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Technology adoption in low-income regions is among the key challenges facing interna-
tional development projects. Nearly 40% of the world’s population relies on open fires
and rudimentary cooking devices exacerbating health outcomes, deforestation, and climatic
impacts of inefficient biomass burning. Clean technology alternatives such as clean cook-
stoves are among the most challenging technologies to approach their target goals
through sustainable adoption due to a lack of systematic market-driven design for adoption.
Thus, a method is needed to provide insight regarding how target customers evaluate and
perceive causes for adopting a clean technology. The holistic approach of this study cap-
tures technology adoption through lenses of social networks, individual and society scale
beliefs, and rational decision-making behavior. Based on the data collected in the Apac
region in Northern Uganda, an agent-based model is developed to simulate emerging adop-
tion behavior in a community. Then, four different scenarios investigate how adoption pat-
terns change due to the potential changes in technology or intervention strategy. These
scenarios include influence of stove malfunctions, price elasticity, information campaigns,
and strength of a social network. Results suggest that higher adoption rates are achievable
if designed technologies are more durable, information campaigns provide realistic expec-
tations for users, policymakers, and education programs work toward women’s empower-
ment, and communal social ties are recognized for influence maximization. The application
of this study provides insight for technology designers, project implementers, and policy-
makers to update their practices for achieving sustainable and to the scale clean technology
adoption rates. [DOI: 10.1115/1.4047901]
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1 Introduction
Technologies created to address needs in low-income regions

play a crucial role in community development and empowerment.
Ten out of the 17 sustainable development goals can be met
through successful adoption of appropriate technologies such as
clean cookstoves, water filtration systems, renewable energy tech-
nologies, and waste management processes [1]. Predicting and
monitoring adoption is particularly important for clean technologies
because ultimate goals will be achieved only if inefficient, conven-
tional practices are successfully displaced by new technologies.
Therefore, it is important to study the determinants of the adoption
of such technologies in the early phases of design. The information
provided by investigating the adoption behavior of clean technol-
ogy users can enable technology designers and project implemen-
ters to effectively reshape their approaches to achieve higher
market penetration and technology usability.
The decision to adopt is a complex process that involves individ-

ual attitudes toward specific behavior, beliefs about personal ability
to control that behavior, and perceptions of social pressures for, or
against certain behaviors. Systematic integration of these three cat-
egories of beliefs with utility maximization theory could lead to a
better understanding of user decision-making behavior in terms of
clean technology adoption. Therefore, in this work, individual
scale utility functions based on personal beliefs, evaluations, and

perceptions are formulated according to the theory of planned beha-
vior (TPB). Then, the developed utility functions are applied to an
agent-based modeling (ABM) system to simulate community-scale
emerging adoption patterns within social networks. This model is
then used to simulate the impacts of various technology design
and policy decisions for a clean cookstove project in a rural commu-
nity based on data from Apac, Uganda.

2 Background
Community-scale technology adoption is a phenomenon that

emerges from individual households’ decision-making behavior.
There are two main attributes that define technology adoption in
groups of people and hence should be considered in the models.
First, households independently make a volitional decision on
whether to adopt an available technology or not. Therefore, each
household is an autonomous decision-making agent. Second,
households communicate their decisions within their networks
and throughout their communities. One main reason for such com-
munication is that humans’ choices and behavior are influenced by
social contexts [2]. To recognize both these conditions, ABM can
be used. Agent-based simulations provide a unique opportunity to
draw community-scale conclusions based on individual decisions.
Such simulations are dynamic; hence, long-term behavior of
agents could be traced through time as their behaviors may
update or technologies change [3]. In addition, ABM provides the
structure for agents to communicate through their social networks
and update their decisions based on their peers’ decisions. Through-
out the literature, ABM is among frequently applied simulations for
analyzing coupled human and natural systems [4].
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Models for the behavior of agents to reflect the process of tech-
nology adoption within ABMs can be described in various ways.
The diffusion of innovation theory developed by Everett Rogers
is among the well-known theories, which capture multiple aspects
of adoption from the technology itself to methods of communica-
tion, adoption timing, and attributes of the adopters. In terms of
technological innovation, key factors that influence adoption
according to the diffusion of innovation include comparative advan-
tage, compatibility, complexity, trialability, and observability [5].
Rogers further expands drivers of adoption to people through a five-
stage decision-making process described by knowledge, persua-
sion, decision, implementation, and confirmation. As a result,
every decision-maker ends up being a member of one of four
general groups that form the society based on when they may
adopt a technology, including early adopters, early majority, late
majority, and laggards [5]. The diffusion of innovation is among
the widely used models across several branches of science since
its introduction in 1962 [6]. Although diffusion of innovation is
among robust theories for technology adoption, its focus is more
toward technology (innovation) rather than decision-maker’s inten-
tions [7].
Focusing on the role of users in technology adoption, the technol-

ogy acceptance model (TAM) developed by Davis relies only on
two factors to describe adoption behavior including perceived use-
fulness and perceived ease of use [8]. Perceived usefulness refers to
the level at which individuals perceive a technology that would
enhance their performance. Perceived ease of use is defined as an
individual’s perception regarding how easy it is to use a technology.
A meta-analysis of TAM suggests that the theory provides valid and
robust models of adoption and has the potential to be expanded for a
wider domain of applications in different branches of science [9].
One of the main limitations of TAM is capturing social effects on
decision-making for technology adoption [10]. Further works on
the robustness of TAM led to an extended version of TAM called
TAM2. In this version, two general categories are added to the orig-
inal TAM to capture social influence processes such as social norms
(SN) and cognitive instrumental processes such as results demonstr-
ability [11]. A comparison between TAM2 and TPB suggests that
TAM2’s attributes are captured by TPB which is more parsimoni-
ous than TAM2 [12].
Inspired by categories of attributes that are utilized in the diffu-

