
Sonification and Animation
of Multivariate Data to
Illuminate Dynamics of
Geyser Eruptions

Anna Barth,∗ Leif Karlstrom,†

Benjamin K. Holtzman,∗
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Abstract: Sonification of time series data in natural science has gained increasing attention as an observational
and educational tool. Sound is a direct representation for oscillatory data, but for most phenomena, less direct
representational methods are necessary. Coupled with animated visual representations of the same data, the visual and
auditory systems can work together to identify complex patterns quickly.

We developed a multivariate data sonification and visualization approach to explore and convey patterns in a
complex dynamic system, Lone Star Geyser in Yellowstone National Park. This geyser has erupted regularly for at least
100 years, with remarkable consistency in the interval between eruptions (three hours) but with significant variations
in smaller scale patterns between each eruptive cycle. From a scientific standpoint, the ability to hear structures
evolving over time in multiparameter data permits the rapid identification of relationships that might otherwise be
overlooked or require significant processing to find. The human auditory system is adept at physical interpretation of
call-and-response or causality in polyphonic sounds. Methods developed here for oscillatory and nonstationary data
have great potential as scientific observational and educational tools, for data-driven composition with scientific and
artistic intent, and towards the development of machine learning tools for pattern identification in complex data.

Constructing scientific knowledge involves a pro-
cess of first gathering measurements, dematerializ-
ing these measurements into numbers, then remate-
rializing the numbers in a representational form that
can be interpreted. For the physical sciences, typical
representations are visual images (e.g., graphs) and
mathematical objects (predictive models), but can
also include temporal representations, in the form
of sounds and animations. The rematerialization
process necessarily introduces a subjective human
element into scientific knowledge; for example, to
plot data on a graph, one must choose symbol color
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and size. Aesthetic choices are typically deemed
acceptable as long as key elements of the data are
clear and reproducible. For visual representations of
data, such choices have been carefully considered
and studied (e.g., Tufte 1983). On the other hand,
aural representations of data, as a newer domain,
have not been as thoroughly explored as visual ones,
but it is increasingly acknowledged that they have
great potential (Hermann, Hunt, and Neuhoff 2011).
Recent work on representation of global seismic
wave fields (Holtzman et al. 2014) demonstrated
that the combination of sonic and visual repre-
sentation of data brings far more understanding of
patterns than either alone.

In this article, we develop a sonification and
visualization approach that aims to illuminate
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patterns in multivariate time series data. We
incorporate multiple streams of data that reflect
tightly coupled aspects of a complex dynamic
process—eruptions of a hydrothermal geyser. The
sonification and animation methods presented
here are broadly adaptable to other scientific,
educational, and artistic aims. By expressing the
data as sound combined with animations, new
avenues for identifying common patterns and
anomalies within multiple temporal data streams
become possible. Such representation techniques
also offer unique opportunities for teaching tools, as
the quantitative aspects of complex data are easy to
understand without technical training. The innate
search for causality among sights and sounds in
the human auditory and visual systems become
activated in ways that can extend the scientific
search for understanding.

The aims and methods outlined in this work
provide a natural link to concepts of ubiquitous
music (“ubimus”), as proposed by Keller, Lazzarini,
and Pimenta (2014) and addressed in this special
issue of Computer Music Journal. Ubiquitous
music conceptually seeks to open any kind of
natural data (measurements of spatial or temporal
patterns from human or nonhuman phenomena)
to become a source of composition. Sonification
of environmental data is related, having the intent
to use generative sound to convey, illuminate, and
reveal patterns encoded in data. A goal of ubimus
is to develop opportunities for musical creativity
for musicians and untrained participants alike,
outside a traditional studio setting (Pimenta et al.
2014). There are parallel aims in the sonification
and visualization of scientific data, as the tools of
scientific data acquisition and public access become
cheaper, more widely available, and easier to use
(Beyreuther et al. 2010; Given et al. 2014). As long
as the methods are transparent, relatively simple
data transformations and display methods make
complex patterns in data perceptible by different
audiences (e.g., trained scientists and the general
public).

Earth scientists studying natural phenomena are
frequently challenged by subjects and processes
that occur on spatial and time scales outside the
human experience. Adapting data into represen-

tational forms within our range of perception is
our rematerialization task. Volcanic eruptions are
examples of this situation: They occur relatively
rarely and highly episodically in time, preceded by
magma motions that are hidden beneath the surface
and difficult to measure, hence poorly understood
(Poland and Anderson 2020). Indirect measurements
are generally made during periods of volcanic unrest.
Deformation of the solid earth occurs in response
to magma movement, temperature at the surface
constrains heat transported from magma reservoirs
at depth, and gas emissions reflect volatile elements
released during magma ascent. When eruptions do
occur, other data are available such as physical sam-
ples of erupted material, videos, and atmospheric
measurements. Simultaneous collection of multiple
data streams is a primary goal of volcano moni-
toring, but this is challenging because volcanoes
are often remote, difficult to instrument, and their
activity is strongly unsteady in time. Furthermore,
there is no unifying theory with which to connect
observations to processes, so volcano science—and
hazard assessment—relies heavily on empirical
correlations.

