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Abstract—Increasing the adoption of household clean energy
technologies is important to achieving sustainable development
and to improving the environmental, economic, and social impacts
of these technology interventions. While much work has been done
to understand the many factors driving successful interventions,
little research has been done to quantify and then model the
adoption of these technologies. Current optimization models to
maximize impact rely on the effective prediction of adoption, yet
this piece remains the least understood component. The purpose
of this paper is to outline the various ways in which being able to
model the adoption of household clean energy technologies would
be beneficial for designers, implementation organizations, and
policymakers to aid in their design and decision-making processes.
We provide a brief review of the literature and current challenges
to adoption, examples of current methods and modeling tools that
can be used to optimize sustainable impacts, and how these tools
could be improved through adoption modeling. We discuss the
benefits of being able to model adoption for various stakeholders
in the clean energy sector along with proposing some
methodologies that can be used to accomplish this goal.

Keywords—cookstoves, sustainable development, engineering
for global development

I. INTRODUCTION

The Sustainable Development Goals ratified by the United
Nations establish a unifying agenda to achieve sustainable
development by 2030 via 17 goals. Goal number 7 aims to
“ensure access to affordable, reliable, sustainable, and modern
energy for all” by 2030 [1]. Today, around 1 billion people do
not have access to electricity, and nearly 3 billion people
globally rely on biomass to cook and heat their homes due to
unstable electric grids, high electricity prices, or lack of access
to affordable clean cooking facilities [2]. While countries work
to increase electrification rates and reduce costs, many are left
to use inefficient practices to provide for their families. These
traditional methods, often represented by the ubiquitous three-
stone fire, result in around 2 million premature deaths each year
from exposure to smoke [3].

In response to this
environmental concerns,
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academics have been collaborating to design improved
cookstoves and other clean energy technologies to meet global
energy needs such as cooking, heating, and lighting. Household
clean energy technologies include products such as liquid
petroleum gas (LPG) or improved cookstoves; and solar PV,
water heating, and lighting. After decades of work in the energy
sector, one thing is clear: the displacement of traditional
cooking practices with cleaner technologies is a complex
problem. Improved cookstoves often require a change in
cooking behavior, disrupting practices that are deeply ingrained
in most communities and cultures. For example, improved
cookstoves could require new methods of fuel preparation or
result in meals that taste different and thus may be less
desirable. Additionally, stoves are often used to accomplish
other ends such as warmth, light, and pest control, all of which
could be largely hindered by improved cookstove designs, thus
requiring additional energy technologies to meet these needs.

This challenge is especially important as achieving
environmental, economic, and societal impact, referred to as the
triple bottom line of sustainability [4], hinges on both high
technical performance and large-scale dissemination and
consistent use of these clean technologies [5]. For this paper,
environmental impact includes decreases in greenhouse gas
emissions and deforestation through reductions in fuel
consumption and increased efficiencies; economic impact
includes any cost to purchase and maintain the technology, fuel
savings, and the creation of new opportunities; societal impact
includes any reduction in health problems or related injuries,
increases in time savings from cooking and/or fuel collection,
and advancement of gender equity.

Historically, household clean energy technologies have
faced problems achieving scale due to low rates of adoption.
For improved cookstoves, they may end up being used in
tandem with traditional cookstoves, referred to as stove
stacking, or going completely unused [6]-[9]. Low adoption
often results from a lack of understanding of end-user needs and
unsustainable programmatic approaches to technology
dissemination [10], [11]. Other energy technologies such as



low-cost solar water heaters face similar adoption challenges
largely due to barriers in cost [12].

Over the last ten years, more attention has been given to
those factors affecting adoption including ones that influence
purchasing the technology and those factors influencing
continued use after purchase [13]-[18]. Puzzolo et al. carried
out an extensive review of cookstove literature assessing the
many factors impacting cookstove adoption [13]. Their list of
factors spans technology and fuel characteristics, community
characteristics, market, regulation, and policy decisions, all of
which are necessary but not sufficient considerations to ensure
full adoption. Figure 1, informed by the work of Puzzolo et al.
[13] and Kshirsagar and Kalamkar [21], illustrates how these
factors affect adoption and the dependence of impact upon
sustained technology use. Design related factors include
technical performance (e.g. fuel consumption, time to cook,
smoke/emissions, durability, etc.), affordability, and usability.
Community characteristics encompass demographics, cultural
norms, values, and gender roles, among others. Lastly, market,
regulations, and policies include variables such as marking
approaches, user training, subsidies, and supply chain.

