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1. Introduction

Since the advent of the electrophysiological recording electrode
in 1950s, the number of simultaneously recorded neurons has
experienced exponential growth, doubling approximately every
7 years.[1] The innovations in neural recording systems have
made it feasible to track neural activities from hundreds of sites
at the same time with high spatiotemporal resolution and long
duration.[2] The high channel counts open up possibilities for

neuroscientists to investigate the dynamic
activities of neural circuits at an unprece-
dently large scale. A major task of neural
recording is to reconstruct the wiring
between neurons, and by monitoring the
evolution of neuron interactions over time,
one could possibly understand the process
of learning, memory, and aging, and
develop treatments for neural diseases
such as Alzheimer’s disease or epilepsy.[3]

The synaptic connection strength can
be estimated by evaluating the impact of
the firing of one given neuron on the
spiking probability of another neuron.
Statistical methods including cross-
correlation (CC),[4] mutual information,[5]

transfer entropy (TE),[6] or the generalized
linear model[7] are usually utilized to deter-
mine the interdependencies between a pair
of neurons in the recordings. However, the
computation of these methods scales pro-
portionally with the number of recorded
neurons, thereby requiring enormous time
and resources to analyze large datasets. In
addition, most of these techniques assume
stationarity of the neurons, thus unable to
provide precise characterization of the neu-

ral network dynamics.[8] New approaches that can process large
amounts data collected from functional networks in real time[9]

and detect the underlying neuron connectivity[10] and network
evolution[11] will be critical for continued neural recording devel-
opments and neuroscience studies.

Memristors have been proposed as an attractive candidate for
artificial synapse[12] in building massively parallel neuromorphic
systems,[13] as it exhibits desirable properties such as high scal-
ability,[14] fast speed,[15] incremental conductance modulation[16]

when driven by external stimuli, and ultralow power consump-
tion.[17] Particularly interesting is the memristor’s ability to
natively implement synaptic learning rules including spike-
timing-dependent plasticity (STDP) through internal dynamic
processes.[18] Specifically, in a second-order memristor the rela-
tive timing information is captured by the second state variable
(e.g., internal temperature), whose activation and spontaneous
decay after stimulation by an external spike provides the internal
mechanism to encode the temporal spiking information and
allow the device’s conductance to be modulated accordingly.
As shown in Figure 2, the process resembles the way postsynap-
tic Ca2þ concentration modulates the synaptic plasticity based
on the temporal order of pre- and postsynaptic spikes in a bio-
logical system,[19] and allows biofaithful implementation of the
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The advances of neural recording techniques have fostered rapid growth of the
number of simultaneously recorded neurons, opening up new possibilities to
investigate the interactions and dynamics inside neural circuitry. The high
recording channel counts, however, pose significant challenges for data analysis
because the required time and computational resources grow superlinearly with
the data volume. Herein, the feasibility of real-time reconstruction of neural
functional connectivity using a second-order memristor network is analyzed.
Spike-timing-dependent plasticity, natively implemented by the internal dynamics
of the memristor device, leads to the successful discovery of temporal correla-
tions between pre- and postsynaptic spikes of the simulated neural circuits in an
unsupervised fashion. The proposed system demonstrates high classification
accuracy under a wide range of parameter settings considering indirect con-
nections, synaptic weights, transmission delays, connection density, and so on,
and enables the capturing of dynamic connectivity evolutions. The influence of
device nonideal factors on detection accuracy is systematically evaluated, and the
system shows robustness to initial weight randomness, and cycle-to-cycle and
device-to-device variations. The proposed method allows direct mapping of
neural connectivity onto the artificial memristor network and can lead to efficient
front-end data analysis of high-density neural recording systems and potentially
directly coupled bioartificial networks.
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timing-based learning rules. On the contrary, “traditional”mem-
ristors lack such internal timing mechanism, and would require
external circuitry to convert relative timing information in the
input to overlapping pulse widths or heights.[20] By using the
STDP learning rule, applications such as coincidence detec-
tion[21] and temporal pattern recognition[22] have been recently
experimentally demonstrated in a memristor system.

In this work, we analyze the ability of memristor networks to
process neural recording data from a simulated large neural
circuit. We show that a second-order memristor array has the
potential to natively reconstruct the connectivity pattern from
the recorded spike trains in an unsupervised manner, leading
to inhomogeneous conductance distributions in the artificial
network that match the structure of the biological networks.
The high scalability,[14] parallel real-time processing,[13] and low
power consumption[17] provide opportunities to integrate the
memristor network with high-density neural recording systems
for efficient front-end data analysis.[9]

A large neural circuit consists of complex and possibly recur-
rent connections, and spurious results may arise due to the influ-
ence of indirect connections. Different transmission delays and
neural jitters may also negatively affect the reconstruction accu-
racy, as STDP is very sensitive to timing information. To under-
stand the impact of these factors on the system performance, we
tested and verified the accuracy by comparing the device conduc-
tance map to the true biological connection map under a wide

range of network settings, using data simulated in a randomly
connected network of leaky integrate-and-fire (LIF) neurons.
In addition, the memristor system allows the real-time capturing
of dynamic connectivity evolutions in the neural work, in con-
trast to conventional techniques such as CC and TE which
assume static network connectivity.

