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Abstract. We prove a version of a theorem of Auslander for finite group coactions on
noetherian graded down-up algebras.

0. Introduction

Maurice Auslander [3] proved that if G is a finite subgroup of GLn(k), containing
no pseudo-reflections (e.g., subgroups of SLn(k)), acting linearly on the commuta-
tive polynomial ring A = k[x1, . . . , xn], with fixed subring AG, then the natural
map from the skew group algebra A∗G to EndAG(A) is an isomorphism of graded
algebras. This theorem is the main ingredient in the McKay correspondence,
relating representations of G and AG-modules. Noncommutative versions of this
theorem of Auslander [4], [5] are an important ingredient in establishing a noncom-
mutative McKay correspondence. One of the main open questions concerning a
noncommutative version of Auslander’s Theorem is the following conjecture that
was stated in [4, Conj. 0.4] and [9, Conj. 0.2], where the condition that the
homological determinant of the H-action is trivial generalizes the result for group
actions by subgroups of SLn(k):

Let A be a connected graded noetherian Artin–Schelter regular algebra [1] and H
be a semisimple Hopf algebra acting on A inner-faithfully and homogeneously. If
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the homological determinant of the H-action on A is trivial, then there is a natural
graded algebra isomorphism

A#H ∼= EndAH (A).

By [9, Thm. 0.3] the above conjecture holds when A has global dimension
two, which is one of the main results in [9]. It is natural to search for a proof
of this conjecture for global dimension three (or higher). The paper [5] started
this program by showing that the above conjecture holds for certain finite group
actions on noetherian graded down-up algebras, which are Artin–Schelter regular
algebras of global dimension three [5, Thm. 0.6]. Some interesting partial results
concerning Auslander’s Theorem have been proven in [4], [5], [12], [13], [21]. The
goal of this paper is to verify the conjecture for finite group coactions on Artin–
Schelter regular down-up algebras (Theorem 0.1). The idea of the proof is to use
the pertinency introduced in [4] that has been one major tool for proving the
noncommutative Auslander’s Theorem.

Throughout the paper, let k be a base field of characteristic zero, and all objects
are over k.

Down-up algebras were introduced in 1998 by Benkart–Roby in [6], and, since
then, these algebras have been studied extensively. Noetherian graded down-up
algebras are Artin–Schelter regular algebras of global dimension three with two
generators by a result of [20]. Let α and β be two scalars in k. The graded down-
up algebra, denoted by D(α, β), is generated by two elements d and u and subject
to two relations

d2u = αdud+ βud2, (E0.0.1)

du2 = αudu+ βu2d. (E0.0.2)

This algebra is noetherian if and only if β 6= 0, and in this paper we always assume
that β 6= 0. When α = 0, we use Dβ instead of D(0, β). The groups of graded
algebra automorphisms of the down-up algebras were computed in [15]. Recently,
the invariant theory of graded down-up algebras under finite group actions and
coactions has been studied in [17], [11], [13].

In a general setting, let H be a semisimple Hopf algebra and let K be its k-
linear dual. Then K is also a semisimple Hopf algebra. It is well known that a left
H-action on an algebra A is equivalent to a right K-coaction on A.

Suppose H is a semisimple Hopf algebra with integral
∫

, and A is an algebra
with GKdimA <∞. Here GKdimA denotes the Gelfand–Kirillov dimension of A.
If H acts on A, by [4, Def. 0.1], the pertinency of the H-action on A is defined to
be

p(A,H) = GKdimA−GKdim((A#H)/I) (E0.0.3)

where I is the 2-sided ideal of A#H generated by 1#
∫

. Define the fixed subring
of the H-action to be

AH = {a ∈ A | h · (a) = ε(h)a, ∀h ∈ H}
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where ε is the counit of H. For any algebra A with H-action, there is a natural
algebra homomorphism φ : A#H → EndAH (A) which sends a#h to an AH -
endomorphism of A:

φ(a#h) : x 7→ a(h · (x)), ∀ x ∈ A.

By [4, Thm. 0.3], if A is a noetherian, connected graded, Artin–Schelter regular
and Cohen-Macaulay domain of GKdim ≥ 2, then p(A,H) ≥ 2 if and only if the
canonical map

φ : A#H → EndAH (A) (E0.0.4)

is an isomorphism. For simplicity, if φ is an isomorphism, we say that (A,H) has
the isom-property.

In this paper we are interested in the case when H is kG := Homk(kG, k), or
equivalently, K is the group algebra kG for some finite group G, and when A is
the noetherian graded down-up algebra D(α, β). Our main result is

Theorem 0.1. Let H := kG act on A := D(α, β) homogeneously and inner-
faithfully, where β 6= 0. If the action has trivial homological determinant, then the
pertinency p(A,H) ≥ 2. As a consequence, Auslander’s Theorem holds, namely,
there is a natural isomorphism of graded algebras

φ : A#H ∼= EndAH (A).

Theorem 0.1 fails without the hypothesis of “trivial homological determinant”,
see Remark 1.6(2). Theorem 0.1 suggests there is a McKay correspondence for
down-up algebras D(α, β); it follows from [9, Thm. A] that when Auslander’s
Theorem holds, there are bijections between several categories of modules, e.g.,
simple left H-modules and indecomposable direct summands of A as a left AH -
modules. The paper [22] shows that whenever Auslander’s Theorem holds one can
view A#H as a generalized noncommutative crepant resolution (NCCR) of AH ,
and when AH is a central subalgebra of A#H, A#H is an NCCR of AH .

The paper is organized as follows: Section 1 contains some preliminary results,
Section 2 contains the proof of Theorem 0.1, and Section 3 contains some examples.

Acknowledgments. The authors thank Kenneth Chan and Zhibin Gao for several
conversations on the subject and their help with some computations in this paper
and thank the referees for their very careful reading and extremely valuable com-
ments. J. Chen was partially supported by the National Natural Science Founda-
tion of China (Grant No. 11571286) and the Natural Science Foundation of Fujian
Province of China (Grant No. 2016J01031). E. Kirkman was partially supported by
grant #208314 from the Simons Foundation. J.J. Zhang was partially supported
by the US National Science Foundation (Grant Nos. DMS-1402863 and DMS-
1700825).

1. Preliminaries

In this section we recall some basic definitions and make some comments. We will
omit the definition of Artin–Schelter Gorensteinness and Artin–Schelter regularity
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[1] since these can be found in many other papers and we will not need these in
the proof of the main result. As mentioned in the introduction, noetherian graded
down-up algebras are Artin–Schelter regular of global dimension three.

We introduce a temporary concept. For a graded module C and an integer w,
the wth shift of C, denoted by C(w), is defined by C(w)m = Cw+m for all m ∈ Z.

Definition 1.1. Let H be a semisimple Hopf algebra acting on a connected graded
algebra A homogeneously and inner-faithfully. Decompose A into( s⊕

i=1

AH(−wi)
)
⊕B (E1.1.1)

as a right AH -module for some integer s ≥ 1, where B has no direct summand
that is isomorphic to AH(w) for some integer w. If B = 0, H is called a reflection
Hopf algebra with respect to A. If s ≥ 2 (but B 6= 0), we say H is a fractional-
reflection Hopf algebra with respect to A, since part (but not all) of A is a graded
free AH -module.

Lemma 1.2. Suppose H acts on a connected graded algebra A as a reflection (or
fractional-reflection) Hopf algebra. Then:

(1) (A,H) does not have the isom-property.
(2) If A is a noetherian Artin–Schelter Gorenstein algebra, then the H-action

on A does not have trivial homological determinant.