Scale models (made of clay, tinted liquids, etc.),
known as “analog systems” in the realm of earth sci-
ence, are thus a valuable resource for understanding
volcanic processes. Geysers represent such a natural
analog system. They erupt more frequently, more
regularly, and with less hazard to humans than vol-
canoes, making them test beds for sensor-network
design and model development that can potentially
inform volcanic hazard assessment (Hurwitz and
Manga 2017). Here, we use data collected at Lone
Star Geyser in Yellowstone National Park to develop
a technique combining sonification and visualiza-
tion to represent the multiparameter data typical of
volcanoes and many other environmental settings.

In what follows, we first provide contextual in-
formation on geysers and an overview of time series
data collected during two separate experiments four
years apart at Lone Star Geyser. We then describe the
sonification and visualization procedures applied
to each data set and between experiments. We end
with a discussion of what we can learn from this
technique for data representation and assess the
effectiveness of our approach.
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Figure 1. Regional map,
showing Yellowstone
National Park, with Lone
Star Geyser marked by a
star (a). Shaded relief map
of topography around the
Lone Star Geyser cone,

showing locations of
instruments from the 2010
and 2014 experiments (b).
Photograph of Lone Star
Geyser erupting during the
2010 experiment (c).

Experiments at Lone Star Geyser

Geysers are relatively rare features that occur in
geologically active areas exhibiting a combination
of thermal and hydrologic conditions that drive
localized, episodic eruption of hot water and steam
into the atmosphere (Hurwitz and Manga 2017).
Although some geysers are human-made (e.g.,
Rudolph et al. 2012), natural geyser occurrence is
restricted to a few areas worldwide, with over half
occurring in the Upper Geyser Basin of Yellowstone
National Park.

Lone Star Geyser in Yellowstone National Park
exhibits a three-hour cycle of eruptions that has
maintained a quasi-regular period since at least the
year 1920. As illustrated in Figure 1, two similar
experiments in 2010 and 2014 characterized geyser
activity using a variety of instruments that are
also common to magmatic volcano monitoring:
Visible video cameras and infrared sensors captured
the water and steam venting from the geyser
cone (a “sinter” mound built by precipitation of
silica dissolved in erupting hydrothermal waters,
Figures 1b, c), and stream gauges characterized
the total liquid output, while platform tilt meters
(five instruments deployed in 2010) and broadband
seismometers (one with sampling rate of 100 Hz in
2010, five with sampling rates of 250 Hz in 2014)

measured ground deformations associated with fluid
and steam flow between the subsurface storage
zone and the surface. The absence of platform
tiltmeters led to some important differences in the
data that inform our work, as will be described in the
following section. A ground-based Light Detection
and Ranging instrument was deployed to precisely
survey the 3-D geometry of the geyser vent area in
2010 (Figures 2 and 3).

Based on 32 consecutive eruptions over a four-day
period in 2010, Karlstrom et al. (2013) proposed a
four-stage cycle that defines the repeating nature
geyser activity over a three-hour period. These
stages are: (1) eruption, characterized by vigorous
jetting of water and steam that decays in strength
gradually over a period approximately 20 minutes;
(2) posteruption relaxation, characterized by steam
venting and high frequency seismic signals inter-
preted as boiling water at the base of an emptied
conduit; (3) quiescent conduit refilling, characterized
by no surface discharge, slow ground deformation,
and no significant seismic signals; and (4) preplay,
which consists of sporadic and unpredictable spurts
of water from the geyser vent that precede a new
eruption. Vandemeulebrouck et al. (2014) explored
the subsurface signatures of this eruption cycle, sug-
gesting that polarization of seismic displacements
(particle motions) tracked water movement between
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Figure 2. Schematic of the
Lone Star Geyser
experiment, depicting the
physical processes being
recorded by the infrared

sensor, tiltmeters, and
seismometers. Note that
there is no vertical or
horizontal scale.

the geyser cone and a subsurface water reservoir
that is offset from the vent.

We are interested in comparing multiple eruption
cycles captured in the two different experiments
with a combined audiovisual approach to data
analysis. We therefore focus on a subset of the
data collected in each experiment (see Figure 2),
describing each data set and any preprocessing
steps that were taken prior to sonification and
animation.

Deformation of the ground surface in response to
water and steam transport in the subsurface at long
(1–100 sec) periods was recorded through tilt (angular
surface displacements), recorded by different types
of instruments between 2010 and 2014. Higher
frequency (1–100 Hz) ground deformation arising
from fluid motions coupled to the solid earth was
captured by broadband seismometers in both years.
Eruption of water and steam was captured by a spot
infrared sensor pointed above the geyser vent. The
voltage output from this infrared sensor is a good

proxy for water and steam discharge (Karlstrom et al.
2013).