2. Results

2.1. Memristor Network for Neural Connectivity Reconstruction

Figure 1a shows the design of the memristor-based system for
uncovering the connection pattern embedded in the neural net-
work. The system allows direct coupling between the memristor
synaptic network and the biological synaptic network, where
spikes recorded from the simulated neural network are fed to
the memristor network for analysis in an unsupervised fashion.
As the synaptic connections are unknown, every recording site
in the biological network is connected to both a row electrode
and a column electrode of the memristor network, as shown
in Figure 1a. The memristor conductance updates upon stimu-
lation by the spikes, based purely on internal physics.[18]

Specifically, the device we use here is a tantalum oxide-based
second-order memristor. The first state variable (conductance) is
determined by both the external stimuli and the status of a second

Figure 1. Memristor network for synaptic connection reconstruction. a) Schematic showing the coupling between the biological network and the mem-
ristor network. Spike trains from the simulated neural network are streamed to the memristor network, with each recording site connected to a top and
bottom electrode of the memristor array. (Excitatory and inhibitory neurons and their synaptic connections are colored magenta and cyan, respectively.)
b) Cross-correlogram computed from three pairs of neurons with excitatory, inhibitory, and no connection, respectively. c) Ground truth of the simulated
two-layer network of LIF neurons. d) Ground truth synaptic weight map. e) Ground truth connection map. Connections induced by the excitatory and
inhibitory connections are marked with magenta and cyan outline, respectively. f ) Conductance map of the memristor devices, measured after 600 s of
recording duration. g) Conductance evolution from all devices in the memristor network over 600 s recording duration (�6000 spikes).
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state variable (internal temperature). When stimulated, the local
temperature increases and then decays spontaneously after the
removal of the stimulation as shown in Figure 2b. If a second
spike arrives close to the first, heat effect from the first spike
has not been completely dissipated and the oxygen vacancy drift
and diffusion process will be accelerated by the higher tempera-
ture, leading to the growth or dissolution of conductive filaments.
The device conductance change will thus strongly depend on the
relative timing of the spikes applied to the top (corresponding to
presynaptic neuron inputs) and bottom (corresponding to post-
synaptic inputs) electrodes, natively following the STDP learning
rule even though the rule is not explicitly enforced.[18] The bio-
plausible characteristics of the second-order memristor device
lay the foundation for the discovery of temporal features hidden
in the time series inputs with unsupervised learning.

The natively exhibited STDP behavior of the device at the ini-
tial conductance is shown in Figure 2c, obtained using a dynamic
device model developed earlier.[18] Apart from the usual timing-
dependent plasticity, the conductance update is essentially zero
for near-synchronous spikes in the device, as the two spikes
(programming pulses) will overlap and cancel out each other.
We note that in extracellular recordings near-synchronous spikes
are also often undetected due to the fact that sorting algorithms
normally fail to identify individual spike from the superposition
of multiple spikes.[23]

We first examine how neural connection can be obtained from
the spike trains, by evaluating the impact of the firing of one neu-
ron on another. A positive synaptic weight represents an excit-
atory connection, meaning that the firing of the presynaptic
neuron i will increase the probability of the firing of postsynaptic
neuron j. The impact is reflected in the cross-correlogram as
shown in Figure 1b, where a peak is observed after a time lag
τ against a relatively flat background, corresponding to a greater
number of pre- and postsynaptic spikes arriving in sequence with
time interval around τ. Therefore, if an excitatory connection
exists between two neurons, the STDP learning rule will induce
overall stronger potentiation than depression, gradually enhanc-
ing the device conductance over the recording period. On the
contrary, for inhibitory connection, the firing of the presynaptic
neuron will suppress the activities of the postsynaptic neuron,
so the probability to observe a postsynaptic spike following a
presynaptic spike will be lower than the baseline probability,
represented by the trough in the CC plot.[4b] Consequently,
the potentiation portion of STDP will become weaker, causing
the device conductance to decrease over the training duration.
In the case where no direct connection exists between the neural
pair, the significant correlation of firing probability is absent, as
represented by the essentially flat black curve in Figure 1b. The
potentiation and depression effects induced by STDP will cancel
out each other, leading to only small change or almost no change

Figure 2. Native biorealistic implementation of STDP in second-order memristor devices. a) The efficacy of synapses can be modulated through
the regulation of calcium ions, which affects the insertion or removal of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs)
into the postsynaptic membrane. In the second-order memristor, the second-order state variable (e.g., internal temperature) can offer the internal dynam-
ics to modulate ion movements and enable device conductance update. b) Schematics of the pre- and postspikes, the effective pulses applied on the
device due to the pre–post pairs, and the device response. The rise and spontaneous decay of the internal temperature naturally encodes the timing
information between pre- and postsynaptic spikes. The elevated internal temperature together with the input spike then induces the conductance change.
c) STDP learning rule natively implemented in the device, following a physics-based device model. The insets illustrate the pulse scheme used to represent
the neural spikes, showing the pre- and postsynaptic spikes (upper) and the effective voltage pulse Vpre–Vpost (lower) on the memristor.
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in device conductance. Similar logic applies to the reverse direc-
tion (connection from neuron j to neuron i) but with opposite
sign, where reverse excitatory connection will cause the conduc-
tance to decrease, while the reverse inhibitory connection will
lead to positive conductance change.

