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Clean technologies aim to address climatic, environmental, and health concerns associated
with their conventional counterparts. However, such technologies achieve these goals only
if they are adopted by users and effectively replace conventional practices. Despite the
important role that users play to accomplish these goals by making decisions whether to
adopt such clean alternatives or not, currently, there is no systematic framework for quan-
titative integration of the behavioral motivations of users during the design process for these
technologies. In this study, the theory of planned behavior (TPB) is integrated with usage-
context-based design to provide a holistic approach for predicting the market share of clean
versus conventional product alternatives based on users’ personal beliefs, social norms,
and perception of behavioral control. Based on the mathematical linkage of the model com-
ponents, technology design attributes can then be adjusted, resulting in the design of prod-
ucts that are more in line with users’ behavioral intentions, which can lead to higher
adoption rates. The developed framework is applied in a case study of adoption of improved
cookstoves in a community in Northern Uganda. Results indicate that incorporating TPB
attributes into utility functions improves the prediction power of the model and that the attri-
butes that users in the subject community prioritize in a clean cookstove are elicited through
the TPB. Households’ decision-making behavior before and after a trial period suggests
that design and marketing strategy should systematically integrate user’s behavioral ten-
dencies prior to interventions to improve the outcomes of clean technology implementation
projects. [DOI: 10.1115/1.4046236]
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Introduction

In an effort to meet global goals for sustainability, technologies are
rapidly being developed to meet human needs at a lower cost to the
environment and health. Many of these clean technologies typically
perform the same services for users as their conventional counter-
parts, but may have different costs, performance, and operational
parameters associated with their use. As such, users must be in
some way motivated to make the decision to change their behavior
or even pay a higher price as they choose to adopt these beneficial
products. The adoption of clean technology in this context is
defined as an effective and systematic change toward using clean
technology instead of the traditional, inefficient counterpart. In
some cases, traditional methods may have considerable social and/
or cultural ties with users. In these scenarios, adopting cleaner prac-
tices may not be an instant and complete shift, but rather a gradual
replacement and regular choice to opt for the cleaner alternative
[1]. Despite the importance of replacing inefficient practices with
clean alternatives, today, there is not an integrated method to speci-
fically “design for adoption” such that the design process for these
products can sufficiently incorporate attributes that account for the
user’s priorities and behaviors in the decision-making process.
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Compared to the traditional methods in decision-based design
which account for user demographics, price, technology, or alterna-
tive related variables, design for adoption must also bring in the
quantification of user behavior through lenses of individual
beliefs, social norms, and ability to change certain behaviors. The
proposed approach in this study incorporates such attributes in a
utility function applied for users’ choice modeling.

The adoption of clean energy technologies is critical at the global
scale, and residential consumers play a large role in these efforts. In
the United States, the use of cleaner residential technologies could
reduce US national carbon emissions by 7.4% [2]. And globally,
nearly 40% of households rely on open burning of biomass to meet
over 95% of their energy needs, and as a result, 4 x 10° premature
deaths occur each year while the effects on climate change are exac-
erbated [3-6]. While a great number of cleaner and more efficient
household energy technologies have been developed to address
these challenges, low adoption rates have been observed in many
contexts, with clean cookstove projects being a leading example
[1,7,8]. However, studies suggest that the systematic integration of
users in design and implementation may lead to increased uptake
[9-11], and there is a significant need for research in this area. The
proposed framework for clean technology adoption developed in
this research has been applied to a case study of improved cookstove
adoption to evaluate the performance of the theoretical framework. It
is hoped that the application of the developed framework is extensi-
ble to the adoption behavior for any clean technology or service.

Today, there is no comprehensive approach to design clean tech-
nologies in a way to achieve environmental goals in the consumer
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sector through sustained technology adoption and use. Current liter-
ature in engineering design, economics, and psychology detail
many of the necessary components, including work in decision-
based design or choice modeling. These include methods to math-
ematically describe the utility of each choice based on product
and user attributes, usage context, social networks, and cultural
backgrounds that may lead to environmentally friendly technology
adoption [12]. However, today, there are no integrated methods that
include these three key areas required to understand the adoption of
these types of beneficial technologies, including (1) technology per-
formance, (2) user behavior and preference, and (3) usage context.

Drawing on interdisciplinary approaches from the literature, this
study combines models of user behavior within a decision-based
design framework. Along with quantitative belief-based user mod-
eling, this systematic model further incorporates technical perfor-
mance and usage context to develop a holistic utility function to
predict a user’s choice between available technologies. Several
models are developed and explored using demographic, preference,
and choice set data gathered from 175 households in Uganda in a
three-part study with the global cookstove organization Interna-
tional Lifeline Fund. The predictive power and robustness of the
models are compared and validated on a theoretical basis.

Literature Review

Clean technologies address environmental concerns only if they
are adopted and permanently replace conventional practices. There-
fore, such technologies must be designed in a way that addresses
(a) technical needs and (b) user preferences in a (c) specific
context of use. Throughout the literature, researchers have investi-
gated the contribution of each of these separately.