Data Representation Methods

A spectrum of “direct” to “indirect” sonification
methods are applicable to the data sets described
here. Direct sonification (i.e., audification, cf. Dom-
bois and Eckel 2011) is the simplest: Oscillatory
data, like seismic signals, can be sped up or slowed
down to the desired audible range. One must choose
how to filter the data, the speed factor (or new
sampling rate), whether to apply compression, and
so forth, but the sonification procedure is unambigu-
ous. In contrast, indirect sonification involves more
possibility in mapping data to parameters of sound
(e.g., pitch, timbre, or volume); the sonification
procedure in this case depends on the application. In
direct or indirect sonification, aesthetic choices are
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Figure 3. Three orthogonal
components of ground
deformation, recorded by a
broadband seismometer,
for one eruption cycle (a).
The inset shows how the
direction towards the
seismic source θ (t), which

varies over time, is
inferred from the relative
amplitudes of the two
horizontal components of
the seismic data, n and e.
Data preprocessing and
sonification procedure (b).
The function θ (t)

determines the weighting
of the seismic sound
between left and right
channels. The lower panel
shows the correlation
between seismic signals in
left and right channels and
the stages of the eruption

cycle, with the preplay
stage characterized by
short bursts of quickly
moving noise. Spectrogram
of sonified data (c).

inevitable but are carefully performed such that the
structure of the data is respected.

In the following, we proceed through the three
data sets, ordered from direct to progressively
indirect sonification requirements, namely, from
seismic, to tilt, to infrared data. Within each section,
we first describe the sonification method and then
the animation designs. We developed a simplified
representational scheme for the animations, which
requires an underlying interpretation of the data
that is not needed for the sonification. In particular,
the indirect measurements of ground deformation
(seismic and tilt measurements) require assumptions

about physical processes in order to derive visual
representations.

Seismic Data

Broadband seismic data were collected at a seis-
mometer approximately 20 m from Lone Star
Geyser. Following Vandemeulebrouck et al. (2014),
we filter the seismic data to the range 5–22 Hz,
a frequency band commonly attributed to bubble
cavitation and boiling water known as hydrothermal
“tremor.” The root mean square (RMS) amplitude
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of the tremor varies systematically during the
different eruption stages. It reaches its highest val-
ues during the preplay events before an eruption,
maintaining a moderate level in the posteruption
relaxation phase, and reaching its lowest values
in the quiescent phase, as shown in Movie 1 from
the supplementary materials to this article. (All
movies accompanying this article are available at
https://dx.doi.org/10.1162/comj a 00551.)

Vandemeulebrouck and colleagues found that
the location of the tremor source also varied
systematically over the course of an eruption cycle.
We assume that the location of the tremor source is
a proxy for subsurface water motions. To calculate
this location we carry out a polarization analysis
of particle motion, which essentially uses the
ratio of amplitudes of the two horizontal channels
to determine the direction of the tremor source,
following the method of Vidale (1986) with a 12-sec
window for smoothing, as shown in Figure 3. For
most of the eruption, the tremor source is located
about 20 m from the geyser vent. During preplay
and eruption, however, the source migrates towards
the vent in a series of pulses, correlated with spikes
in the RMS seismic signal amplitude (Movie 1).

Sonification

We use direct sonification for the seismic data.
Because it is inherently oscillatory, we simply speed
up the filtered seismic data by factors of 199 (for
Movie 2) and 597 (for Movies 3 and 4), which places
it in our auditory range (Kilb et al. 2012; Peng et al.
2012; Holtzman et al. 2014), occupying the upper
middle of the hearing band (about 3 kHz) to separate
from other sonified data streams. To hear the tremor
migrate spatially, we apply a linear weighting of the
left and right stereo channel amplitudes according
to the polarization analysis of particle motion
(Figure 3). In Movies 2, 3, and 4, the sweeping
motion from right to left is directly derived from the
data, as illustrated in Figure 3.

Animation

The exact mechanism behind the hydrothermal
tremor signal is unknown. This type of signal has
been seen at other geysers (e.g., Wu et al. 2017),

however, and has often been attributed to the
collapse of vapor bubbles, giving rise to impulsive
pressure waves. We use this interpretation as a
starting point for the visualization of the tremor
data, and create a migrating cloud of clustered dots
(Movie 1). This cloud grows in size and opacity with
increased RMS amplitude and migrates according
to the particle polarization analysis. The cloud
is located away from the vent during the entire
eruption sequence, but becomes more laterally
extensive during the preplay events and eruptions,
and in some cases reaches the vent. Aesthetic
choices were made in the extent of the scatter and
random motion in the dot clouds, tuned to reflect
an impression of the dynamics and the uncertainty
in the location and the cause.

Tilt

In 2010, ground deformation at periods of around 1
to 10 sec was recorded by five platform tiltmeters,
instruments that directly measure angular displace-
ments of the ground. There does not appear to be a
clear temporal or spatial pattern common to all the
tiltmeters. We focus on data from one instrument
(T03), which shows the clearest correlation with
other data discussed here (Figure 1b).

