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ABSTRACT

Nitrogen fixation is an important metabolic process carried out by microorganisms, which converts molecular nitrogen into inorganic nitrogenous compounds such as
ammonia (NH3). These nitrogenous compounds are crucial for biogeochemical cycles and for the synthesis of essential biomolecules, i.e. nucleic acids, amino acids and
proteins. Azotobacter vinelandii is a bacterial non-photosynthetic model organism to study aerobic nitrogen fixation (diazotrophy) and hydrogen production. Moreover,
the diazotroph can produce biopolymers like alginate and polyhydroxybutyrate (PHB) that have important industrial applications. However, many metabolic processes
such as partitioning of carbon and nitrogen metabolism in A. vinelandii remain unknown to date.

Genome-scale metabolic models (M-models) represent reliable tools to unravel and optimize metabolic functions at genome-scale. M-models are mathematical
representations that contain information about genes, reactions, metabolites and their associations. M-models can simulate optimal reaction fluxes under a wide
variety of conditions using experimentally determined constraints. Here we report on the development of a M-model of the wild type bacterium A. vinelandii DJ
(iDT1278) which consists of 2,003 metabolites, 2,469 reactions, and 1,278 genes. We validated the model using high-throughput phenotypic and physiological data,
testing 180 carbon sources and 95 nitrogen sources. iDT1278 was able to achieve an accuracy of 89% and 91% for growth with carbon sources and nitrogen source,
respectively. This comprehensive M-model will help to comprehend metabolic processes associated with nitrogen fixation, ammonium assimilation, and production of
organic nitrogen in an environmentally important microorganism.

1. Introduction

Azotobacter vinelandii is a gram-negative soil bacterium capable of
converting atmospheric nitrogen gas (N5) into soluble ammonia (NH3) as
well as into other important nitrogenous compounds (Gyurjan et al.,
1995; Howard and Rees, 1996). Azotobacter and related Azospirillium are
estimated to fix up to 10-30% of the total nitrogen in the rhizosphere
(Cleveland et al., 1999). Nitrogen fixation can be carried out under
ambient conditions by any of the three highly specialized
metal-dependent nitrogenases, referred to as molybdenum nitrogenase,
vanadium nitrogenase, and iron-only nitrogenase (Setubal and Almeida,
2015; Sippel et al., 2017). Nitrogenases produce high concentrations of
fixed ammonium, which is excreted and serves as essential nutrient for
other organisms (Ambrosio et al., 2017; Tan et al., 2015). However, the
activity of these enzymes is highly sensitive to molecular oxygen and
energetically costly. Diazotrophs, such as A. vinelandii have developed

specific strategies to protect the nitrogenase complex in diazotrophic
conditions (Setubal and Almeida, 2015). One of the most studied
mechanisms for nitrogenase protection is alginate biosynthesis. Alginate
is transported to the extracellular space where it works as a barrier that
decreases oxygen diffusion into the cytoplasm and thus maintains high
functionality of oxygen-sensitive nitrogenases in anoxic environments
(Garcia et al., 2018; Pacheco-Leyva et al., 2016).

Alginate is of great industrial value because of its use as biocompat-
ible and biodegradable exopolysaccharide. This polymer is used as gel-
film-stabilizing, -thickening, or -forming agent in the food and pharma-
ceutical industry (Remminghorst and Rehm, 2006). Besides alginate
bioproduction, A. vinelandii produces another attractive commercial
polymer, i.e. polyhydroxybutyrate (PHB) (Yoneyama et al., 2015). PHB is
synthetized by this microorganism under high carbon/nitrogen ratios as
a carbon and energy reserve in the form of cysts (Stevenson and Soco-
lofsky, 1966; Zuniga et al., 2011). Both biopolymers can be produced in
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elevated concentrations, representing 30-70% of the dry biomass
(Pacheco-Leyva et al., 2016; Yoneyama et al., 2015).

