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Abstract—Increasing the adoption of household clean energy 

technologies is important to achieving sustainable development 

and to improving the environmental, economic, and social impacts 

of these technology interventions. While much work has been done 

to understand the many factors driving successful interventions, 

little research has been done to quantify and then model the 

adoption of these technologies. Current optimization models to 

maximize impact rely on the effective prediction of adoption, yet 

this piece remains the least understood component. The purpose 

of this paper is to outline the various ways in which being able to 

model the adoption of household clean energy technologies would 

be beneficial for designers, implementation organizations, and 

policymakers to aid in their design and decision-making processes. 

We provide a brief review of the literature and current challenges 

to adoption, examples of current methods and modeling tools that 

can be used to optimize sustainable impacts, and how these tools 

could be improved through adoption modeling. We discuss the 

benefits of being able to model adoption for various stakeholders 

in the clean energy sector along with proposing some 

methodologies that can be used to accomplish this goal.  

Keywords—cookstoves, sustainable development, engineering 

for global development 

I. INTRODUCTION 

The Sustainable Development Goals ratified by the United 

Nations establish a unifying agenda to achieve sustainable 

development by 2030 via 17 goals. Goal number 7 aims to 

“ensure access to affordable, reliable, sustainable, and modern 

energy for all” by 2030 [1]. Today, around 1 billion people do 

not have access to electricity, and nearly 3 billion people 

globally rely on biomass to cook and heat their homes due to 

unstable electric grids, high electricity prices, or lack of access 

to affordable clean cooking facilities [2]. While countries work 

to increase electrification rates and reduce costs, many are left 

to use inefficient practices to provide for their families. These 

traditional methods, often represented by the ubiquitous three-

stone fire, result in around 2 million premature deaths each year 

from exposure to smoke [3].  

In response to this global health problem and 

environmental concerns, development practitioners and 

academics have been collaborating to design improved 

cookstoves and other clean energy technologies to meet global 

energy needs such as cooking, heating, and lighting. Household 

clean energy technologies include products such as liquid 

petroleum gas (LPG) or improved cookstoves; and solar PV, 

water heating, and lighting. After decades of work in the energy 

sector, one thing is clear: the displacement of traditional 

cooking practices with cleaner technologies is a complex 

problem. Improved cookstoves often require a change in 

cooking behavior, disrupting practices that are deeply ingrained 

in most communities and cultures. For example, improved 

cookstoves could require new methods of fuel preparation or 

result in meals that taste different and thus may be less 

desirable. Additionally, stoves are often used to accomplish 

other ends such as warmth, light, and pest control, all of which 

could be largely hindered by improved cookstove designs, thus 

requiring additional energy technologies to meet these needs.  

This challenge is especially important as achieving 

environmental, economic, and societal impact, referred to as the 

triple bottom line of sustainability [4], hinges on both high 

technical performance and large-scale dissemination and 

consistent use of these clean technologies [5]. For this paper, 

environmental impact includes decreases in greenhouse gas 

emissions and deforestation through reductions in fuel 

consumption and increased efficiencies; economic impact 

includes any cost to purchase and maintain the technology, fuel 

savings, and the creation of new opportunities; societal impact 

includes any reduction in health problems or related injuries, 

increases in time savings from cooking and/or fuel collection, 

and advancement of gender equity.  

Historically, household clean energy technologies have 

faced problems achieving scale due to low rates of adoption. 

For improved cookstoves, they may end up being used in 

tandem with traditional cookstoves, referred to as stove 

stacking, or going completely unused [6]–[9]. Low adoption 

often results from a lack of understanding of end-user needs and 

unsustainable programmatic approaches to technology 

dissemination [10], [11]. Other energy technologies such as 



low-cost solar water heaters face similar adoption challenges 

largely due to barriers in cost [12]. 