sion of innovation, and TAM, as well as other models of technology
adoption, the Unified Theory of Acceptance and Use of Technology
(UTAUT) is developed as a holistic approach [13]. The attributes
that determine the adoption in UTAUT include performance expec-
tancy, effort expectancy, social influences, and facilitating condi-
tions. A literature review on 450 applications of UTAUT suggests
that, although the model is robust to predict adoption behavior,
the complexity of the model components is a barrier for many
case studies [14]. The computational efficiency of the model is par-
ticularly important for investigating adoption in data-scarce set-
tings, so a more resource-efficient model is needed.
One of the most parsimonious models of behavior modeling is

the TPB. Developed by Ajzen [15], TPB explores the belief-based
factors that formulate the intentions of individuals to make a choice.
According to TPB, there are three categories of attributes, or con-
structs, that determine intention which is the main factor that
leads to behavior. These three constructs are a user’s attitude
toward the behavior (ATB) based on behavioral beliefs, SN sur-
rounding perceptions of a behavior based on normative beliefs,
and perceived behavioral control (PBC) to conduct an action
based on control beliefs [16]. TPB is one of the well-established
models in the literature for investigating the human side of adoption
for technologies that are already in the market and social influences
that could contribute to their adoption [17].
TPB has been integrated with ABM for studying technology

adoption in domains such as organic farming practices [18], envi-
ronmental innovations [19], natural gas vehicles [20], and smart res-
idential electricity meters [21]. A review of the literature suggests
that TPB is among the most robust models for analyzing adoption

behavior from the user acceptance perspective [10]. In addition, pre-
vious works of authors present the successful application of TPB to
explain user behavior with respect to improved cookstoves (ICS)
adoption in low-income contexts [22,23].
It is conventional wisdom that society plays an important role in

shaping individuals’ behaviors. Many technology adoption theories
reflect the role of society in their models such as diffusion of inno-
vation, TPB, and UTAUT. Rogers presents the role of social net-
works in the diffusion of innovation through influences of
opinion leaders and critical mass. He further explains why the adop-
tion curve, oftentimes represented by an S-shape, results from the
assumption that if opinion leaders adopt a technology, the adoption
reaches a critical mass after which other society members adopt the
technology at an exponential rate [5]. In addition to the role of
opinion leaders, Rogers presents close spatial proximity to technol-
ogy adoption leads to “neighborhood effect” which increases the
likelihood of adoption. According to TPB, social norms are one
of the main determinants of behavioral intentions. Formed by nor-
mative beliefs, social norms highlight an individual’s evaluation
regarding society’s norms and the importance of complying with
them [15].
Researchers have emphasized using social networks to describe

the role of society in technology adoption [24]. A review of litera-
ture related to characteristics of social networks for investigating
technology adoption using ABM suggests that adoption networks
follow small-world network characteristics [25]. Small-world net-
works, as opposed to completely regular and completely random
networks, capture how the randomness of connecting nodes could
be clustered by network parameters such as characteristic path
length [26]. The path length and dynamic properties of small-world
networks presented by Watts and Strogatz could convey two impor-
tant aspects of technology adoption. First, path lengths could repre-
sent the proximity of households and neighborhood effects. Second,
the network is dynamic based on a network update probability attri-
bute that could represent households’ changes in peers, preferences,
and intra-communal communications. These two main characteris-
tics have led multiple technology adoption studies using ABM to
implement a small-world network [20,21].
In addition to making decisions based on the influence of

society, the idea that individuals choose alternatives that maximize
their utility is widely regarded in neo-classical economic theories.
In this study, discrete choice analysis is used to model choice
behavior from a set of mutually exclusive alternative technologies
using the principle of utility maximization [27]. The integration of
discrete choice analysis with ABM is a common practice through-
out literature to capture rational decision-making, e.g., Ref. [28].
The rational process of utility maximization is analyzed based
on different attributes incorporated from multiple disciplines. Psy-
chological approaches in calculating utility often fall short in terms
of providing quantitative insights in terms of technology-related
attributes [29], while engineering approaches lack systematic
incorporation of users’ behavioral elements for robust choice mod-
eling [30].
Despite these tools and advances, there is not currently an effi-

cient methodology that integrates rational decision-making with
behavioral models to simulate the process of technology adoption
through a social network in low resource settings. While there are
studies that have developed integrated approaches to investigate
technology adoption, the current study’s approach is novel in
terms of integrating small-world networks with TPB and utility
maximization theory in an agent-based model. The main contribu-
tion of this work using survey data collected in a low-income
region is to demonstrate that technology adoption for consumers
at the bottom of the pyramid is not solely derived based on cost.
At the individual scale, this research seeks to incorporate both ratio-
nal and psychological aspects of decision-making to describe
households’ autonomous decisions. At the community level, a
social network based on small-world networks provides the com-
munication links among agents that lead to capture emerging adop-
tion behavior using an ABM.
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3 Methodology
In this study, an ABM approach is developed for a rural commu-

nity based on the information collected during a two-phase field
study in Apac, Uganda. All research with human subjects was over-
seen by the Oregon State University Institutional Review Board
under study number 7257. The model investigates the proliferation
of ICS adoption in households through a theoretical community.
Diffusion and the decision to adopt are based on a combination
of the social influences of peers and the individual decision-making
behavior based on the utility maximization theory. The discrete
choice analysis representing utility maximization theory is inte-
grated with TPB to improve the predictability power of the utility
function by capturing attributes related to beliefs and psychological
process-related to adopting a clean technology. The data collection
for TPB attributes of clean technology adoption in the Ugandan
community is presented in Refs. [22,23]. The development of
utility functions based on these is presented in Ref. [22].
In the ABM developed here, households in the community are