To prove the feasibility of the proposed system, we then test
the detection accuracy in a simple, simulated two-layer network
of LIF neurons. The true synaptic weights and connection pat-
tern are shown in Figure 1d–e. Apart from excitatory connec-
tions, each excitatory neuron also receives the input from one
inhibitory neuron in the network. The synaptic connection
strengths for the excitatory and inhibitory connection are set
as 2 and –5mV, respectively (characterized by excitatory/inhibi-
tory postsynaptic potential [EPSP/IPSP] amplitudes). The neural
spikes are simulated with the NEST simulator,[24] where the neu-
rons fire at approximately 10 Hz and the simulation lasts for
10min. When the spikes are applied to the memristor network,
the device conductance is updated following the physics-based
device model and will natively exhibit the STDP learning rule
if the relative time interval between pre- and postsynaptic pulses
is within �20ms. As the internal dynamics in the tantalum
oxide memristor occur at a much faster time scale, in our simu-
lation the spike trains are sped up by a factor of 10 000 in time to
match the time scale of the memristor dynamics. We expect
future developments with memristor devices offering similar
internal time scales[9b] and biocomparable low operation voltage
(�100mV)[25] can allow direct coupling without any such prepro-
cessing steps.

For this simple test case, the final memristor conductance
matrix identifies both excitatory and inhibitory connections with
100% accuracy, as shown in Figure 1f. The conductance evolu-
tion in Figure 1g shows clear separation between three different
cases—connected positive (excitatoryþ inverse inhibitory),
unconnected, and connected negative (inhibitoryþ inverse excit-
atory). Although the conductance of individual devices fluctuates
during the learning process, the accumulated effect can accu-
rately reflect the connection information hidden in the spiking
sequence as long as a sufficient number of spikes (Nspike) are
fed into the memristor network. The stabilization of the system
can be attributed to the self-regulating effects in the conductance
update. When the device conductance is close to the maximum
value, the conductance increase will slow down because the
formation of conductive filaments has depleted the available
conductive ions. The same applies to the opposite direction.
The conductance depression will attenuate when the device is
approaching the minimum conductance value because all the
conductive ions have been driven back to the reservoir. This
behavior resembles the multiplicative STDP learning rule, where
the weight update is affected by a soft-bounded term,[26] and
reflects the saturation effect of long-term potentiation and
long-term depression observed in biological synapses due to
the homeostatic effect of calcium ions.[27]

We note that with the classical STDP rule, one can predict
whether a connection exists or not from the conductance level,
but cannot distinguish between excitatory and reverse inhibitory
connections because both excitatory and reverse inhibitory
(inhibitory and reverse excitatory) connections can lead to posi-
tive (negative) conductance changes, as shown in Figure 1f.
These connections may be separated in later stages if needed

through standard methods such as CC, TE, Granger causality,
and generalized linear model.

2.2. Connectivity Reconstruction of a Randomly Connected
Network

Following the feasibility test using the two-layer neural network,
we verify the system performance in the analysis of a larger spik-
ing network with randomly connected neurons. Again, we select
the LIF model, which has been shown in many cases to provide a
good approximation to the dynamics of more complex neuron
models and real neurons.[28] The network is composed of 100
excitatory neurons and 100 inhibitory neurons. Each neuron
is randomly connected with ten excitatory and ten inhibitory
neurons with corresponding weights of Jex¼þ1.0 and
Jin ¼�2.0 mV, as shown in Figure 3a. It needs to be noted that
even if two neurons are not connected directly, there can be indi-
rect connections in between for these larger networks. The
sparsely connected random network of LIF neurons is simulated
on the basis of Brunel’s model.[29] Following the guidance of
Brunel,[29] we set the parameters so that the neurons fire asyn-
chronously with stationary global activity and irregular single cell
firing, as can be seen from the raster plot in Figure 3e.

We randomly selected 15 excitatory and 15 inhibitory neurons
as inputs to the memristor network, as in real cases one can only
have limited access to a small part of the neural circuitry. Figure 3b
shows the true weight map and the observed conductance map
after applying around 6000 spikes. Again, the memristor conduc-
tance map successfully deciphers the direct connections from the
spike trains. The histogram plots (Figure 3f ) display the evolution
of the device conductance over time, where memristors corre-
sponding to neuron pairs with true connections clearly emerge
from the unconnected ones as more spikes are applied. The posi-
tive conductance changes are used to determine the presence of a
connection because the positive conductance modulation is gen-
erally stronger in our devices (e.g., Figure 2c). The threshold value
of the conductance change to classify a connection is selected
using the Matthews correlation coefficient (MCC) metric to
achieve an optimal balance between true positives (TPs) and false
positives (FPs).[30] MCC takes account all four components (TPs,
true negatives [TNs], FPs, and false negatives [FNs]) in the confu-
sion matrix (METHODS), so it can provide a balanced measure
even if the numbers of the positive and negative classes are dis-
proportionate, such as the case studied here. Based on the MCC
score, we chose þ7% conductance change as the threshold value
and applied this to all the following tasks.