Technology Performance. The technical performance of any
technology—its efficiency, emissions, operational cost, embodied
energy and emissions, and functionality—is relatively easy to
describe and model. For example, there are hundreds of papers
detailing tests conducted on biomass cookstoves. Laboratory tests
investigate different aspects of the technical design of improved
cookstoves such as emissions, effects of fuel moisture content, and
thermal efficiency [13—18]. Field tests focus on the performance of
developed technologies in actual settings using a variety of
methods such as the kitchen performance test, sensor-based monitor-
ing, and the usability testing protocol [8,19-22]. These methods
have led to the development of a standard performance rating frame-
work by the International Organization of Standardization standard
number 19867-1 in four categories including efficiency, emissions,
indoor emissions, and safety [23].

These technology design and performance parameters play an
important role in users’ decision-making process. Such variables dis-
tinguish available alternatives from each other and provide a basis on
which to choose a technology. Therefore, it is important to include
the variables that provide the most practical insight for designers
to reflect customer preferences in technology design and perfor-
mance. A previous work in this area has developed methods for
the systematic selection of engineering attributes that inform the
utility functions in a way that technology designers could benefit
the most [24,25].

Decision-Making and Behavioral Modeling. Technology
adoption extends beyond simple performance metrics into the
realm of behavior because the user must make a choice to adopt.
This choice is based on a number of factors, such as social, cultural,
and personal beliefs and perceptions. It is impossible to develop a
choice model that captures every factor for a robust prediction of
choices. However, choice modeling practice can be categorized
into three general approaches [26]. The economic approach consid-
ers choices as utility maximization efforts based on developed pref-
erences. Adopting concepts of random utility theory developed by
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Thurstone [27], preferences of decision-makers are incorporated
into utility functions that estimate the influence of each attribute
on the final utility perceived by the person [28]. The behavioral
and psychological approach argues that choices are not solely
based on the rational processes assumed by an economic approach.
Decision-making in this approach could be influenced by heuristic
rules, appearance of alternatives, contextual factors, and personal
sources of satisfaction [29]. Theories based on this approach con-
sider attributes that are more latent compared to the attributes of
economic models, such as social norms, personal beliefs, and per-
ceptions. The statistical approach to choice modeling is solely
based on the recorded choices of individuals and statistical correla-
tion of such choices to hypothesized attributes associated with
choices given the purpose of the model. Bypassing efforts in mod-
eling the reasoning and preferences that led to these choices, this
approach applies statistical methods that could present significantly
valid models based on the data [30].

In engineering design, the application of the categories above has
been used for a number of applications. Research on decision-based
design captures the normative decision analysis process by identify-
ing logically compelling properties that a decision should conform
to. These properties are identified in three general categories includ-
ing human values, uncertainties, and risks [31]. Discrete choice
analysis (DCA) is among the most well-established and robust
methods for the customer choice modeling in marketing and engi-
neering design. In this method, a utility function is developed to
model choices of individuals based on selected attributes that are
assumed to have a causal relationship with the choices of individu-
als. Using a probabilistic choice modeling approach, DCA estimates
the choice probabilities for each individual and then aggregates the
demand for each alternative to predict the choice share in the target
market [32]. DCA models generally tend to apply multinomial logit
[33], nested logit [34], or mixed logit [35] analyses.

Many approaches have been integrated to improve the predictabil-
ity of DCA models by integrating more aspects of decision-making
into the utility functions. For example, considering choices as social
practices, He et al. incorporate agent-based modeling and social
network analysis in choice modeling for green vehicles [36]. In
another study, the compensatory and non-compensatory processes
of decision-making are explored [37]. Based on the assumption
that individuals conduct a non-compensatory screening to reduce
their choices and then select one alternative through compensatory
practices, a hybrid model called consider-then-choose is integrated
with DCA to improve its predictability power. Focusing on the
meaning of product attributes for customers, another study proposes
afeature learning method that replaces product design attributes with
the features and functions of such attributes that customers perceive
[38]. Results of DCA are easy to interpret when every variable asso-
ciated is considered to be deterministic. However, many variables
such as user preferences are inherently stochastic, and therefore
their distribution influences the final design recommendations.
Developing a quantitative definition for the reliability of product
design recommendations through uncertainty quantification, Shin
and Ferguson present a multi-objective optimization problem to
determine final reliable product line solutions based on DCA
results [39].

In the engineering application of DCA, users’ role and heteroge-
neity is often limited to demographic data. Although demographic
data play an important role in shaping decisions, there are several
approaches that suggest behavior is often more nuanced and
stems from a variety of psychological factors such as individual
beliefs, evaluations, social norms, motivations, and perceptions.
There are several approaches to model human behavior in different
domains. The adoption of clean technology is most closely related
to the domains of health or environment-related behavior. Thus, a
relevant model should be applicable in explaining technology adop-
tion, health behavior, and pro-environmental behavior.

There is a plethora of methods and theories in the literature to
explain human behavior in a variety of contexts. Among well-
established and frequently used frameworks in environmental and
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health-related behaviors are the theory of planned behavior (TPB),
norm activation theory, value-belief-norm theory, goal framing
theory, and health belief model [40,41]. A review of these theories
and the variables that are incorporated in each one to partially
explain environmental and/or health behavior suggest that TPB is
not only parsimonious but also robust in terms of explaining beha-
vior in domains of both health and environment. Therefore, for this
study, TPB is selected to capture behavioral aspects of clean tech-
nology adoption. TPB provides a quantitative and comprehensive
model to capture the behavioral determinants for intention to
adopt clean technologies. These are based on three main derivatives
including [42,43]

(1) Attitude toward behavior (ATB)—an individual’s evaluation
of particular behavior in terms of value and expected
outcome.