A. vinelandii has been shown to grow under a broad range of het-
erotrophic conditions and is able to metabolize, different sugars, alco-
hols, and organic acids as well as nitrogen-containing compounds (Nagai
et al., 1972; Quiroz-Rocha et al., 2017; Sahoo et al., 2014; Shawky et al.,
1987). Despite this metabolic versatility to use different carbon and ni-
trogen sources, several of the internal metabolic processes regarding
carbon and nitrogen partitioning (division and distribution of an element
into metabolic, structural or storage pools) in A. vinelandii remain un-
known. Today there are five fully sequenced genomes available for
A. vinelandii strains (e.g. A. vinelandii CA, DJ, CA6, DSM 279, and
NBRC13581) (Noar et al., 2015; Setubal et al.,, 2009; Setubal and
Almeida, 2015), enabling a comprehensive functional characterization of
Azotobacter metabolism at genome-scale.

To comprehend the metabolic capabilities of Azotobacter vinelandii DJ
we used a systems biology approach, which offers tools to predict the
organism behavior based on mathematical representations of biological
data. M-models can be reconstructed using semi-automated tools that
generate a draft model. This draft model is further curated manually to
increase its quality. To date, only two core M-models of Azotobacter
vinelandii are available that contain a reduced number of metabolic re-
actions. These core reactions are in general related to nitrogen fixation or
PHB and alginate production, disregarding most of the central meta-
bolism of the microorganism (e.g. TCA cycle, lipid metabolism and some
amino acids synthesis) (Garcia et al., 2018; Inomura et al., 2018). Here
we have developed a M-model for Azotobacter vinelandii DJ to contex-
tualize metabolic processes associated with nitrogen fixation, ammonium
assimilation, and production of organic nitrogen on genome-scale. Our
model was successfully validated using high-throughput phenotypic data
and physiological data.

2. Material and methods
2.1. Draft model generation

The draft model of A. vinelandii DJ was generated using The COBRA
(Heirendt et al., 2019) and The RAVEN (Agren et al., 2013) Toolboxes.
The proteome sequence was obtained from PATRIC database (Genome
ID: 322710.5) and was used as input sequence to reconstruct the draft
model based on protein homology. We selected five reference models as
templates after alignment of the complete genome sequences of
A. vinelandii DJ with all bacteria with available models in the BiGG
Database (King et al., 2016). Templates included Escherichia coli str. K-12
substr. MG1655, model iML1515 (Monk et al., 2017), Klebsiella pneu-
moniae subsp. pneumoniae MGH 78578, model iYL1228 (Liao et al.,
2011), Geobacter metallireducens GS-15, model iAF987 (Feist et al., 2014),
Clostridium ljungdahlii DSM 13528, model iHN637 (Nagarajan et al.,
2013), and Methanosarcina barkeri str. Fusaro, model iAF692 (Feist et al.,
2006). Template models contained reactions associated with nitrogen
fixation, Hy production, acetate consumption, amino acids catabolism
and sugar degradation (Fig. 2). The generated draft model also contained
genes (exogenous genes) from template models, which were later
removed during the manual curation step.

2.2. Model refinement

2.2.1. Manual curation

We used PATRIC (Wattam et al., 2017) to identify essential genes for
A. vinelandii DJ in the final model. We only extracted those genes that had a
given Enzyme Commission (EC) number that could be used to obtain the
GPR (gene-protein reaction) associations. The final list of reactions with
EC number and gene association not previously present in the model were
balanced and added to the model before analyzing GPR associations.

Model refinement included two major steps: manual curation/review
of the GPR associations and gap-filling by adding new metabolic
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reactions in the model. In the first step of manual curation, we deter-
mined sequence similarity among A. vinelandii DJ proteins and the
exogenous proteins in the GPRs to identify A. vinelandii (AVIN) genes
closely related to the exogenous proteins. We identified proteins based on
BLASTp criteria of > 40% identity, e-value < 1e ™, and query coverage >
85%. A second step of manual curation was performed based on protein
function, type of metabolic reaction, and GPR associations. Then all the
GPR associations were manually curated to catalyze biological reactions
that they were associated with. PATRIC essential genes previously
identified were added in this step of manual curation. Remaining re-
actions with mixed AVIN and exogenous genes in the GPR association
were manually curated in order to remove the genes that did not belong
to A. vinelandii. Reactions with exclusively exogenous GPR associations
were identified through previous manual curation steps. Afterwards, Flux
Balance Analysis (FBA) was performed to identify which of these re-
actions carry any flux under experimental conditions (Orth et al., 2010).
From these evaluated reactions, those with no flux and exogenous GPR
associations were removed from the model.