Figure 3h shows that for the randomly chosen inputs, all the
76 TPs are detected after �3000 spikes are applied to the mem-
ristor network, and the number of FPs remains less than or equal
to three over the entire simulation. As the firing of two neurons
can be weakly correlated with each other through indirect inter-
actions, FPs can be induced by the accumulated effect of the indi-
rect connections, particularly in larger networks.

Considering the complexity and the heterogeneity of a real bio-
logical neural network, it is thus essential to study how different
network characteristics would affect the reconstruction accuracy
of the memristor-based system. In the following, we evaluate the
influence of synaptic weight, firing rate, transmission delay, and
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connection density. We also test the robustness to temporal jitter
and the capability to capture dynamic synaptic connections.

2.2.1. Influence of Synaptic Weight

In this analysis, we set the synaptic weight to different values that
correspond to Jex¼þ0.5, þ1, þ2mV and Jin¼�1, –2, �4mV.
To make reliable inference on connection, sufficient Nspike must
be provided. Here, we investigate the performance of detection
accuracy, as well as the required Nspike for reliable detection at
different synaptic weights. Results are shown in Figure 4c,e.

It is not surprising to see that the required Nspike decreases
with the increasing synaptic strength. Analyzing the TP case also
shows that most weak connections can be detected as long as the
recording duration lasts long enough, e.g., when enough spikes
are supplied. However, larger Nspike also enhances the overall
cumulative effect of indirect connections, resulting in more
FP cases for weaker synaptic weights, as shown in the case of
Jex¼þ0.5 and Jin¼�1mV in Figure 4b,d. Despite the unde-
sired influence of indirect connections, the memristor network
is able to identify most connections with low error rate even for
relatively weak connection, as illustrated by the high MCC score
in Figure 4c,e.

Synaptic connections with weight lower thanþ0.5 or�1.0 mV
are not covered in the simulation. One reason is that the detec-
tion of these very weak connections calls for very long duration
of stable recording from a static neuron, which is not common
in real experiments. In addition, studies[31] have shown that the
distribution of synaptic weights in cortical circuitry follows a

lognormal distribution, implying that the synaptic weight distri-
bution is dominated by a few strong connections. In general, the
local structure inside the brain can be viewed as a skeleton of
strong connections immersed in a sea of weaker ones. Lining
out the skeleton (strong connections) is therefore critical for
the understanding of cortical interaction and dynamics.

We also checked the two FN cases for inhibitory connection at
�4mV. It turns out that these two cases have bidirectional inhib-
itory connections. The inhibitory effect will thus be partially can-
celed out by the connection in the opposite direction, making
them harder to be detected. As in our tests a subset of neurons
is randomly selected from the large neural network, the case at
�2mV happens to not have any bidirectional inhibitory connec-
tions and resulted in a slightly higher MCC, as shown in
Figure 4e. Despite these small variations due to the random neu-
ron selection process, both cases show high MCC scores after
receiving sufficient number of spikes.

2.2.2. Influence of Firing Rate

Firing rate has long been believed to play an important role in
information coding and network stability, as well as in neural
response to addictive synaptic inputs or external stimuli.[32] To
estimate the influence of firing rate, we simulate two kinds of
situations: 1) all neurons in the network share roughly the same
firing rate ranging from 2.5 to 20Hz; 2) two groups of neurons
fire at different rates in the network.

From the TP number results shown in Figure 5b, one can see
that most connections are correctly predicted, except for only one

Figure 3. Connectivity reconstruction of a neural circuit with random connections. a) Ground truth synaptic weight matrix of the whole neural network
with Jex¼ 1.0 and Jin¼�2.0 mV. b,c) Ground truth synaptic weight map and connection map of 30 neurons randomly selected from the network.
d) Conductance change map of the corresponding memristor devices after 6000 spikes. e) Raster plot showing the neurons fire asynchronously.
f ) Conductance histograms showing how device conductance values evolve over time and separate into three groups with increasing spike inputs.
g) MCC score computed at different threshold values. h) Values of TPs and FPs with respect to Nspike.
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missed case in the simulation with firing rate of 10–20Hz. In
most cases, the number of FPs is also almost zero, representing
excellent classification performance. However, when the firing
rate increases to 20Hz, the number of FPs increases sharply
to 10. This effect can be explained by indirect connections. If
we assume independent Poisson processes for the spiking
events, the baseline probability for the time interval between
pre- and postsynaptic spikes to fall within the STDP window
is proportional to ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirpre � rpostp , where rpre and rpost stand for
the firing rate of pre- and postsynaptic neuron, respectively.
The linear dependence on the firing rates can be clearly visualized
in the cross-correlogram of two unconnected neurons, as shown in
Figure 5a. Therefore, the effect of indirect connections becomes
more significant at higher firing rates, generating a higher

misclassification error. Despite the influence of indirect connec-
tions, the system still preserves high accuracy at 20Hz with a TP
rate of around 88%. The performance is further assessed by MCC
together with two other scalar metrics—balanced accuracy (BACC)
and F1 score (METHODS) in Figure 5c. All three metrics are
found to be over 0.9 in all simulations, demonstrating that our
system is generally applicable to neural networks with a wide
range of firing rates typically encountered in neural recordings.