(2) Subjective norms (SN)—an individual’s perception about the
behavior influenced by her reference regarding people’s
opinions.

(3) Perceived behavioral control (PBC)—factors that may facil-
itate or hinder an individual’s action.

As illustrated in Fig. 1, these elements construct a behavior inten-
tion function that determines a person’s readiness to take action.
According to TPB, the intention is the main determinant of beha-
vior. PBC is another determinant of behavior that captures the phys-
ical limitations to conduct a certain behavior despite having the
intention to do so. For example, lack of access to a clean technology
alternative prevents the adoption behavior even if the user has an
intention to use clean technology. Several studies have successfully
applied TPB to explain environmental and health-related behaviors
throughout the literature. From understanding pro-environmental
behavior of green buildings’ occupants [44], to green purchase
behavior in the developing world [45], to organic food consumption
[46], and the behavior change by physical activity and exercise [47],
TPB is a well-established framework for environmental and
health-related behaviors. There are limitations to the use of TPB,
including the omission of the difference between value and expec-
tancy beliefs [48], and the influence of habits [49]. However, these
can be overcome with careful study design and appropriate statisti-
cal analysis [50].

Incorporation of Usage Context. One factor that influences
both the performance of technology and hence user behavior and
preference is the context of using the technology. The context is
critical because human behavior and technology performance can
vary significantly depending on the location, application, and
details of the product use. For example, urban or rural contexts sig-
nificantly change the preferred choice of the transportation method
for individuals. In the context of household energy technologies,
family size, energy cost and availability, and cooking practices
are key drivers of choice.

Early research that acknowledges the role of context in the custom-
er’s decision-making is based on the stimulus-organism-response

Attitude
Toward
Behavior

Social
Pressure

Perceived
Behavior
Control

Fig. 1 Constructs of the theory of planned behavior [43]

Journal of Mechanical Design

(S-O-R) paradigm introduced by Belk [51]. This postulates that the
stimulus generated by the situation (usage context) and product influ-
ence the organism (customer) to generate a response or choice. Here,
the context of user needs is defined to include the following five
areas:

e physical surroundings—urban/rural, geography, climate,
forest proximity, indoor/outdoor location;

e social surroundings—family size and presence, privacy
concerns;

e temporal perspective—availability/value of performance attri-
butes, need for faster or less tended task;

o task definition—the type of technology outcomes and exter-
nalities to complete the task; and

e antecedent states—existing technologies, cash available.

In engineering design, Green et al. focus on the importance of
context by challenging successful design practices in frontier
domains that are unfamiliar for the designer [52—54]. They define
product design context as the collection of all the environmental
factors that affect the design of a product. These factors are catego-
rized into three groups as customer context factors, market context
factors, and usage context factors. Set-based design by usage cov-
erage simulation is another framework that applies an adaptable
approach to identify a product alternative that best covers a usage
scenario space that includes different context-user scenarios [55].
Another study presents a usage coverage model that develops a
product family assessment based on different user-expected usage
scenarios to determine whether a product family is in compliance
with potential usage scenarios [56].

The usage context-based design (UCBD) framework was devel-
oped based on these ideas to focus on the importance of mathemat-
ical incorporation of context in choice modeling [57]. UCBD has
been used for applications such as illustrating how usage context
influences customers’ choice of hybrid electric vehicles and
jigsaws [57]. This model predicts the market share of each alterna-
tive based on the usage context, user preferences, technology per-
formance, and design variables. The mathematical linkage of this
framework enables designers to adjust design variables to maximize
the market share of the desired alternative. Through DCA, UCBD
records customers’ choices from a choice set, which includes
every product alternative that has been developed to address one
specific task and available to customers. The variation in choices
among individuals is modeled based on individual attributes, tech-
nology alternative attributes, and usage context attributes. The
choice share estimates the market share of each alternative in the
studied population.

Summary of the Literature. While much work in the engineer-
ing design has focused on the design of technologies to achieve
desired market shares in terms of purchasing products, the adoption
of clean technologies is not limited to the purchasing behavior of
customers alone. Clean technology adoption is a continuous beha-
vior and requires that users replace traditional practices with clean
alternatives in order for such technologies to achieve their ultimate
goals. Therefore, it is important to incorporate users’ health and
pro-environmental behavior tendencies and motivation to design
residential clean technologies for adoption. Currently, there is no
design framework that systematically integrates these psychological
decision-making attributes along with usage context attributes to
design technologies for their adaptability. To address this gap, the
current study integrates TPB with UCBD to quantitatively link
user behavior to choice modeling. As a result, engineers can
design clean technologies that are more compatible with users’
health and environmental worldview and specific context of use
which may lead to higher adoption rates for such products.

