctic winter sea ice growth.

Figure 8 highlights the different characters of the EMS and

NAMS. We compare the ensemble mean of the winter DVthd

time series of PIOMAS, NAOSIM, and CCI CDR with the

mean sea ice area in the previous summer (August–September)

derived from satellite observations (Lavergne et al. 2019).

While the EMS reveals negative trends for both summer ice

area and DVthd (Fig. 8a), the NAMS shows opposing trends

(Fig. 8b). This supports our claim that the ice growth feedback

in the NAMS is still active, while it is overwhelmed by the

ocean heat flux in the EMS. Moreover, years with record ice

extent minima, showcase the negative feedback in individual

years. After trend correction we find a correlation of 20.6 in

the NAMS and 0.27 in the EMS.

4. Conclusions

a. Negative feedback versus Atlantification

Our study confirms a negative feedback mechanism, related

to new ice formation and rapid ice growth of thin ice, which

stimulates replenishment of sea ice after the summer melt.

However, there are regional differences, and we can pool the

FIG. 7. (a) Pearson correlation coefficients betweenmeanwinter thermodynamic volume growthDVthd andmean

dynamic winter volume change DVdyn for CCI CDR (CCI), NAOSIM (NAO), and PIOMAS (PIO) over 2002–19.

(b) Pearson correlation coefficients betweenDVdyn and northward (Windy) and eastward (Windu) wind velocities at

sea level. (c) Pearson correlation coefficients betweenDVthd and a set of time series including ice volume inOctober

VOct, ocean heat flux (OHF) from PIOMAS, and reanalysis data of near-surface temperature (Temp). All time

series have been detrended in advance. Numbers, if shown, indicate that the given correlation coefficient is sig-

nificant with a p value , 0.05.
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six regions into the EMS and NAMS. The NAMS reveals a

positive trend of DVthd, reflecting the negative ice growth

feedback. In the EMS, despite decreasing sea ice area and

thickness at the beginning of the freeze up over the last decades,

and hence expected negative feedback, we find a negative trend

of DVthd. Here an increase in ocean heat flux since the beginning

of the millennium reduces DVthd and overpowers the ice growth

feedback consistent with advancing Atlantification (Barton et al.

2018; Polyakov et al. 2017, 2020). Increasing winter surface air

temperatures and associated downwelling longwave fluxes add

to a reduction in DVthd.

Further research will have to address to which degree

changes in surface air temperature in the EMS are the conse-

quence of changes in ocean heat transport into the area or

driven by the atmosphere as a result of warming and locally or

remotely driven circulation changes (Ding et al. 2018; Moore

et al. 2018; Hao et al. 2021). We also propose to better inves-

tigate uncertainties in the observational estimates of DVthd,

such as those due to snow accumulation at the beginning of the

winter season. While we do not expect qualitative changes in

our findings, effects of other feedbacks (e.g., due to clouds and

moisture) need to be addressed, too.

b. Possible consequences for winter sea ice growth in future

Ourfindings of negative trends inDVthd in theEMS suggest that

with continuingAtlantification and rising winter air temperatures,

record lows in winter sea ice extent will very likely continue to

occur in the upcoming years. In addition, reduced thermodynamic

ice growth will also lead to thinner ice in March, which may favor

early break up during summer melt, in turn aggravating the melt

rates. With the advancing retreat of MYI in the ESS, CHS, and

BES, these regions are increasingly dominated by FYI, which, in

combinationwith rising upper ocean and surface air temperatures,

may also lead to weakening of the negative feedback mechanism

in the future. We suggest that climate models have to be analyzed

with respect to the effect of the increasing Atlantification on the

sea ice. If not modeled correctly in climate models, an important

sensitivity in these models might be missing.
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