Jirisoo et al. incorporated the time element into
understanding the dynamic interactions between users and their
environment that shape their decision-making process for
buying and using improved cookstoves for case studies in
Kenya and Zambia [19]. For these case studies, a user journey
map was created to identify critical points in the user journey in
which behavior change could be supported or opposed.
Chronologically, key points included becoming aware of the
new stove technology, purchasing the stove, and then fully
adopting the stove, between which are several opportunities to
provide support for successful transitions. From this process,
they were able to identify user archetypes and opportunities to
better support behavior change.

While Puzzolo et al., Jiirisoo et al., and others have
identified several variables to help understand drivers of
adoption, few have tried to quantify it for predictive modeling
of impacts, discussed in more detail in the Optimizing Impacts
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section. Economists and businesses have for years been using
market demand forecasts to predict the number of consumers
who will purchase their products or services. This is typically
done through several steps including defining the market,
forecasting drivers of demand, predicting how they will change
over time, and conducting a sensitivity analysis on the
assumptions made [20]. This process is ideal, but difficult to
accomplish in data-scarce sectors, especially within developing
contexts.

The purpose of this paper is to illustrate the importance of
being able to model and predict the adoption of household clean
energy technologies for product designers, implementation
organizations, and policymakers. We provide examples of
current tools that can be used to optimize sustainable impacts,
how these tools could be improved through the use of adoption
modeling, and some methodologies that can be used to
accomplish this.

II. DESIGN CONSIDERATIONS

Engineers and designers must consider a variety of factors
when designing household clean energy technologies. Design
related factors specifically addressed in this paper include
technical performance, affordability, and usability [21]. These
factors, in turn, affect how users interact with their stove or
other household energy technologies, rates of adoption, and the
environmental, economic, and societal impacts possible. For
example, if someone only uses an improved cookstove for 10%
of all cooking activities, the benefits of reduced emissions, fuel
savings, and time savings may not be realized.

Vast amounts of research have gone into designing
cookstoves that meet technical performance metrics which
include emissions, fuel usage, materials, durability, and safety.
The “Handbook for Biomass Cookstove Research, Design, and
Development”, developed by the Global Alliance for Clean
Cookstoves in partnership with MIT’s D-Lab, provides a
thorough overview of the technical research on cookstoves over
the years and how to practically implement results of this
research [22]. More recently, ISO standards for lab and field
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Fig. 1. Many factors impact the adoption of household clean energy technologies thus influencing environmental, economic, and social impacts



testing for emissions, performance, safety, and durability were
established to compare across stove models, results of which
have been compiled [21], [23]-[25]. Additionally, several
computational fluid dynamic models have been developed
relating stove geometry, turbulence, and combustion chemistry
to heat transfer, combustion, and fluid flow [26]-[28]. These
models can be used to optimize technical performance subject
to cookstove design features without requiring cost and
resource-intensive iterative design.

Despite the many advantages that come with higher-
performing stoves, these stoves may face more barriers to
adoption. First, higher-performing stoves may increase the
overall cost of the stove, with cost identified as one of the
biggest barriers for people looking to purchase cookstoves [29],
[30]. For example, one review paper [21] comparing cookstove
performance across a range of metrics found the Wood Flame
Fan Stove to be the top performer at a cost of approximately
$229, far outside the budget for most impoverished peoples.
Other top models were “rocket” ($9-75) and gasifier type stoves
($89-99). In contrast, stove models under $5 performed on par
and, at times, worse than the traditional three-stone fire [21].

Second, increasing technical performance often increases
the behavior change required to operate the stove, which can
reduce the usability of the stove and its ability to meet local
needs. For example, many gasifier stoves require wood to be
chopped into small pieces before being used while rocket stoves
may increase the amount of tending required due to narrow
combustion chambers, majorly impacting the many daily tasks
cooks often have to complete while also cooking [31], [32]. In
Peru, households with improved cookstoves with chimneys
were required to climb onto their roof to clean the chimney of
ash to maintain stove performance [33]. Due to this difficulty,
only one-third of participants in the study reported cleaning
their chimney at least once a month. In 2018, Moses and
MacCarty [34] developed a wusability testing protocol
acknowledging the role that usability plays in achieving
sustainable impact. The protocol utilizes a mixed-methods
approach with qualitative and quantitative tools to help
designers understand the end user’s needs and to validate and/or
improve current stove designs. This protocol has since been
incorporated into new ISO standards to assess stove usability in
the field [23]. Future research identified by the authors includes
more explicitly connecting usability results from this protocol
to long-term usage patterns and adoption.