2.2.2. Gap-filling

Gap-filling analysis was performed to identify the metabolites
disconnected in the model. These metabolites were classified depending
on the number of reactions present in the model or their capability to be
consumed, produced, or both. Disconnected reactions were manually
curated using information from different bioinformatic databases (e.g.
KEGG, Biocyc). From these results, gap-filling was used to connect
pathways through the data retrieved. A second step of gap-filling was
accomplished to connect the metabolites from the medium conditions
retrieved using literature information (Wong and Maier, 1985) through
algorithms to identify the reactions involved in the carbon source
assimilation. A total of 38 carbon sources were used under nitrogen fix-
ation and ammonium assimilation conditions. Complementary, experi-
mental data were generated using Biolog plates to test different carbon
and nitrogen sources. This was employed to improve the quality of model
predictions under a wide variety of conditions. A set of 190 carbon
sources and 95 nitrogen sources were used to connect the networks
properly. Subsequently, the GPR associations were verified for each re-
action added during the gap-filling to maintain the quality of the model.
Those reactions with no gene information and literature validation were
conserved as orphan reactions.

2.2.3. Final quality control and quality analysis

Final quality check was performed by a person who did not perform
the manual curation to assess the quality of the data. We performed in-
silico GPR simulations to verify if the GPR associations are correctly
assigned using the COBRA Toolbox algorithms. Next, we performed Mass
Balance simulations on the model to check for unbalanced reactions
added during the model refinement. Ultimately, the final model was
tested looking for ATP, NADH, and NADPH free energy production,
removing exchange reactions, and calculating their accumulation.

2.3. Constraints and growth simulations

Experimental data from the literature were retrieved to calculate the
initial medium constraints. For each growth condition, the carbon, nitro-
gen, and hydrogen fluxes were initially determined depending on every
value obtained from the literature. The constraints related to mineral
compounds and exchange reactions are summarized in Table S1. Initially, a
set of six different conditions were used to measure the accuracy of the
model. The carbon sources verified in this stage of validation were carbo-
hydrates under nitrogen fixation or ammonium assimilation conditions.
The simulation results were compared to this set of experimental values to
identify the quality in the model predictions. Subsequently, 38 carbon
sources under nitrogen fixation and Hy consumption conditions from the
literature (Wong and Maier, 1985) were used to test and increase the quality
of the model. The uptake rates were estimated from the experimental
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conditions and set for all the carbon sources; nitrogen and Hy uptake rates
were not fixed to a specific value according to the experimental conditions.
Finally, model benchmarking was performed for 190 carbon sources (Bio-
log plates PM1 and PM2) and 95 nitrogen sources (Biolog plates PM3) to
validate model predictions. Biolog microplates experiments to test carbon
and nitrogen assimilation were performed in the present work, measuring
the growth rate values in the plate reader for 96 h. For carbon sources
evaluation, ammonium assimilation was not fixed to a specific value
(non-diazotroph conditions). The experimental results from Biolog plates
were matched with data retrieved from the literature to determine and
evaluate model precision during the simulations. During the nitrogen
condition simulations, pyruvate was used as the unique carbon source.
Statistical parameters were calculated according to the comparison be-
tween the metabolic predictions and the experimental values. The model
accuracy from the Biolog plates results was compared with the in-silico
predictions of the A. vinelandii model from CarveMe to identify the quality of
the model simulations of the present work. The alginate production capa-
bility of the model was tested using four different carbon sources (carbo-
hydrates) from the literature (Revin et al., 2018). The carbon compound
uptake rates were calculated according to the experimental values. The
simulations were performed initially setting ammonium as unique nitrogen
source and subsequently molecular nitrogen was established as the unique
nitrogen source. Furthermore, the predicted values were compared to
determine which conditions allow a higher alginate production rate. For
polyhydroxybutyrate (PHB) production, the metabolic internal fluxes for
the principal pathways related to the PHB synthesis were calculated
(glycolysis, pentose phosphate pathway, Entner-Doudorrff pathway, and
TCA cycle) and compared with fluxomic data determined by Wu et al.
(2019). Insilico predictions were performed through FBA, using The COBRA
Toolbox and the Gurobi Optimizer v.8.0.1 solver (Gurobi Optimization) for
MATLAB (MathWorks). Percent error between experimental values and in
silico results were calculated to obtain model accuracy.
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2.4. Carbon and nitrogen partitioning analysis

