Transformation Groups (©Springer Science+Business Media New York (2020)
Vol. 25, No. 4, 2020, pp. 1037-1062

AUSLANDER’S THEOREM FOR
GROUP COACTIONS ON
NOETHERIAN GRADED DOWN-UP ALGEBRAS

J. CHEN E. KIRKMAN
School of Mathematical Sciences Department of Mathematics
Xiamen University P. O. Box 7388
Xiamen Wake Forest University
361005, Fujian, China Winston-Salem, NC 27109, USA
chenjianmin@xmu.edu.cn kirkman@wfu.edu
J. J. ZHANG

Department of Mathematics
Box 354350
University of Washington
Seattle, Washington 98195, USA

zhang@math.washington.edu

Abstract. We prove a version of a theorem of Auslander for finite group coactions on
noetherian graded down-up algebras.

0. Introduction

Maurice Auslander [3] proved that if G is a finite subgroup of GL,, (k), containing
no pseudo-reflections (e.g., subgroups of SL, (k)), acting linearly on the commuta-
tive polynomial ring A = k[xy,...,,], with fixed subring A“, then the natural
map from the skew group algebra A G to End 4 (A) is an isomorphism of graded
algebras. This theorem is the main ingredient in the McKay correspondence,
relating representations of G and A%-modules. Noncommutative versions of this
theorem of Auslander [4], [5] are an important ingredient in establishing a noncom-
mutative McKay correspondence. One of the main open questions concerning a
noncommutative version of Auslander’s Theorem is the following conjecture that
was stated in [4, Conj. 0.4] and [9, Conj. 0.2], where the condition that the
homological determinant of the H-action is trivial generalizes the result for group
actions by subgroups of SL,, (k):

Let A be a connected graded noetherian Artin—Schelter reqular algebra [1] and H
be a semisimple Hopf algebra acting on A inner-faithfully and homogeneously. If
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the homological determinant of the H-action on A is trivial, then there is a natural
graded algebra isomorphism

A#H =~ End gu (A)

By [9, Thm. 0.3] the above conjecture holds when A has global dimension
two, which is one of the main results in [9]. It is natural to search for a proof
of this conjecture for global dimension three (or higher). The paper [5] started
this program by showing that the above conjecture holds for certain finite group
actions on noetherian graded down-up algebras, which are Artin—Schelter regular
algebras of global dimension three [5, Thm. 0.6]. Some interesting partial results
concerning Auslander’s Theorem have been proven in [4], [5], [12], [13], [21]. The
goal of this paper is to verify the conjecture for finite group coactions on Artin—
Schelter regular down-up algebras (Theorem 0.1). The idea of the proof is to use
the pertinency introduced in [4] that has been one major tool for proving the
noncommutative Auslander’s Theorem.

Throughout the paper, let k be a base field of characteristic zero, and all objects
are over k.

Down-up algebras were introduced in 1998 by Benkart-Roby in [6], and, since
then, these algebras have been studied extensively. Noetherian graded down-up
algebras are Artin—Schelter regular algebras of global dimension three with two
generators by a result of [20]. Let o and § be two scalars in k. The graded down-
up algebra, denoted by D(«, 8), is generated by two elements d and u and subject
to two relations

d*u = adud + Bud?, (E0.0.1)
du® = audu + Bu?d. (E0.0.2)

This algebra is noetherian if and only if 5 # 0, and in this paper we always assume
that 8 # 0. When a = 0, we use Dg instead of D(0,3). The groups of graded
algebra automorphisms of the down-up algebras were computed in [15]. Recently,
the invariant theory of graded down-up algebras under finite group actions and
coactions has been studied in [17], [11], [13].

In a general setting, let H be a semisimple Hopf algebra and let K be its k-
linear dual. Then K is also a semisimple Hopf algebra. It is well known that a left
H-action on an algebra A is equivalent to a right K-coaction on A.

Suppose H is a semisimple Hopf algebra with integral [, and A is an algebra
with GKdim A < co. Here GKdim A denotes the Gelfand—Kirillov dimension of A.
If H acts on A, by [4, Def. 0.1], the pertinency of the H-action on A is defined to
be

p(A, H) = GKdim A — GKdim((A#H)/I) (E0.0.3)

where I is the 2-sided ideal of A#H generated by 1# [. Define the fixed subring
of the H-action to be

A" ={ac A|h-(a)=e(h)a,Vh € H}
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where € is the counit of H. For any algebra A with H-action, there is a natural
algebra homomorphism ¢ : A#H — Endsn(A) which sends a#h to an AH-
endomorphism of A:

¢(a#th) : x — a(h- (x)), Ve A

By [4, Thm. 0.3], if A is a noetherian, connected graded, Artin—Schelter regular
and Cohen-Macaulay domain of GKdim > 2, then p(A, H) > 2 if and only if the
canonical map

¢: A#H — Endyu(A) (E0.0.4)

is an isomorphism. For simplicity, if ¢ is an isomorphism, we say that (A, H) has
the isom-property.

In this paper we are interested in the case when H is k¢ := Homy(kG, k), or
equivalently, K is the group algebra kG for some finite group G, and when A is
the noetherian graded down-up algebra D(a, 8). Our main result is

Theorem 0.1. Let H = k% act on A := D(a,3) homogeneously and inner-
faithfully, where 8 # 0. If the action has trivial homological determinant, then the
pertinency p(A, H) > 2. As a consequence, Auslander’s Theorem holds, namely,
there is a natural isomorphism of graded algebras

¢: A#H = Endyu(A).

Theorem 0.1 fails without the hypothesis of “trivial homological determinant”,
see Remark 1.6(2). Theorem 0.1 suggests there is a McKay correspondence for
down-up algebras D(a, f); it follows from [9, Thm. A] that when Auslander’s
Theorem holds, there are bijections between several categories of modules, e.g.,
simple left H-modules and indecomposable direct summands of A as a left AY-
modules. The paper [22] shows that whenever Auslander’s Theorem holds one can
view A#H as a generalized noncommutative crepant resolution (NCCR) of A,
and when A is a central subalgebra of A#H, A#H is an NCCR of AX,

The paper is organized as follows: Section 1 contains some preliminary results,
Section 2 contains the proof of Theorem 0.1, and Section 3 contains some examples.
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1700825).

1. Preliminaries

In this section we recall some basic definitions and make some comments. We will
omit the definition of Artin—Schelter Gorensteinness and Artin—Schelter regularity
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[1] since these can be found in many other papers and we will not need these in
the proof of the main result. As mentioned in the introduction, noetherian graded
down-up algebras are Artin—Schelter regular of global dimension three.

We introduce a temporary concept. For a graded module C and an integer w,
the wth shift of C, denoted by C(w), is defined by C(w), = Cyim for all m € Z.

Definition 1.1. Let H be a semisimple Hopf algebra acting on a connected graded
algebra A homogeneously and inner-faithfully. Decompose A into

(@AH(—WO ®B (E1.1.1)

as a right A”-module for some integer s > 1, where B has no direct summand
that is isomorphic to A (w) for some integer w. If B = 0, H is called a reflection
Hopf algebra with respect to A. If s > 2 (but B # 0), we say H is a fractional-
reflection Hopf algebra with respect to A, since part (but not all) of A is a graded
free AH-module.