In 2014 no tiltmeters were deployed, so we
process broadband seismic data to retrieve the long-
period ground tilt signal (Figure 1b). Conversion of
seismic displacements to tilt requires deconvolution
of translation and is generally an underdetermined
problem (Fournier, Jolly, and Miller 2011). Hori-
zontal seismic accelerations at low frequencies are
dominated by tilt, however (Wiens et al. 2005).
Therefore we approximate tilt with the horizontal
seismic data (corrected for instrument response to
acceleration, which amplifies low frequencies), deci-
mating from the original 250-Hz to 10-Hz sampling.
We then multiply by the gravitational accelera-
tion −1/g to use the unit radians. This filtering
removes sharp tilt steps such as those in the 2010
observations, but variations on periods relevant to
eruption phases can still be compared between the
two experiments. We rotate the x–y data to a radial
displacement for analysis and plotting here.
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Sonification: Chord Sweep

The method introduced here is, to our knowledge,
original. The idea of the “chord sweep” is to map
time series data smoothly to a discrete series of
pitches, as determined by patterns in the data. The
process is different from synthesis with frequency
modulation, as it is not a smooth sweep through a
range of frequencies. Instead, smooth transitions be-
tween pitches of our choosing (selected to be distinct
from the pitch sets of other sonified variables) are
made by cross-fading, building one note’s loudness
at the expense of the other.

To do this, we build a set of weighting functions
wi that reflect the occurrence of particular values in
the data, called dj here (see Figure 4; the chord sweep
for the 2014 data is shown in in Figure 5). We define
a set of values wc

i that form the centers of these
weighting functions and are discrete values within
the range of the data (or the projected or potential
range in a real-time situation). These functions will
be used to create envelope functions ej from the
data. The subscript j indicates that these functions
will have the same dimensionality as the data. The
subscript i indexes our weighting functions (number
of degrees of freedom in our mapping). The envelope
matrix Eij is composed of each ej created for each
value of wc

i . These weighting functions and the
resulting envelope functions can have any form, and
the envelope functions can be used to modulate any
aspect of the sonification.

For this application, the raw data is the tilt τ ,
shifted into positive values and then normalized

dj = τ j − min(τ j)
max(τ j − min(τ j))

,

such that dj ∈ [0, 1]. Here, the weight centers are wc
i ∈

[0, 1] as well, as evenly spaced N values, such that
dw = 1/N, or more specifically (max(d) − min(d))/N.
The weighting functions wi are used to create a set of
envelopes Eij = dj ∗ wi(dj), using the outer product
with wi being a function of dj.

In the present application, the wi are triangle func-
tions (see Figure 4b). The envelopes are constructed
according to the algorithm:

Eij = dj ∗

⎧⎪⎨
⎪⎩

0 if dj < wc
i − dw; or dj > wc

i + dw,

0 → 1 if wc
i − dw < dj < wc

i ,

1 → 0 if wc
i < dj < wc

i + dw.

This structure is actually achieved in the code
with linear interpolation of the nonzero values
of wi. This process is conservative in the sense
that dj = ∑

i Eij. In other words, the overlapping
triangles sum to a rectangle of height 1.0. An extra
scaling factor can, however, be introduced for each
envelope, ai, to balance perceptual variations in
loudness curves, for example, making the sum
nonconservative.

To generate the sound (Figure 4e), we build an
oscillator bank with a set of frequencies fi of the
same dimensionality as wc

i . Each row of the envelope
matrix Eij is assigned to an oscillator frequency
and modulates the amplitude of that oscillator
(using the RTcmix sound synthesis language, cf.
Garton and Topper 1997). If Fij is the oscillator
bank, the sound matrix Sij is the element-wise
multiplication of Fij and Eij (symbolized by ◦). The
resulting monophonic track sj is the sum of all the
oscillators:

sj =
∑

i

Sij =
∑

i

(Fij ◦ Eij).

This part of the process is performed in RTcmix.
The sequence of tones in the oscillator bank can

be any desired set. In the case of the tilt data from
Lone Star Geyser, we have chosen an octatonic
scale, with equal-tempered intervals [2, 1, 2, 1, 2, 1,
2], starting at fi=0 = 77.78 Hz (D#1), as illustrated
in Figure 4d. This octatonic scale was chosen due
to its symmetry, which does not bias the listener
towards a harmonic center. Note that the choice
of the number of intervals in the data range is
important—it determines how long the sound rests
on a particular tone. In Movie 2 (slow, single cycle),
the shift between tones is clear; in Movies 3 and
4 with the same number of wc

i but with time
compressed, the perception of discrete tones is
reduced; we do not change the number of intervals
between movies to give the listener a sense of the
relative rates of the two movies.
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Figure 4. Method for tilt
sonification. Normalized
tilt data from the 2010
cycles (a). For each value
of the weight function wi,
an envelope is created by
finding the values of the
data that fall within the
triangular function,
ranging from 0 to 1,

indicated by the
horizontal lines connected
to the vertical lines (b). As
an example, the thicker
triangle centered at
wc = 0.38 (in b) is
connected by horizontal
lines to the data (in a), and
vertical lines showing the
time span of its first

intersection with the data.
Envelopes generated from
the weight functions (c).
The envelope with a
thicker line corresponds to
that generated by
wc = 0.38. Each wc

i value is
applied to an oscillator
frequency (d). For
example, wc = 0.38 is

mapped to 130.81 Hz. The
corresponding envelope
(from c) is applied to the
oscillator’s amplitude, and
the enveloped oscillators
are summed to make the
sound. The resulting
spectrogram (e).