represented by agents that individually make decisions to maximize
their utility regarding their choices of the cooking stove. The attri-
butes that inform the utility function based on TPB include ATB,
SN, PBC, and income for capturing user heterogeneity, while avail-
able choices of cookstoves in the local market of the case study are
represented by technology price and fuel type. Agents communicate
their decisions through their community based on a small-world
network. Learning from decisions of peers in the community and
stove performance, agents update their decision about adopting
improved cookstoves over time. As a result, the community scale
adoption behavior is elicited. The model is used to simulate four dif-
ferent scenarios of technology adoption to inform technology
designers and project implementers to gain insight into how
product features and services can help achieve higher adoption
rates.
The village-level progression of ICS adoption is represented as a

flowchart in Fig. 1. This model is developed in Mesa, a platform for
ABM analysis using PYTHON [31]. Based on this framework, a the-
oretical community was created. Each household is represented as
an autonomous agent with heterogeneous attributes of behavior
and income based on the sample data. Agents communicate with
other agents in their network (peers) regarding their choice of
stoves and report if their stoves do not work properly. In each time-
step of the model, attributes that inform stove choice are updated
based on agent communications and a dynamic network of peer
updates. At the end of each time-step, the overall number of ICS
adopters relative to the total number of households is calculated
and referred to as the adoption rate. The variables used in the anal-
ysis are presented in Table 1.

3.1 Model Initialization. The developed model extends char-
acteristics of households that were surveyed in a representative rural
community in Apac, Uganda. While the relevant survey data are
presented in Table 1, the detailed information on data collection
and survey results is presented in another work of authors [22].
The stated stove preferences of these 175 randomly selected house-
holds informed the utility function of the model [22]. Results of
regressions on the collected data determined weights of influences
of attributes presented in the utility function. The characteristics
of the collected data are presented in Table 1. Data collected from
the sample were scaled up using linear expansion to represent a rea-
sonable estimate of the population of the community. For this
purpose, the distribution of surveyed household attributes informed
attributes of every household in a community of 1045 households
(Table 2). In the community, it is assumed that 40% of households
have a stove at time= 0, which comes from survey results.

3.2 Social Influence. The model in this study assumes that
households in the community exhibit small-world network charac-
teristics. Therefore, the social network was developed following the

recommendations of Watts and Strogatz [26]. In the model, each
agent is connected to its neighbor agents that represent neighbor-
hoods as well as some agents in the community that exhibits
social status proximity instead of physical proximity. The
network has a network update probability attribute to capture the
dynamic aspect of such social networks. The network update prob-
ability changes 20% of agents’ links in each time-step of the model.
Such link changes represent the fact that people change their pref-
erences, social ties, meet new community members and are
exposed to new opinions through day to day life. The 20%
update probability is chosen based on assumptions of previous
work in low-income countries [20].
This study captures choices that are made based on the strong

influence of peers through word-of-mouth or social need motivation
by incorporating an imitation process of decision-making based on
the Consumat approach [32]. This approach covers four main beha-
vioral rules that dominantly explain agent decision-making. Imita-
tion is the process of decision-making as a result of peers’
behaviors. Through imitation, an agent copies the choice that the
majority of their peers successfully make. In this model, the thresh-
old that determines the majority of peers follows the recommenda-
tions of Kempe et al. [24]. In their work, the maximum influence
from the spread of information through social networks occurs
when 63% of the links are activated [33]. Therefore, we assume imi-
tation leads the agents to copy their peers’ choice of the stove if
more than 63% of them have adopted an ICS, bypassing utility
analysis.

3.3 Decision-Making Based on Discrete Choice Analysis. In
addition to the direct social influence, the decision to adopt also
includes the utility maximization theory and TPB. Equation (1)
illustrates the integration of TPB attributes along with technological
attributes that predict choices of the agent (i) for technology

Fig. 1 Flowchart of the model

Journal of Mechanical Design FEBRUARY 2021, Vol. 143 / 021402-3



alternative (n) as the deterministic part of the utility function (Win).
The three TPB constructs included in the utility function are attitude
toward behavior (ATB), social norms (SN), and perceived behavior
control (PBC) [22].

Win = β0, i + βPrice, n Pricen + βFuel, n Fueln + βincome,i Inc.i
+ βATB, i ATBi + βSN, i SNi + βPBC,i PBCi (1)

TPB analysis of data collected from the sample suggests that the
most important representative of the ATB attribute is an individu-
al’s evaluation of the importance of firewood consumption. Simi-
larly, the evaluation of individuals regarding the importance of
the opinion of friends and family about the choice of stove repre-
sents the SN attribute and the perception of authority in making
the decision for stove type to use represents the PBC attribute in
this study [23].

3.4 Post-Adoption Behavior Updates. Adopting a new stove
provides users with experiences that influence their evaluations and
behavioral attributes. These post-adoption experiences were
modeled with two general cases. The first case assumes that the
agent’s needs are satisfied and they have a pleasant experience
with the new technology. As a result, the TPB attributes improve
in favor of the new technology, leading to higher intentions for

continued use. The second case assumes that the new technology
is not fulfilling the agent’s expectations. This is often the case in
projects due to stove break down and malfunction. In response,
the model decreases behavioral attributes indicating that the
person is less likely to keep using the new technology. The ultimate
choice of each agent is then communicated with their social ties to
capture social influences.