Over the last ten years, more attention has been given to 

those factors affecting adoption including ones that influence 

purchasing the technology and those factors influencing 

continued use after purchase [13]–[18]. Puzzolo et al. carried 

out an extensive review of cookstove literature assessing the 

many factors impacting cookstove adoption [13]. Their list of 

factors spans technology and fuel characteristics, community 

characteristics, market, regulation, and policy decisions, all of 

which are necessary but not sufficient considerations to ensure 

full adoption. Figure 1, informed by the work of Puzzolo et al. 

[13] and Kshirsagar and Kalamkar [21], illustrates how these 

factors affect adoption and the dependence of impact upon 

sustained technology use. Design related factors include 

technical performance (e.g. fuel consumption, time to cook, 

smoke/emissions, durability, etc.), affordability, and usability. 

Community characteristics encompass demographics, cultural 

norms, values, and gender roles, among others. Lastly, market, 

regulations, and policies include variables such as marking 

approaches, user training, subsidies, and supply chain.  

Jürisoo et al. incorporated the time element into 

understanding the dynamic interactions between users and their 

environment that shape their decision-making process for 

buying and using improved cookstoves for case studies in 

Kenya and Zambia [19]. For these case studies, a user journey 

map was created to identify critical points in the user journey in 

which behavior change could be supported or opposed. 

Chronologically, key points included becoming aware of the 

new stove technology, purchasing the stove, and then fully 

adopting the stove, between which are several opportunities to 

provide support for successful transitions. From this process, 

they were able to identify user archetypes and opportunities to 

better support behavior change.  

While Puzzolo et al., Jürisoo et al., and others have 

identified several variables to help understand drivers of 

adoption, few have tried to quantify it for predictive modeling 

of impacts, discussed in more detail in the Optimizing Impacts 

section. Economists and businesses have for years been using 

market demand forecasts to predict the number of consumers 

who will purchase their products or services. This is typically 

done through several steps including defining the market, 

forecasting drivers of demand, predicting how they will change 

over time, and conducting a sensitivity analysis on the 

assumptions made [20]. This process is ideal, but difficult to 

accomplish in data-scarce sectors, especially within developing 

contexts.  

The purpose of this paper is to illustrate the importance of 

being able to model and predict the adoption of household clean 

energy technologies for product designers, implementation 

organizations, and policymakers. We provide examples of 

current tools that can be used to optimize sustainable impacts, 

how these tools could be improved through the use of adoption 

modeling, and some methodologies that can be used to 

accomplish this.  

II. DESIGN CONSIDERATIONS 

Engineers and designers must consider a variety of factors 

when designing household clean energy technologies. Design 

related factors specifically addressed in this paper include 

technical performance, affordability, and usability [21]. These 

factors, in turn, affect how users interact with their stove or 

other household energy technologies, rates of adoption, and the 

environmental, economic, and societal impacts possible. For 

example, if someone only uses an improved cookstove for 10% 

of all cooking activities, the benefits of reduced emissions, fuel 

savings, and time savings may not be realized.  

Vast amounts of research have gone into designing 

cookstoves that meet technical performance metrics which 

include emissions, fuel usage, materials, durability, and safety. 

The “Handbook for Biomass Cookstove Research, Design, and 

Development”, developed by the Global Alliance for Clean 

Cookstoves in partnership with MIT’s D-Lab, provides a 

thorough overview of the technical research on cookstoves over 

the years and how to practically implement results of this 

research [22]. More recently, ISO standards for lab and field 

 

Fig. 1. Many factors impact the adoption of household clean energy technologies thus influencing environmental, economic, and social impacts 

 



testing for emissions, performance, safety, and durability were 

established to compare across stove models, results of which 

have been compiled [21], [23]–[25]. Additionally, several 

computational fluid dynamic models have been developed 

relating stove geometry, turbulence, and combustion chemistry  

to heat transfer, combustion, and fluid flow [26]–[28]. These 

models can be used to optimize technical performance subject 

to cookstove design features without requiring cost and 

resource-intensive iterative design.  