Proof. (1) Since H is a fractional-reflection Hopf algebra, s ≥ 2 in (E1.1.1). We
write A = AH ⊕ AH(−w2) ⊕ C where C is a right AH -module. Note that w2

is necessarily positive since A is connected graded. There is a homogeneous AH -
module map of degree −w2:

A
pr

AH (−w2)−−−−−−−→ AH(−w2)
shift by degree w2−−−−−−−−−−−→ AH

inclusion−−−−−→ A.

Then EndAH (A) has a nonzero element of negative degree. On the other hand,
every nonzero homogeneous element in A#H has nonnegative degree. Therefore
A#H 6∼= EndAH (A).

(2) We now assume that A is noetherian and Artin–Schelter Gorenstein. If the
H-action on A has trivial homological determinant, then, by [16, Thm. 3.6] and
the proof of [16, Lem. 3.5(d)], we have

(a) AH is noetherian and Artin–Schelter Gorenstein,
(b) injdimA = injdimAH =: d, and
(c) the AS indices of A and AH are the same, denoted by `.

Let m be the graded maximal ideal of AH . We consider the local cohomology
RdΓm(A)∗ as in [2], [16]. Since AH(−w2) is a direct summand of A (as a right
AH -module), RdΓm(AH(−w2))∗ is a direct summand of RdΓm(A)∗. If both A and
AH are Artin–Schelter Gorenstein, by [23, Lem. 3.5],

RdΓm(A)∗ ∼= A(−`) and RdΓm(AH(−w2))∗ ∼= AH(−`+ w2).

The lowest degree of nonzero element in RdΓm(AH(−w2))∗ is `−w2 and the lowest
degree of nonzero element in RdΓm(A)∗ is `. Since w2 is positive, this is impossible.
Therefore the H-action on A does not have trivial homological determinant. �
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Remark 1.3. Lemma 1.2(2) is a generalization of [8, Thm. 2.3].

The definition of maximal Cohen-Macaulay modules was extended to this con-
text in [10, Def. 3.5].

Proposition 1.4. Let A be connected graded and suppose that (A, kG) has the
isom-property. Write A =

⊕
g∈GAg. If g 6= h, then Ag is not isomorphic to Ah(w)

for any w ∈ Z. As a consequence, if A is noetherian Artin–Schelter Gorenstein,
there are at least |G| non-isomorphic graded maximal Cohen-Macaulay modules
over Aco G, up to degree shift.

Proof. Let B = Aco G. Suppose to the contrary that Ag ∼= Ah(w) for some g 6= h.
If w 6= 0, then EndB(A) has an element of negative degree. So A#kG 6∼= EndB(A),
a contradiction. If w = 0, then the degree zero part of EndB(A) contains a
2 × 2 matrix algebra which is not commutative. However the degree 0 part of
A#kG is kG, which is commutative. Therefore A#kG 6∼= EndB(A), a contradiction.
Therefore Ag is not isomorphic to Ah(w) if g 6= h.

The consequence is clear. �

The homological (co)determinant is defined in [16]. We need some facts about
the homological (co)determinant of group coactions on down-up algebras. Suppose
that Dβ is G-graded with degG d = g1 and degG u = g2 (or equivalently, G coacts
on Dβ). Assume that the G-coaction on Dβ is inner-faithful, which is equivalent to
the condition that G is generated by g1 and g2, in this case.

Lemma 1.5. Retain the above notation. The homological (co)determinant of the
kG-action (or G-coaction) on Dβ is g21g

2
2, and is trivial if and only if g21g

2
2 = 1,

where 1 is the unit of G.

Proof. Let A = Dβ . Since G coacts on A homogeneously, A is a Z × G-graded
algebra. Recall that Dβ is generated by d and u subject to relations

d2u = βud2, du2 = βu2d.

By using the generators and relations of A, one checks that the G-graded resolution
of the trivial A-module k is

0→ A(g−21 g−22 )→ A(g−11 g−22 )⊕A(g−21 g−12 )→ A(g−11 )⊕A(g−12 )→ A→ k→ 0.

Using this resolution to compute the Ext-group, one sees that Ext3A(k, k) ∼= k(g21g
2
2)

as a G-graded vector space. Hence the G-coaction maps a basis element e ∈
Ext3A(k, k) to e ⊗ g21g

2
2 . By definition, the homological codeterminant of the G-

coaction is g21g
2
2 . The assertion follows. �

Next we make some comments about [11, Example 2.1].

Remark 1.6. Consider the algebra D := D1 as in [11, Example 2.1].
(1) By [5, Thm. 0.6], if H = kG for any finite group G acting on D, then

p(D, G) ≥ 2 and D ∗G ∼= EndDG(D), so that Auslander’s Theorem holds for group
actions on D; this result was expected because all finite groups acting on D are
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“small”, since they have no reflections, in a sense made precise in [17]. But, when
H = kG as in [11, Example 2.1 and Lemma 2.2], H is a fractional-reflection Hopf
algebra with respect to D, so by Lemma 1.2(1), (D, H) does not have the isom-
property, namely, Auslander’s Theorem fails. By [4, Thm. 0.3], p(D, kG) ≤ 1, and
by Lemma 1.2(2), the kG-action does not have trivial homological determinant.
Hence group actions behave differently from group coactions.

(2) By [16, Cor. 4.11] or [17, Prop. 0.2(2)], if H = kG for some finite group
G, then DG is Gorenstein if and only if the G-action on D has trivial homological
determinant. This result was expected because, again, these groups contain no
reflections of D. However, [11, Example 2.1] shows that when H = kG, this
statement fails, namely, Dco G is Gorenstein, but the kG-action does not have
trivial homological determinant. This result is surprising, and there might be a
relationship between the facts in parts (1) and (2).

(3) Theorem 0.1 implies that if the kG-action on D has trivial homological
determinant, then p(D, kG) ≥ 2 and D#kG ∼= EndDco G(D).

(4) In the commutative case, when a semisimple Hopf algebra acts on a polyno-
mial ring A := k[x1, . . . , xn], Auslander’s Theorem fails if and only if there is a
nontrivial Hopf subalgebra H0 ⊆ H (in this case, H and H0 are group algebras
kG and kG0 respectively for some G0 ⊆ G) such that AH0 is Artin–Schelter
regular; this happens if and only if G contains a reflection, or equivalently, G
is not small. Recall that a finite subgroup G of GLn(k) is small if it does not
contain any reflections. Hence one might conjecture that Auslander’s Theorem
holds for a semisimple Hopf algebra if and only if there is no such Hopf subalgebra,
and that this definition is the generalization for Hopf algebras of the notion of
a “small group”. However, [11, Example 2.1], where H = kG, shows that this
definition of an analogue of a “small subgroup” does not work, since in this example
Auslander’s Theorem fails, but as one can easily check, or use [17, Prop. 0.2(2)],
that there is NO nontrivial Hopf subalgebra H0 ⊆ H such that DH0 is Artin–
Schelter regular. So it is not clear how to generalize Auslander’s Theorem beyond
our noncommutative analogue of subgroups of SLn(k) (namely H-actions with
trivial homological determinant) to a noncommutative analogue for Hopf algebras
of the notion of “small” groups (groups containing no reflections).

Question 1.7. For actions (and coactions) by semisimple Hopf algebras H on Ar-
tin–Schelter regular algebras A, is there an analogue of the action on k[x1, . . . , xn]
by a finite “small” subgroup of GLn(k) (a condition for Hopf actions with non-
trivial homological determinant for which Auslander’s Theorem holds)?