3.5 Time-Steps. Although the time-steps are not intended to
represent a fixed increment of real-time, each time-step of the
model represents a full model utilization and transfer of information
across the social network. As a result, at each unit less time-step, the
choices of the stove are updated either through a social influence or
utility maximization process, and each household’s opinion about
cookstoves is updated based on their satisfying or dissatisfying
experiences. The updated choice of stove, as well as the agent’s
dynamic attributes, informs the next time-step updating the social
network set up according to the network update probability. Since
the stove choice of agents has changed from the previous time-step,
agents’ decisions are updated again to inform the next run, as illus-
trated with the dashed box in Fig. 1.

4 Results and Discussion
Four scenarios are investigated against the baseline analysis dis-

cussed in Sec. 3 to reflect real-world situations that may occur, and
policy implications of each scenario are explored.

4.1 Scenario I: Price Elasticity. One of the key factors in
decision-making is the price of available alternatives [34]. The
influence of price fluctuation on technology adoption patterns was
simulated in the model using the ceteris paribus effect of positive
and negative price elasticity (or the rate at which demand changes
due to price changes) for ICS. Negative elasticity assumes that as
the price of an ICS increases its demand decreases (ICS is normal
good as defined in microeconomics). Positive elasticity assumes
that as the price of an ICS increases, demand for it increases by

Table 2 TPB attribute distribution in sample and projected
population [22]

Sample (collected)
N= 175

Population (estimated)
N= 1045

Attribute Mean Standard deviation Mean Standard deviation

ATB 3.54 0.68 3.52 0.70
SN 3.60 0.91 3.59 0.93
PBC 3.12 1.44 3.12 1.44
Income 1.76 0.85 1.77 0.86

Table 1 ABM input data

Variable Level Type Initial value

ATB—Attitude toward saving firewood Agent Dynamic Extended from survey resultsa in Likert scale from 1 to 4
SN—Evaluation of social ties ICS opinion Agent Dynamic Extended from survey resultsa in Likert scale from 1 to 4
PBC—Perception of authority in making decision Agent Dynamic Extended from survey resultsa in Likert scale from 1 to 4
Income Agent Static From survey resultsa

−<25,000 UGX,
−25,000–50,000
−>50,000 UGX

Fuel type Tech. Static Field observation (0 for firewood, 1 for charcoal)
Stove price Tech. Static Field staff’s experience

5: open fire,
25: mud stove,
75: charcoal stoves,
100: ICS, normalized)

Stove type Tech. Static Field observation (open fire, mud stove, charcoal stove, ICS)
Number of peers Model Static Assumption based on literatureb—from 6 to 12
Network updating probability Model Dynamic Assumption based on literatureb—20%
Technology degradation rate Model Static Assumption based on field observation (4–8% −10–18%)
Adoption rate Model Dynamic Ratio of households with ICS to all households
Stove choice Agent Dynamic Extended from survey (open fire: 18%, mud-stove: 42% ICS: 40%)
βATB Agent Static 1: −16.686, 2: 31.523 3: −2.834, 4: −1.783a
βSN Agent Static 1: 1.204, 2: −0.556 3: −0.551a
βPBC Agent Static 1: −45.382, 2: −11.706 3: 4.105, 4: 2.730a

βIncome Agent Static 0.071a

βFuel Agent Static −1.049a
βPrice Agent Static 0.019a

aRef. [23].
bRef. [20].
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some ratio. It should be noted that the ICS owners in this study
received their cookstoves fully subsidized. As a result, their deci-
sions on ICS adoption were not significantly influenced by the
price of the technology.
Since real choices of households (revealed preferences) were not

recorded, utilities calculated based on stated preferences are used to
approximate demand. The adoption rate simulated in Fig. 2 suggests
that if households consider ICS as a normal good, the adoption of
cookstoves is not likely to approach satisfactory scales through
time. Despite the value of negative elasticity in the model (which
is set to −0.001 compared to the positive price elasticity value
from Table 1 of 0.019), simulation results suggest that changes in
the sign of price elasticity significantly reduces the adoption rate
in the community from the status quo. The negative sign of beta
implies that households consider ICS a normal good. Therefore,
increasing its price leads to a decrease in its demand. However,
regression results of the sampled households suggest that the
price has a small positive influence in the utility perceived by
users in the community, as evidenced by the positive price elasticity
of utility (0.019) in the sample size. This means that as the price of
the ICS increases, the utility of the ICS assigned by the household
also increases. It is important to mention that approximately 40% of
the households in the survey already owned a fully subsidized ICS.
Therefore, their price sensitivity may not be representative. A
potential explanation for assigning higher utility to ICSs as their
price increases is the social status that ownership of the technology
provides for the household, referred to as Giffen goods in econom-
ics [35]. Although the discussion regarding causes of positive price
elasticity of demand is beyond the scope of this study, the model
suggests that having positive price responsiveness is likely to
improve technology adoption considerably holding all other vari-
ables constant. Additionally, if further investigations suggest that
ICS are a normal good (i.e., they have a negative price elasticity),
then adoption is not likely to reach the desired scale based on the
results presented in Fig. 2.