Animation

In eruptive systems, tilt data are often interpreted to
reflect ground deformation in response to migrating
fluids at depth. For example, an inflation of the
ground may indicate increased transport of fluids
to an area and, consequently, elevated pressure. We
have chosen to visualize this as a point source of
pressure in an elastic solid with a flat surface. This

gives rise to a pattern of ground deformation that
is greatest immediately above the pressure source,
and decaying with radial distance from this source
(Movie 1). We assume that the pressure source is
colocated with the persistent location of tremor
offset from the vent, since both data are sensitive
to the presence of fluids. We note that multiple
physical processes, such as progressive loading of
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Figure 5. Results of the
Chord Sweep method for
2014 cycles. Normalized
tilt data, with lines
showing the values of the
weights, wi (a). Mapping of

to oscillator bank
frequencies (b).
Spectrogram showing the
resulting synthesized
sound (c).

the surface by water erupted from the geyser, could
also be encoded in the data. We do not attempt
to deconvolve these. Because vertical changes in
ground elevation would be too small to perceive at
the actual scale, we use an arbitrary vertical scaling,
as the animation elements are not rigorously scaled.

Infrared Sensor Data

The infrared sensor data tracks variation in the
eruptive flux of steam and water from the geyser
vent. As shown by Vandemeulebrouck et al. (2014), it
effectively defines four phases of the eruption cycle
that can also be identified in ground displacements
and acoustic emissions. We infer eruption stages
from the infrared data, then use those stages
to drive parameter mapping in sonification and
visualization. Thus, of the three data streams
considered, the most interpretive preprocessing
of the data occurs here, but we strive to develop
quantitative and objective processing that respects

published scientific interpretations (cf. Karlstrom
et al. 2013).

Sonification: Granular Synthesis

Granular synthesis is a procedure for generating
sounds from localized wave packets with compact
support (wavelets), often called “acoustic quanta”
or “grains” in an audio context, with duration
of 1–100 msec (Gabor 1946; Roads 1988, 1995).
Combinations of many grains per second can both
mimic a range of natural sounds (Keller and Truax
1998) and produce complex synthetic sounds based
on specified data tables (even in real time, cf. Truax
1988).

We use the Gransynth time-varying granular
synthesis instrument in RTcmix. Many of these
parameters can be controlled with a data table (they
are “pfield enabled”), making granular synthesis
a powerful tool for conveying structures in data.
RTcmix’s so-called linear octave notation (also
known as octmidi) is used to specify pitches: a
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Figure 6. Granular
synthesis parameters
based on infrared sensor
data. Infrared sensor data,
tracking water and steam
ejected from the geyser (a).
Parameter mapping for the

granular-synthesis
instrument Gransynth (b),
showing pitch center
(upper panel), sound
amplitude, and pitch jitter
(bottom panel). The
resulting spectrogram (c).

logarithmic mapping of frequencies in which 8.00
corresponds to middle C, 9.00 is the C an octave
above, and so on. Fractions represent a mapping onto
notes of the scale between octaves. For example,
the tritone F-sharp is represented as 8.5. We note
that RTcmix’s “linear octave” (1 octave is from
8.00 to 9.00) differs from its “octave.pitch-class”
notation (1 octave is from 8.00 to 8.12, whereby the
latter value is equivalent to 9.00, with each 0.01
increment representing a semitone). Note also that
there are different approaches for identifying pitches
with number spaces (e.g., Tymoczko 2006), and this
particular mapping is not as general as some.

The infrared sensor records higher voltages when
hot water (as liquid or steam) is coming out of
the geyser cone, and the magnitude and relative
steadiness of the time series effectively differentiate
four stages of the Lone Star eruption cycle. To
emphasize the characteristics of water discharge

present in different eruption phases (Karlstrom
et al. 2013), we specify distinct pitch centers for the
phases of the cycle when either water or steam is
exiting the vent, with grains added or subtracted
randomly from this pitch center in time to mimic the
variability of discharge (“pitch jitter”). A number of
granular synthesis parameters dictated by thresholds
contribute to this sonification of geyser eruption
cycle phases, shown in Figure 6.

1. Pitch center:
Based on the average amplitude of a 75-
sample (23.2-sec time step) backwards
moving average of the infrared time series,
we assign a pitch center of 8.4 to the
eruption phases in which liquid water
generally dominates output (the “preplay”
phase and the main eruption phase), a pitch
center of 7.5 to the posteruption relaxation

44 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/1/35/1911995/com

j_a_00551.pdf by guest on 02 June 2021



phase dominated by steam output, and a
pitch center of 7.0 to everything else.