III. OPTIMIZING IMPACTS

Turning to the broader design literature, complex design
decisions of this kind can be addressed using optimization
algorithms to assess design tradeoffs. Recently, Mattson et al.
[35] proposed a method for assessing design tradeoffs within
the three-pillar sustainability space using existing multi-
objective optimization methodologies (e.g. Pareto optimality)
[36], [37]. This approach aims to maximize the environmental,
economic, and social impacts by improving or redesigning an
existing product subject to various design parameters and
constraints. This is done by explicitly linking design parameters

to each sustainable outcome. The authors then applied this to
the Village Drill, a human-powered drill to create boreholes
where modern technologies are not available, showcasing the
applicability of this approach for products for the developing
world. Included in this multi-objective optimization are
aggregated economic, social, and environmental impact metrics
using the weighted sum approach. Although novel and useful
for design optimization, this method does not consider the
effect technology adoption would have on the sustainability
impacts nor the parameters outside design affecting adoption.

The Village Energy Model, developed by MacCarty and
Bryden [38], expands beyond design parameters to include
energy needs, socio-economic  factors, technology
characteristics, and available fuels to compare multiple energy
technologies and their anticipated impact subject to these
localized constraints. These different parameters are
incorporated into the model through various sub-models that
can be modified independently of each other. Attributes relating
to various energy technologies and local constraints are fed into
the systems model. At this point, different technology designs
and applications are considered, and their rates of adoption
assigned. From this model, the various sustainable impacts of
interest can be predicted.

The model allows for cost-benefit analysis, optimization,
forecasting, and trade-off analysis, all of which can be
beneficial for various stakeholders earlier in their decision-
making processes. For example, implementation organizations
can assess the effectiveness of their dissemination approaches
monetarily through cost-benefit analysis while policymakers
could utilize forecasting to assess the impacts of policy
alternatives. While this model considers outside factors, in
addition to technical performance, affordability, and usability,
it does not provide design alternatives for a specific technology
to optimize sustainable impacts. In this way, Mattson et al.’s
multi-objective sustainability optimization could complement
the existing Village Energy Model to explore further design
alternatives. Additionally, while the Village Energy Model
explicitly considers human interaction with the technology
including usability, technology stacking, and rebound effect
(behavioral responses that negate technological benefits
through increased usage), simplistic equations are used.
Outputs of this model and their utility to stakeholders in the
energy sector are entirely dependent on the rate of adoption and
sustained use of the technology, yet prediction of adoption is
currently the least understood component. More work is
necessary to improve adoption modeling and assessment of
forecasted benefits over the long-term.

A. Economic Impact

Looking at the three sustainable impact metrics in more
detail as they relate to the Village Energy Model, each has its
limitations which could be improved through better adoption
modeling. The economic term can encompass any anticipated
costs to purchase, use, and maintain the product of interest,
money saved, and opportunity cost from an intervention.
Opportunity cost accounts for the value of time spent collecting
firewood and cooking that could be used for other productive



means and is context-specific. The anticipated costs to purchase
the technology are dependent on design, manufacturing,
policies, and financing available. Focusing just on design related
economic terms, the cost (or cost savings) to use and maintain
an energy technology hinges on the frequency of use compared
to traditional cooking practices, how the device is being used,
materials, durability, and/or the context-specific cost of fuel.
Product lifetime and the maintenance required during that time
are contingent on usage patterns in which understanding user
behavior is key.

B. Social Impact

For the social impact term, Mattson et al. [35]
acknowledged the difficulty in identifying universally relevant
social metrics like those used for the economic and
environmental impact terms (dollars and carbon-equivalent
emissions, respectively). Acknowledging this gap, within the
last couple of years academics conducting work in engineering
for global development have created a universal social impact
metric for design optimization referred to as the product impact
metric (PIM) [39]. The PIM assesses the social impact a
product has on impoverished consumers. Measurements used
to determine the PIM include changes in health, education,
standard of living, employment quality, and security following
the introduction of a new product and could easily be applied to
improved cookstove interventions. The PIM can be used to both
predict and assess social impacts and could benefit from the
inclusion of adoption modeling.

In comparison, the Village Energy Model assesses social
impact using the predicted quality of life, health impacts, and
opportunity cost. Quality of life is assessed via social
desirability, disruption, convenience, and safety and is
recommended as a proxy for technology adoption, although
identified as just a starting point for future sub-model
development. The PIM could be easily incorporated into the
Village Energy Model for social impact as it can be used to
predict outcomes, although other methods would be necessary
to improve the predictive ability for technology adoption.