4.2 Scenario II: Influence of Household’s Psychological
Attributes of Behavior. As discussed above, according to TPB,
three categories of attributes formulate intention. In Fig. 3, the influ-
ence of changes in each of these categories on overall adoption
behavior is presented with respect to the baseline. The baseline
refers to the values of TPB attributes that were assigned based on
survey data and extended through all community members, reported
in Table 1. Any consistent change in widespread beliefs in the com-
munity may lead to higher or lower adoption rates than the baseline.
Information campaigns and behavior change communications are

two examples of the methods that could influence such attributes
consistently throughout the community.
Results of the analysis suggest that a uniform decrease by one

unit on a scale of one to five in households’ perception of their inde-
pendence in making decisions, or PBC, regarding the choice of
stove reduces ICS adoption rate in the community. This finding
matches with the results of Ref. [36], which found that women
who are more exposed to risks associated with inefficient cooking
are more likely to adopt ICS. However, in many contexts, they
may lack the authority to purchase such stoves.
Lowering households’ ATB regarding the importance of fire-

wood consumption by one unit on a scale of one to five increases
the adoption rates over time. This counterintuitive finding suggests
that the current technology’s performance may not be fulfilling
expectations of those households that consider less firewood con-
sumption more important than other community members. A house-
hold with strong beliefs regarding reducing firewood consumption
may stop using ICS because the technology does not reduce their
firewood consumption as expected, despite the efforts to change
their behavior and the cost of acquiring an ICS. Therefore, informa-
tion campaigns should reflect the actual performance of the technol-
ogy instead of exaggerating their performance.
Assigning less value to the importance of opinions of friends and

family by reducing one unit on a scale of one to five is likely to
increase technology adoption over time. This finding suggests
that behavior change communications that improve community-
scale beliefs regarding ICS play an important role in the overall
adoption pattern. Other literature on social capital and the influence
of word-of-mouth in technology adoption validate this finding. For
example, a study in Northern Peruvian Andes found that households
are more likely to follow the widespread behavior in the community
if the social bonds are strong [37]. Another study in western Hon-
duras applies social network analysis to describe how the spread
of information solely through word-of-mouth by active community
members led to a successful ICS intervention [38].

4.3 Scenario III: Degree Centrality of Households. This
scenario studies the influence of social networks on adoption
based on degree centrality. Degree centrality is the number of
households in which each agent is connected, essentially represent-
ing the number of peers with which information is exchanged. The
degree centrality of this network represents the overall social capital
of the community in which social capital is a measure for intra-
communal link strength [37]. Social capital provides the capacity
within a social network for collective actions [39]. Thus, the
strength of social capital impacts on adoption patterns can beFig. 2 Price elasticity’s impact in community scale ICS adoption

Fig. 3 Influences of changes in TPB attributes on community
scale ICS adoption
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simulated in the model by varying the degree centrality modeled as
the number of peers connected to each agent varies from 6–12
households (Fig. 4).
Results suggest that stronger social capital improves adoption

rates ceteris paribus. However, the strength of social networks facil-
itates the spread of both positive and negative feedback. As a result,
although adoption rates improve initially likely due to the spread of
positive influence, negative feedback caused by stove malfunction-
ing leads to decreasing long-term adoption behavior for a network
with less degree centrality. This finding is in line with an indepen-
dent study in a Peruvian Andes community [37]. If a household is
connected to only five other households and two of them have neg-
ative experiences with ICS, this household is surrounded by nega-
tive feedback from one-third of their peers. While a household
that is connected to 11 other households, only two of which have
negative experiences with their ICSs, is affected by the negative
feedback of only one-sixth of their peers. Such a change in
weight of influence of peers leads to decreasing adoption rates in
the community if the communal ties are not relatively strong.

4.4 Scenario IV: Rate of ICS Malfunction. The durability of
ICS is among the major challenges that impact adoption rates [40].
While these cookstoves optimize combustion to reduce firewood
consumption and smoke emissions, high temperatures, corrosive
environments, material limitations, and cost constraints are some
challenges that could lead to early stove failure from continuous
use. Therefore, it is important to capture the effect of stove failure
on community-scale adoption patterns.
Figure 5 illustrates the adoption rates in the community for four

scenarios based on the number of ICSs that fail to work properly
due to durability issues. This is modeled by randomly assigning
60 (14%), 100 (24%), 150 (36%), and 180 (43%) malfunctioning
stoves among all ICS owners in time-step zero. These households
disseminate negative feedback regarding their broken stove.
Having more than one peer with negative experiences lowers the
agent’s intention to choose ICS. Results suggest that durability sig-
nificantly influences the adoption pattern in the community in the
long term. As the number of malfunctioning stoves increases, the
spread of negative feedback throughout the community negatively
decreases peers’ behavioral attributes. The impact of the spread of
negative feedback as the result of stove malfunctioning reflects
independent findings in the literature [41]. Throughout time such
negative influences are likely to lower the intention of households
who are not experiencing any issues with their ICSs to cook
fewer meals with it. Therefore, stove designers and project imple-
menters need to provide ongoing maintenance and repair services

through the community to improve the durability and operation of
designed technologies.

5 Verification and Validation
Verification refers to the process that examines a model’s perfor-

mance against the intended designed study while validation evalu-
ates to what extend the model explains the real-world system.
Following recommendations of North and Macal [42], the model
in this study was verified to implement the designed study illus-
trated in Fig. 1. Given the data collected from a randomly selected
sample from a community, this study assumed that the sample’s
choices and attributes are likely to be representative of a community
with 1000 households. The technology adoption behavior of this
hypothetical community is predicted based on the theory of
planned behavior, utility maximization theory, social network anal-
ysis, and agent-based modeling. The key assumptions in this study
include the following: (1) applicability of the theory of planned
behavior in the surveyed context, (2) extendibility of sample size
to the hypothetical population of the agent-based model, and (3) sig-
nificant external factors that may drive the decision-making beha-
vior of households. Other work by authors suggested that the
correct application of TPB could quantify attributes that formulate
intentions for technology adoption in the surveyed context [22].
While investigating the last two key assumptions could be the
subject of future research,
North and Macal present multiple types of validation for ABM

including requirement validation, data validation, face validation,
process validation, theory validation, agent validation, and model
output validation. This work captures four types of validations,
including:

(1) Data validation: The data collected to represent agents in this
study are based on a standard survey method in a real-world
setting. Participants in the survey were randomly selected
and survey questions were carefully designed to avoid inher-
ent biases associated with survey questions. Surveyors were
trained to avoid potential implications during the data collec-
tion process. A full discussion on the survey procedure is pre-
sented in Ref. [23].