Lemma 1.2. Suppose H acts on a connected graded algebra A as a reflection (or
fractional-reflection) Hopf algebra. Then:

(1) (A, H) does not have the isom-property.
(2) If A is a noetherian Artin-Schelter Gorenstein algebra, then the H-action
on A does not have trivial homological determinant.

Proof. (1) Since H is a fractional-reflection Hopf algebra, s > 2 in (E1.1.1). We
write A = A” @ A" (—wy) © C where C is a right A7-module. Note that ws
is necessarily positive since A is connected graded. There is a homogeneous A%-
module map of degree —ws:

PT A H (L) shift by degree w inclusion
A ARG B (L, y Shift by degree wa, gy A

Then Endyn(A) has a nonzero element of negative degree. On the other hand,
every nonzero homogeneous element in A#H has nonnegative degree. Therefore
A#H # End 4u(A).

(2) We now assume that A is noetherian and Artin—Schelter Gorenstein. If the
H-action on A has trivial homological determinant, then, by [16, Thm. 3.6] and
the proof of [16, Lem. 3.5(d)], we have

(a) A is noetherian and Artin—Schelter Gorenstein,
(b) injdim A = injdim A¥ =: d, and
(c) the AS indices of A and A are the same, denoted by /.

Let m be the graded maximal ideal of A¥. We consider the local cohomology
RIT(A)* as in [2], [16]. Since AH (—ws) is a direct summand of A (as a right
AH_module), RIT (A (—ws))* is a direct summand of RT,(A)*. If both A and
A are Artin-Schelter Gorenstein, by [23, Lem. 3.5],

RITm(A) 2 A(—f) and RITw(AH (—ws))* = AH(—( + w,).

The lowest degree of nonzero element in Ry, (AH (—wy))* is £ —wy and the lowest
degree of nonzero element in RI"y, (A)* is £. Since wy is positive, this is impossible.
Therefore the H-action on A does not have trivial homological determinant. [
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Remark 1.3. Lemma 1.2(2) is a generalization of [8, Thm. 2.3].

The definition of maximal Cohen-Macaulay modules was extended to this con-
text in [10, Def. 3.5].

Proposition 1.4. Let A be connected graded and suppose that (A, k%) has the
isom-property. Write A = ®g€G Ag. If g # h, then Ag is not isomorphic to Ap(w)
for any w € Z. As a consequence, if A is noetherian Artin—Schelter Gorenstein,
there are at least |G| non-isomorphic graded mazimal Cohen-Macaulay modules
over A G up to degree shift.

Proof. Let B = A ¢, Suppose to the contrary that Ay = Ap(w) for some g # h.
If w # 0, then Endz(A) has an element of negative degree. So A#k® 22 Endp(A),
a contradiction. If w = 0, then the degree zero part of Endp(A) contains a
2 x 2 matrix algebra which is not commutative. However the degree 0 part of
A#KkS is k&, which is commutative. Therefore A#k% 2 Endg(A), a contradiction.
Therefore A, is not isomorphic to Ay (w) if g # h.

The consequence is clear. [

The homological (co)determinant is defined in [16]. We need some facts about
the homological (co)determinant of group coactions on down-up algebras. Suppose
that Dg is G-graded with deg, d = ¢g1 and degg u = go (or equivalently, G coacts
on Dg). Assume that the G-coaction on Dg is inner-faithful, which is equivalent to
the condition that G is generated by g; and g, in this case.

Lemma 1.5. Retain the above notation. The homological (co)determinant of the
k% -action (or G-coaction) on Dg is g2g3, and is trivial if and only if g?g3 = 1,
where 1 is the unit of G.

Proof. Let A = Dg. Since G coacts on A homogeneously, A is a Z x G-graded
algebra. Recall that Dg is generated by d and u subject to relations

d*u = Bud?, du® = pud.

By using the generators and relations of A, one checks that the G-graded resolution
of the trivial A-module k is

0— A(g72952) — Algr '95°) @ Alg1 %95 ") = Algr ) @ Algs ') = A=k — 0.

Using this resolution to compute the Ext-group, one sees that Ext® (k, k) = k(g2¢3)
as a G-graded vector space. Hence the G-coaction maps a basis element ¢ €
Ext? (k,k) to ¢ ® g?g3. By definition, the homological codeterminant of the G-
coaction is g?g3. The assertion follows. [

Next we make some comments about [11, Example 2.1].

Remark 1.6. Consider the algebra D := Dy as in [11, Example 2.1].

(1) By [5, Thm. 0.6], if H = kG for any finite group G acting on D, then
p(D,G) > 2 and D * G = Endpe (D), so that Auslander’s Theorem holds for group
actions on D; this result was expected because all finite groups acting on D are
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“small”, since they have no reflections, in a sense made precise in [17]. But, when
H =K% as in [11, Example 2.1 and Lemma 2.2], H is a fractional-reflection Hopf
algebra with respect to ID, so by Lemma 1.2(1), (D, H) does not have the isom-
property, namely, Auslander’s Theorem fails. By [4, Thm. 0.3], p(D,k%) < 1, and
by Lemma 1.2(2), the k%-action does not have trivial homological determinant.
Hence group actions behave differently from group coactions.

(2) By [16, Cor. 4.11] or [17, Prop. 0.2(2)], if H = kG for some finite group
G, then DY is Gorenstein if and only if the G-action on ID has trivial homological
determinant. This result was expected because, again, these groups contain no
reflections of D. However, [11, Example 2.1] shows that when H = k%, this
statement fails, namely, D ¢ is Gorenstein, but the k%-action does not have
trivial homological determinant. This result is surprising, and there might be a
relationship between the facts in parts (1) and (2).

(3) Theorem 0.1 implies that if the k%-action on D has trivial homological
determinant, then p(D,k%) > 2 and D#k% = Endpeo o (D).

(4) In the commutative case, when a semisimple Hopf algebra acts on a polyno-
mial ring A := k[z1,...,x,], Auslander’s Theorem fails if and only if there is a
nontrivial Hopf subalgebra Hy C H (in this case, H and H, are group algebras
kG and kGq respectively for some Gy C G) such that AHo is Artin-Schelter
regular; this happens if and only if G contains a reflection, or equivalently, G
is not small. Recall that a finite subgroup G of GL, (k) is small if it does not
contain any reflections. Hence one might conjecture that Auslander’s Theorem
holds for a semisimple Hopf algebra if and only if there is no such Hopf subalgebra,
and that this definition is the generalization for Hopf algebras of the notion of
a “small group”. However, [11, Example 2.1], where H = k®, shows that this
definition of an analogue of a “small subgroup” does not work, since in this example
Auslander’s Theorem fails, but as one can easily check, or use [17, Prop. 0.2(2)],
that there is NO nontrivial Hopf subalgebra Hy C H such that Do is Artin—
Schelter regular. So it is not clear how to generalize Auslander’s Theorem beyond
our noncommutative analogue of subgroups of SL, (k) (namely H-actions with
trivial homological determinant) to a noncommutative analogue for Hopf algebras
of the notion of “small” groups (groups containing no reflections).