A case study of clean cookstoves is used to highlight the applica-
tion of the proposed framework because development practitioners
have struggled for years to address the pervasive environmental and
health issue presented by the use of traditional biomass stoves and
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open fires on a daily basis for cooking food and warming water by
2.7%10° people [58]. International aid organizations, NGOs, and
governments have been promoting the use of improved biomass
cookstoves for several decades; however, goals for transitioning
households to adopt cleaner technologies to displace traditional
methods have met only limited success. Therefore, a better
approach to design technologies and implementation strategies is
needed in this sector.

Methodology

The proposed framework of this research seeks to combine the
three elements discussed above to predict the choice share of
several cooking device alternatives in a rural market in Apac dis-
trict, Uganda (Fig. 2). In this framework, the data regarding users’
behavior attributes and the final choices they made among the avail-
able alternatives in the choice set were recorded. These choices
were regressed based on user attributes, technology attributes, and
usage context attributes. This regression model serves as the
utility function that estimates the influence of each attribute of the
model on each individual’s choice. Based on the calculated
weights of each attribute in the utility function, the market share
of each alternative is predicted. Through this mathematical
linkage, the predicted choice share of a desired alternative can be
maximized by modifying relevant attributes through methods
such as designing appropriate behavior change communications,
adjusting design variables, or any approach that optimizes relevant
explanatory variables in the utility function model to generate the
highest market share of a desired clean technology alternative.

Model Development. To model the individual user’s decision-
making behavior, two regression analyses were completed. The
first determined the most significant behavioral attributes that
explain the intention toward using a clean technology based on
the TPB, while the second incorporates the most significant

Technology User
Attributes Attributes
Usage Context
e SOTOR TSR
Design Variables : Theory of :
1 Planned Behavior |
Bt Englinecting : Attitude Toward |
Attributes 1 . :
i Behavior 1
1
1
| socialNorms !
A ! 1
1
Choice : Perceived :
Set 1|_Behavior Control _|!
Demographic
Profile

v LA |L

Utility Function

A 4 N

Choice Share

Fig. 2 Platform for integrating user behavior, usage context,
and technology attributes
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behavioral attributes from the TPB into UCBD’s utility function
to estimate the utility that individuals assign to choice alternatives.

To apply TPB in the domain of technology adoption, a pilot
survey was first used to elicit the dominant widespread beliefs,
available alternatives, and social and cultural norms of the target
community. Given the results of the pilot study, a set of survey
questions was designed to measure individuals’ (1) attitudes
toward using clean technology, (2) social norms associated with
common practices and application of clean technology as an alter-
native practice, (3) ability to change the behavior in favor of
using clean technology instead of conventional practices, and
(4) intention to use the clean technology. There are two main
approaches for measuring these four categories. An indirect
method could be used to quantify each category’s score according
to the expectancy-value model. In this method, the final score for
each attribute is derived by multiplying the respondent’s rating of
beliefs about the consequences of behavior times desirability of
such consequences [48]. Using the direct method, questions that
are designed based on global scores combine individual beliefs
and evaluations to produce a global response. As a result,
answers to each global question generate one score for the relevant
attribute [43].

Responses are coded as either unipolar or bipolar based on a
Likert scale [59]. Each category of TPB consists of questions that
capture scores for more than one attribute related to that category.
Therefore, each category is represented by a latent variable (with
* superscript) that is formed to represent the aggregated value cal-
culated based on recorded responses to relevant survey questions.
Each attribute that was elicited to be an important public concern
was reflected in one or two questions in the survey. Hence, the
survey included questions to quantify respondent’s beliefs regard-
ing smoke emissions, firewood consumption, safety, esthetics,
decision-making authority, ease of changing habits, role of neigh-
bors’ stove type, and other attributes detailed in Ref. [60]. The
weight of each attribute that represents each category (a) in deter-
mining intention (/nf) for each individual main cook of the house-
hold, also referred to as household, (i) is estimated through the
regression analysis of Eq. (1)

Int; = Int(a : ATB;, SN;, PBC;) (1)

There are two statistical methods to analyze the data and develop
the model of Eq. (1) including structural equation modeling and
multiple linear regression. Either method could be used depending
on the quality of data and preferences of the researcher [61]. Based
on these results, the most significant attributes that have the highest
power to explain the intention to use clean technology are selected
for inclusion in the utility function.

The regression models in this research incorporate the most sig-
nificant behavioral attributes from TPB into UCBD’s utility func-
tion, which provides an estimate of the utility that individuals
assign to choice alternatives. According to random utility theory,
the true utility is not completely measurable and consists of an
observed part or deterministic part (W), and an unobserved or
random disturbance part (¢) [28]. Equation (2) is a mathematical
expression of the true utility of alternative (j) for individual/house-
hold (i)

Uij=Wij+ e 2)

Wi =W : T, TPB;, U;, Cij) 3)