(2) Theory validation: The theories implemented in this study
are among the well-established theories in the literature.
The discrete choice analysis, TPB, Social Networks, and dif-
fusion of innovation methods have been reviewed exten-
sively and applied in different domains of technology
adoption using ABM through literature as discussed in the

Fig. 5 Influences of stove malfunction on community scale ICS
adoption

Fig. 4 Influences of degree centrality on community scale ICS
adoption
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background. While there is a consensus on the validity of the
theories that form the foundation of this work based on their
numerous applications, the integrated model developed here
should be investigated independently from the underlying
theories and as a novel approach for theoretical validity.
Such investigation is suggested for future work.

(3) Model output validation: The output of the model in scenar-
ios II, III, and IV agrees with independent analytical work
discussed at the end of each scenario. Therefore, the output
of the model reinforces the conclusions of independent
researchers that have applied different analytical techniques
for similar research questions.

(4) Requirements validation: The requirements that have been
integrated into the model are selected based on diffusion of
innovation theory and field observations. To ensure the
model captures the correct elements to address the research
questions, a pilot study that included open-ended questions
was implemented from a group of five community
members and field staff. The results of the pilot study
guided this research to reflect widespread beliefs in the com-
munity and incorporate techniques based on literature that
could provide quantitative and systematic insight based on
such beliefs and context-specific attributes.

6 Conclusions and Future Work
In this study, the long-term technology adoption behavior in a

community is studied based on emerging patterns of household
decision-making accounting for utility maximization and the influ-
ence of social networks. Households’ decisions and their peers’
choice of stove affect their TPB-based behavioral attributes
through time. The dynamic ABM platform provides the opportunity
to study the impacts of different scenarios related to clean cookstove
adoption in the community. The four scenarios investigated in this
research highlight the importance of systematic integration of users’
behavioral attributes and having a long-term perspective for tech-
nology designers and project implementers to achieve higher
impacts in the context of international development. Technology
designers can benefit from the results discussed in this paper that
shed light on how technology performance coupled with user pref-
erences alters the impact assumed in the design phase.
The methodology in this study captures the dependency of tech-

nology adoption throughout time based on technology performance
and user preferences. Results indicate that technology degradation
and malfunction is one of the key factors that could define
whether an intervention will be successful or not. One implication
of this finding is that providing long-term customer service and
scheduled maintenance programs are essential for scalable technol-
ogy adoption. Information campaigns and behavior change commu-
nications that target mass populations should be carefully designed
to avoid inflated expectations about technology performance, while
realistically informing communities regarding the challenges asso-
ciated with conventional inefficient practices. In addition, the mes-
sages of such public awareness programs should reflect widespread
community beliefs and recognize the power and level of autonomy
in changing behaviors. For instance, in a community where hus-
bands and male family heads are the main decision-makers, inform-
ing wives and female cooks about the benefits of using ICS may not
lead to successful adoption patterns due to a lack of autonomy to
make such decisions.
The role of societal and intra-communal ties is significant in

adoption patterns. Recognizing the strength of social capital in a
target community could help project implementers to appropriately
focus on influence maximization through the spread of information
in the social network of the community. For this purpose, further
studies should incorporate different household types according to
the diffusion of innovation theory for investigating how identifying
households with a higher social reputation could influence the adop-
tion behavior of the community.

Households’ sensitivity to price significantly influences technol-
ogy adoption. While negative and positive price elasticity of ICS
demand is shown to be strongly correlated with technology adop-
tion behavior, future work is needed to determine whether an ICS
is a normal good or Giffen good. The difference between these
two types of goods may depend on how ICS ownership is regarded
in the community. If ICS is a normal good, increasing its price will
lead to less ICS demand and project implementers should consider
the price sensitivity of households as a key determinant of adoption.
In the case of a Giffen good, ICS could be regarded as a social status
product. As a result, increases in its price may lead to higher
demand for it.
The results of this study could be improved by incorporating

community member social status and level of influence into the
model. Therefore, designing the social network of the target com-
munity by reflecting the weight of influences for households that
are naturally more influential in the community could improve the
robustness of the model.
Applying this model to different types of technologies that aim to

address the challenges of the bottom of the pyramid based on appro-
priate user heterogeneity attributes could improve overall project
success. Validation of the model could be investigated through a
planned independent study that records actual behavior for compar-
ing model prediction with behavior. Additionally, investigating the
technology adoption through lenses of bounded rationality or valid-
ity of the underlying assumption of rational decision-making could
be another topic for similar future work in the domain of low-
income regions. On a larger scale, integrating adoption behavior
models to extended village-scale models, developing policy level
toolkits for international development, and developing macro-scale
energy policy systems could improve the overall approach to relieve
energy poverty for international development.

Acknowledgment
The authors would like to thank the International Lifeline Fund

and their field staff for facilitating data collection and field observa-
tions for this study. We appreciate the financial support from the
School of Mechanical, Industrial, and Manufacturing Engineering
at Oregon State University and NSF CMMI Grant No. 1662485.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not nec-
essarily reflect the views of the National Science Foundation.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request. Data provided by a third party are listed in Acknowledg-
ment. The datasets generated and supporting the findings of
this article are obtainable from the corresponding author upon
reasonable request.