Question 1.7. For actions (and coactions) by semisimple Hopf algebras H on Ar-
tin—Schelter regular algebras A, is there an analogue of the action on k[z1, ..., 2]
by a finite “small” subgroup of GL, (k) (a condition for Hopf actions with non-
trivial homological determinant for which Auslander’s Theorem holds)?

To prove Theorem 0.1, we only need to show that p(D(a, 3),k%) > 2. The
pertinency p(A, H) is defined in (E0.0.3).

Let [ be the integral of a semisimple Hopf algebra H, and I be the two-sided
ideal of A#H generated by 1# [. Recall that a k&-action on an algebra A is
equivalent to a G-grading on A.

We recall the following result from [4] that will be used in the pertinency
computation.

Lemma 1.8. Let H := (kG)° act on A inner-faithfully, and write A = ®g4eccAg.
(1) [4, Lem. 5.1(3)] If f € NgegAA, then f#1 € I.
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(2) [4, Lem. 5.1 (6)]
p(R,H) > d— GKdim A/(NgegAAy) > d — max{GKdim A/AA4|g € G}.

The following is a modification of [4, Lem. 5.1(4)].

Lemma 1.9. Let G be a finite group and k& act on A inner-faithfully and homo-
geneously. Let z € A.

(1) Suppose that, for each g € G, there is an x € A of G-degree g and y € A
such that z = yx. Then z#1 is in the ideal of A#kC generated by e := 14 /-
(2) Suppose z = fn, -+ f1 is such that the collection (with possible repetitions)

{1,degi(f1),dega(faf1),-- - dega(fn1--- faf1),dega(2)}

includes all elements in G. Then z#1 is in the ideal of A#kC generated by
e:=1# [.

Proof. (1) Since z = yx € AA, for each g, we have z €
follows from Lemma 1.8.

(2) This is a special case of part (1). O

9eG AA,. The assertion

In the next lemma we use some arguments from Bergman’s Diamond Lemma
[7]. Recall that D(«, B) is generated by d and u. We use the ordering d < u in this
paper. Two relations of D(«, ), namely, (E0.0.1)—(E0.0.2) can be written as

ud? = lower terms,
u?d = lower terms

where “lower terms” stands for a linear combination of monomials that have lower
degree (in the lexicographic order) than the terms explicitly appearing in the same
equation.

Lemma 1.10. Retain the above notation.

(1) Let W be an ideal of D(cv, ) such that, in the factor ring D(a, B)/W, there
are relations

d*(ud)" = lower terms,
u! = lower terms

for some i,s,t > 0. Then GKdimD(«, 8)/W < 1.

(2) Let W be an ideal of Dg such that, in the factor ring Dg/W, there are
relations

d* (du)" = lower terms,
(ud) u?* = lower terms

for some i,4,s,t > 0. Then GKdimDg/W < 1.
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Proof. (1) Together with (E0.0.1)-(E0.0.2), we have at least four relations

ud?® = lower terms,
u?d = lower terms,
d*(ud)" = lower terms,
u! = lower terms

in the factor ring D(«, 8)/W. By the Diamond Lemma [7] and using the first two
relations, D(«, 8)/W has a k-linear basis consisting of monomials of the form

d*(ud)®u®, a,b,c>0

with some constraints. (A similar statement is [11, Lem. 1.1(3)] where we use the
order u < d.) Two of the constraints are (i) either a < s or b < 4 and (ii) ¢ < ¢,
which follows from the last two relations of D(«, 3)/W. Therefore, for each N-
degree d, the k-dimension of (D(«, 8)/W)q is uniformly bounded. As a consequence
of a Gelfand—Kirillov dimension computation [5, (E1.1.6)], GKdim D(«, 8)/W < 1.

(2) The proof is similar to the one of part (1) and uses the fact that d? and u>
are normal elements of Dg.

Without loss of generality, we can assume that s =t =4 =j =: a > 0 and
re-use the letters ¢ and j. Let

d**(du)® = lower terms,
(ud)®u*® = lower terms

in Dg/W. Then
d*ut® = \(d®*(du)®)((ud)*u*) = lower terms

in Dg/W, for some A € k. Then d*u?® = d4o+1 f in Dy /W for some f. Since u?
skew-commutes with d and u, we obtain that

d4a(ud)ju4a _ d4a+1f/
or
d*(ud)’u?® = lower terms.

Therefore
d'(ud)uF = lower terms
in Dg/W when at least two of indices i, j, k are larger than 4a. By the Diamond

Lemma argument as in the proof of part (1), for each N-degree d, the k-dimension
of (Dg/W)y is uniformly bounded. By [5, (E1.1.6)], GKdimDg/W <1. O
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2. Proof of Theorem 0.1

In this section we prove the main result, the theorem of Auslander for group
coactions on down-up algebras. First we recall a result from [11].
Let F be the algebra generated by = and y, subject to two relations

22 =yzy and y° = ayr. (E2.0.1)

As a graded algebra, F is isomorphic to D_; [11, Lem. 1.5(1)]. Let H be the algebra
generated by x and y, subject to two relations

P2y+yr® -2 =0 and — 223+ + 2z =0. (E2.0.2)

Then, as a graded algebra, H is isomorphic to D(—2, —1) [11, Lem. 1.9(1)].

Lemma 2.1 ([11, Prop. 1.12]). Suppose G is a finite non-cyclic group coacting
on A := D(«,B) homogeneously and inner-faithfully. Then one of the following
0CCUrs.

(1) =0 and u and d are G-homogeneous after a change of variables.

(2) A is isomorphic to F and using the generators of F, both x and y are G-
homogeneous.

(3) A is isomorphic to H and using the generators of H, both x and y are
G-homogeneous.

(4) G is abelian and there are linearly independent elements x and y of D(a, —1)
of degree one such that

ar’y 4 (=2 — a)zyx + ayz® + (2 — a)y® =0,
(2 — a)z® + ary® + (-2 — a)yzy + ay’z =0

and x and y are G-homogeneous.
(5) G is abelian and v and d are G-homogeneous after a change of variables.

The above lemma shows that there are plenty of interesting examples of finite
group coactions on noetherian down-up algebras.

Note that the hypothesis of “G being non-cyclic” is needed in the above lemma
which was proved in [11]. In the present paper we will also consider cyclic cases. In
particular, our main theorem does not need the hypothesis of “G being non-cyclic”.

We separate the proof of Theorem 0.1 into subcases according to the above
lemma. In Cases 1 and 2 we assume that G is not cyclic; the cyclic cases will be
included in Case 3.

2.1. Case 1: a« = 0, u and d are G-homogeneous

In this subsection, as a« = 0, A is the down-up algebra
Dg = k(d,u)/(d*u — Bud?, du® — Bu’d), B €k*.