2.2.3. Influence of Transmission Delay

When modeling a realistic biological neural network, it is essen-
tial to consider the time delays for the signal to propagate

Figure 4. Influence of synaptic weight. a) Ground truth weight map of the whole network with inhomogeneous synaptic strengths. b,d) Values of TPs, FPs,
TNs, and FNs obtained in the system for the excitatory and inhibitory connections at different synaptic weights. c,e) Influence of synaptic weight on the
MCC score and the required Nspike for stable prediction.

Figure 5. Influence of firing rate. a) The CC between neuron pairs with no direct connection. A roughly linear dependence is observed for the baseline
correlation with the square root of the product of the pre- and postsynaptic neuron firing rates. b) Values of TPs, FPs, TNs, and FNs obtained in neural
networks with different firing rates. The first four simulations are conducted in the network with homogeneous firing rate at 2.5, 5, 10, 20 Hz. The last two
simulated networks consist of two groups of neurons firing at different rates: 5 and 10 Hz, 10 and 20 Hz. c) Evaluation of classification accuracy with
BACC, F1, and MCC metrics at different firing rates.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 2000276 2000276 (6 of 13) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


between two neurons, which has been shown to affect synchro-
nization, neuron response, and spatiotemporal pattern genera-
tion.[33] The reliance on spike timing to uncover connectivity
patterns in our approach means that it is crucial to assess the
sensitivity of the system to transmission delay. In the following,
we first simulate networks with different transmission delays in
the range of 1–5ms under the assumption of identical delay time
between adjacent neurons within the network. To provide analy-
sis in a more biorealistic situation, we then examine the case
where the delay time has a random, i.e., uniform distribution
between 1 and 5ms.

The conductance histograms after 4000 spikes for different
transmission delays are shown in Figure 6a, showing the sepa-
ration of connected positives from the rest in all cases.
Unsurprisingly, the connected positives shift toward lower values
with increasing transmission delay because the amplitude of
device response decreases at longer timing delays as reflected
by the STDP curve in Figure 2c. However, the delay (up to
5ms) does not cause a measurable effect on the TP detection
accuracy, while the FP numbers show some dependence on delay

time. With peak response at around 1ms, the system prediction
has the highest number of FPs at tdelay¼ 1ms because the higher
magnitude of conductance update also leads to greater effect of
indirect connections. Despite the minor influence on error rate,
the overall system performance maintains high scores (>0.95)
for the three metrics, as shown in Figure 6c.

For biological networks with delay up to tens of milliseconds,
our systems can still be useable with simple adjustments. As the
range of transmission delay inside the recorded network is nor-
mally predictable, one can alter the time scaling performed
before applying the spikes to the memristor to match the scale
of the propagation delay.

2.2.4. Influence of Temporal Jitter

Randomness in the firing of action potentials is inevitable for
cortical neurons because of the stochastic nature of synaptic
transmission and ion channels, as well as inhomogeneous spike
transmission times between consecutive layers. However, both

Figure 6. Influence of transmission delay time. The first five cases assume identical delay time between adjacent neurons in the range of 1�5 ms. The last
case considers inhomogeneous synaptic delay in the network with uniform distribution between 1 and 5ms. a) Histograms of device conductance values
after 4000 spikes for the different transmission delay cases. b) Values of TPs, FPs, TNs, and FNs, reflecting the system’s tolerance to synaptic propagation
delay variations. c) Computed BACC, F1, and MCC scores for the different transmission delay cases. All three metrics maintain high value for different
transmission delays.
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the dynamics of cortical networks and the active properties of
individual neurons are able to overcome these potential problems
and produce spikes with high timing accuracy. For example,
recordings from frontal lobe reveal that the spiking of cortical
neurons has very small temporal jitter on the order of
1ms.[34] To mimic the neural jitter effect, we add a random noise
drawn from normal distribution with standard variance of σjitter
(0.5–1.0 ms) to the spike timing. Figure 7a�c shows that the
peak/trough of excitatory/inhibitory connections in the CC plot
spreads out after injecting temporal jitter. The influence of tem-
poral jitter at different synaptic transmission delays is shown in
Figure 7d�f.

Almost all TPs can still be correctly classified after the addition
of temporal jitter, and only marginal changes in the number of
FPs are observed. This effect can be explained by the fact that the
overall device conductance modulation is a cumulative effect
from a large number of neural spikes; therefore, the temporal
perturbation added to each individual spike will be essentially
averaged out. The fact that the system maintains high scores
of the three scalar metrics further highlights its robustness
against temporal jitter (Figure 7f ).

2.2.5. Influence of Connection Density in a Large-Scale Network

Asmentioned earlier, the connection pattern of a realistic neuron
network is essentially a skeleton consisting of sparse strong con-
nections immersed in the background of weak connections.
To study the influence of connection density on the reconstruc-
tion performance, we conducted simulations in a large sparsely
connected neural network consisting of 5000 LIF neurons
(4000 excitatoryþ 1000 inhibitory). The synaptic weights are
set as Jex¼þ0.2, Jin¼�0.6mV for weak connections and
Jex¼þ1.0, Jin¼�2.0 mV for excitatory and inhibitory

connections, respectively. Our goal is to test whether the connec-
tion density will affect the identification of the strong backbone.