References
[1] United Nations, 2015, Transforming Our World: The 2030 Agenda for

Sustainable Development, UN Publishing, New York, NY.
[2] He, L., Wang, M., Chen, W., and Conzelmann, G., 2014, “Incorporating Social

Impact on New Product Adoption in Choice Modeling: A Case Study in Green
Vehicles,” Transp. Res. Part D Transp. Environ., 32, pp. 421–434.

[3] Macal, C. M., and North, M. J., 2009, “Agent-Based Modeling and Simulation,”
Proceedings of the 2009 Winter Simulation Conference (WSC), Austin, TX, Dec.
13–16, pp. 86–98.

[4] An, L., 2012, “Modeling Human Decisions in Coupled Human and Natural
Systems: Review of Agent-Based Models,” Ecol. Modell., 229, pp. 25–36.

[5] Rogers, E. M., 2010, Diffusion of Innovations, 4th ed., Free Press, New York.
[6] Sahin, I., 2006, “Detailed Review of Rogers’Diffusion of Innovations Theory and

Educational Technology-Related Studies Based on Rogers’ Theory,” Turkish
Online J. Educ. Technol., 5(2), pp. 14–23.

[7] Weigel, F. K., Hazen, B. T., Cegielski, C. G., and Hall, D. J., 2014, “Diffusion of
Innovations and the Theory of Planned Behavior in Information Systems
Research: A Metaanalysis,” Commun. Assoc. Inf. Syst., 34(31), pp. 619–636.

Journal of Mechanical Design FEBRUARY 2021, Vol. 143 / 021402-7

http://dx.doi.org/10.1016/j.trd.2014.08.007
http://dx.doi.org/10.1016/j.ecolmodel.2011.07.010
http://dx.doi.org/10.17705/1cais.03431


[8] Davis, F. D., 1989, “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology,” MIS Q., 13(3), p. 319.

[9] King, W. R., and He, J., 2006, “A Meta-Analysis of the Technology Acceptance
Model,” Inf. Manag., 43(6), pp. 740–755.

[10] Hwang, Y., Al-Arabiat, M., and Shin, D.-H., 2016, “Understanding Technology
Acceptance in a Mandatory Environment: A Literature Review,” Inf. Dev., 32(4).

[11] Venkatesh, V., and Davis, F. D., 2000, “A Theoretical Extension of the
Technology Acceptance Model: Four Longitudinal Field Studies,” Manage.
Sci., 46(2), pp. 186–204.

[12] Benbasat, I., and Barki, H., 2007, “Quo Vadis, TAM?,” J. Assoc. Inf. Syst., 8(4),
pp. 211–218.

[13] Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D., 2003, “User
Acceptance of Information Technology: Toward a Unified View,” MIS Q.,
27(3), p. 425.

[14] Williams, M. D., Rana, N. P., and Dwivedi, Y. K., 2015, “The Unified Theory of
Acceptance and use of Technology (UTAUT): A Literature Review,” J. Enterp.
Inf. Manag., 28(3), pp. 443–488.

[15] Ajzen, I., 1991, “The Theory of Planned Behavior,” Orgnizational Behav. Hum.
Decis. Process., 50(2), pp. 179–211.

[16] Ajzen, I., 2013, “Theory of Planned Behaviour Questionnaire. Measurement
Instrument Database for the Social Science”.

[17] Lai, P. C., 2017, “The Literature Review of Technology Adoption Models and
Theories for the Novelty Technology,” J. Inf. Syst. Technol. Manag., 14(1),
pp. 21–38.

[18] Kaufmann, P., Stagl, S., and Franks, D. W., 2009, “Simulating the Diffusion of
Organic Farming Practices in Two New EU Member States,” Ecol. Econ.,
68(10), pp. 2580–2593.

[19] Schwarz, N., and Ernst, A., 2009, “Agent-based Modeling of the Diffusion of
Environmental Innovations—An Empirical Approach,” Technol. Forecast. Soc.
Change, 76(4), pp. 497–511.

[20] Sopha, B. M., Klӧckner, C. A., and Febrianti, D., 2017, “Using Agent-Based
Modeling to Explore Policy Options Supporting Adoption of Natural gas
Vehicles in Indonesia,” J. Environ. Psychol., 52, pp. 149–165.

[21] Zhang, T., and Nuttall, W. J., 2012, “An Agent-Based Simulation of Smart
Metering Technology Adoption,” Int. J. Agent Technol. Syst., 4(1), pp. 17–38.

[22] Pakravan, M. H., and MacCarty, N., 2020, “Design for Clean Technology
Adoption: Integration of Usage Context, User Behavior, and Technology
Performance in Design,” ASME J. Mech. Des., 142(9), p. 091402.

[23] Pakravan, M. H., andMacCarty, N. A., 2020, “What Motivates Behavior Change?
AnalyzingUser Intentions toAdopt Clean Technologies in Low-Resource Settings
Using the Theory of Planned Behavior,” Energies., 13(11), p. 3021.

[24] Kempe, D., Kleinberg, J., and Tardos, É., 2005, Influential Nodes in a Diffusion
Model for Social Networks, Springer, Berlin Heidelberg, 1127–1138.

[25] Kiesling, E., Günther, M., Stummer, C., and Wakolbinger, L. M., 2012,
“Agent-based Simulation of Innovation Diffusion: a Review,” Cent.
Eur. J. Oper. Res., 20(2), pp. 183–230.

[26] Watts, D. J., and Strogatz, S. H., 1998, “Watts−1998-Collective Dynamics of
‘Small-World,” Nature, 393(6684), pp. 440–442.

[27] Ben-Akiva, M. E., and Lerman, S. R., 1985, Discrete Choice Analysis: Theory
and Application to Travel Demand, MIT Press, Boston, MA.