Suppose that Dg is G-graded with degod = g1 and degpu = g2. Since Dy is
generated by d and u, G is generated by g; and go. Let

X1 :={(g21)" | i > 0} U{g1(g21)" | i > 0} C G (E2.1.1)
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and
X2 = {(g192)" | i > 0} U {ga(g192)" | i > 0} C G. (E2.1.2)
Asin [4, Lem. 5.1] let
J :=the ideal of A generated by ﬂ AA, (E2.1.3)
geG

when a group G coacts on A.
Lemma 2.2. Suppose that {(g1)X1 = G = (g2)X2. Then p(Dg, k%) > 2.
Proof. Let A =Dg. By Lemma 1.8 (2) it suffices to show that

GKdim A/J < 1

where J is defined as in (E2.1.3). By Lemma 1.10(2), it suffices to show that
v = d?*(du)®! and w := u?*(ud)® are in the ideal J, where a = |G|. By symmetry,
we show only that v is in J.

Since v = dd**(ud)®u, it suffices to show that f := d**(ud)® is in J. By
hypothesis (g1)X; = G, every element g in G is of the form g(gog1)? for some
a >1i,7 > 0. Since d? is normal, we can write f as c(ud)*~7d**~%.d*(ud)?, for some
c € k* with degg d'(du)? = g{(g291)? = g. Then f € AA, for all g, which implies
that f € J as required. 0O
Lemma 2.3. Suppose G is generated by g1,g2 and (g?) = (g93). Then (g1)X1 =
G = (92)Xz.

Proof. Let N be the normal subgroup of G' generated by g7 and g5. Then G/N
is a dihedral group Dsa,. In this case the image of X; in G/N consists of all
elements in G/N. Then G = NX;. Under the hypothesis, we have N = (g?).
Hence (¢g1) X1 = G. By symmetry, G = (g2)Xo. O

Now we are ready to prove a part of Theorem 0.1.

Proposition 2.4. Retain the notation as in Theorem 0.1. Suppose further that
a =0 and u and d are G-homogeneous. Then p(A, H) > 2.

Proof. By Lemma 1.5, when the k&-action on Dg has trivial homological determi-
nant, g7 = g5 2. Hence (¢?) = (¢3). By Lemma 2.3, (¢1)X; = G = (g2)X>. Now
the main assertion follows from Lemma 2.2. [

2.2. Case 2: A = H, « and y are G-homogeneous

In this subsection we have that A = H and that = and y in H are G-homogeneous.
Let g1 = degg z and go = degy y. By the relations of H, one sees that g7 = g3.
Two relations of H can be written as

P—yt) =" —yPz and y(@® —y?) = —(2® — )y
Define a filtration F on H by

FH = (ke + ky + kz)",i >0

x(x

where z = 22 — y2. It is easy to see that the G-coaction preserves this filtration.
Let B be grzH. Then B = (k(z,y)/(2* — y?))[2,0] where 0 maps 2 — —x and
y — —y. Then G coacts on B by degs x = g1,degs y = g2 and deg 2z = g7. The
following lemma follows from [4, Lem. 3.6].
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Lemma 2.5. Retain the above notation. Then p(H,k%) > p(B, k).

By the above lemma, it suffices to show that p(B,k%) > 2. For the rest of the
proof we follow the proof in Case 1.

Lemma 2.6. Let J be an ideal of B containing both ¢ (yx)® and (xy)? 2t for some
i,7,8,t > 0. Then GKdim B/J < 1.

Proof. Without loss of generality, we can assume that s =t =4 =j =:a > 0 and
re-use letters i and j. Let f1 = 2%%(yz)® and fo = (2y)®z® in J. Then 2572% €
kfifo C J. Note that B has a k-linear basis

{a'(yx)? 2" | i, 4,k > 0} U {a* (yx) 2"y | 0,5,k > 0}.

Since 22(= y?) and z are skew-commuting with x, %, z, every element is of the form
2 (yx)? 2F or 2'(yx) ¥y is 0 in B/J when at least two of indices i, j, k are larger
than 6a. An elementary counting argument shows that GKdim B/J <1. O

Use the notation introduced in (E2.1.1) and (E2.1.2):
X1 = {(9201)" |1 2 0} U{91(g291)" | i 20} C G

and
Xa:={(g192)" | i > 0} U{ga(g192)" | i > 0} C G.
Lemma 2.7. Retain the above notation.
(1) (g}) X1 =G = (g3) Xa.
(2) p(B,k%) > 2.
(3) p(H,k%) > 2.

Proof. (1) Let N be the normal subgroup of G generated by ¢g? (or by ¢3). Then
G/N is a dihedral group Ds,. In this case the image of X; in G/N consists of all
elements in G/N. Then G = NX; = (¢?)X;. Similarly, G = (¢3) Xs.

(2) By Lemma 1.8(2) it suffices to show that

GKdim B/J < 1

where J is the ideal of B generated by ﬂgec BB,;. By Lemma 2.6, it suffices to
show that f; := 2%%(yz)® and fo := (wy)*z® are in the ideal J, where a = |G].
By part (1), (g1)X; = G, every element in G is of the form g%(gag1)’ for some
0 <1i,j < a. By the fact that 2 commutes with y, we obtain that f; = f](z%(yx)?)
for some f; € B. Then f; € BB, for all g, which implies that f; € J. Since z
skew-commutes with = and y, a similar argument shows that f, € J. Now the
assertion follows by Lemma 2.6.
(3) This follows from part (2) and Lemma 2.5. O

Part (3) of the above lemma says that Auslander’s Theorem holds in this
case, even without the hypothesis that the homological determinant of the H-
action is trivial in this special case. For the sake of completeness we calculate the
homological (co)determinants of the G-coactions easily in the next lemma.
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Lemma 2.8. Suppose a finite group G coacts on A.

(1) If A=H and x and y are G-homogeneous with G-degree g1 and go respecti-
vely, then the homological codeterminant of the G-coaction is gi, which is
also g5.

(2) If A=T and x and y are G-homogeneous with G-degree g1 and go respecti-
vely, then the homological codeterminant of the G-coaction is gi, which is
also g5.

(3) Let A=D(a,—1), for a # 2, and v = 3(d +u) and y = £(d — u). By [11,
Prop. 1.12(4)], A is generated by x and y and subject to relations

ar’y + (=2 — a)zyx + ayr® + (2 — a)y® =0, (E2.8.1)
(2 — a)z® + azy® + (=2 — a)yzy + ay’z = 0. (E2.8.2)

Suppose that G is abelian and that r and y are G-homogeneous with G-
degree g1 and g respectively. Then the homological codeterminant of the
G-coaction is g}, which is also g5.

Proof. Since the proofs are similar to the proof of Lemma 1.5, the details are
omitted. [

2.3. Case 3: G is abelian

Let G be a finite abelian group and let G be the character group Homg,oups (G, k).
Since k is algebraically closed of characteristic zero, G is isomorphic to G as an
abstract group. As a consequence, (kG)* is isomorphic to kG as a Hopf algebra.