We first examine the influence of the connection density of
weak synapses. The network is constructed in the way that each
neuron receives inputs from 0.25% to 20% [number of incoming
excitatory synapses per neuron (CE)¼ 10–800] of excitatory pop-
ulation and 0.5% to 40% [number of incoming inhibitory synap-
ses per neuron (CI)¼ 5–400] of inhibitory population. The
number of strong synapses is fixed at a low value of 50 for both
excitatory and inhibitory connections.

The TP curve in Figure 8a shows that the strong connections
need longer observation time to emerge from networks with
higher density of weak synapses (CE¼ 400–800, CI¼ 200–400).
After applying 6000 spikes to the device, part of the excitatory
connections is still missing, contrary to the quick discovery in
the sparse network (CE¼ 10–100, CI¼ 5–50). Further extension
of the recording time helps to increase the number of TPs. As the
connection density increases, neurons are sharing higher num-
ber of common inputs from the indirectly connected neurons,
which diminishes the system effectiveness in connection
detection. At higher connection densities, the assumption of
sparse network is no longer strictly valid, such as at CE¼ 800
and CI¼ 400, where the dynamic stability of the network is
impaired[35] and the autocorrelation plot is not all zero within
the STDP window. This means there is a finite probability for
a single neuron to generate two spikes within the window at
CE¼ 800 and CI¼ 400, causing a measurable device conduc-
tance change. These two effects at high connection densities
reduce the sensitivity of the system to the strong synapses,
although the network is still able to make accurate predictions
with a longer acquisition time. Figure 8c,d shows that the system
maintains a low FP rate under 1% and a high MCC score of
around 0.96 at CE¼ 800 and CI¼ 400.

Figure 7. Influence of temporal jitter. a�c) CC plot computed between pairs of neurons with excitatory, inhibitory, and no direct connections, for three
cases with different temporal jitters. The peak/trough induced by excitatory/inhibitory connection widens after the addition of neural jitters. d) TPs/FPs.
e) TNs/FNs plotted after 4000 spikes for different temporal jitters and different transmission delays. f ) Comparison of MCC score at different temporal
jitters in networks with different transmission delays. The system achieves similar performance in the presence of temporal jitters.
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We then evaluate the effects of strong connections, by fixing
the total number of connections (200 excitatory, 100 inhibitory)
and modulating the density of strong connections. Figure 8e,f
shows that the density of strong synapse has negligible influence
on classification accuracy and only has a minor effect on the
requiredNspike for reliable reference. The FP rate and MCC score
are shown in Figure 8g,h and demonstrate that the system offers
similar performance when the strong connection density varies
from 5% to 20% of fixed total connections. These analyses con-
firm that the system has good tolerance to connection densities
of weak and strong synapses.

2.2.6. Detection of Dynamic Synapses

Activity-dependent modifications of synaptic efficacy are funda-
mental to the development and cognitive functions of neural cir-
cuits such as learning and memory.[36] Most standard statistical
methods including CC and TE assume fixed neural connectivity,
therefore cannot provide satisfactory performance for networks
with underlying synaptic plasticity. To test the proposed system’s
performance on dynamic synapses, the following experiment is
performed.

The simulation is composed of three segments with a total
length of 30min, where in every 10min two existing connections

(marked by red square) will be removed and two new connec-
tions (marked by green square) will be created. By comparing
the conductance map with the true connection map at each sim-
ulation segment, the ability of the memristor system to capture
new connection patterns can be tested.

Figure 9a–e shows that following the native STDP behavior,
the device conductance gradually evolves to match the new con-
nectivity in the neural circuit. To compare with more conven-
tional approaches, we also try to recover the connection with
CC and TE. We find that CC generates three FPs and one
FN, and TE produces three FNs because they are calculated from
the spikes observed during the whole 30min. All errors can be
attributed to no longer existing connections or newly added ones,
showing the limitations of these traditional methods to cope with
nonstatic synapses. On the contrary, the adaptive feature of the
dynamic memristor network offers the system the capability to
evolve with new connection patterns, as shown in Figure 9d,e.

2.3. Device Nonidealities

The influence of device nonideal factors is then systematically
studied. Here to speed up the simulation, we used a phenome-
nological multiplicative STDP learning rule[26] to numerically
simulate the conductance updates, where the parameters are