2. Amplitude:
We assign amplitude values to each phase
based on amplitude of the infrared signal
alone, muting times when activity is mini-
mum (determined by a seven-sample running
standard deviation). The eruption phase is
the loudest, preplay phase is generally less
loud, posteruption relaxation is less loud
still.

3. Pitch jitter:
We base the parameter for pitch jitter (how far
from the center frequency a grain is randomly
assigned) on the relative steadiness of the
water eruption phases. For preplay, in which
jets of water are intermittent, we choose a
larger value for pitch jitter than during the
main eruption, when water output is more
consistent in time.

4. Grain duration:
The grain duration (a random number
distributed uniformly on an interval) is based
on the running standard deviation of the
infrared sensor, which further emphasizes
the preplay stage through larger spread in
grain duration.

Animation

As with the sonification, we use the magnitude and
relative steadiness of the infrared data to inform
the visualization of the geyser discharge—water and
steam (Figure 1c showed a photo of the real eruption
plume). Water jets are represented as a cluster of
vertical lines with a distribution of heights, the
average of which is determined by the magnitude of
the infrared signal. Steam is represented as a cloud
of low-opacity dots, extending from the geyser vent
to the height of the water jet. When no jet is present
(during the post eruption relaxation phase) the steam
is concentrated around the vent (Movie 1).

In this way we are able to highlight the different
phases of the eruption cycle. During preplay, only
water jetting occurs and steam is absent. For an
eruption, the water jet becomes higher and is
accompanied by steam. The following posteruption

relaxation phase consists of a low level of steam,
which then disappears during the final phase of
quiescence.

Synthesis of Methods

We created a series of five movies to highlight
different aspects of the experiments. Movie 1 is an
explanatory key, isolating each data type in sequence
to show the audience how to interpret the different
sounds and visuals. In Movie 2 we focus on a single
eruption cycle from 2010, compressing three hours
of data into one minute. This movie highlights the
different phases of the eruption cycle, and allows the
different signals between data types to be compared.
Movies 3 and 4 are the entire three cycles (about
nine hours of data compressed into one minute) for
2010 and 2014, respectively. In these two movies the
repetitious nature of these geyser eruptions becomes
clear. Finally, Movie 5 is a side-by-side comparison
of the 2010 and 2014 sequence of eruptions. We mix
the sound for each year down to a monophonic track,
sending the 2010 sonification to the left channel
and the 2014 sonification to the right. This movie
highlights the repeatability of the main features in
the eruption cycles, even four years apart, while also
illuminating differences in the finer-scale features.

In designing the multivariate sonification, we
represent each data stream in separate frequency
bands, and with distinctive tonal structures and
timbres. The tilt sounds are low frequency, smooth
simple variations underlying the more rapidly
moving and dynamic infrared and seismic data. The
seismic data sonification is a high-pitched hissing
with intermittent bursts in amplitude and spatial
location. The infrared data sonification is tonal and
intermittent as well, but outside of its bursts of
activity it is completely silent. In the movies, the
animation serves to explain the sources of the sound
via fairly simple visual representations, with tight
correlation between the sounds and their events. In
our experience, the temporal relationship between
different data types and the possibility of causality
comes through in the sound; if the movie were
silent, perceiving these patterns would be much
more difficult.
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Discussion

We first evaluate the effectiveness of the movies.
In a quantitative perception experiment, the first-
order hypothesis to test would be that the patterns
are easier to perceive when the animation has
an accompanying sonification. Although such an
experiment is beyond the scope of this study, we
describe some observations and questions that the
combination of sound and animation brings to light.
Then we compare the 2010 and 2014 experiments
in terms of both data acquisition and the natural
processes on display in the movies. Finally, we
comment on data representation more generally and
discuss connections to the field of ubiquitous music.

Interpretation of Combined Sounds
and Visualization

The movies representing our sonification and vi-
sualization results are an alternative to standard
graphical techniques for interpreting data. Do these
movies provide insights to researchers who hope to
learn more about the mechanics of geyser eruptions?
Or is their primary utility a device for rendering
technical data more intuitive for nonscientists, as an
aesthetic tool for understanding the natural world?
We believe that both outcomes are on display: The
ability to hear time-evolving structures in multi-
parameter data permits the rapid identification of
relationships that might otherwise be overlooked
or require significant processing to find. As an ex-
ample, a close correspondence between preplay and
eruption venting of water from the geyser, seismic
amplitude, and polarization, and ground deforma-
tion (tilt) was recognized by Vandemeulebrouck
et al. (2014). These relationships are presented,
through graphical comparison of various subsets of
the data, over Figures 3–6, 9, and 10 of that work.
In effect, a major component of the text is dedicated
to arguing that recorded signals covary and may be
related to one another. Our polyphonic sonification
and animation of these same data accomplish the
same goal much more efficiently: During preplay
episodes, tilt variations (pitch and volume of “chord
sweep”) correspond precisely with the onset of

water jetting (pitch, volume, and grain randomness
of granular synthesis) and seismic amplitude (spa-
tialization and loudness of audified waveforms).
Tremor lags slightly behind the infrared signal. We
can simultaneously interrogate the sign of temporal
change through volume and pitch variations that
increase when the data increases.