C. Environmental Impact

Finally, the environmental term encompasses the CO»-
equivalent emissions produced throughout the product’s
lifetime, referred to commonly as a life cycle analysis or
assessment (LCA), and reductions in deforestation. LCAs
systematically account for any environmental impacts
embodied in a product to identify process and design
alternatives that could reduce the negative impacts of a product.
While several studies have completed an LCA for biomass fuel
sources [40]-[42] to date, only one comprehensive study exists
examining the total lifetime emissions for an improved
cookstove [43]. This study found that the embodied emissions
from the materials, manufacturing, transportation, and end-of-
life of the Berkeley-Darfur stove were largely offset by
emission savings during the use phase of the stove. Although a
step towards more rigorous quantification of environmental
impacts, many assumptions were made for this study and were
identified by the authors as limitations. Included in these
assumptions were a conservative 35% fuel reduction from lab

testing of the stove, extrapolated emissions from lab testing, a
five-year lifetime, the assumption of full adoption, and no
rebound effects. Many of these assumptions are dependent on
adoption levels. LCA for other household energy technologies
would also require information related to the level of
displacement of traditional cooking methods and any rebound
effects.

IV. METHODS TO QUANTIFY ADOPTION

A. Sensor-Based Data

In years past, surveys were used to assess cookstove
adoption. More recently, studies have found surveys to be
unreliable for quantifying actual adoption rates as bias (recall,
social desirability, etc.) is common in the results [44], [45].
Since then, several household sensor-based tools have been
developed of which can be used to quantify adoption and stove
stacking [46]-[49]. Types of sensors include stove temperature
sensors (e.g. Stove Usage Monitors, EXACT), fuel
consumption sensors (e.g. Fuel Use Electronic Logger), and
emissions sensors which can be used to quantify stove usage
and performance. While these sensors can be used to quantify
outcomes, they have not yet been used to increase the
robustness of cookstove LCA through actual fuel use and
emission data and quantification of adoption rates in the field.

One drawback of sensor-based data is the upfront cost of the
sensors, which may make it difficult to collect statistically
representative data from the population of interest within
limited monitoring and evaluation budgets [50], [51].
Additionally, sensor-based data on its own cannot provide
insight into why cookstoves are or are not being used. Other
behavioral science models and methods may provide lower-
cost options to circumvent this problem in some situations.

B. Behavioral Models

Polizzi di Sorrentino [52] discusses the importance of
incorporating behavioral science into LCA, especially for
products whose lifetime emissions depend on the use phase of
that product (e.g. washing machines, cars, stoves, etc.).
Behavioral science could also improve predictions of economic
and social impacts based on technology wuse. Several
psychological models exist to predict behavior change using
surveys. One popular model that has been used in both health
and environmental behavior change interventions is the Theory
of Planned Behavior (TPB) [53]-[57]. The TPB was developed
to assess a person’s intention to change their behavior based on
three psychological attributes: attitudes, social norms, and the
perceived control one has over executing the behavior [53].
This model uses a person’s stated intention as the best predictor
of actual behavior.

Previous work by Pakravan and MacCarty [58] has used the
TPB to better understand these attributes as they pertain to a
person’s intention to adopt cleaner cooking practices. Example
survey questions assessed participant attitudes on smoke and
fuel consumption, strength of peer influence on decision
making around cookstoves, and feasibility of replacing their
traditional cookstove with an improved one using the Likert



scale. Here, the attitudes towards the behavior, the social
pressure felt, and the perceived control one feels they have over
using an improved cookstove are assessed as they relate to
one’s stated intention of using an improved cookstove to cook
their meals. Intention is then used as the best predictor of actual
behavior. Logistic regressions were then used to identify
variables most important in explaining intention to use a
specific stove.

Through field studies carried out in Honduras and Uganda,
they found TPB surveys helpful in identifying priorities in
cookstove design. For example, the community in Honduras on
average valued reductions in smoke more than fuel reductions
while the opposite was true in the community in Uganda. This
information could be used to inform new cookstove designs and
marketing strategies. They also found that perceived barriers to
using improved cookstoves decreased over time as users
became more familiar with using the new stove. This finding
highlights the importance of ensuring initial positive
experiences with cookstoves to facilitate longer-term behavior
changes and reinforces past research findings [19]. Although
initial results from using this theory as a tool for the clean
cooking sector have been promising, more work is required to
validate and improve the model.