Figure 8. Influence of connection density on the detection of strong connections. The system performance is evaluated in a large neural network with
4000 excitatory and 1000 inhibitory LIF neurons. a–d) Influence of connection density of weak synapses. The evolution of true detection rate of
a) excitatory and b) inhibitory connections is plotted against Nspike. For higher connection density of weak synapses, larger Nspike is required for reliable
reconstruction. c) Evolution of FP rate showing its insensitivity to connection density of weak synapses. d) MCC score computed from predicted con-
nections, including both excitatory and inhibitory synapses. e�h) The influence of the connection density of strong synapses is evaluated by changing the
proportion of strong synapses from 5% to 20% while fixing the number of total connections. Evolution of true detection rate of e) excitatory and
f ) inhibitory connections shows the impact on detection efficiency. g) Evolution of FP rate demonstrating its insensitive to connection density of strong
synapses. h) MCC score at different connection density of strong synapses.
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based on quantitative fitting of the outcome from the physical
device model. Regulation on weight update is implemented with
a soft bound, where the synaptic change is weight dependent. As
a result, synaptic depression becomes stronger for larger
weights, in agreement with the device behavior when approach-
ing saturation. The numerical simulations used the following
parameters: Ap¼ 0.36, Ad¼ 0.3, τp¼ 4.8 ms, τp¼ 6.4 ms, and
η¼ 0.01.

In addition, the effects of the initial weight distribution, and
cycle-to-cycle (C2C) and device-to-device (D2D) variations have
also been considered, by adding standard deviations from 5%
to 20% to these parameters, corresponding to the range of experi-
mentally observed C2C and D2D variations in physical devices.[37]

w¼

8>>>>>><
>>>>>>:

wþ η�ð0.7�wÞ�Ap � exp
�
Δtþ1.5

τp

�
, �20ms<Δt<�1.5ms

w� η�ð0.7�wÞ� Ap

1.5 �Δt, �1.5ms≤Δt≤ 0

w� η�ð0.7þwÞ� Ad
1.5 �Δt, 0≤Δt≤ 1.5ms

w� η�ð0.7þwÞ�Ad � exp
�
�Δt�1.5

τd

�
, 1.5ms<Δt< 20ms

(1)

As the conductance update is dependent on the current status
of the device, we included variations of the initial weight to the
simulation. Examining the conductance evolutions in Figure 10a
shows that the memristor conductance will eventually evolve to a
stable distribution, independent of the initial conductance value

as long as a large enough Nspike is provided. This adaptive behav-
ior of STDP learning rule enables the device to perform reliably
regardless of its initial state, as has been discussed earlier.

Due to the stochastic nature of conductive filament growth,
C2C variability is inevitable for memristor devices. We therefore
simulate the influence of C2C variation on neural circuit connec-
tion inference. Figure 10b shows that no noticeable effects on
inference accuracy can be observed, although the weight update
processes become noisy. This observation can be explained by
the fact that inference prediction is based on the cumulative
behavior from thousands of spikes, where the effect of C2C vari-
ation is essentially averaged out.

Device-to-device (D2D) variation is then analyzed, by adding a
Gaussian distribution to the amplitude (Ap and Ad) and relaxa-
tion time (τp and τd) of the STDP behavior. The box plot
(Figure 10c,d) shows that the distribution of the device conduc-
tance in the three groups expands by a significant amount due to
D2D variation. The connected-positive group starts to overlap
with the unconnected group for larger variations, producing det-
rimental effect on the accuracy. The MCC score drops below 0.8
when the variation in amplitude (relaxation time) is equal to or
greater than 15% (20%). However, when analyzing the more real-
istic D2D variation cases that keep the ratios between Ap/Ad and
τp/τd fixed, we find that the system can effectively absorb the var-
iations with no observable degradation in performance, as shown
in Figures 10e,f.

Figure 9. Connectivity reconstruction in a dynamic network. Two existing synapses (marked by red square) are pruned and two new synapses (marked by
green square) are added to the network every 600 s. The simulation contains three segments, lasting 1800 s in total. a) True weight map and b) connection
map at corresponding segments. c) Device conductance maps measured at the end of each simulation segment. Perfect match with the true connection
map is obtained in all three segments. d) Ground truth synaptic connection values for the dynamic synapses and e) device conductance evolutions over
time, illustrating that the memristor network is capable to learn the new synaptic weights. f,g) Connectivity reconstructions using f ) CC and g) TE
mislabels the dynamic synaptic connections (FPs are marked by green outline, and FNs are marked by read outline). The threshold for CC and TE
is selected by MCC.
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These results suggest the system is robust to random initial-
izations and C2C variations. D2D variations may significantly
impact the classification accuracy, but if the potentiation/
depression ratio is maintained among devices, which appears
to be feasible for practical devices, the system performance will
not be noticeably affected.

3. Conclusion

In this work, we presented the concept of coupling a memristor
synaptic network to a biological synaptic network to uncover the
biological network connectivity in an unsupervised manner. The
second-order memristor can natively produce the STDP behavior
and decode the temporal dynamics of the spikes. The proposed
system is used to decipher the temporal correlation hidden in
spike recordings and capture the ground truth connection
map in the network. The influence of neural network parameters
on the system performance is comprehensively studied with
synthetic neural spikes in a randomly connected network. The
system reliably achieves high inference accuracy with MCC score
higher than 0.9, showing great tolerance to a wide range of net-
work conditions. The system also demonstrates advantages over
standard statistical methods when dealing with dynamic synap-
ses, due to the fact that it does not rely on the assumption of
stationarity of neurons. The memristor conductance can natu-
rally evolve following the changing firing patterns of the neural
network. This ability allows the memristor network to be used to
monitor the neural network connectivity evolution, which is cru-
cial for the understanding of neural circuit development, normal
and pathological brain functions.[38]

Apart from synaptic connection reconstruction, the system
can be utilized as coincidence detection[21] and temporal

correlation detection between event-based datasets.[39] In earlier
studies,[20] waveform engineering or pulse amplitude/duration
modulation is required to implement STDP learning rule. The
natural implementation of STDP learning rule in the second-
order memristor allows the use of simple, short, and nonoverlap-
ping square pulse, greatly reducing the complexity for the design
of the circuit.