Let A be a down-up algebra D(«, ) generated by d and w. Every graded
algebra automorphism g of A can be written as a 2 x 2-matrix with respect to
the basis {d,u}. We say g is diagonal (respectively, non-diagonal) if its matrix
presentation with respect to {d, u} is diagonal (respectively, non-diagonal). When
the basis {d, u} is replaced by {d’,u'} = {c1d, cau} for some ¢, co € k*, the matrix
presentation of g could change accordingly, but the diagonal property of g will not
change. We call this kind of change of basis a scalar base change which we use in
the proof of Lemma 2.9.

Let G be a finite abelian group that coacts on A inner-faithfully and homogene-
ously. This G-coaction on A is equivalent to a G-action on A preserving the N-
grading. Therefore we can consider the G-action instead of the G-coaction. The
theorem of Auslander was proved for finite group actions on graded noetherian
down-up algebras in [5, Thm. 0.6] except for the case A = D(a, —1) for a # 2. In
fact their proof [5, Proof of Thm. 0.6] works for any diagonal automorphisms of
D(a, —1), too, and [13, Prop. 4.6] handles another special class of groups acting
on A =D(«a, —1) for « # 2. In this subsection we prove Auslander’s Theorem only
for a finite abelian group G of graded automorphisms of D(«, —1) with « # 2 that
is not all diagonal. Combining with the results in [5], we take care of all abelian
groups (including cyclic ones).

Throughout the rest of this subsection let A be D(«a, —1) for some a # 2. The
next lemma classifies all possible finite abelian groups that are not diagonal having
trivial homological determinant.
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Lemma 2.9. Consider the following subgroup of GLa(k)

T = {(g 2) , (2 8) :a,be{il,ii}}.

The following hold.

(1) T is an abelian group acting naturally on A, with respect to the basis {d,u},
inner-faithfully and homogeneously with trivial homological determinant.

(2) Let G be a finite abelian group acting on A inner-faithfully and homogene-
ously with trivial homological determinant. If G contains a non-diagonal
matriz, then G is a subgroup of T' after a scalar base change.

(3) Let G be as in part (2). Then, up to a scalar base change, G is one of the
following:

{(é 3))’(? é)}’ {<8 2)’(2 8>:a,be{il}}7
{<8 2>’<2 8):ae{i1}’b€{ii}}, or T.

Proof. (1) This follows by a direct computation.
(2) Suppose that f := <g 2) and g := ((c) 8) are in G. The commutativity

of G forces a = d. By [15, Thm. 1.5], the homological determinant of (8 2) is

a*. Thus a € {£1, +i} as @ has trivial homological determinant. In other words,
f € T. After a scalar base change, we may assume that b = ¢ in the matrix g.
By [15, Thm. 1.5], the homological determinant of g (with b = ¢) is b*. Then
b € {£1,£i} and g € T. Now assume that G contains another non-diagonal
0 ¢

0
heTand G is a subgroup of 7.

(3) This follows by a direct computation. [J

automorphism h := > Then the equation gh = hg implies that ¢/ = ¢. So

Using the classification in Lemma 2.9, we can work out the corresponding
coactions. Let z = 1(d + u) and y = %(d — u), or equivalently, d = x + y and
u = x — y. By the proof of [11, Prop. 1.12(4)], we have the following.

Lemma 2.10. Suppose G is a finite abelian group coacting on A := D(«, —1), for
«a # 2, such that
(a) the G-coaction has trivial homological codeterminant, and
(b) the corresponding G-action contains a non-diagonal matriz with respect to
the basis {d,u}.
Then the following hold.

(1) There are linearly independent elements x and y of D(c, —1) of degree one
such that
az’y + (=2 — a)zyx + ayz® + (2 — a)y® =0,
(2 — )2 + azy? + (=2 — a)yzy + oy’ =0
and x and y are G-homogeneous.
(2) Let deggz = g1, deggy = go. Then g2 = g5 and gt = g5 =1 in G.
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Proof. (1) A part of the proof appeared in the proof of [11, Prop. 1.12], so we give
only a sketch of the argument here.

First, the G-action on A has the special forms as listed in Lemma 2.9(3). Using
the forms given there, let © = £(d +u) and y = 3(d —u), or d =  + y and
u = x—y. Then both x and y are é—eigenvectors. This means that both x and y are
G-homogeneous in the corresponding G-coaction. The two relations are obtained
in the proof of [11, Prop. 1.12] by direct computation, which we will not repeat
here.

(2) By the relations and the hypothesis that o # 2, one sees that g? = g3. The
second assertion is Lemma 2.8(3). O

Ueyama [24] introduced the notion of a graded isolated singularity, and we recall
his definition here. For a graded algebra A, let grmod A denote the category of
finitely generated graded left A-modules. For a graded finitely generated A-module
an element x € M is called torsion if there exists a positive integer n such that
Aspx = 0. The module M is called a torsion module if every element of M is
torsion. Let tors A denote the full subcategory of grmod A consisting of torsion
modules. We can then define the quotient category tails A = grmod A/ tors A.
Following [24], we say that A® has a graded isolated singularity if gldim (tails AY) <
00. Mori and Ueyama prove that if the Auslander map is an isomorphism, then
A% has a graded isolated singularity if and only if A#G/I is finite-dimensional
[21, Thm. 3.10]. Examples of graded isolated singularities are of particular interest,
since when A“ has a graded isolated singularity, the category of graded CM A®-
modules has several nice properties (see [25]).

Next we compute the pertinency for G-coactions.

Lemma 2.11. Retain the hypothesis of Lemma 2.10.

(1) If go = 1 and g1 # 1 then p(A,k%) = 3. As a consequence, A has a
graded isolated singularity.

(2) IfQQ 7& ]-: 9 7& ]-7 9 7é 92, and g% = g% = 1; then p(Ava) > 2.

(3) If g1 # 1, g2 = 1 and g2 = g1, then p(A, k) = 3. As a consequence, A ¢
has a graded isolated singularity.

(4) If g? # 1, g2 = g1, then p(A, k%) = 3. As a consequence, A° ¢ has a graded
isolated singularity.

(5) If g} # 1, and go = g7 ', then p(A, k%) > 2.

(6) If G =T, then p(A, k%) > 2.

Proof. Let J be the ideal generated by (1, A4, as defined in (E2.1.3).
(1) In this case deg z = g1 # 1 and degyy = 1. Then

deggs 2? = degg vyr = degg xy’x = 1.

It is easy to see that x2, zyx,xy?x € J. By the first relation of A, y* € J. Thus
A/ J is finite-dimensional, or GKdim A/J = 0. This means that p(4,k%) = 3, and
by [4, Cor. 3.8], A% has a graded isolated singularity.

(2) It is easy to check that zyz,yzy € AA, for all g € G. So zyx,yzy € J.
Using relations of A, we have, in A/J,

y’ = az’y + bya?,
y2x = ny + ca®
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for some a, b, ¢ € k. By using Bergman’s Diamond Lemma [7] with degree lexicogra-
phic monomial order with y > x, A/J has a monomial basis and each of the
monomials does not contain subwords y3, y%x, xyx, yry. This implies that A/J is
spanned by

{z% i >0} U {ya’, 2y, 2'y® 1 i > 0} U {yz'y,yz'y® : i > 0}.

Thus GKdim A/J < 1, and hence p(4,k%) > 2.