Experimentally determined growth phenotypes using Biolog plates
were used to validate predicted carbon and nitrogen flux distributions.
The internal fluxes for all the reactions of the model were calculated in-
silico for all the carbon sources (PM1 and PM2) experiments. The re-
actions were grouped in general subsystems that represented the com-
plete metabolism of A. vinelandii DJ. Subsequently, an average flux per
subsystem was calculated using the flux values of all the reactions
belonging to the subsystem. This procedure was performed to calculate
the carbon and nitrogen distribution in each general subsystem under
diazotrophic and non-diazotrophic conditions. Ultimately, the carbon
and nitrogen distributions (the grouped average fluxes per subsystem)
were compared through a linear correlation analysis in order to deter-
mine how the fluxes change through the experimental conditions for
carbon sources set in the Biolog plates. High linear correlation co-
efficients (r) indicate a similar distribution of a specific subsystem
(above 0.9), while low coefficients suggest different carbon or nitrogen
distributions when comparing diazotroph and non-diazotroph
conditions.

3. Results
3.1. Metabolic network reconstruction of A. vinelandii DJ

We used a semiautomatic approach to reconstruct the M-model of
A. vinelandii DJ (Fig. 1). This approach has been previously applied for
the reconstruction of M-models (Zuniga et al., 2016). First, a draft model
of A. vinelandii DJ was reconstructed using the genome annotation from
PATRIC (Genome ID: 322710.5). Five manually curated and validated
M-Models were used as protein homology templates: Escherichia coli str.
K-12 substr. MG1655 (Monk et al., 2017), Klebsiella pneumoniae subsp.
pneumoniae MGH 78578 (Liao et al., 2011), Geobacter metallireducens
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Fig. 1. Workflow used to reconstruct a metabolic model of A. vinelandii DJ. A draft model was created from five template models present in BiGG (Escherichia coli str.
K-12 substr. MG1655, Klebsiella pneumoniae subsp. pneumoniae MGH 78578, Geobacter metallireducens GS-15, Clostridium ljungdahlii DSM 13528 and Methanosarcina
barkeri str. Fusaro). The RAVEN toolbox Agren et al., 2013 for MATLAB was used to create the draft model from stoichiometric data. The initial draft model contained
2,432 reactions, 1,918 metabolites, and 1,532 genes. The iterative process of model refinement included manual curation, gap-filling and curation using experimental
data. The resultant final model contained A. vinelandii specific metabolic processes such as nitrogen fixation, and production of alginate and PHB. The final model,
containing 2,469 reactions, 2,003 metabolites, and 1,278 genes, predicted with 94% accuracy.
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Fig. 2. Characteristics of iDT1278. A) Comparison among the template models (Escherichia coli str. K-12 substr. MG1655, Klebsiella pneumoniae subsp. pneumoniae
MGH 78578, Geobacter metallireducens GS-15, Clostridium ljungdahlii DSM 13528 and Methanosarcina barkeri str. Fusaro) and iDT1278 reactions. The six models share
208 core metabolic reactions. A. vinelandii DJ model contains 112 unique reactions related to aromatic compounds metabolism, alginate and PHB production, etc. B)