The deterministic part of the utility function estimates the corre-
lation of attributes discussed above with the stated or revealed the
choice of the users. As shown in Eq. (3), the regression model of
the utility function estimates the utility of each choice (j) for each
individual (i) based on technology variables (7'), user attributes
(U), and usage context attributes (C). In addition, the most signifi-
cant attributes that describe the intention based on the results of the
Eq. (1) are included as TPB attributes to partially explain the utility
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of each choice for each individual, TPB;. The weight of the influ-
ence of each independent variable in explaining the deterministic
part of utility is captured by () based on the regression analysis.
In this study, a conditional logistic regression is used for estimating
the weights of attributes in predicting the stated choices of respon-
dents. Stated choices of respondents comply with the independence
of irrelevant alternatives (IIA) assumption that states the order of
preferences for alternatives in the choice set should not change by
the addition or the removal of one alternative. The reason that
this assumption holds in this study is because of the significant dif-
ferences of alternatives with each other. While the open fire is very
easily accessible and free of charge, for more than a hundred years,
households in the subject region have developed and used local
mud stoves besides the open fire. Hence, their preferences for
mud stove versus open fire is not likely to change due to the intro-
duction of improved cookstoves (ICS). Additionally, the introduc-
tion of ICS is not likely to change preferences for charcoal
stoves, since the main barrier to a dominant preference for charcoal
stoves is due to the limited supply of charcoal in the region, leading
to high costs of charcoal and short amount of supplies. Therefore,
the IIA assumption is likely to be valid, and henceforth, the appli-
cation of conditional logistics regression is justifiable.

The results of Eq. (3) determine the utility of each alternative for
each individual in the sample. The probability of choosing alterna-
tive (j) from available alternatives in the choice set (s) for individual
(i) is calculated using the choice model presented in Eq. (4)

eWii)

3 W)
s

Pri(j) = “

Using estimation techniques such as maximum likelihood
method or least square method, the S coefficients of Eq. (3) are
determined in a way that the calculated probabilities of Eq. (4)
match as closely as possible to the recorded choices of individuals.
In this way, the demand for each alternative is estimated at the indi-
vidual scale. However, engineering design modifications such as
changing technology variables, developing behavior change com-
munication strategies, and analyzing policy implications require
knowledge of the market scale demand for each alternative.
Given the user heterogeneities in the market, sample size, or
quality of data, the market could be categorized into different seg-
ments. The demand for each alternative could then be estimated
through the multiplication of the number of individuals in each
market segment times summation of probabilities of individuals’
choices derived from Eq. (4) [62].

Data Collection. Data collection for the proposed model was
implemented in five phases in a rural community in Apac,
Uganda, in collaboration with International Lifeline Fund (ILF), a
nongovernmental organization (NGO) active in clean cookstove
development and implementation projects. All data were collected
with oversight from the Oregon State University Institutional
Review Board under study number 7257.

e Choice Set Development. Determine available options in the
choice set based on clean and conventional alternatives in the
local market. Although in this area there are different types of
improved stoves as well as liquid petroleum gas (LPG) stoves
in the market, rural access to these is limited. Field observa-
tions suggested that only ILF’s rural wood stove, which is
an improved cookstove, traditional mud stoves, and open fire
are consistently available in the target community. Therefore,
only these three choices were included in the choice set.

e Pilot Study and Attribute Identification. Conduct a pilot
study from a small sample of users with a few open-ended
questions or a focus group discussion. As the standard
method of applying TPB [63], a pilot study enables researchers
to identify priorities, widespread beliefs regarding the task,
social norms, and context-based preferences of users in the
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targeted community. A small convenience-based sample of
10 households along with the local staff of the partner NGO
was chosen to conduct a pilot study to elicit general beliefs
regarding cooking devices, important factors that community
members associated with their stoves and foods, and available
stove alternatives in the local market using focus group discus-
sion and open-ended surveys. The open-ended questions for
the pilot study were developed based on the discussion
between researchers and local NGO staff and implemented
in a set of ten convenience-sampled representative households.
These general questions capture a spectrum of responses and
opinions so that survey questions can be more targeted. For
example, one question in the pilot study was “What would
you like to change in your cooking practice if there was no
financial or technical limitation and why?”” Answers informed
the researchers about the attributes that formulate opinions in
the target community. For example, the answers that have a
direct correlation with the necessity of smoke reduction are
different from the answers that have a direct correlation with
the firewood consumption, durability, or portability. Based
on the information provided, researchers identified the attri-
butes presented in Table 1 as the most important attributes
associated with cooking practices for households in the
subject community.

e Data Collection. Develop and implement a standard survey to
elicit TPB, usage context, and demographic data, as well as
stated or revealed choices of participants. The quality of
designed questions and the data collection process play an
important role in the model’s statistical significance; thus,
survey techniques from social science are used in this stage
(e.g., Ref. [64]). The sample size should be calculated based
on the number of variables being studied in the model using
the design of experiment methods. A target of 200 observa-
tions [32] or 10 observations per variable [65] are rough esti-
mates for a reasonable sample size appropriate for the
statistical analysis of the model. Therefore, a sample of 175
households was randomly selected in the target community
based on ILF’s experience in the field and their available logis-
tics for the data collection process. The local staff for the NGO
were trained to improve the quality of the collected data and
reduce the potential bias by making sure to provide enough
time for the respondent to think and answer, repeating ques-
tions and reading them without any emphasis on one response
or one part of the question, learning the purpose of the survey
and research, contributing to improving survey quality in the
local language, and providing an explanation of the purpose
of the study to respondents. Surveyors were also asked to
make it clear that the study was to help improve cookstove
program design so honest opinions were preferred to reduce
social desirability bias. They also ensured the participants
that their responses would in no way affect their relationship
with ILF or their ability to receive stoves or other items/assis-
tance in the future. The demographic details of the sample are
presented in Table 2. Using observations from Step 2, survey