(3,4) In these cases, every monomial of degree 4 is in J. So GKdim A/J =0 as
required.

(5) In this case, one can show that 2° € J as deg. = generates the group G.
Similarly, we have y3 € J. Using the relations in A, one sees that, in A/J,

z2 = 0,
y° =0,
yw2 = —x2y + axyx,

y2x = —ny + ayxy
for some a € k. By Bergman’s Diamond Lemma [7], A/J is spanned by
{2 (yx)Ty" 1 0 < i,k < 2,5 >0}

Therefore GKdim A/J < 1 and p(4,k%) > 2.

(6) Let {dz,...,d1} be an ordered set of elements (possibly with repetitions) in
G such that the set {szl de, TT°_y ds, -+ ,dady, d1} is equal to G\ {1}. Suppose
fs € A are homogeneous of degree d; for all s = 1,...,7. By Lemma 1.9(2),
the product f7fg--- f1 is in J. Using this observation one sees that the following
elements are in J:

vayls, zyxdyx, yaPya®, 2Pya®, 2Pyaty, yayiry, vytay®, vyt

(The reason for verifying a product of 7 letters is that any subword of these
monomials does not have G-degree 1. This list is all degree 7 monomials in J.)
Usij? the fact that # = £ (d+u) and y = §(d—u), we obtain the following relation
in A/J:

0 =2"(a"ya® — y’zy?)
= (=2)u” + lower terms,

or equivalently,

u’ = lower terms.

In other words, we can write u” in terms of terms in lower degree in the lexicogra-
phic order. Similarly, by using x = 3(d + u) and y = 1(d — u), we calculate the
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following in A/J:

0 =27 (a3ya® + y3ay?)
= (—2a° — 2a* + 6a® + 8a* — 4a — 6)udu’
+ (—2a% 4 2a° + 6a* — 6a® — 642 + 4a + 2)udududu
+ lower terms;
0 =2"(y’zy’x + 2°yz’y)
= (—2a® 4 2a* 4+ 106> — 4a® — 12a + 2)udu®
+ (—2a® — 2a° + 6a* + 64> — 6a* — 4a + 2)udududu
+ lower terms;
0 = 2" (zy2zPyx + yryiay)
= (2a® — 2a* — 64> + 8a® + 4a — 6)udu®
+ (—2a% — 2a° + 6a* + 6a® — 6a® — 4a + 2)udududu
+ lower terms;
0 = 2" (y2®y2® + zy’zy?)
= (2a° + 2a* — 10a® — 4a® + 12a + 2)udu®
+ (=208 +2a° + 6a* — 6a® — 6a® + 4a + 2)udududu
+ lower terms;

where “lower term” means a linear combination of monomials of degree 7 that
have lower degrees than terms appearing in the expression (in this case, udududu)
with respect to lexicographic order. Recall that a is the scalar that appeared in
one of the relations of A,

y’ = ax’y + bya?,

see the proof of part (2). If a® # 1 and a? # 2, then by a linear algebra computation,
both udu® and udududu can be expressed as “lower terms”:

udu® = lower terms,
udududu = lower terms.

Since u” and udududu (and then (ud)*) are equal to lower terms in A/.J, Lemma
1.10(1) implies that GKdim A/J < 1, as required.
If @ = 1, then we have

0 = 2" (3yz® + vPxy®)
= —6du® + 8d%u* — 8d*udu + 8d°u? + 2d";
0 =2"(y’zy’z + 2*ya’y)
= —dudu® + 2du® — 4d?udu® + 4d3u* — 4dPudud + 4d*udu — 8d°u* + 2d7;
0 = 27 (zyz’yx + yay’zy)
= —2du® — 4du* + 2d;
0 =2"(ya’ya” + xy’xy?)
= dudu® — 2du® + 4d?udu® — 4d3udud + 4d*udu — 8d°u? + 2d".

By a linear algebra computation, we have

d®(ud)? = lower terms.
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Since u” and d®(ud)? are equal to lower terms in A/.J, Lemma 1.10(1) implies that
GKdim A/J < 1, as required.
If a = —1, then we have

0 =2"(2%y2® + yPay®)
= 2dub — Ad3u* + 2d7;
0 =2"(y zy’x + 2°yz’y)
= dudu® + 2du® — 4d*udu® — 4d3udud + 4d*udu + 8d°u® + 2d7;
0 = 2"(zy2’yx + yay’zy)
= 6du’ + 8d%u* — 8d*udu — 8d°u? + 2d";
0 = 2"(y2*y2? + zyizy?)
= —dudu® — 2du’ + 4d*udu® + 4d>u* — 4d3udud + 4d*udu + 8d°u® + 2d".

By a linear algebra computation, we have
d®(ud)* = lower terms.

Since u” and d*(ud)? are equal to lower terms in A/.J, Lemma 1.10(1) implies that
GKdim A/J < 1, as required.

If a® = 2, we need to use a different set of elements in .J. By a similar argument
as before and by Lemma 1.9(2), the following elements are in J:

223 eyt a® Pyay?, P atya®, 2Pyt ay? yryPeya®, wyatyay?,

yrayPay?, pPyatya®, yeyPoy® ayaya® yatya®, wytey? aytaeya?, yatyay®.

3,33
Ty T,y

By a Sage computation, we have, in A/J,

0 = 222y — yPady?)

= (=2)u” + (8 + 4a)ududu® + (18 + 12a)ududududu + lower terms,
0 = 2°(y22y % — 22ya’y?)

= (=2)u® + (4 — 4a)ududu® + (=2 — 4a)ududududu + lower terms,
0 = 222 e3ya? — 2%yPay?)

= 2u® + (—4)ududu® + 2ududududu + lower terms,
0 =2"(y’zy’ay® — 2Pya’ya?)

= (=2)u® + 2ududududu + lower terms.

An easy linear algebra computation shows that

u® = lower terms,

5
(ud)?u® = lower terms,
(ud)*u = lower terms.

Since u® and (ud)*u (and then (ud)®) are equal to lower terms in A/.J, Lemma
1.10(1) implies that GKdim A/J < 1, as required. This finishes the proof. O

2.4. Case 4: A = F, x and y are G-homogeneous

The final case is when A = F and the proof is also quite tricky. We start with a
result of [11].
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Lemma 2.12 ([11, Lem. 1.6]). Let F be generated by x and y and subject to two
relations (E2.0.1).

(1) Define an order on monomials by extending x < y lexicographically. Then
we have a complete set of five relations that is the reduction system in the

sense of [7, p.180].

y* = wyz,
yry = a°,
yra® = axya’y,
ya’yx = z°y°,
yzt = zty.

(2) We also have the other relations:

y' =at,
yryz = 2,
ryxy =yt

(3) There is a k-linear basis consisting of the monomials of the form
o (ya®)! (ya?)  (y*2?) y a’
where 1,7,k > 0, € is either 0 or 1, and
(a,b) = (0,0),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2)
ifj+e+k=0,
(a,b) = (1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2)
ifj>0and e+ k=0, and
(a,b) = (1,0),(2,0),(2,1),(2,2)

ife+k>0.