Number of reactions in the template models and A. vinelandii DJ. C) Change in the number of reactions, metabolites and genes at the different stages of the recon-

struction process/manual curation of A. vinelandii DJ. D) Reactions distribution through the subsystems in the genome-scale model; subsystems were grouped into 11
groups summarizing the complete metabolism of A. vinelandii DJ. Nitrogen fixation, PHB, and alginate production are highlighted in the condensed pathway diagrams.
Alginate accumulation occurs in the extracellular space meanwhile PHB storage happens in the cytoplasm compartment. Nitrogen fixation in A. vinelandii can be

performed by different specialized nitrogenases.

GS-15 (Feist et al., 2014), Clostridium ljungdahlii DSM 13528 (Nagarajan
et al., 2013), and Methanosarcina barkeri str. Fusaro (Feist et al., 2006).
The RAVEN and COBRA Toolboxes (Agren et al., 2013; Heirendt et al.,
2019) were used to generate the draft reconstruction. Each reaction in
the draft model was evaluated for energy (ATP, NADH and NADPH
accumulation) and mass balances as part of the quality control tests to
guarantee model functionality and accuracy. Reactions associated with
template genes were conserved in the first draft model to ensure model
connectivity as well as the model’s capability to perform simulations.
Nitrogen fixation and hydrogen consumption reactions were imported
from the M-model templates. The resulting draft model contained 2,432
metabolic reactions and 1,918 metabolites divided into three different
compartments (cytoplasm, periplasm, and extracellular space).

3.1.1. Model refinement

Model refinement was performed using two principal steps: manual
curation and gap filling. Every gene-protein-reaction (GPR) association
was verified using multiple databases (e.g. KEGG, Biocyc, BRENDA, and
MetaNetX) and available information from the literature. Manual cura-
tion was based on protein sequence similarity. The genes annotated in
the GPR associations were aligned to protein sequences of A. vinelandii.
Sequences, which passed the BLASTp parameters (see Methods), were
assigned functionality based on information in the bioinformatics data-
bases. The assigned genes in the GPR rules were replaced with the
A. vinelandii genes (AVIN).

The original draft model consisted of 1,532 genes (Fig. 2A) corre-
sponding to 934 AVIN genes and 598 genes from the template. At the end
of the second manual curation, the AVIN genes increased to 1,233 and
the total number of template genes was 102. Intuitively, as the level of
curation increases the number of genes from template models decreases.

When the genes in the model were curated by functionality, the number
of genes from template models was zero.

3.1.2. Gap filling
After the manual curation, the total number of reactions and metab-

olites in the model was 2,416 and 1,976, respectively. We used literature
information and experimental data from the Biolog plates results (PM1
and PM2 for carbon sources and PM3 for nitrogen sources) to add or
remove reactions in the model. Each reaction added to the model in this
step was manually reviewed to maintain concordance in the GPR asso-
ciations. Overall, a total of 51 reactions and 29 metabolites (mostly re-
actions related to carbohydrate and amino acids catabolism) were added
to the model during the gap filling process (Figs. 1 and 2C). The reactions
added to the model were mainly transport and interconversion reactions
to connect the carbon or nitrogen sources with intracellular metabolites
from the model.

3.1.3. Model properties

The Azotobacter vinelandii DJ metabolic model (iDT1278) consists of
2,003 metabolites, 2,469 reactions and 1,278 genes (around 26% of all
annotated coding genes in the genome). Specific details about the re-
actions and metabolites from the model are summarized in Table S1
iDT1278 was validated using experimental data under nitrogen fixation
(diazotroph) and ammonium assimilation (non-diazotroph) conditions.
iDT1278 contains all the reactions and genes involved in nitrogen fixa-
tion, PHB, and alginate biosynthesis (Fig. 2B).