Despite the many advantages that come with higher-

performing stoves, these stoves may face more barriers to 

adoption. First, higher-performing stoves may increase the 

overall cost of the stove, with cost identified as one of the 

biggest barriers for people looking to purchase cookstoves [29], 

[30]. For example, one review paper [21] comparing cookstove 

performance across a range of metrics found the Wood Flame 

Fan Stove to be the top performer at a cost of approximately 

$229, far outside the budget for most impoverished peoples. 

Other top models were “rocket” ($9-75) and gasifier type stoves 

($89-99). In contrast, stove models under $5 performed on par 

and, at times, worse than the traditional three-stone fire [21].  

Second, increasing technical performance often increases 

the behavior change required to operate the stove, which can 

reduce the usability of the stove and its ability to meet local 

needs. For example, many gasifier stoves require wood to be 

chopped into small pieces before being used while rocket stoves 

may increase the amount of tending required due to narrow 

combustion chambers, majorly impacting the many daily tasks 

cooks often have to complete while also cooking [31], [32]. In 

Peru, households with improved cookstoves with chimneys 

were required to climb onto their roof to clean the chimney of 

ash to maintain stove performance [33]. Due to this difficulty, 

only one-third of participants in the study reported cleaning 

their chimney at least once a month. In 2018, Moses and 

MacCarty [34] developed a usability testing protocol 

acknowledging the role that usability plays in achieving 

sustainable impact. The protocol utilizes a mixed-methods 

approach with qualitative and quantitative tools to help 

designers understand the end user’s needs and to validate and/or 

improve current stove designs. This protocol has since been 

incorporated into new ISO standards to assess stove usability in 

the field [23]. Future research identified by the authors includes 

more explicitly connecting usability results from this protocol 

to long-term usage patterns and adoption.  

 

III. OPTIMIZING IMPACTS 

Turning to the broader design literature, complex design 

decisions of this kind can be addressed using optimization 

algorithms to assess design tradeoffs. Recently, Mattson et al. 

[35] proposed a method for assessing design tradeoffs within 

the three-pillar sustainability space using existing multi-

objective optimization methodologies (e.g. Pareto optimality) 

[36], [37]. This approach aims to maximize the environmental, 

economic, and social impacts by improving or redesigning an 

existing product subject to various design parameters and 

constraints. This is done by explicitly linking design parameters 

to each sustainable outcome. The authors then applied this to 

the Village Drill, a human-powered drill to create boreholes 

where modern technologies are not available, showcasing the 

applicability of this approach for products for the developing 

world. Included in this multi-objective optimization are 

aggregated economic, social, and environmental impact metrics 

using the weighted sum approach. Although novel and useful 

for design optimization, this method does not consider the 

effect technology adoption would have on the sustainability 

impacts nor the parameters outside design affecting adoption.  

The Village Energy Model, developed by MacCarty and 

Bryden [38], expands beyond design parameters to include 

energy needs, socio-economic factors, technology 

characteristics, and available fuels to compare multiple energy 

technologies and their anticipated impact subject to these 

localized constraints. These different parameters are 

incorporated into the model through various sub-models that 

can be modified independently of each other. Attributes relating 

to various energy technologies and local constraints are fed into 

the systems model. At this point, different technology designs 

and applications are considered, and their rates of adoption 

assigned. From this model, the various sustainable impacts of 

interest can be predicted.  

The model allows for cost-benefit analysis, optimization, 

forecasting, and trade-off analysis, all of which can be 

beneficial for various stakeholders earlier in their decision-

making processes. For example, implementation organizations 

can assess the effectiveness of their dissemination approaches 

monetarily through cost-benefit analysis while policymakers 

could utilize forecasting to assess the impacts of policy 

alternatives. While this model considers outside factors, in 

addition to technical performance, affordability, and usability, 

it does not provide design alternatives for a specific technology 

to optimize sustainable impacts. In this way, Mattson et al.’s 

multi-objective sustainability optimization could complement 

the existing Village Energy Model to explore further design 

alternatives. Additionally, while the Village Energy Model 

explicitly considers human interaction with the technology 

including usability, technology stacking, and rebound effect 

(behavioral responses that negate technological benefits 

through increased usage), simplistic equations are used. 