To prove Theorem 0.1, we only need to show that p(D(α, β), kG) ≥ 2. The
pertinency p(A,H) is defined in (E0.0.3).

Let
∫

be the integral of a semisimple Hopf algebra H, and I be the two-sided
ideal of A#H generated by 1#

∫
. Recall that a kG-action on an algebra A is

equivalent to a G-grading on A.
We recall the following result from [4] that will be used in the pertinency

computation.

Lemma 1.8. Let H := (kG)◦ act on A inner-faithfully, and write A = ⊕g∈GAg.

(1) [4, Lem. 5.1(3)] If f ∈ ∩g∈GAAg then f#1 ∈ I.
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(2) [4, Lem. 5.1 (6)]

p(R,H) ≥ d−GKdimA/(∩g∈GAAg) ≥ d−max{GKdimA/AAg|g ∈ G}.

The following is a modification of [4, Lem. 5.1(4)].

Lemma 1.9. Let G be a finite group and kG act on A inner-faithfully and homo-
geneously. Let z ∈ A.

(1) Suppose that, for each g ∈ G, there is an x ∈ A of G-degree g and y ∈ A
such that z = yx. Then z#1 is in the ideal of A#kG generated by e := 1#

∫
.

(2) Suppose z = fn · · · f1 is such that the collection (with possible repetitions)

{1, degG(f1), degG(f2f1), . . . , degG(fn−1 · · · f2f1), degG(z)}

includes all elements in G. Then z#1 is in the ideal of A#kG generated by
e := 1#

∫
.

Proof. (1) Since z = yx ∈ AAg for each g, we have z ∈
⋂
g∈GAAg. The assertion

follows from Lemma 1.8.

(2) This is a special case of part (1). �

In the next lemma we use some arguments from Bergman’s Diamond Lemma
[7]. Recall that D(α, β) is generated by d and u. We use the ordering d < u in this
paper. Two relations of D(α, β), namely, (E0.0.1)–(E0.0.2) can be written as

ud2 = lower terms,

u2d = lower terms

where “lower terms” stands for a linear combination of monomials that have lower
degree (in the lexicographic order) than the terms explicitly appearing in the same
equation.

Lemma 1.10. Retain the above notation.

(1) Let W be an ideal of D(α, β) such that, in the factor ring D(α, β)/W , there
are relations

ds(ud)i = lower terms,

ut = lower terms

for some i, s, t ≥ 0. Then GKdimD(α, β)/W ≤ 1.

(2) Let W be an ideal of Dβ such that, in the factor ring Dβ/W , there are
relations

d2s(du)i = lower terms,

(ud)ju2t = lower terms

for some i, j, s, t ≥ 0. Then GKdimDβ/W ≤ 1.
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Proof. (1) Together with (E0.0.1)-(E0.0.2), we have at least four relations

ud2 = lower terms,

u2d = lower terms,

ds(ud)i = lower terms,

ut = lower terms

in the factor ring D(α, β)/W . By the Diamond Lemma [7] and using the first two
relations, D(α, β)/W has a k-linear basis consisting of monomials of the form

da(ud)buc, a, b, c ≥ 0

with some constraints. (A similar statement is [11, Lem. 1.1(3)] where we use the
order u < d.) Two of the constraints are (i) either a < s or b < i and (ii) c < t,
which follows from the last two relations of D(α, β)/W . Therefore, for each N-
degree d, the k-dimension of (D(α, β)/W )d is uniformly bounded. As a consequence
of a Gelfand–Kirillov dimension computation [5, (E1.1.6)], GKdim D(α, β)/W ≤ 1.

(2) The proof is similar to the one of part (1) and uses the fact that d2 and u2

are normal elements of Dβ .

Without loss of generality, we can assume that s = t = i = j =: a > 0 and
re-use the letters i and j. Let

d2a(du)a = lower terms,

(ud)au2a = lower terms

in Dβ/W . Then

d4au4a = λ(d2a(du)a)((ud)au2a) = lower terms

in Dβ/W , for some λ ∈ k. Then d4au4a = d4a+1f in Dβ/W for some f . Since u2

skew-commutes with d and u, we obtain that

d4a(ud)ju4a = d4a+1f ′

or

d4a(ud)ju4a = lower terms.

Therefore

di(ud)juk = lower terms

in Dβ/W when at least two of indices i, j, k are larger than 4a. By the Diamond
Lemma argument as in the proof of part (1), for each N-degree d, the k-dimension
of (Dβ/W )d is uniformly bounded. By [5, (E1.1.6)], GKdimDβ/W ≤ 1. �
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2. Proof of Theorem 0.1

In this section we prove the main result, the theorem of Auslander for group
coactions on down-up algebras. First we recall a result from [11].

Let F be the algebra generated by x and y, subject to two relations

x3 = yxy and y3 = xyx. (E2.0.1)

As a graded algebra, F is isomorphic to D−1 [11, Lem. 1.5(1)]. Let H be the algebra
generated by x and y, subject to two relations

x2y + yx2 − 2y3 = 0 and − 2x3 + xy2 + y2x = 0. (E2.0.2)

Then, as a graded algebra, H is isomorphic to D(−2,−1) [11, Lem. 1.9(1)].

Lemma 2.1 ([11, Prop. 1.12]). Suppose G is a finite non-cyclic group coacting
on A := D(α, β) homogeneously and inner-faithfully. Then one of the following
occurs.

(1) α = 0 and u and d are G-homogeneous after a change of variables.
(2) A is isomorphic to F and using the generators of F, both x and y are G-

homogeneous.
(3) A is isomorphic to H and using the generators of H, both x and y are

G-homogeneous.
(4) G is abelian and there are linearly independent elements x and y of D(α,−1)

of degree one such that

αx2y + (−2− α)xyx+ αyx2 + (2− α)y3 = 0,

(2− α)x3 + αxy2 + (−2− α)yxy + αy2x = 0

and x and y are G-homogeneous.
(5) G is abelian and u and d are G-homogeneous after a change of variables.

The above lemma shows that there are plenty of interesting examples of finite
group coactions on noetherian down-up algebras.

Note that the hypothesis of “G being non-cyclic” is needed in the above lemma
which was proved in [11]. In the present paper we will also consider cyclic cases. In
particular, our main theorem does not need the hypothesis of “G being non-cyclic”.

We separate the proof of Theorem 0.1 into subcases according to the above
lemma. In Cases 1 and 2 we assume that G is not cyclic; the cyclic cases will be
included in Case 3.

2.1. Case 1: α = 0, u and d are G-homogeneous

In this subsection, as α = 0, A is the down-up algebra

Dβ := k〈d, u〉/(d2u− βud2, du2 − βu2d), β ∈ k×.

Suppose that Dβ is G-graded with degG d = g1 and degG u = g2. Since Dβ is
generated by d and u, G is generated by g1 and g2. Let

X1 := {(g2g1)i | i ≥ 0} ∪ {g1(g2g1)i | i ≥ 0} ⊆ G (E2.1.1)
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and
X2 := {(g1g2)i | i ≥ 0} ∪ {g2(g1g2)i | i ≥ 0} ⊆ G. (E2.1.2)

As in [4, Lem. 5.1] let

J := the ideal of A generated by
⋂
g∈G

AAg (E2.1.3)

when a group G coacts on A.

Lemma 2.2. Suppose that 〈g1〉X1 = G = 〈g2〉X2. Then p(Dβ , kG) ≥ 2.