Table 1 Attributes incorporated in the case study of clean
cookstoves

Wide spread beliefs Technology
Usage context attributes attributes attributes
Indoor/outdoor Smoke emission Price

Moisture content of Firewood consumption Number of burners

firewood Safety Dimension of
burner
Aesthetic Fuel type
Permission of family head Thermal power
Opinion of friends and Insulation

family
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Table 2 Demographic information of the case study’s sample

Uganda

Sample size

Number of villages

Affected population

Number of children (under 17)

Main cook’s age distribution

Income average (per week)

Education (primary income earner)

175

2

581

204 (35% of the affected population)

Minimum: 15
Maximum: 75
Average: 36.16
Std. dev.: 15.32

24,000 UGX
(~6.70 USD)

No education, 10%
Incomplete primary, 17%
Complete primary, 28%
Incomplete secondary, 12%
Complete secondary, 20%
College/university, 11%

questions were designed to capture the perceivable aspects of
clean cookstove adoption for users and implemented using
MAGPI data collection software. The baseline survey captured
scores for each attribute from respondents. At the end of the
baseline survey, the household’s choice of the stove among
the three available alternatives was recorded. In the next
step, ILF’s improved cookstove was provided at a subsidized
cost for the households that stated a clean cookstove as their
choice. After a month of initial use, a follow-up survey with
similar questions to the baseline survey was conducted to
capture users’ opinion changes and updated decisions for
investigating the long-term behavior analysis. The follow-up
survey was conducted for both improved stove adopters and
a subset of households that stated traditional stoves as their
preferred choice in the baseline survey. In addition, house-
holds were not notified that there would be another follow-up

survey by the time they were offered with the improved
cookstove.

Model Development and Data Analysis. Clean collected
data and apply statistical modeling techniques to estimate
each choice’s market share. The development of the TPB
model and extracting the most important attributes are dis-
cussed in detail in Refs. [60,66]. The results of these TPB
models informed the utility function by incorporating the
most important attributes of behavior as a group of explanatory
variables in the model. Other explanatory variables included
technology attributes (size, fuel type, and cost) and usage
context attributes (indoor/outdoor, and firewood moisture
content). Stata was used to analyze the data and develop the
model based on Eq. (3). Table 3 presents the results of condi-
tional fixed-effects regression analysis.

Reliability Analysis and Model Validation. Validate the
results using observed behavior and revealed choices to
compare them with the predicted behaviors and stated prefer-
ences. Results were validated in two separate formats. First,
the validity of the collected data was examined by comparing
responses of baseline and follow-up surveys. However,
responses to some questions should change due to users’
updated beliefs and experiences after using the cookstove. In
addition, a test-retest reliability measure provides a rubric to
compare responses with those questions that are not longitudi-
nal. For instance, responses to a question like “Doctors opin-
ions are: ” should not change after a cookstove trial
phase. Therefore, a subset of non-longitudinal questions
were selected to evaluate the reliability of collected responses
as a test—retest reliability measure. Second, the reliability of the
data analysis was evaluated based on the cross-validation [67],
goodness of fit measures, parallel regression assumption test,
and tests for heteroscedasticity and multicollinearity. The
results of these tests are presented in the results section.

Results

Three forms of utility functions were developed from the results
presented in Table 3. While several models were able to include

Table 3 Results of developed utility functions with different levels of integrating user behavior attributes

Utility Function I (base utility ~ Utility Function II (base utility  Utility Function III (base utility

Independent variables

function)

function without TPB) function with PBC only)

Price

Fuel type

Income 1
2
3

ATB—importance of less fuelwood consumption 1
2
3
4

PBC—independence in decision-making 1
2
3
4

SN—social network’s influence 1
2
3

N

AIC

BIC

Goodness of fit—p*(%)

Hit rate (%)

Log-likelihood (zero)
Log-likelihood (convergence)
2 test (degree-of-freedom)

0.019%%* (0.003)
—1.049%#* (0.230)

0.071 (0.362)

—16.686%** (1.680)
31.523%#* (1.803)
—2.834%% (1.339)

—1.783 (1.262)

—45.382%*%* (2.003)
—11.706%** (1.356)
4.105%** (1.440)
2.730%** (0.976)

1.204 1.710)
—0.556 (1.074)
—0.551 (0.954)

685
376.61
440.02

27.02
47.23
—239.70
-174.31
2867.01%** (14)

0.019%#% (0.003)
—1.054%%% (0.229)

0.254 (0.403)
—0.243 (0.649)
0.102 (0.536)

687
385.62
408.28
21.55
61.8
—239.70
—187.81
103.20%*%* (5)

0.020*** (0.003)
—1.033**%* (0.230)

—0.241 (0.230)

—13.170%%* (0.513)
—0.075 (1.077)
1.836% (1.054)
0.780%* (0.443)

687
384.30
416.02

22.66
52.47
—239.70
—185.15
1429.24%** (7)