Outputs of this model and their utility to stakeholders in the 

energy sector are entirely dependent on the rate of adoption and 

sustained use of the technology, yet prediction of adoption is 

currently the least understood component. More work is 

necessary to improve adoption modeling and assessment of 

forecasted benefits over the long-term.  
 

A. Economic Impact 

Looking at the three sustainable impact metrics in more 
detail as they relate to the Village Energy Model, each has its 
limitations which could be improved through better adoption 
modeling. The economic term can encompass any anticipated 
costs to purchase, use, and maintain the product of interest, 
money saved, and opportunity cost from an intervention. 
Opportunity cost accounts for the value of time spent collecting 
firewood and cooking that could be used for other productive 



means and is context-specific. The anticipated costs to purchase 
the technology are dependent on design, manufacturing, 
policies, and financing available. Focusing just on design related 
economic terms, the cost (or cost savings) to use and maintain 
an energy technology hinges on the frequency of use compared 
to traditional cooking practices, how the device is being used, 
materials, durability, and/or the context-specific cost of fuel. 
Product lifetime and the maintenance required during that time 
are contingent on usage patterns in which understanding user 
behavior is key.  

B. Social Impact 

For the social impact term, Mattson et al. [35] 

acknowledged the difficulty in identifying universally relevant 

social metrics like those used for the economic and 

environmental impact terms (dollars and carbon-equivalent 

emissions, respectively). Acknowledging this gap, within the 

last couple of years academics conducting work in engineering 

for global development have created a universal social impact 

metric for design optimization referred to as the product impact 

metric (PIM) [39]. The PIM assesses the social impact a 

product has on impoverished consumers. Measurements used 

to determine the PIM include changes in health, education, 

standard of living, employment quality, and security following 

the introduction of a new product and could easily be applied to 

improved cookstove interventions. The PIM can be used to both 

predict and assess social impacts and could benefit from the 

inclusion of adoption modeling.  

In comparison, the Village Energy Model assesses social 

impact using the predicted quality of life, health impacts, and 

opportunity cost. Quality of life is assessed via social 

desirability, disruption, convenience, and safety and is 

recommended as a proxy for technology adoption, although 

identified as just a starting point for future sub-model 

development. The PIM could be easily incorporated into the 

Village Energy Model for social impact as it can be used to 

predict outcomes, although other methods would be necessary 

to improve the predictive ability for technology adoption.  

C. Environmental Impact 

Finally, the environmental term encompasses the CO2-

equivalent emissions produced throughout the product’s 

lifetime, referred to commonly as a life cycle analysis or 

assessment (LCA), and reductions in deforestation. LCAs 

systematically account for any environmental impacts 

embodied in a product to identify process and design 

alternatives that could reduce the negative impacts of a product. 

While several studies have completed an LCA for biomass fuel 

sources [40]–[42] to date, only one comprehensive study exists 

examining the total lifetime emissions for an improved 

cookstove [43]. This study found that the embodied emissions 

from the materials, manufacturing, transportation, and end-of-

life of the Berkeley-Darfur stove were largely offset by 

emission savings during the use phase of the stove. Although a 

step towards more rigorous quantification of environmental 

impacts, many assumptions were made for this study and were 

identified by the authors as limitations.  Included in these 

assumptions were a conservative 35% fuel reduction from lab 

testing of the stove, extrapolated emissions from lab testing, a 

five-year lifetime, the assumption of full adoption, and no 

rebound effects. Many of these assumptions are dependent on 

adoption levels. LCA for other household energy technologies 

would also require information related to the level of 

displacement of traditional cooking methods and any rebound 

effects.  
 