Proof. Let A = Dβ . By Lemma 1.8 (2) it suffices to show that

GKdimA/J ≤ 1

where J is defined as in (E2.1.3). By Lemma 1.10(2), it suffices to show that
v := d2a(du)a+1 and w := u2a(ud)a are in the ideal J , where a = |G|. By symmetry,
we show only that v is in J .

Since v = dd2a(ud)au, it suffices to show that f := d2a(ud)a is in J . By
hypothesis 〈g1〉X1 = G, every element g in G is of the form gi1(g2g1)j for some
a ≥ i, j ≥ 0. Since d2 is normal, we can write f as c(ud)a−jd2a−i ·di(ud)j , for some
c ∈ k× with degG d

i(du)j = gi1(g2g1)j = g. Then f ∈ AAg for all g, which implies
that f ∈ J as required. �

Lemma 2.3. Suppose G is generated by g1, g2 and 〈g21〉 = 〈g22〉. Then 〈g1〉X1 =
G = 〈g2〉X2.

Proof. Let N be the normal subgroup of G generated by g21 and g22 . Then G/N
is a dihedral group D2n. In this case the image of X1 in G/N consists of all
elements in G/N . Then G = NX1. Under the hypothesis, we have N = 〈g21〉.
Hence 〈g1〉X1 = G. By symmetry, G = 〈g2〉X2. �

Now we are ready to prove a part of Theorem 0.1.

Proposition 2.4. Retain the notation as in Theorem 0.1. Suppose further that
α = 0 and u and d are G-homogeneous. Then p(A,H) ≥ 2.

Proof. By Lemma 1.5, when the kG-action on Dβ has trivial homological determi-
nant, g21 = g−22 . Hence 〈g21〉 = 〈g22〉. By Lemma 2.3, 〈g1〉X1 = G = 〈g2〉X2. Now
the main assertion follows from Lemma 2.2. �

2.2. Case 2: A = H, x and y are G-homogeneous

In this subsection we have that A = H and that x and y in H are G-homogeneous.
Let g1 = degG x and g2 = degG y. By the relations of H, one sees that g21 = g22 .
Two relations of H can be written as

x(x2 − y2) = −(x2 − y2)x and y(x2 − y2) = −(x2 − y2)y.

Define a filtration F on H by

FiH = (kx+ ky + kz)i, i ≥ 0

where z = x2 − y2. It is easy to see that the G-coaction preserves this filtration.
Let B be grFH. Then B ∼= (k〈x, y〉/(x2 − y2))[z, σ] where σ maps x → −x and
y → −y. Then G coacts on B by degG x = g1, degG y = g2 and degG z = g21 . The
following lemma follows from [4, Lem. 3.6].
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Lemma 2.5. Retain the above notation. Then p(H, kG) ≥ p(B, kG).

By the above lemma, it suffices to show that p(B, kG) ≥ 2. For the rest of the
proof we follow the proof in Case 1.

Lemma 2.6. Let J be an ideal of B containing both x2s(yx)i and (xy)jzt for some
i, j, s, t ≥ 0. Then GKdimB/J ≤ 1.

Proof. Without loss of generality, we can assume that s = t = i = j =: a > 0 and
re-use letters i and j. Let f1 = x2a(yx)a and f2 = (xy)aza in J . Then x6aza ∈
kf1f2 ⊆ J . Note that B has a k-linear basis

{xi(yx)jzk | i, j, k ≥ 0} ∪ {xi(yx)jzky | i, j, k ≥ 0}.

Since x2(= y2) and z are skew-commuting with x, y, z, every element is of the form
xi(yx)jzk or xi(yx)jzky is 0 in B/J when at least two of indices i, j, k are larger
than 6a. An elementary counting argument shows that GKdimB/J ≤ 1. �

Use the notation introduced in (E2.1.1) and (E2.1.2):

X1 := {(g2g1)i | i ≥ 0} ∪ {g1(g2g1)i | i ≥ 0} ⊆ G

and
X2 := {(g1g2)i | i ≥ 0} ∪ {g2(g1g2)i | i ≥ 0} ⊆ G.

Lemma 2.7. Retain the above notation.

(1) 〈g21〉X1 = G = 〈g22〉X2.
(2) p(B, kG) ≥ 2.
(3) p(H, kG) ≥ 2.

Proof. (1) Let N be the normal subgroup of G generated by g21 (or by g22). Then
G/N is a dihedral group D2n. In this case the image of X1 in G/N consists of all
elements in G/N . Then G = NX1 = 〈g21〉X1. Similarly, G = 〈g22〉X2.

(2) By Lemma 1.8(2) it suffices to show that

GKdimB/J ≤ 1

where J is the ideal of B generated by
⋂
g∈GBBg. By Lemma 2.6, it suffices to

show that f1 := x2a(yx)a and f2 := (xy)aza are in the ideal J , where a = |G|.
By part (1), 〈g1〉X1 = G, every element in G is of the form gi1(g2g1)j for some
0 ≤ i, j ≤ a. By the fact that x2 commutes with y, we obtain that f1 = f ′1(xi(yx)j)
for some f ′1 ∈ B. Then f1 ∈ BBg for all g, which implies that f1 ∈ J . Since z
skew-commutes with x and y, a similar argument shows that f2 ∈ J . Now the
assertion follows by Lemma 2.6.

(3) This follows from part (2) and Lemma 2.5. �

Part (3) of the above lemma says that Auslander’s Theorem holds in this
case, even without the hypothesis that the homological determinant of the H-
action is trivial in this special case. For the sake of completeness we calculate the
homological (co)determinants of the G-coactions easily in the next lemma.
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Lemma 2.8. Suppose a finite group G coacts on A.

(1) If A = H and x and y are G-homogeneous with G-degree g1 and g2 respecti-
vely, then the homological codeterminant of the G-coaction is g41, which is
also g42.

(2) If A = F and x and y are G-homogeneous with G-degree g1 and g2 respecti-
vely, then the homological codeterminant of the G-coaction is g41, which is
also g42.

(3) Let A = D(α,−1), for α 6= 2, and x = 1
2 (d + u) and y = 1

2 (d− u). By [11,
Prop. 1.12(4)], A is generated by x and y and subject to relations

αx2y + (−2− α)xyx+ αyx2 + (2− α)y3 = 0, (E2.8.1)

(2− α)x3 + αxy2 + (−2− α)yxy + αy2x = 0. (E2.8.2)

Suppose that G is abelian and that x and y are G-homogeneous with G-
degree g1 and g2 respectively. Then the homological codeterminant of the
G-coaction is g41, which is also g42.

Proof. Since the proofs are similar to the proof of Lemma 1.5, the details are
omitted. �

2.3. Case 3: G is abelian

Let G be a finite abelian group and let Ĝ be the character group Homgroups(G, k×).

Since k is algebraically closed of characteristic zero, Ĝ is isomorphic to G as an
abstract group. As a consequence, (kG)∗ is isomorphic to kG as a Hopf algebra.

Let A be a down-up algebra D(α, β) generated by d and u. Every graded
algebra automorphism g of A can be written as a 2 × 2-matrix with respect to
the basis {d, u}. We say g is diagonal (respectively, non-diagonal) if its matrix
presentation with respect to {d, u} is diagonal (respectively, non-diagonal). When
the basis {d, u} is replaced by {d′, u′} = {c1d, c2u} for some c1, c2 ∈ k×, the matrix
presentation of g could change accordingly, but the diagonal property of g will not
change. We call this kind of change of basis a scalar base change which we use in
the proof of Lemma 2.9.