The phases of the eruption cycle itself defined by
Karlstrom et al. (2013) are also clearly discernible in
the movies, through judicious choice of sonifying
and animating particular attributes of the time
series. Thresholds for granular-synthesis amplitude
and for water-eruption animation were determined
by a running standard deviation of filtered data,
so that thresholds in volume and pitch jitter cor-
respond to variation in the data, as was shown
in Figure 6. Such processing is an integral com-
ponent to graphical analysis of multicomponent
data, and represents an equally powerful tool for
sonification.

The process of building these movies may well
be considered as part of the research process itself,
integral to the working of data into observations
and interpretations. The combined sonification and
visualization techniques on display in our movies
are in effect a dimensionality-reduction technique,
which have the potential to sharpen patterns buried
in noisy, multicomponent data. This could be
said for any representation technique in which
we operate through reducing and reducing again
the object of study, from its “wild” complexity
to its “domesticated” simplification that can be
visualized and therefore analyzed (Latour 1999). An
appealing aspect of this approach, compared with
standard techniques such as principal component
analysis, is the intuitive nature of the presentation.
Nonspecialist and expert researcher alike can see
and hear how multiparameter data inform the
way in which geysers work by watching these
movies and are well posed to ask research questions
afterwards: Why is the eruption cycle both so
repeatable (regular three-hour primary eruption
events, cf. Karlstrom et al. 2013)? And yet why is the
cycle so highly variable in the smaller-scale events
of the intereruption dynamics (e.g., preplay events
are different from cycle to cycle)? What triggers
eruptions?
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Comparison of 2010 and 2014 Lone
Star Experiments

Another powerful illustration of the sonification and
visualization method is to compare the experiments
at Lone Star Geyser from 2010 and 2014, in partic-
ular towards separation of differences in physical
processes from differences in data acquisition. As
detailed earlier there were some key differences
in scientific instrumentation between these ex-
periments. For example, in both cases an infrared
sensor constrains water discharge from the the vent,
but in 2014 there were no platform tiltmeters, so
long-period ground deformation must be derived
from seismometers. Can we hear these differences?
Does this processing change our perception of the
Lone Star eruption cycle?

To seek differences aurally, we combine the two
tracks generated for the 2010 and 2014 experiments.
We change the generating function in the wavetable
for 2010 versus 2014 in the infrared sensor and tilt
sonification to separate sounds that occupy the same
frequency range. A triangle wave versus a square
wave produces distinct timbral qualities that permit
aural differentiation of these two data sets between
years while retaining the mapping characteristics
that connect to the data (Movies 3–5). These sonic
signatures are preserved through all movies, even
when the experiments are presented by themselves
(Movies 3 and 4). This might be considered the
analogue of maintaining a consistent symbol color
or size in multiple graphical depictions of the same
data. In this realm of scientific data sonification, the
choice of musical instrumentation is used to reflect
differences in scientific instrumentation that record
the same underlying process.

A remarkable similarity of eruptive dynamics
(four years apart) is clearly on display: Aligning the
onset of the first eruption between experiments, the
second eruption occurs almost precisely at the same
time later in 2010 and 2014. The third eruption
onset in the sequence does not align temporally,
however, and preplay jetting events are highly
variable between eruptions and between years.
Comparison of animations and sonifications for
these two experiments (Movie 5) thus demonstrates
how the geyser-eruption cycle is repeatable in its

large-scale structure despite irregularities that seem
stochastic.

Comparison of the tilt data sets, recorded by dif-
ferent instruments located at different places around
the geyser vent, nonetheless exhibits similarities
at the largest (approximately one-hour) scale. An
inflation limb that begins with the onset of preplay,
and a deflation limb that begins with the onset of
the primary eruption. This large-scale pattern can be
heard clearly in the combined score files—amplitude
and frequency increase and decrease in a coherent
pattern that is audible despite more rapid variations
superimposed onto the 2010 data in which small
abrupt tilt steps coincide with individual jetting
events (cf. Figures 4 and 5). This suggests that, de-
spite instrumental recording differences, the method
of sonification and visualization effectively reveals
a common underlying process driving tilt. Whether
this process arises physically from inflation of the
water reservoir connected to the geyser cone (see,
e.g., Rudolph et al. 2012), or whether the ground
deformation might result partially from transient
loading of the surface by falling water that erupted
from the geyser, we cannot say at this stage. But the
question is illuminated for future researchers.

Data Representation in Science, Connections
to Ubiquitous Music

Visualization—as lists, tables, sketches, plots,
graphics, diagrams, maps, etc.—has a long history,
and scientists are trained to use it, for instance,
as a proof in rhetorical arguments, according to
the “belief that a written inscription must be
believed more than any contrary indications from
the senses” (Latour 1986). Bruno Latour goes even
further in saying that “no scientific discipline exists
without first inventing a visual and written language
which allows it to break with its confusing past”
(p. 13).