In comparison to TPB, other psychological models exist
that incorporate the role that habits play in decreasing conscious
decision making [59], [60], and others have had success adding
habits into the TPB model [61], [62]. As traditional cookstove
use is an ingrained habit, incorporating habits into the TPB
framework may provide more predictive validity and should be
explored for this context.

Despite the advantages provided by behavioral models to
identify variables influencing the adoption of household clean
energy technologies, several drawbacks exist. One major

drawback of behavioral science surveys is that they measure
proxies of behavior such as intention, habits, and perceived
control, but not actual behavior. Additionally, as mentioned
earlier, surveys can introduce bias into the results through social
desirability, recall, and wording bias. One necessary step to
reduce this bias and validate survey data is to triangulate user
responses with sensor-based usage data, a practice that has been
successfully implemented in many cookstove projects [6], [34],
[48], [63]. Lastly, as this method utilizes logistic regressions,
the data collected must adhere to strict guidelines which may
add complexity and cost for study implementation, as detailed
in Table 1 below.

C. Ethnographic Decision Models

Another method that has been used to predict behavior
based on parsimonious factors is Ethnographic Decision
Models (EDM). EDMs use questions and logical rules about the
ordering of these questions to create decision trees [64].
Building an EDM requires four steps: 1.) for a specific
behavior, in this case, purchasing/using a household clean
energy technology, interview a convenience sample for their
decision criteria, 2.) interview a heterogeneous sample to
expand and verify decision criteria, 3.) build a hierarchical
decision model in which the questions are logically ordered,
and 4.) validate the model on a new representative sample of
people. This method has been used to accurately predict a range
of behaviors.

For example, one study using a survey of 34 questions was
able to predict whether an individual recycled their last
aluminum can for a national sample with almost 85% accuracy
when only three questions from the survey were considered:
whether or not the participant was at home; if yes, do they
recycle other products besides cans; if no, was there a recycling

TABLE L ADVANTAGES AND DRAWBACKS TO USING SENSORS, BEHAVIORAL MODELS, AND ETHNOGRAPHIC DECISION MODELS TO PREDICT ADOPTION OF
HOUSEHOLD CLEAN ENERGY TECHNOLOGIES
Method Advantages Drawbacks
Sensors Objective (reduced bias compared to survey methods) | On their own, do not provide insight into why certain technologies
o are or are not being used
Quantitative
Upfront cost
Behavioral Models Provide insight into variables most important to Uses behavioral intention as a proxy for real behavior

predict adoption of technologies

Surveys can introduce bias (social desirability, recall, wording)

Require theoretical understanding of model and experience with
survey design that may be barrier for use by those outside of
academia

Statistical modeling using these methods requires strict data
adherence (extensive choice set, errors must be independent,
accounting for multicollinearity of variables, typically 200+ data
points)

Ethnographic Decision

Models predict adoption of technologies

Results can provide parsimonious factors

adoption with fewer data points

Provide insight into variables most important to

Does not require experience with survey design

Can be paired with machine learning for simpler
identification of most important variables influencing

Require recall of behavior which can introduce bias




bin nearby [65]. EDMs have yet to be used for this context but
show great potential in identifying the most relevant factors for
predicting adoption using prompts such as “Think of the last
time you cooked/heated/warmed something. What devices did
you use and why?”. As EDMs also rely on recall of past
behaviors, sensor-based data to validate this behavior would be
necessary. Table 1 highlights the advantages and drawbacks of
each of the three methods discussed here.

V. CONCLUSION

This paper identified how new methods of modeling
adoption could improve existing methods and modeling tools,
such as the Village Energy Model, to make more informed
decisions that maximize economic, social, and environmental
impact. Outputs of this model are entirely dependent on being
able to quantify adoption, yet the prediction of adoption is not
well understood. Assessing the underlying motivations behind
cookstove purchases and user experiences throughout the entire
process through qualitative methods, in addition to quantitative
predictive models such as the Theory of Planned Behavior or
Ethnographic Decision Models, could lead to more accurate
predictions of usage and more targeted interventions. Future
research should validate these proposed methods in
heterogeneous contexts. To ensure access to affordable and
clean energy for all, effective policies, design, and
dissemination strategies of energy technologies will be
necessary. Both understanding and then modeling the adoption
of energy technologies can aid in the pursuit of these best
practices for various stakeholders.
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