IV. METHODS TO QUANTIFY ADOPTION 

A. Sensor-Based Data 

In years past, surveys were used to assess cookstove 

adoption. More recently, studies have found surveys to be 

unreliable for quantifying actual adoption rates as bias (recall, 

social desirability, etc.) is common in the results [44], [45]. 

Since then, several household sensor-based tools have been 

developed of which can be used to quantify adoption and stove 

stacking [46]–[49]. Types of sensors include stove temperature 

sensors (e.g. Stove Usage Monitors, EXACT), fuel 

consumption sensors (e.g. Fuel Use Electronic Logger), and 

emissions sensors which can be used to quantify stove usage 

and performance.  While these sensors can be used to quantify 

outcomes, they have not yet been used to increase the 

robustness of cookstove LCA through actual fuel use and 

emission data and quantification of adoption rates in the field. 

One drawback of sensor-based data is the upfront cost of the 

sensors, which may make it difficult to collect statistically 

representative data from the population of interest within 

limited monitoring and evaluation budgets [50], [51]. 

Additionally, sensor-based data on its own cannot provide 

insight into why cookstoves are or are not being used. Other 

behavioral science models and methods may provide lower-

cost options to circumvent this problem in some situations. 

B. Behavioral Models 

Polizzi di Sorrentino [52] discusses the importance of 

incorporating behavioral science into LCA, especially for 

products whose lifetime emissions depend on the use phase of 

that product (e.g. washing machines, cars, stoves, etc.). 

Behavioral science could also improve predictions of economic 

and social impacts based on technology use. Several 

psychological models exist to predict behavior change using 

surveys. One popular model that has been used in both health 

and environmental behavior change interventions is the Theory 

of Planned Behavior (TPB) [53]–[57]. The TPB was developed 

to assess a person’s intention to change their behavior based on 

three psychological attributes: attitudes, social norms, and the 

perceived control one has over executing the behavior [53]. 

This model uses a person’s stated intention as the best predictor 

of actual behavior.  

Previous work by Pakravan and MacCarty [58] has used the 

TPB to better understand these attributes as they pertain to a 

person’s intention to adopt cleaner cooking practices. Example 

survey questions assessed participant attitudes on smoke and 

fuel consumption, strength of peer influence on decision 

making around cookstoves, and feasibility of replacing their 

traditional cookstove with an improved one using the Likert 



scale. Here, the attitudes towards the behavior, the social 

pressure felt, and the perceived control one feels they have over 

using an improved cookstove are assessed as they relate to 

one’s stated intention of using an improved cookstove to cook 

their meals. Intention is then used as the best predictor of actual 

behavior. Logistic regressions were then used to identify 

variables most important in explaining intention to use a 

specific stove.  

Through field studies carried out in Honduras and Uganda, 

they found TPB surveys helpful in identifying priorities in 

cookstove design. For example, the community in Honduras on 

average valued reductions in smoke more than fuel reductions 

while the opposite was true in the community in Uganda. This 

information could be used to inform new cookstove designs and 

marketing strategies. They also found that perceived barriers to 

using improved cookstoves decreased over time as users 

became more familiar with using the new stove. This finding 

highlights the importance of ensuring initial positive 

experiences with cookstoves to facilitate longer-term behavior 

changes and reinforces past research findings [19]. Although 

initial results from using this theory as a tool for the clean 

cooking sector have been promising, more work is required to 

validate and improve the model.  

In comparison to TPB, other psychological models exist 

that incorporate the role that habits play in decreasing conscious 

decision making [59], [60], and others have had success adding 

habits into the TPB model [61], [62]. As traditional cookstove 

use is an ingrained habit, incorporating habits into the TPB 

framework may provide more predictive validity and should be 

explored for this context.  