[28] Rai, V., and Robinson, S. A., 2015, “Agent-based Modeling of Energy
Technology Adoption: Empirical Integration of Social, Behavioral, Economic,
and Environmental Factors,” Environ. Model. Softw., 70, pp. 163–177.

[29] Sopha, B. M., Klöckner, C. A., and Hertwich, E. G., 2011, “Exploring Policy
Options for a Transition to Sustainable Heating System Diffusion Using an
Agent-Based Simulation,” Energy Policy, 39(5), pp. 2722–2729.

[30] Shafiei, E., Thorkelsson, H., Ásgeirsson, E. I., Davidsdottir, B., Raberto, M., and
Stefansson, H., 2012, “An Agent-Based Modeling Approach to Predict the
Evolution of Market Share of Electric Vehicles: A Case Study From Iceland,”
Technol. Forecast. Soc. Change, 79(9), pp. 1638–1653.

[31] Masad, D., and Kazil, J., 2015, “Mesa: An Agent-Based Modeling Framework,”
14th Python in Science Conference (SCIPY 2015), p. 51.

[32] Jager, W., and Janssen, M., 2012, “An Updated Conceptual Framework for
Integrated Modeling of Human Decision Making: The Consumat II”.

[33] Kempe, D., Kleinberg, J., and Tardos, É., 2003, “Maximizing the Spread of
Influence Through a Social Network,” Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
—KDD ‘03, p. 137.

[34] Levine, D., Cotterman, C., Levine, D., and Cotterman, C., 2003, Maximizing the
Spread of Influence through a Social Network, SIGKDD, Washington DC.

[35] Masuda, E., and Newman, P., 1981, “Gray and Giffen Goods,” Econ. J., 91(364),
pp. 1011–1014.

[36] Miller, G., and Mushfiq Mobarak, A., 2013, “Intra-Household Externalities and
Low Demand for a New Technology: Experimental Evidence on Improved
Cookstoves,” NBER Work Paper Series, pp. 1–58.

[37] Adrianzén, M. A., 2014, “Social Capital and Improved Stoves Usage Decisions in
the Northern Peruvian Andes,” World Dev., 54, pp. 1–17.

[38] Ramirez, S., Dwivedi, P., Ghilardi, A., and Bailis, R., 2014, “Diffusion of
non-Traditional Cookstoves Across Western Honduras: A Social Network
Analysis,” Energy Policy, 66, pp. 379–389.

[39] Robins, G., 2015, Doing Social Network Research: Network-Based Research
Design for Social Scientists, SAGE, Los Angeles.

[40] Hanna, R., Duflo, E., and Greenstone, M., 2016, “Up in Smoke: The Influence of
Household Behavior on the Long-run Impact of Improved Cooking Stoves,” Am.
Econ. J. Econ. Policy, 8(1), pp. 80–114.

[41] Chen, W., Collins, A, Cummings, R, Ke, T., Liu, Z., Rincon, D., Sun, X., Wei,
W., Wang, Y., and Yuan, W., 2011, “Influence Maximization in Social Networks
When Negative Opinions May Emerge and Propagate,” Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence, Boston, MA, April, pp. 379–
390.

[42] North, M. J., and Macal, C. M., 2007, “ABMS Verification and Validation,”
Managing Business Complexity, Oxford University Press, pp. 221–234.

021402-8 / Vol. 143, FEBRUARY 2021 Transactions of the ASME

http://dx.doi.org/10.2307/249008
http://dx.doi.org/10.1016/j.im.2006.05.003
http://dx.doi.org/10.1287/mnsc.46.2.186.11926
http://dx.doi.org/10.1287/mnsc.46.2.186.11926
http://dx.doi.org/10.2307/30036540
http://dx.doi.org/10.1108/JEIM-09-2014-0088
http://dx.doi.org/10.1108/JEIM-09-2014-0088
http://dx.doi.org/10.1016/0749-5978(91)90020-T
http://dx.doi.org/10.1016/0749-5978(91)90020-T
http://dx.doi.org/10.1016/j.ecolecon.2009.04.001
http://dx.doi.org/10.1016/j.techfore.2008.03.024
http://dx.doi.org/10.1016/j.techfore.2008.03.024
http://dx.doi.org/10.1016/j.jenvp.2016.06.002
http://dx.doi.org/10.4018/jats.2012010102
http://dx.doi.org/10.1115/1.4046236
http://dx.doi.org/10.3390/en13113021
http://dx.doi.org/10.1007/s10100-011-0210-y
http://dx.doi.org/10.1007/s10100-011-0210-y
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1016/j.envsoft.2015.04.014
http://dx.doi.org/10.1016/j.enpol.2011.02.041
http://dx.doi.org/10.1016/j.techfore.2012.05.011
http://dx.doi.org/10.2307/2232507
http://dx.doi.org/10.1016/j.worlddev.2013.07.004
http://dx.doi.org/10.1016/j.enpol.2013.11.008
http://dx.doi.org/10.1257/pol.20140008
http://dx.doi.org/10.1257/pol.20140008

	1  Introduction
	2  Background
	3  Methodology
	3.1  Model Initialization
	3.2  Social Influence
	3.3  Decision-Making Based on Discrete Choice Analysis
	3.4  Post-Adoption Behavior Updates
	3.5  Time-Steps

	4  Results and Discussion
	4.1  Scenario I: Price Elasticity
	4.2  Scenario II: Influence of Household's Psychological Attributes of Behavior
	4.3  Scenario III: Degree Centrality of Households
	4.4  Scenario IV: Rate of ICS Malfunction

	5  Verification and Validation
	6  Conclusions and Future Work
	 Acknowledgment
	 Data Availability Statement
	 References