Note: Robust standard errors in parenthesis. *p-value <0.1; **p-value <0.05; and ***p-value <0.01.
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both TPB constructs as well as demographic and technology attri-
butes, the incorporation of usage context attributes led to erroneous
utility function models due to the small sample size and lack of data
variation in the sample. Therefore, data collected on the moisture
content of firewood and indoor versus outdoor cooking as variables
of the usage context are omitted from the utility function models
presented in Table 3. Although the context-based attributes are
not discussed further in this case study, former studies have empha-
sized the significance of including them in the utility function
models (e.g., Refs. [54,57,68]). Therefore, future works should
collect contextual data with a large enough sample size to capture
its effect on the utility function. Nevertheless, statistically signifi-
cant models integrating the other two categories were successfully
developed.

Utility Function I is the base model that includes attributes repre-
senting all three TPB constructs that formulate the intention. The
statistical significance of the multiple levels of ATB and PBC attri-
butes suggests that including such independent variables improves
the estimation power of the model as measured by the likelihood
ratio test (presented in Table 4), pseudo R-square p? (27% in
Utility Function I compared to 21% in Utility Function II), and
lower Akaike information criterion (AIC) value (376.61 in Utility
Function I compared to 385.62 in Utility Function II).

Results of Utility Function I indicate that the SN attribute is likely
to have no statistically significant contribution to the respondents’
choice of the stove. However, the lack of statistical significance
of SN does not mean that social norms have no effect on house-
holds’ choices. Since TPB constructs are interconnected, SN influ-
ences may be influencing ATB or PBC or both. This finding is in
line with field observations. Because the data are for the baseline
study before households purchase the ICS, community members
had no widespread opinion about the new stove that was presented
to them right after the baseline survey. In terms of the influence of
ATB attribute in predicting choices, Utility Function I suggests that
considering firewood conservation as less important is likely to
influence the overall choice of the stove significantly toward not
choosing the ICS. One potential reason for the inconsistency in
the direction of influence of different categories of ATB in predict-
ing the choice could be due to the lack of significant representation
of each category of this variable. The PBC attribute has a significant
negative correlation with the choice of ICS when households per-
ceive less independence in deciding what stove to use. The value
of coefficients suggests that the influence of perceiving less inde-
pendence in decision-making, which is represented by levels 1
and 2 of this attribute, is considerably stronger than the influence
of perceiving more independency represented by levels 3 and
4. This suggests that gender plays a role in decision-making beha-
vior. Since the majority of main cooks in the target community
are women, they are exposed to the problems associated with tradi-
tional methods more than male heads of families. Therefore, it is
likely that their priorities are not necessarily reflected in the deci-
sions of the male family heads. As a result, the more power they

Table 4 Likelihood ratio test for Hypotheses | and Il

Test for Hypothesis I Test for
H;:fars= Prec=  Hypothesis Il Hj;:

Variables Psn=0 Pars= Psn=0
Log-likelihood of unrestricted —174.31 —174.31
utility function (LL¢)
Log-likelihood of restricted —187.81 —185.15
utility function (LLg)
Test statistics [—2(LLg—LL;))] 27 21.68
Number of restrictions 3 2
Critical chi-squared value at 6.25 4.61
90% confidence
Rejection confidence 90% 90%
Rejection significance 0.000 0.001
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perceive in independent decision-making, the more likely they are
to use ICS for cooking their main meals. The interconnectedness
between ATB and PBC based on the structure of TPB theory is
tested for multicollinearity effects in the regression analysis. A pair-
wise correlation of the two variables is 0.09 with the significance
level of 0.22, suggesting that the two variables are not likely to
cause multicollinearity.

Utility Function II estimates the choices of customers based on
conventional attributes for describing the utility of each alternative
that does not include user behavior attributes in the utility functions.
Similar to all other utility function models, in this model the fuel type
and income have a statistically significant correlation with respon-
dents’ choices. Four alternative devices in this study burn either
charcoal (coded as 1) or biomass firewood (coded as 0). The negative
sign of the fuel type indicates that alternative devices that rely on
charcoal have less likelihood to be adopted than firewood-based
counterparts. This estimation is in line with field observations.
Due to the lack of reliable and consistent supply chain for charcoal
to the study area, households are less likely to cook with charcoal
stoves. Price, income, and fuel type are normalized in Utility Func-
tion II. Therefore, a comparison of the magnitude of influence of
price (0.019) relative to fuel type (—1.049) and income (0.071) sug-
gests that this attribute is not likely to have a major influence on the
choices of households. One potential explanation for the small con-
tribution of the price of alternatives to inform the decision of house-
holds is that among four alternative devices in the study (open fire,
local mud stove, ICS, and charcoal stove), households construct the
first two from locally available material without any financial cost. In
addition, the ICS for participants in this study was considerably sub-
sidized from its original market price. As a result, households’ deci-
sions magnify the importance of other attributes in decision-making
related to price.

Utility Function III includes only one category of TPB instead of
all TPB constructs in addition to the conventional attributes of
utility function. This utility function model presents a partial appli-
cation of TPB in predicting users’ choices that could improve pre-
diction power and market share estimations without full
implementation of TPB. Similar to the base model (Utility Function
I), this model suggests that the likelihood of choosing ICS is signif-
icantly correlated with higher levels of perceived independence in
decision-making.