Despite the advantages provided by behavioral models to 

identify variables influencing the adoption of household clean 

energy technologies, several drawbacks exist. One major 

drawback of behavioral science surveys is that they measure 

proxies of behavior such as intention, habits, and perceived 

control, but not actual behavior. Additionally, as mentioned 

earlier, surveys can introduce bias into the results through social 

desirability, recall, and wording bias. One necessary step to 

reduce this bias and validate survey data is to triangulate user 

responses with sensor-based usage data, a practice that has been 

successfully implemented in many cookstove projects [6], [34], 

[48], [63]. Lastly, as this method utilizes logistic regressions, 

the data collected must adhere to strict guidelines which may 

add complexity and cost for study implementation, as detailed 

in Table 1 below. 

C. Ethnographic Decision Models 

Another method that has been used to predict behavior 

based on parsimonious factors is Ethnographic Decision 

Models (EDM). EDMs use questions and logical rules about the 

ordering of these questions to create decision trees [64]. 

Building an EDM requires four steps: 1.) for a specific 

behavior, in this case, purchasing/using a household clean 

energy technology, interview a convenience sample for their 

decision criteria, 2.) interview a heterogeneous sample to 

expand and verify decision criteria, 3.) build a hierarchical 

decision model in which the questions are logically ordered, 

and 4.) validate the model on a new representative sample of 

people. This method has been used to accurately predict a range 

of behaviors.  

For example, one study using a survey of 34 questions was 

able to predict whether an individual recycled their last 

aluminum can for a national sample with almost 85% accuracy 

when only three questions from the survey were considered: 

whether or not the participant was at home; if yes, do they 

recycle other products besides cans; if no, was there a recycling 

TABLE I.  ADVANTAGES AND DRAWBACKS TO USING SENSORS, BEHAVIORAL MODELS, AND ETHNOGRAPHIC DECISION MODELS TO PREDICT ADOPTION OF 

HOUSEHOLD CLEAN ENERGY TECHNOLOGIES 

Method Advantages Drawbacks 

Sensors Objective (reduced bias compared to survey methods) 

Quantitative  

On their own, do not provide insight into why certain technologies 

are or are not being used 

Upfront cost 

Behavioral Models Provide insight into variables most important to 

predict adoption of technologies 
Uses behavioral intention as a proxy for real behavior 

Surveys can introduce bias (social desirability, recall, wording) 

Require theoretical understanding of model and experience with 
survey design that may be barrier for use by those outside of 

academia  

Statistical modeling using these methods requires strict data 
adherence (extensive choice set, errors must be independent, 

accounting for multicollinearity of variables, typically 200+ data 

points) 

Ethnographic Decision 

Models 

Provide insight into variables most important to 

predict adoption of technologies 

Does not require experience with survey design 

Results can provide parsimonious factors 

Can be paired with machine learning for simpler 

identification of most important variables influencing 

adoption with fewer data points 

Require recall of behavior which can introduce bias 

 

 
 

 

 

 



bin nearby [65]. EDMs have yet to be used for this context but 

show great potential in identifying the most relevant factors for 

predicting adoption using prompts such as “Think of the last 

time you cooked/heated/warmed something. What devices did 

you use and why?”. As EDMs also rely on recall of past 

behaviors, sensor-based data to validate this behavior would be 

necessary. Table 1 highlights the advantages and drawbacks of 

each of the three methods discussed here.  

V. CONCLUSION 

This paper identified how new methods of modeling 

adoption could improve existing methods and modeling tools, 

such as the Village Energy Model, to make more informed 

decisions that maximize economic, social, and environmental 

impact. Outputs of this model are entirely dependent on being 

able to quantify adoption, yet the prediction of adoption is not 

well understood. Assessing the underlying motivations behind 

cookstove purchases and user experiences throughout the entire 

process through qualitative methods, in addition to quantitative 

predictive models such as the Theory of Planned Behavior or 

Ethnographic Decision Models, could lead to more accurate 

predictions of usage and more targeted interventions. Future 

research should validate these proposed methods in 

heterogeneous contexts. To ensure access to affordable and 

clean energy for all, effective policies, design, and 

dissemination strategies of energy technologies will be 

necessary. Both understanding and then modeling the adoption 

of energy technologies can aid in the pursuit of these best 

practices for various stakeholders. 
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