We note that in real biological networks, the neuron firing is
more complicated and can be influenced by fluctuations pro-
duced by external signals. The presence of large background
noise may induce temporal correlations between neurons with-
out direct synaptic connections and produce spurious predic-
tions, i.e., FPs. One source of error comes from the indirect
interactions via other neurons, especially in a large recurrent net-
work. This might be reflected as a sharp peak in the CC plot,
meaning that the neuronal firings are still correlated even in
the absence of direct connections. Although the prediction does
not indicate a true direct connection, it reflects the functional
interactions between neurons; therefore, the interactions
between neurons are still worthwhile for further analysis.

Another possible error is the slow fluctuations in the temporal
correlation due to variations in the background noise. If the con-
nections are strong enough, the temporal correlation will be sig-
nificant enough from the baseline and can still be faithfully
detected, even when subjected to the fluctuating background.
As discussed in Section 2.2.1, the system will still be reliable
in lining out the skeleton (strong connections), which is critical
for the understanding of cortical interaction and dynamics. If
weak synaptic connections also need to be reliably detected, more
complicated methods such as spike jittering[40] or generalized
linear model,[87c]which take the fluctuating part into consider-
ation, may be used to conduct further examination on the
detected neuronal pairs. The proposed system is still valuable

Figure 10. Influence of device nonideal factors. The box plots compare the conductance distributions obtained in the ideal case with those obtained in the
presence of different device nonidealities, for the three groups of connections—connected positive, unconnected, and connected negative. The line plot
shows the MCC score in the different cases. a) Influence of initial weight variation. b) Influence of C2C variation. c) Influence of amplitude variations
(Ap and Ad). d) Influence of relaxation time variations (τp and τd). e) Influence of amplitude and f ) relaxation time variation with fixed ratio between
potentiation and depression (Ap/Ad and τp/τd).
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in this scenario because it can remove the large amount of
unrelated data and accelerate downstream analysis.

4. Experimental Section

Biological Neural Network Simulation: Neural simulations are conducted
with NEST simulator.[24] The network is composed of excitatory and
inhibitory populations. Connections between neurons are created with
predefined synaptic weights. Transmission delay time is added to the syn-
apse model when constructing the network. Apart from the synaptic
inputs, a Poisson input is fed into the neurons independently as the exter-
nal synaptic input. We also assign an external current source to the excit-
atory and inhibitory populations, respectively, to tune the neurons firing
rate to the desired value. For randomly connected sparse networks, the
parameter setting of the network follows the Brunel’s model to ensure
all neurons fires in the asynchronous irregular region.

Device Simulation: Device simulations are performed using the SPICE
model developed in previous work.[18] The neural spike train pattern is
scaled by a factor of 10 000 before being fed into the memristor array
to match the time scale of the memristor dynamics. A presynaptic (post-
synaptic) spike is composed of a short pulse with 100 ns duration and
amplitude of þ1.01 V (�1.01 V), followed by a long pulse with 1.9 μs dura-
tion and amplitude of �0.05 V (þ0.05 V). The first short pulse can initiate
both programming and heating effects. One purpose of the second, longer
pulse is to mimic the refractory period of a biological neuron. The other
purpose is to lower the amplitude of the programming pulse to minimize
the programming effect induced by a single spike. The device conductance
is monitored throughout the simulation. Median of the conductance of all
devices is subtracted to eliminate the possible bias that may be induced by
the asymmetric potentiation and depression effects.

Scalar Metrics: The MCC[30] is adopted to evaluate the performance of
network reconstruction and select the positive threshold. As MCC takes
account all four components (TP, FP, TN, and FN) in the confusionmatrix,
it can provide a balanced measure even when the number of two classes is
not in proportion. MCC is computed with the following equation, where a
coefficient of þ1 represents a perfect classification.

MCC ¼ NTPNTN �NFPNFNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNTP þNFPÞðNTP þNFNÞðNTN þNFPÞðNTN þNFNÞ
p (2)

The BACC[41] is computed based on sensitivity (also known as TP rate
or recall) and specificity (also known as TN rate). It simply takes the
arithmetic mean of the two metrics. The weighted sum avoids inflated
performance estimates on imbalanced datasets.

BACC ¼
�
TP
P

þ TN
N

��
2 (3)

The F1 score is the harmonic mean of the precision and recall, where
the precision is the number of TPs divided by the number of all positive
items detected (TPsþ FPs), and the recall is the number of TPs divided by
the number of all samples that should be identified as positive.[42]

F1 ¼ 2
Recall�1 þ Precision�1 ¼

TP
TPþ 1

2 ðFPþ FNÞ (4)
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