Let G be a finite group coacting on A := F such that x and y are G-homogene-
ous. Let J be defined as in (E2.1.3).

Lemma 2.13. Suppose there are o, 3,0/, 8" > 0 such that
(y2*)*(y*2*)" and (y2*)* (y2?)(y*2*)" € J,

then GKdim A/J < 1.



AUSLANDER’S THEOREM FOR DOWN-UP ALGEBRAS 1055

Proof. We again use the Diamond Lemma, [7]. By the fact that z* = y* is central in
A (see Lemma 2.12(2)), there is a monomial f in z and y such that f(yz3)*(y?2?)F=
2% for some w. So we have the following equations in A/.J:

x4w =0
(y2%)" (y*2*)” =0,
(yz*)* (y2*) (y*2*)” = 0.
Therefore, if there are i, j, k with z¢(yz3)7 (yx?)¢(y22?)ky2ab # 0 in A/J for (a,b)

as in Lemma 2.12(b), then there is a uniform bound on at least two of {i, 7, k}.
Then GKdim A/J <1 by [5, (E1.1.6)] and Lemma 2.12(3). O

The goal of the rest of this subsection is to find some monomials (yz3)(y2x?)¥
and (yz*)" (y2?)(y?2?)F in J. We introduce the following notation. Let

Xo =,
X1 =Y.
We will use X; for i € Z/(2). Let
VYO = yxg?
‘/1 = ch;L'z,
Vo = 2y,
‘/3 = x3y7
and
WO = y2$27
Wi = a:y2x,
W2 = $2y2>
W3 = yz?y.

We will use V; and W; for ¢ € Z/(4). The following lemma follows from a direct
computation and the relations given in Lemma 2.12.

Lemma 2.14. Retain the above notation.
(1) Xl‘/J = ‘/j+1X¢ and Xle = Wj+1X¢ fOT’ all i S Z/(Q) and] S Z/(4)
(2) Elements {Vqy,..., V3, Wy,..., W3} are pairwise commultative.
(3) The following relations hold
(a) VoVo =2® =V V3.
(b) WoWg = xg = W1W3.
(C) VOV1 = £L‘4W0.
Now let G be a finite group coacting on FF such that  and y are G-homogeneous.

We also assume that the G-coaction has trivial homological codeterminant, namely,
degq(z*) = 1. Let

x; = degq Xi,
v; = degg Vj,
wy = degg Wy

for i € Z/(2) and j,k € Z/(4). Let N be the subgroup generated by {v;}?_, U
{w}3_,. By the lemma above, we have
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Lemma 2.15. Retain the above notation.

(1) G is generated by xo(= g1) and z1(= g2).

(2) N is an abelian subgroup of G.

(3) N is a normal subgroup of G.

(4) N is generated by vy and v1 and G/N is generated by the image Tg of xo;
and Tg =71 in G/N.

(5) N is also generated by {v;, w;} for any pair (i,7).

(6) G=NUNuz;, UNzj x;, UNzy, crp,r, for any fived is, js, ks € Z/(2).

(7) Let n be the order of vo. For any fized is € Z/(2) and js, ks € Z/(4) for
s=1,2,3,4, any element in G is a right subword of

n n n n n n n n
Vjy Wiy Tig Vg Wiy Tig Uy Wiy Tig Uiy Wi, -

Proof. (1) Since G-coaction is inner-faithful, G is generated by deg, = and degg y.
(2) This follows from Lemma 2.14(2).
(3) This follows from Lemma 2.14(1) and part (1).
(4) Since deg vt = 1, 23 = »{ = 1. By Lemma 2.14(3), vy = vy *, v3 = v; ', and
wy = vouy. It is easy to check from Lemma 2.14(1) that w; = vo_lvl, Wy = vo_lvl_l
and wg = vovfl. Therefore N is generated by vp and vy. It is clear that in G/N,
Ty = T1. So G/N is generated by Zg.
(5) By the proof of part (4), we have

{vo,v1,va,v3} = {vo,v1,v vy ),
{wo, w1, wa, w3} = {'UO'ULU(;lvlav(;lvfl7vovfl}~

Therefore N is generated by {v;, w;} for any pair (i, 7).

(6) This follows from the fact that Tg = 77 in the quotient group G/N and that
G/N = 7,/(4).

(7) This follows from parts (5,6). O

We have a version of Lemma 2.15 for monomials in F.

Lemma 2.16. Retain the above notation.

(1) For any fized is € Z/(2) and js, ks € Z/(4) for s = 1,2,3,4, any element in
G is the degree of some right subword of
Q= VW X, Vi We X, VW X, VW

i3V jg J2 J1

As a consequence, ® € J.
(2) (yz3)*"(ya?)(y22x2)" and (yz3)*" (y?2?)*" 1 are elements in J.

Proof. (1) This is a slightly stronger version of Lemma 2.15(7). For example, if an
element g is of the form
vj, wzQ ToUj W,

then we take a right subword of the form f := V! W,i’QXOVj’l’W,?1 . Since V5 and
Wi all commute, f is a subword of ®. Clearly, deg, f = U?Qw,z?xovﬁwzl. The
consequence follows from Lemma 1.9(1).
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2) By using Lemma 2.14(1), ® equals
Yy g ) q
‘/}'4‘/}Z+1V}Z+2V£+3X1’3X1’2XﬁWk4*3Wk3*2Wk2*1Wk1'

By taking jy =js+1=jo+2=j1+3=0and ky —3=k3—2=ko—1=k; =0
and i3 = 1, io = i; = 0, we have that

(yz®)*" (ya®) (y*2*) " € J.

By taking jy = js+1=jo+2=j1+3=0and ky—3=k3—2=ky—1=Fk =1
and i3 = i3 = 1 and i; = 0, we have that

(yz®)*"(yz) (zy?2)*" € J.

Then (ym3)4n(y2x2)4n+l cJ. 0
Now we can prove the result of this subsection.

Proposition 2.17. Retain the notation as in Theorem 0.1. Suppose that A = F
and x and y are G-homogeneous. Then p(A, k%) > 2.

Proof. Combining Lemma 2.16(2) with Lemma 2.13, GKdim A/J < 1. This is
equivalent to p(4,k%) >2. O

Putting all these pieces together we have a proof of Theorem 0.1.

Proof of Theorem 0.1. First we assume that G is abelian (that could be cyclic).
If A is not D(a, —1) for some a # 2, the assertion follows from [5, Thm. 0.6].
Now we assume that A = D(«, —1) for some « # 2. Using notations introduced in
subsection 2.3, the character group of G is denoted by G.If G acts on A diagonally
with respect to the basis {d, u}, then the assertion follows from [5, Proof of Thm.
0.6]. Otherwise, G contains non-diagonal matrices with respect to the basis {d, u}.
In this case the assertion follows from Lemmas 2.9, 2.10 and 2.11. This takes care
of the case when G is abelian.

Next we assume that G is not abelian. As a consequence, G is not cyclic, so we
can apply Lemma 2.1. Using the classification given in Lemma 2.1, we only need
to show the assertion for the first three cases as in the last two cases G is abelian.