Let G be a finite abelian group that coacts on A inner-faithfully and homogene-
ously. This G-coaction on A is equivalent to a Ĝ-action on A preserving the N-
grading. Therefore we can consider the Ĝ-action instead of the G-coaction. The
theorem of Auslander was proved for finite group actions on graded noetherian
down-up algebras in [5, Thm. 0.6] except for the case A = D(α,−1) for α 6= 2. In
fact their proof [5, Proof of Thm. 0.6] works for any diagonal automorphisms of
D(α,−1), too, and [13, Prop. 4.6] handles another special class of groups acting
on A = D(α,−1) for α 6= 2. In this subsection we prove Auslander’s Theorem only

for a finite abelian group Ĝ of graded automorphisms of D(α,−1) with α 6= 2 that
is not all diagonal. Combining with the results in [5], we take care of all abelian
groups (including cyclic ones).

Throughout the rest of this subsection let A be D(α,−1) for some α 6= 2. The
next lemma classifies all possible finite abelian groups that are not diagonal having
trivial homological determinant.
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Lemma 2.9. Consider the following subgroup of GL2(k)

T =

{(
a 0
0 a

)
,

(
0 b
b 0

)
: a, b ∈ {±1,±i}

}
.

The following hold.

(1) T is an abelian group acting naturally on A, with respect to the basis {d, u},
inner-faithfully and homogeneously with trivial homological determinant.

(2) Let Ĝ be a finite abelian group acting on A inner-faithfully and homogene-

ously with trivial homological determinant. If Ĝ contains a non-diagonal
matrix, then Ĝ is a subgroup of T after a scalar base change.

(3) Let Ĝ be as in part (2). Then, up to a scalar base change, Ĝ is one of the
following:{(

1 0
0 1

)
,

(
0 1
1 0

)}
,

{(
a 0
0 a

)
,

(
0 b
b 0

)
: a, b ∈ {±1}

}
,{(

a 0
0 a

)
,

(
0 b
b 0

)
: a ∈ {±1}, b ∈ {±i}

}
, or T.

Proof. (1) This follows by a direct computation.

(2) Suppose that f :=

(
a 0
0 d

)
and g :=

(
0 b
c 0

)
are in Ĝ. The commutativity

of G forces a = d. By [15, Thm. 1.5], the homological determinant of

(
a 0
0 a

)
is

a4. Thus a ∈ {±1,±i} as Ĝ has trivial homological determinant. In other words,
f ∈ T . After a scalar base change, we may assume that b = c in the matrix g.
By [15, Thm. 1.5], the homological determinant of g (with b = c) is b4. Then

b ∈ {±1,±i} and g ∈ T . Now assume that Ĝ contains another non-diagonal

automorphism h :=

(
0 c′

c 0

)
. Then the equation gh = hg implies that c′ = c. So

h ∈ T and Ĝ is a subgroup of T .
(3) This follows by a direct computation. �

Using the classification in Lemma 2.9, we can work out the corresponding
coactions. Let x = 1

2 (d + u) and y = 1
2 (d − u), or equivalently, d = x + y and

u = x− y. By the proof of [11, Prop. 1.12(4)], we have the following.

Lemma 2.10. Suppose G is a finite abelian group coacting on A := D(α,−1), for
α 6= 2, such that

(a) the G-coaction has trivial homological codeterminant, and

(b) the corresponding Ĝ-action contains a non-diagonal matrix with respect to
the basis {d, u}.

Then the following hold.

(1) There are linearly independent elements x and y of D(α,−1) of degree one
such that

αx2y + (−2− α)xyx+ αyx2 + (2− α)y3 = 0,

(2− α)x3 + αxy2 + (−2− α)yxy + αy2x = 0

and x and y are G-homogeneous.
(2) Let degG x = g1, degG y = g2. Then g21 = g22 and g41 = g42 = 1 in G.
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Proof. (1) A part of the proof appeared in the proof of [11, Prop. 1.12], so we give
only a sketch of the argument here.

First, the Ĝ-action on A has the special forms as listed in Lemma 2.9(3). Using
the forms given there, let x = 1

2 (d + u) and y = 1
2 (d − u), or d = x + y and

u = x−y. Then both x and y are Ĝ-eigenvectors. This means that both x and y are
G-homogeneous in the corresponding G-coaction. The two relations are obtained
in the proof of [11, Prop. 1.12] by direct computation, which we will not repeat
here.

(2) By the relations and the hypothesis that α 6= 2, one sees that g21 = g22 . The
second assertion is Lemma 2.8(3). �

Ueyama [24] introduced the notion of a graded isolated singularity, and we recall
his definition here. For a graded algebra A, let grmodA denote the category of
finitely generated graded left A-modules. For a graded finitely generated A-module
an element x ∈ M is called torsion if there exists a positive integer n such that
A≥nx = 0. The module M is called a torsion module if every element of M is
torsion. Let torsA denote the full subcategory of grmodA consisting of torsion
modules. We can then define the quotient category tailsA = grmodA/ torsA.
Following [24], we say that AG has a graded isolated singularity if gldim(tailsAG) <
∞. Mori and Ueyama prove that if the Auslander map is an isomorphism, then
AG has a graded isolated singularity if and only if A#G/I is finite-dimensional
[21, Thm. 3.10]. Examples of graded isolated singularities are of particular interest,
since when AG has a graded isolated singularity, the category of graded CM AG-
modules has several nice properties (see [25]).

Next we compute the pertinency for G-coactions.

Lemma 2.11. Retain the hypothesis of Lemma 2.10.

(1) If g2 = 1 and g1 6= 1 then p(A, kG) = 3. As a consequence, Aco G has a
graded isolated singularity.

(2) If g2 6= 1, g1 6= 1, g1 6= g2, and g21 = g22 = 1, then p(A, kG) ≥ 2.
(3) If g1 6= 1, g21 = 1 and g2 = g1, then p(A, kG) = 3. As a consequence, Aco G

has a graded isolated singularity.
(4) If g21 6= 1, g2 = g1, then p(A, kG) = 3. As a consequence, Aco G has a graded

isolated singularity.
(5) If g21 6= 1, and g2 = g−11 , then p(A, kG) ≥ 2.
(6) If G = T , then p(A, kG) ≥ 2.

Proof. Let J be the ideal generated by
⋂
g∈GAAg as defined in (E2.1.3).

(1) In this case degG x = g1 6= 1 and degG y = 1. Then

degG x
2 = degG xyx = degG xy

2x = 1.

It is easy to see that x2, xyx, xy2x ∈ J . By the first relation of A, y3 ∈ J . Thus
A/J is finite-dimensional, or GKdimA/J = 0. This means that p(A, kG) = 3, and
by [4, Cor. 3.8], Aco G has a graded isolated singularity.

(2) It is easy to check that xyx, yxy ∈ AAg for all g ∈ G. So xyx, yxy ∈ J .
Using relations of A, we have, in A/J ,

y3 = ax2y + byx2,

y2x = xy2 + cx3
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for some a, b, c ∈ k. By using Bergman’s Diamond Lemma [7] with degree lexicogra-
phic monomial order with y > x, A/J has a monomial basis and each of the
monomials does not contain subwords y3, y2x, xyx, yxy. This implies that A/J is
spanned by

{xi : i ≥ 0} ∪ {yxi, xiy, xiy2 : i ≥ 0} ∪ {yxiy, yxiy2 : i ≥ 0}.

Thus GKdimA/J ≤ 1, and hence p(A, kG) ≥ 2.

(3,4) In these cases, every monomial of degree 4 is in J . So GKdimA/J = 0 as
required.