In a later essay, Latour (1999) describes how
scientists (in his case, botanists, pedologists, and
geographers) build successive abstractions to pro-
gressively reduce their object of study (the soil and
its material and spatial characteristics) to color chips
and numbers that can be brought back to the lab
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for analysis. In other words, the object of study is
transferred from the “world of things” to the “world
of signs.”

This “rematerialization” and simplification
of the phenomena allows scientists to “present
absent things,” in fact many things, at once (much
more than available and manageable in the field),
comprehensible through one sensory modality only
(Latour 1986). Only then can scientists think and
discuss, establishing relations between the symbols
in the symbolic system, but also between the
things they refer to (Ivins 1938), and constructing,
negotiating, and establishing scientific objectivity
and knowledge. Citing Latour (1986, p. 18) once
again:

Contradiction . . . is neither a property of the
mind, nor of the scientific method, but is a
property of reading letters and signs inside new
settings that focus attention on inscriptions
alone.

Starting from the process of “dematerializing”
geyser data into digitized data (which is “amodal”
in the sense that it is not related to any sensory
modality), sonification offers another way of re-
materializing the data that is neither less true nor
less legitimate: making it apprehensible to the ears.
In the light of the discussion above, the temporal
extension and transitory characteristics of sounds
make them appear as weaker candidates for be-
ing a medium upon which debates are held and
consensuses can be found. A striking example is
that scientific articles about sound include wave-
forms and spectrograms, but no sound recordings
(in fairness, this has been due in part to technical
limitations). But our auditory system has specific
abilities (e.g., temporal resolution, noise separa-
tion, inference of causality, source separation and
localization, or the possibility of hearing while not
intentionally listening) that have proven success-
ful in the scientific process of exploring data and
formulating hypotheses (Landi et al. 2012; Paté
et al. 2017). The simultaneous visual information
in the animation as applied here provides a constant
reminder of the meaning of different sonic elements,
to “de-abstract” them, but the real work of pattern
recognition is performed by the auditory processing.

Geyser eruptions are an ideal application of these
methods, in part because they represent a rare pro-
cess in geology that really can be perceived in real
time by humans. But only one of the three data
streams that we display (the infrared sensor) corre-
sponds to direct visual observations of the eruptions.
And even that requires nontrivial interpretation to
correlate with actual water and steam discharged
from the vent (Karlstrom et al. 2013).

Now sonification studies have to tackle the
issue of identifying the perceptual and cognitive
processes that are triggered by a different way
of presenting, and representing, the “same” data,
and more importantly whether and how sound
can be used as a medium to illuminate patterns,
correlations, and causality in data, as well as
elicit constructive debates and reach a scientific
consensus. We anticipate that this will require
many repetitions, trials, and adjustments, as well
as rigorous standardization processes. The geyser
data set presented here represents one step along
this path towards a quantitative and aesthetic basis
for generating scientific understanding through
sound.

In the context of “creativity support tools” as
embodied in the ubimus concept (Keller, Lazzarini,
and Pimenta 2014), scientific sonification provides
both raw material and a methodological starting
point for pattern design. Just as music is ubiquitous
in society and there is an opportunity for creative
participation that is open to all (Keller, Schiavoni,
and Lazzarini 2019), environmental signals are
ubiquitous, and the ability to record and access this
data is increasingly possible. This access provides an
opportunity for music creation that can enter into
artistic, educational, and scientific fields.

Keller and coworkers posed the question of
whether the contrasting expectations of different
audiences or participants would require tailoring of
design initiatives for specific user profiles. Although
there may be some cases in which modification
of data processing or aesthetic choices would
be desirable, we believe that for the purposes of
revealing patterns and relationships in complex,
multivariate data, the same sonification methods
may be used regardless of audience. Our general
approach is to use the same data representation

48 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/1/35/1911995/com

j_a_00551.pdf by guest on 02 June 2021



methods, but change the nature and technicality
of language for different audiences. For example, in
an outreach setting, such as an exhibit on geysers
at Yellowstone National Park, the short videos
presented here can be linked with explanatory slides
and question prompts. For the purposes of musical
composition, musicians can piece these raw videos
together in whatever way suits their purpose. In
research and educational settings, deeper technical
information relating to geysers can be included
to generate scientific discussion. In the setting of
an interactive science museum, an exhibit could
incorporate all of these elements, from carefully
crafted data visualizations and sonifications, to
improvisational interaction of sonification and
visualization parameters for musical play or for
exploration of different patterns embedded in the
data.

The bounds and general structure of the data
in our study were known a priori, so the sonifi-
cation methods could be developed accordingly.
An interesting future direction involving real-time
sonification of monitoring data would need to
dynamically adapt the algorithms in response to un-
predictable changes in the data. Such a feature could
benefit both the hazard-monitoring community
(those studying, e.g., volcanic, seismic, or weather
hazards) and the ubimus community. For the latter
group, benefits might be in, e.g., managing musical
improvisation among audience and performers (van
Troyer 2014) or in human–computer interaction
(Nika, Chemillier, and Assayag 2017).
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