To compare how each model of Utility Functions I, I, and III is
in performing a more robust estimate, results of AIC, Bayesian
information criterion (BIC), and Hit Rate are presented at the
bottom of Table 3. Koppleman and Bhat suggest three methods
for evaluating models including an informal judgment test (if
results simply make sense or not), goodness of fit, and likelihood
ratio (LR) test [69]. Based on the discussion in explaining Utility
Function I and Utility Function III, the inclusion of user behavior
attributes to predict choices is justifiable. Although goodness of
fit values suggest Utility Function I is performing a better estimate,
this could simply be due to more predictive variables and should be
interpreted along with other tests such as LR.

The results of the LR test are presented in Table 4. Hypothesis I
compares the utility function without any TPB variables (Utility
Function II in Table 3) with the base model (Utility Function I in
Table 3). Similarly, Hypothesis II evaluates the utility function
with one TPB construct (Utility Function III in Table 3) with the
base model (Utility Function I in Table 3). Results of the LR test
suggest that both hypotheses could be rejected at 90% confidence
level. Therefore, TPB attributes are likely to have a statistically sig-
nificant contribution in predicting users’ choices of the stove.

Conclusions and Future Work

Clean technologies should be designed with an emphasis on their
adoption and successful replacement of conventional inefficient
practices. One important aspect of technology adoption is that of
user’s beliefs and behavioral attributes. Therefore, it is important
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to systematically incorporate attributes of behavior and beliefs in
the engineering design so that the designed product or service can
achieve a higher market share in a sustainable way. This proposed
framework that integrates UCBD with TPB in a DCA framework
reveals that conducting a survey from a sample of the target popu-
lation could help improve the compatibility of designed products or
services with user needs. The main contribution of the presented
framework is the systematic integration of theories and models
that have been independently validated in the literature to describe
behaviors that could be aggregated to explain clean technology
adoption in low-resource and developed settings, including envi-
ronmentally responsible behaviors, health-related behavior, and
rational decision-making. However, the application of including
quantitative behavioral methods in decision-based design is not
limited to designing clean technologies or design for low-resource
settings.

The framework presented in this study is developed based on
three criteria to improve its practicality for future applications.
First, the integrated method is holistic in terms of including attri-
butes from user behaviors, usage context, and technology design.
This allows the framework to provide insights that systematically
improve intervention strategies, highlighting the roles of user, tech-
nology, and context of use. Second, the model is parsimonious
meaning that efficiently gathering only relevant key input data
that leads to insightful results is reflective of the high costs and
the level of efforts associated with collecting data in data-scarce set-
tings. Therefore, the model setup relies on pilot study results for
selecting the most important attributes and variables for further
data collection and analysis to achieve actionable and reliable
results. Third, the framework is developed based on valid and well-
established theories that have been applied successfully throughout
the literature.

A case study of improved cookstoves adoption is presented to
demonstrate how the prediction power of decision-based design
approaches improves by integrating attributes of user behavior
based on TPB into utility functions. Results present statistically sig-
nificant measures of the influence of behavioral attributes such as
individuals® attitude toward less firewood consumption and their
perception of the authority they have in making decisions in house-
holds’ choices of the stove. Such findings suggest that in the target
community of the case study, ICS should be designed to prioritize
firewood savings over other attributes such as smoke reduction to
improve user’s intentions to replace traditional stoves. Similarly,
findings suggest that main cooks do not necessarily have enough
authority to make decisions regarding the choice of the stove inde-
pendently. Therefore, appropriate information campaigns should be
utilized to increase the awareness for the necessity of such behavior
changes throughout the community for both husbands (generally
the main decision-makers in the households) and the main cooks.
Applying findings of this case study is likely to increase the inten-
tion of households throughout the community to choose ICS for
cooking more frequently that gradually could shift their long-term
behavior of using inefficient cooking practices.

Such models could be integrated into the design phases for
large-scale international development interventions. In addition,
this framework provides insight for the design of appropriate mac-
roscale information campaigns and behavior change communica-
tions that target the main hindrances against increased intentions
to use clean technologies. Policymakers may utilize this method
and models to design education policies and intervention criteria
for international development stakeholders to develop and distri-
bute products that are reflective of usage context and user behavior.
As a result, the efficacy of resources allocated to development pro-
jects could improve through higher adoption rates.

Future work regarding effective incorporation of additional
usage context attributes is recommended to present the model’s per-
formance based on variable usage context attributes to predict
choices preferred by users in different use situations. The prelimi-
nary model developed in this study provides an illustration of
how practitioners may draw systematic conclusions related to

091402-8 / Vol. 142, SEPTEMBER 2020

users’ beliefs and behaviors in target communities through a pilot
study and TPB-based survey. Further studies can be undertaken
to include a greater number of contextual, technological, and beha-
vioral variables to answer questions that improve international
development or other clean tech interventions. In addition, such a
decision-making model can represent the decision criteria in adop-
tion studies that investigate community scale emerging adoption
patterns using agent-based modeling [70].
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