(5) In this case, one can show that x3 ∈ J as degG x generates the group G.
Similarly, we have y3 ∈ J . Using the relations in A, one sees that, in A/J ,

x3 = 0,

y3 = 0,

yx2 = −x2y + axyx,

y2x = −xy2 + ayxy

for some a ∈ k. By Bergman’s Diamond Lemma [7], A/J is spanned by

{xi(yx)jyk : 0 ≤ i, k ≤ 2, j ≥ 0}.

Therefore GKdimA/J ≤ 1 and p(A, kG) ≥ 2.

(6) Let {d7, . . . , d1} be an ordered set of elements (possibly with repetitions) in

G such that the set {
∏7
s=1 ds,

∏6
s=1 ds, · · · , d2d1, d1} is equal to G \ {1}. Suppose

fs ∈ A are homogeneous of degree ds for all s = 1, . . . , 7. By Lemma 1.9(2),
the product f7f6 · · · f1 is in J . Using this observation one sees that the following
elements are in J :

y2xy3x, xyx3yx, yx3yx2, x3yx3, x2yx3y, yxy3xy, xy3xy2, y3xy3.

(The reason for verifying a product of 7 letters is that any subword of these
monomials does not have G-degree 1. This list is all degree 7 monomials in J .)
Using the fact that x = 1

2 (d+u) and y = 1
2 (d−u), we obtain the following relation

in A/J :

0 = 27(x3yx3 − y3xy3)

= (−2)u7 + lower terms,

or equivalently,

u7 = lower terms.

In other words, we can write u7 in terms of terms in lower degree in the lexicogra-
phic order. Similarly, by using x = 1

2 (d + u) and y = 1
2 (d − u), we calculate the
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following in A/J :

0 = 27(x3yx3 + y3xy3)

= (−2a5 − 2a4 + 6a3 + 8a2 − 4a− 6)udu5

+ (−2a6 + 2a5 + 6a4 − 6a3 − 6a2 + 4a+ 2)udududu
+ lower terms;

0 = 27(y2xy3x+ x2yx3y)

= (−2a5 + 2a4 + 10a3 − 4a2 − 12a+ 2)udu5

+ (−2a6 − 2a5 + 6a4 + 6a3 − 6a2 − 4a+ 2)udududu
+ lower terms;

0 = 27(xyx3yx+ yxy3xy)

= (2a5 − 2a4 − 6a3 + 8a2 + 4a− 6)udu5

+ (−2a6 − 2a5 + 6a4 + 6a3 − 6a2 − 4a+ 2)udududu
+ lower terms;

0 = 27(yx3yx2 + xy3xy2)

= (2a5 + 2a4 − 10a3 − 4a2 + 12a+ 2)udu5

+ (−2a6 + 2a5 + 6a4 − 6a3 − 6a2 + 4a+ 2)udududu
+ lower terms;

where “lower term” means a linear combination of monomials of degree 7 that
have lower degrees than terms appearing in the expression (in this case, udududu)
with respect to lexicographic order. Recall that a is the scalar that appeared in
one of the relations of A,

y3 = ax2y + byx2,

see the proof of part (2). If a2 6= 1 and a2 6= 2, then by a linear algebra computation,
both udu5 and udududu can be expressed as “lower terms”:

udu5 = lower terms,
udududu = lower terms.

Since u7 and udududu (and then (ud)4) are equal to lower terms in A/J , Lemma
1.10(1) implies that GKdimA/J ≤ 1, as required.

If a = 1, then we have

0 = 27(x3yx3 + y3xy3)

= −6du6 + 8d3u4 − 8d4udu+ 8d5u2 + 2d7;

0 = 27(y2xy3x+ x2yx3y)

= −4udu5 + 2du6 − 4d2udu3 + 4d3u4 − 4d3udud+ 4d4udu− 8d5u2 + 2d7;

0 = 27(xyx3yx+ yxy3xy)

= −2du6 − 4d3u4 + 2d7;

0 = 27(yx3yx2 + xy3xy2)

= 4udu5 − 2du6 + 4d2udu3 − 4d3udud+ 4d4udu− 8d5u2 + 2d7.

By a linear algebra computation, we have

d3(ud)2 = lower terms.
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Since u7 and d3(ud)2 are equal to lower terms in A/J , Lemma 1.10(1) implies that
GKdimA/J ≤ 1, as required.

If a = −1, then we have

0 = 27(x3yx3 + y3xy3)

= 2du6 − 4d3u4 + 2d7;

0 = 27(y2xy3x+ x2yx3y)

= 4udu5 + 2du6 − 4d2udu3 − 4d3udud+ 4d4udu+ 8d5u2 + 2d7;

0 = 27(xyx3yx+ yxy3xy)

= 6du6 + 8d3u4 − 8d4udu− 8d5u2 + 2d7;

0 = 27(yx3yx2 + xy3xy2)

= −4udu5 − 2du6 + 4d2udu3 + 4d3u4 − 4d3udud+ 4d4udu+ 8d5u2 + 2d7.

By a linear algebra computation, we have

d3(ud)2 = lower terms.

Since u7 and d3(ud)2 are equal to lower terms in A/J , Lemma 1.10(1) implies that
GKdimA/J ≤ 1, as required.

If a2 = 2, we need to use a different set of elements in J . By a similar argument
as before and by Lemma 1.9(2), the following elements are in J :

x3y3x3, y3x3y3, y2xy3x3, x2yx3y3, y3x3yx2, x3y3xy2, yxy3xyx2, xyx3yxy2,

y2xy3xy2, x2yx3yx2, yxy3xy3, xyx3yx3, yx4yx3, xy4xy3, xy4xyx2, yx4yxy2.

By a Sage computation, we have, in A/J ,

0 = 29(x3y3x3 − y3x3y3)

= (−2)u9 + (8 + 4a)ududu5 + (18 + 12a)ududududu+ lower terms,

0 = 29(y2xy3x3 − x2yx3y3)

= (−2)u9 + (−4− 4a)ududu5 + (−2− 4a)ududududu+ lower terms,

0 = 29(y3x3yx2 − x3y3xy2)

= 2u9 + (−4)ududu5 + 2ududududu+ lower terms,

0 = 29(y2xy3xy2 − x2yx3yx2)

= (−2)u9 + 2ududududu+ lower terms.

An easy linear algebra computation shows that

u9 = lower terms,

(ud)2u5 = lower terms,

(ud)4u = lower terms.

Since u9 and (ud)4u (and then (ud)5) are equal to lower terms in A/J , Lemma
1.10(1) implies that GKdimA/J ≤ 1, as required. This finishes the proof. �

2.4. Case 4: A = F, x and y are G-homogeneous

The final case is when A = F and the proof is also quite tricky. We start with a
result of [11].
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Lemma 2.12 ([11, Lem. 1.6]). Let F be generated by x and y and subject to two
relations (E2.0.1).

(1) Define an order on monomials by extending x < y lexicographically. Then
we have a complete set of five relations that is the reduction system in the
sense of [7, p.180].

y3 = xyx,

yxy = x3,

y2x3 = xyx2y,

yx2yx = x3y2,

yx4 = x4y.

(2) We also have the other relations:

y4 = x4,

yxyx = x4,

xyxy = y4.

(3) There is a k-linear basis consisting of the monomials of the form

xi(yx3)j(yx2)ε(y2x2)kyaxb

where i, j, k ≥ 0, ε is either 0 or 1, and

(a, b) = (0, 0), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2)

if j + ε+ k = 0,

(a, b) = (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2)

if j > 0 and ε+ k = 0, and

(a, b) = (1, 0), (2, 0), (2, 1), (2, 2)

if ε+ k > 0.