In case Lemma 2.1(1), this is Proposition 2.4.

In case Lemma 2.1(2), this is Proposition 2.17.

In case Lemma 2.1(3), this is Lemma 2.7(3).

This finishes the proof. [

3. Examples

We conclude this paper with several examples that indicate the variety of
covariant subrings that can be obtained from coactions on down-up algebras, and
give some concluding comments.
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Example 3.1. A group G = (a,b) coacts on Dg, where degd = a and degs u =
b, with trivial homological codeterminant if a?6?> = 1 [Lemma 1.5]. One such family
of groups is the dihedral groups, for n > 2,

Dy, = {a,b] a® =b* = (ba)" = 1).

Each element of Dg can be written as a linear combination of monomials of the
form d'(ud)?u®, and such a monomial is in the identity component of Dg exactly

when . '
a'(ba)’b® = 1.

Clearly d? and u? are covariants, so it suffices to consider the four cases (i, k) =
(0,0),(1,0),(0,1),(1,1), and it is easy to check that the subring of covariants is
generated as a k-algebra by d?,u?, (du)™, (ud)", i.e.

D Do = k(d?, 02, (du)", (ud)").
When £ = +1, ]D)ESIDQ" is isomorphic to the commutative algebra

]D)CO Day, ~ k[X7K Z> W]
+1 (XnYn — ZW)’

a hypersurface in A*. When 8 # =+1, the ring of covariants is a hypersurface in
a noncommutative skew polynomial ring in the sense of [18, Def. 1.3(c)]. For any
8 #0, Dg#kDQ" is a noncommutative quasi-resolution or NQR (a generalization
of NCCR) of Dy’ D2 in the sense of [22]. When n = 4, this example should be
compared to [11, Example 2.1], where a different coaction of Dg (without trivial
homological codeterminant) on D is given; in that example the ring of covariants is
a commutative hypersurface in A%, but Auslander’s Theorem fails (Remark 1.6(1)).

Next we consider a second coaction on Dg, where the ring of covariants is quite
different.

Example 3.2. The quaternion group G = (g of order 8 coacts on Dg by deg d =
i and degs u = k with trivial homological determinant (Lemma 1.5). A monomial
d°* (ud)2u® has group grade the identity of Qg exactly when

ieleleg — 1

holds in Qg. It is not hard to check that the covariants are generated by the
following 9 monomials:

d*, ut, d®u?, d?(ud)?, (ud)*u?,
d(ud)u® = (du)*u?, d®(ud)u = d*(du)?, d(ud)®u = (du)*, (ud)*.

When 3 # 0, Dg#k%® is a noncommutative quasi-resolution (NQR) of the cova-
riant subring D’ 9% in the sense of [22].
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Finally we consider the down-up algebra H.

Example 3.3. The dihedral groups Ds,, coact on H homogeneously with trivial
homological codeterminant, although our proof of Auslander’s Theorem holds for
any group coaction in this case (see Lemma 2.7 and the comments after that).
Suppose that G := Ds, = {(a,b | a®> = b?> = 1 = (ab)") and that deg, v = a and
degq y = b. The relations in H (E2.0.2) can be written as

(2® — )y = —y(a® — y?),
w(z? —y?) = — (2 — )z,

and hence 22 — 3?2 is a normal element of H, and, moreover, zy and yx commute
with y? — 22. It is clear that 22 and y? are covariants under this action, and that
H/ (2% —y?) 2 k(z,y)/(2% — y?). Since 2% — y? is also a normal element of H P2n

we obtain that
Hco Dzn ( k<m, y> )CO Dan
(22 —y?)  \ (22 —y?) ‘

It follows that the generators of H P2~ are the 4 elements

2%, y?, (y2)", 2(yz)" 'y = (zy)"

Next we show that H P2n is a hypersurface [18, Def. 1.3(c)] in an iterated Ore
extension that is an AS-regular algebra of dimension 4.

Multiplying the relation x?y + yx? — 2y> = 0 by y on each side and subtracting
gives the relation 22y? — y?2% = 0. We next give a number of relations in H; note
that the defining relations of H are symmetric in  and y, so the relations with x
and y interchanged also hold. It is easy to check the following relation

2%y —yz® = 2y(y® — 2°);
multiplying by z on left gives:
[22, (zy)] = 22y(y* — 2*) = (y° — 2°)(2zy).
Similarly
[v?, (2y)] = 2ay(y* — o).
Inductively one can show that
[v%, (zy)"] = 2n(2y)" (y* — o).
Further
(ya)(zy) = y*(y* + (y* — %)),

and inductively we get

—~

yz)" (zy)"
= 2P+ —2?) (P +2 =) (P +3(° —2%) - (P +(2n—1)(y* —2?)).
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Let the right side of the above equation be denoted by w(z?,3?). We claim that
the subalgebra generated by z2, y2, (yz)", (xy)" is a generalized Weyl algebra
(or ambiskew polynomial ring, as in [14]), i.e., it is an iterated Ore algebra modulo
one relation.

To simplify notation, let X = 22, Y =42, Z+ = (yx)", Z~ = (2y)". From the
relations above we have the following relations:

XY =YX,
ZtX = (X +2n(Y — X))Zt,
ZYY = (Y +2n(Y — X)) Z7.

In this notation ZtZ~ = w(X,Y) and Z~Z% = w(Y, X). Let B be the algebra
generated by X,Y,ZT defined by the first three relations above. Then B is the
Ore extension k[X,Y][ZT;0], where o is the automorphism of k[X,Y] given by
o(X)=X+2n(Y —X) and 0(Y) =Y +2n(Y — X). Adjoining Z~ to B adds the
following three relations:

Z X =(X-2n(Y -X))Z",
Z7Y = -2n(Y - X))Z,
Z-2t =2Y7" — f(X,Y).

where f(X,Y) = w(X,Y) —w(Y, X) € k[X,Y]. One checks that 07 1(X) = X —
2n(Y — X), o7} (Y) =Y —2n(Y — X) and 071 (ZT) = ZT defines an algebra
automorphism of B. Define the map § on B, by §(X) = §(Y) =0 and §(Z1) =
—f(X,Y). One checks that § extends to a o~ !-skew derivation of B, preserving
the three relations defining B. Hence we have

k[X,Y][Z";0][Z7 5071, 0]
(Z+7- —w(X,Y))

Hc° D2p ~

and H< P2n is a hypersurface [18, Def. 1.3(c)] in an AS-regular algebra of dimension
4, with Hilbert series

1— t4n
(]_ _ t2)2(1 _ t2n)2 :

Down-up algebras have no reflections [19, Prop. 6.4], so we would expect Aus-
lander’s Theorem to hold for all finite group actions; this has been proved for almost
all finite group actions, except for some finite groups acting on D(«a, —1) for o # 2
(abelian groups with trivial homological determinant are covered by Theorem 0.1).
Theorem 0.1 also covers finite group coactions with trivial homological determi-
nant, and we have shown Theorem 0.1 does not hold for all group coactions
(Remark 1.6(1)). It remains to examine actions by other Hopf algebras on down-up
algebras.
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