Let G be a finite group coacting on A := F such that x and y are G-homogene-
ous. Let J be defined as in (E2.1.3).

Lemma 2.13. Suppose there are α, β, α′, β′ ≥ 0 such that

(yx3)α(y2x2)β and (yx3)α
′
(yx2)(y2x2)β

′
∈ J,

then GKdimA/J ≤ 1.
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Proof. We again use the Diamond Lemma [7]. By the fact that x4 = y4 is central in
A (see Lemma 2.12(2)), there is a monomial f in x and y such that f(yx3)i(y2x2)k=
x4w for some w. So we have the following equations in A/J :

x4w = 0,

(yx3)α(y2x2)β = 0,

(yx3)α
′
(yx2)(y2x2)β

′
= 0.

Therefore, if there are i, j, k with xi(yx3)j(yx2)ε(y2x2)kyaxb 6= 0 in A/J for (a, b)
as in Lemma 2.12(b), then there is a uniform bound on at least two of {i, j, k}.
Then GKdimA/J ≤ 1 by [5, (E1.1.6)] and Lemma 2.12(3). �

The goal of the rest of this subsection is to find some monomials (yx3)i(y2x2)k

and (yx3)i
′
(yx2)(y2x2)k

′
in J . We introduce the following notation. Let

X0 = x,
X1 = y.

We will use Xi for i ∈ Z/(2). Let

V0 = yx3,

V1 = xyx2,

V2 = x2yx,

V3 = x3y,

and
W0 = y2x2,

W1 = xy2x,

W2 = x2y2,

W3 = yx2y.

We will use Vi and Wi for i ∈ Z/(4). The following lemma follows from a direct
computation and the relations given in Lemma 2.12.

Lemma 2.14. Retain the above notation.

(1) XiVj = Vj+1Xi and XiWj = Wj+1Xi for all i ∈ Z/(2) and j ∈ Z/(4).
(2) Elements {V0, . . . , V3,W0, . . . ,W3} are pairwise commutative.
(3) The following relations hold

(a) V0V2 = x8 = V1V3.
(b) W0W2 = x8 = W1W3.
(c) V0V1 = x4W0.

Now let G be a finite group coacting on F such that x and y are G-homogeneous.
We also assume that the G-coaction has trivial homological codeterminant, namely,
degG(x4) = 1. Let

xi = degGXi,
vj = degG Vj ,
wk = degGWk

for i ∈ Z/(2) and j, k ∈ Z/(4). Let N be the subgroup generated by {vi}3i=0 ∪
{wk}3k=0. By the lemma above, we have
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Lemma 2.15. Retain the above notation.

(1) G is generated by x0(= g1) and x1(= g2).
(2) N is an abelian subgroup of G.
(3) N is a normal subgroup of G.
(4) N is generated by v0 and v1 and G/N is generated by the image x0 of x0;

and x0 = x1 in G/N .
(5) N is also generated by {vi, wj} for any pair (i, j).
(6) G = N ∪Nxi1 ∪Nxj1xj2 ∪Nxk1xk2xk3 for any fixed is, js, ks ∈ Z/(2).
(7) Let n be the order of v0. For any fixed is ∈ Z/(2) and js, ks ∈ Z/(4) for

s = 1, 2, 3, 4, any element in G is a right subword of

vnj4w
n
k4xi3v

n
j3w

n
k3xi2v

n
j2w

n
k2xi1v

n
j1w

n
k1 .

Proof. (1) Since G-coaction is inner-faithful, G is generated by degG x and degG y.
(2) This follows from Lemma 2.14(2).
(3) This follows from Lemma 2.14(1) and part (1).
(4) Since degG x

4 = 1, x40 = x41 = 1. By Lemma 2.14(3), v2 = v−10 , v3 = v−11 , and
w0 = v0v1. It is easy to check from Lemma 2.14(1) that w1 = v−10 v1, w2 = v−10 v−11

and w3 = v0v
−1
1 . Therefore N is generated by v0 and v1. It is clear that in G/N ,

x0 = x1. So G/N is generated by x0.
(5) By the proof of part (4), we have

{v0, v1, v2, v3} = {v0, v1, v−10 , v−11 },
{w0, w1, w2, w3} = {v0v1, v−10 v1, v

−1
0 v−11 , v0v

−1
1 }.

Therefore N is generated by {vi, wj} for any pair (i, j).
(6) This follows from the fact that x0 = x1 in the quotient group G/N and that

G/N ∼= Z/(4).
(7) This follows from parts (5,6). �

We have a version of Lemma 2.15 for monomials in F.

Lemma 2.16. Retain the above notation.

(1) For any fixed is ∈ Z/(2) and js, ks ∈ Z/(4) for s = 1, 2, 3, 4, any element in
G is the degree of some right subword of

Φ := V nj4W
n
k4Xi3V

n
j3W

n
k3Xi2V

n
j2W

n
k2Xi1V

n
j1W

n
k1 .

As a consequence, Φ ∈ J .
(2) (yx3)4n(yx2)(y2x2)4n and (yx3)4n(y2x2)4n+1 are elements in J .

Proof. (1) This is a slightly stronger version of Lemma 2.15(7). For example, if an
element g is of the form

vaj2w
b
k2x0v

n
j1w

n
k1

then we take a right subword of the form f := V aj2W
b
k2
X0V

n
j1
Wn
k1

. Since Vs and

Wt all commute, f is a subword of Φ. Clearly, degG f = vaj2w
b
k2
x0v

n
j1
wnk1 . The

consequence follows from Lemma 1.9(1).
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(2) By using Lemma 2.14(1), Φ equals

V nj4V
n
j3+1V

n
j2+2V

n
j1+3Xi3Xi2Xi1Wk4−3Wk3−2Wk2−1Wk1 .

By taking j4 = j3 + 1 = j2 + 2 = j1 + 3 = 0 and k4− 3 = k3− 2 = k2− 1 = k1 = 0
and i3 = 1, i2 = i1 = 0, we have that

(yx3)4n(yx2)(y2x2)4n ∈ J.

By taking j4 = j3+1 = j2+2 = j1+3 = 0 and k4−3 = k3−2 = k2−1 = k1 = 1
and i3 = i2 = 1 and i1 = 0, we have that

(yx3)4n(y2x)(xy2x)4n ∈ J.

Then (yx3)4n(y2x2)4n+1 ∈ J . �

Now we can prove the result of this subsection.

Proposition 2.17. Retain the notation as in Theorem 0.1. Suppose that A = F
and x and y are G-homogeneous. Then p(A, kG) ≥ 2.

Proof. Combining Lemma 2.16(2) with Lemma 2.13, GKdimA/J ≤ 1. This is
equivalent to p(A, kG) ≥ 2. �

Putting all these pieces together we have a proof of Theorem 0.1.

Proof of Theorem 0.1. First we assume that G is abelian (that could be cyclic).
If A is not D(α,−1) for some α 6= 2, the assertion follows from [5, Thm. 0.6].
Now we assume that A = D(α,−1) for some α 6= 2. Using notations introduced in

subsection 2.3, the character group of G is denoted by Ĝ. If Ĝ acts on A diagonally
with respect to the basis {d, u}, then the assertion follows from [5, Proof of Thm.

0.6]. Otherwise, Ĝ contains non-diagonal matrices with respect to the basis {d, u}.
In this case the assertion follows from Lemmas 2.9, 2.10 and 2.11. This takes care
of the case when G is abelian.

Next we assume that G is not abelian. As a consequence, G is not cyclic, so we
can apply Lemma 2.1. Using the classification given in Lemma 2.1, we only need
to show the assertion for the first three cases as in the last two cases G is abelian.

In case Lemma 2.1(1), this is Proposition 2.4.

In case Lemma 2.1(2), this is Proposition 2.17.

In case Lemma 2.1(3), this is Lemma 2.7(3).

This finishes the proof. �

3. Examples

We conclude this paper with several examples that indicate the variety of
covariant subrings that can be obtained from coactions on down-up algebras, and
give some concluding comments.
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Example 3.1. A group G = 〈a, b〉 coacts on Dβ , where degG d = a and degG u =
b, with trivial homological codeterminant if a2b2 = 1 [Lemma 1.5]. One such family
of groups is the dihedral groups, for n ≥ 2,

D2n = 〈a, b | a2 = b2 = (ba)n = 1〉.

Each element of Dβ can be written as a linear combination of monomials of the
form di(ud)juk, and such a monomial is in the identity component of Dβ exactly
when

ai(ba)jbk = 1.

Clearly d2 and u2 are covariants, so it suffices to consider the four cases (i, k) =
(0, 0), (1, 0), (0, 1), (1, 1), and it is easy to check that the subring of covariants is
generated as a k-algebra by d2, u2, (du)n, (ud)n, i.e.

Dco D2n

β = k〈d2, u2, (du)n, (ud)n〉.

When β = ±1, Dco D2n
±1 is isomorphic to the commutative algebra

Dco D2n
±1

∼=
k[X,Y, Z,W ]

(XnY n − ZW )
,

a hypersurface in A4. When β 6= ±1, the ring of covariants is a hypersurface in
a noncommutative skew polynomial ring in the sense of [18, Def. 1.3(c)]. For any
β 6= 0, Dβ#kD2n is a noncommutative quasi-resolution or NQR (a generalization

of NCCR) of Dco D2n

β in the sense of [22]. When n = 4, this example should be
compared to [11, Example 2.1], where a different coaction of D8 (without trivial
homological codeterminant) on D1 is given; in that example the ring of covariants is
a commutative hypersurface in A4, but Auslander’s Theorem fails (Remark 1.6(1)).

Next we consider a second coaction on Dβ , where the ring of covariants is quite
different.

Example 3.2. The quaternion group G = Q8 of order 8 coacts on Dβ by degG d =
i and degG u = k with trivial homological determinant (Lemma 1.5). A monomial
de1(ud)e2ue3 has group grade the identity of Q8 exactly when

ie1je2ke3 = 1

holds in Q8. It is not hard to check that the covariants are generated by the
following 9 monomials:

d4, u4, d2u2, d2(ud)2, (ud)2u2,

d(ud)u3 = (du)2u2, d3(ud)u = d2(du)2, d(ud)3u = (du)4, (ud)4.

When β 6= 0, Dβ#kQ8 is a noncommutative quasi-resolution (NQR) of the cova-

riant subring Dco Q8

β in the sense of [22].
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Finally we consider the down-up algebra H.

Example 3.3. The dihedral groups D2n coact on H homogeneously with trivial
homological codeterminant, although our proof of Auslander’s Theorem holds for
any group coaction in this case (see Lemma 2.7 and the comments after that).
Suppose that G := D2n = 〈a, b | a2 = b2 = 1 = (ab)n〉 and that degG x = a and
degG y = b. The relations in H (E2.0.2) can be written as

(x2 − y2)y = −y(x2 − y2),

x(x2 − y2) = −(x2 − y2)x,

and hence x2 − y2 is a normal element of H, and, moreover, xy and yx commute
with y2 − x2. It is clear that x2 and y2 are covariants under this action, and that
H/(x2− y2) ∼= k〈x, y〉/(x2− y2). Since x2− y2 is also a normal element of Hco D2n ,
we obtain that

Hco D2n

(x2 − y2)
∼=
(

k〈x, y〉
(x2 − y2)

)co D2n

.

It follows that the generators of Hco D2n are the 4 elements

x2, y2, (yx)n, x(yx)n−1y = (xy)n.

Next we show that Hco D2n is a hypersurface [18, Def. 1.3(c)] in an iterated Ore
extension that is an AS-regular algebra of dimension 4.

Multiplying the relation x2y+ yx2− 2y3 = 0 by y on each side and subtracting
gives the relation x2y2 − y2x2 = 0. We next give a number of relations in H; note
that the defining relations of H are symmetric in x and y, so the relations with x
and y interchanged also hold. It is easy to check the following relation

x2y − yx2 = 2y(y2 − x2);

multiplying by x on left gives:

[x2, (xy)] = 2xy(y2 − x2) = (y2 − x2)(2xy).

Similarly
[y2, (xy)] = 2xy(y2 − x2).

Inductively one can show that

[y2, (xy)n] = 2n(xy)n(y2 − x2).

Further
(yx)(xy) = y2(y2 + (y2 − x2)),

and inductively we get

(yx)n(xy)n

= y2(y2+(y2−x2))(y2+2(y2−x2))(y2+3(y2−x2)) · · · (y2+(2n−1)(y2−x2)).

1059



J. CHEN, E. KIRKMAN, J. J. ZHANG

Let the right side of the above equation be denoted by w(x2, y2). We claim that
the subalgebra generated by x2, y2, (yx)n, (xy)n is a generalized Weyl algebra
(or ambiskew polynomial ring, as in [14]), i.e., it is an iterated Ore algebra modulo
one relation.

To simplify notation, let X = x2, Y = y2, Z+ = (yx)n, Z− = (xy)n. From the
relations above we have the following relations:

XY = Y X,

Z+X = (X + 2n(Y −X))Z+,

Z+Y = (Y + 2n(Y −X))Z+.

In this notation Z+Z− = w(X,Y ) and Z−Z+ = w(Y,X). Let B be the algebra
generated by X,Y, Z+ defined by the first three relations above. Then B is the
Ore extension k[X,Y ][Z+;σ], where σ is the automorphism of k[X,Y ] given by
σ(X) = X + 2n(Y −X) and σ(Y ) = Y + 2n(Y −X). Adjoining Z− to B adds the
following three relations:

Z−X = (X − 2n(Y −X))Z−,

Z−Y = (Y − 2n(Y −X))Z−,

Z−Z+ = Z+Z− − f(X,Y ).

where f(X,Y ) = w(X,Y ) − w(Y,X) ∈ k[X,Y ]. One checks that σ−1(X) = X −
2n(Y − X), σ−1(Y ) = Y − 2n(Y − X) and σ−1(Z+) = Z+ defines an algebra
automorphism of B. Define the map δ on B, by δ(X) = δ(Y ) = 0 and δ(Z+) =
−f(X,Y ). One checks that δ extends to a σ−1-skew derivation of B, preserving
the three relations defining B. Hence we have

Hco D2n ∼=
k[X,Y ][Z+;σ][Z−;σ−1, δ]

(Z+Z− − w(X,Y ))
,

and Hco D2n is a hypersurface [18, Def. 1.3(c)] in an AS-regular algebra of dimension
4, with Hilbert series

1− t4n

(1− t2)2(1− t2n)2
.

Down-up algebras have no reflections [19, Prop. 6.4], so we would expect Aus-
lander’s Theorem to hold for all finite group actions; this has been proved for almost
all finite group actions, except for some finite groups acting on D(α,−1) for α 6= 2
(abelian groups with trivial homological determinant are covered by Theorem 0.1).
Theorem 0.1 also covers finite group coactions with trivial homological determi-
nant, and we have shown Theorem 0.1 does not hold for all group coactions
(Remark 1.6(1)). It remains to examine actions by other Hopf algebras on down-up
algebras.
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