The properties of iDT1278 are shown in Fig. 2. Most of the reactions
in the model belong to amino acid metabolism, lipid metabolism, and
cofactor and vitamins metabolism (60% of total reactions of the model).
Specific metabolic capabilities of A. vinelandii DJ such as nitrogen
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Table 1
Comparison of the principal model properties (reactions, metabolites and genes)
available for A. vinelandii.

Metabolic Engineering Communications 11 (2020) e00132

Table 2
Predicted and experimental growth rates reported for A. vinelandii DJ under
different carbon and nitrogen sources.

Model provenience Reactions  Metabolites ~ Genes  Reference
Present work 2,469 2,003 1,278 Present work
Model SEED 1,570 1,416 903 Henry et al.
(2010)
CarveMe 2,422 1,978 1,395 Machado et al.
(2018)
Garcia (Alginate and PHB 46 39 0 Garcia et al.
production) (2018)
Inomura (Nitrogen 33 17 0 Inomura et al.
fixation) (2018)

fixation (nitrogen metabolism), PHB and alginate production (glycan and
secondary metabolites biosynthesis) represent around 3% of the meta-
bolic reactions. Template models used during the reconstruction share
208 reactions with iDT1278. Most of the reactions (a total of 2,139 re-
actions) were taken from the first template (Escherichia coli K12 substr.
MG1555, iML1515) (Fig. 2A). Nitrogen fixation and Hy consumption
pathways were obtained from the templates iHN637(Clostridium ljung-
dahlii DSM 13528) and iAF987 (Geobacter metallireducens GS-15).
iDT1278 shares 208 reactions among all the template models (Fig. 2C)
which are related to core metabolic pathways (TCA cycle, oxidative
phosphorylation, amino acids metabolism, etc.). Table 1 shows a com-
parison of the properties of the different metabolic models reconstructed
for A. vinelandii. As a result, iDT1278 represents, to our knowledge, the
most comprehensive M-model of the diazotroph A. vinelandii available to
date. However, the A. vinelandii metabolic model from CarveMe
(Machado et al., 2018) contains the closest number of reactions, me-
tabolites and genes using the BiGG database information.

3.1.4. Biomass objective function

The biomass objective function (BOF) contains the principal constit-
uents and the abundance of each metabolite involved in biomass pro-
duction. The proportion of each metabolite participating in the BOF
composition is determined per gram of biomass. iDT1278 includes two
biomass reactions: 1) An initial BOF was obtained from the first template
(Escherichia coli K12 substr. MG1555, iML1515) based on their physio-
logical similarity (Gram-negative bacteria); the stoichiometric co-
efficients of the amino acids present in the BOF were calculated based on
the theoretical amino acid abundance in the genome, using 55% of the
biomass composition from amino acids. 2) A second BOF was determined
from the first reaction to predict the alginate production since
A. vinelandii DJ produces alginate only under specific metabolic condi-
tions (Noar et al., 2015). The second BOF contains the same constituents
present in the first BOF plus periplasmic alginate in order to simulate the
complete metabolism and alginate production of A. vinelandii.

3.2. iDT1278 predicts accurately phenotypic experimental data

3.2.1. Growth rates validation in carbon and nitrogen sources

The model was validated under a wide range of different growth
conditions (diazotrophic and non-diazotrophic growth), using high-
throughput phenotypic data as well as literature information. Initially,
iDT1278 was tested under six different experimental conditions, specif-
ically, carbohydrates under diazotrophic and non-diazotrophic condi-
tions (Table 2). The M-model predicted precisely the growth rates for all
the carbon sources using ammonium or molecular nitrogen as nitrogen
sources. For the carbon sources in non-diazotrophic conditions (sucrose,
mannitol and glucose), the predicted growth rates are consistent with
experimental values obtained from the literature, resulting in an average
accuracy close to 95%. For example, the predicted growth using mannitol
(uptake rate of 0.83 mmol/gDW/h) as sole carbon source was 0.0472 1/
h, agreeing with the experimental data (0.045 + 0.003 1/h). Average
precision under nitrogen fixation conditions decreased significantly to

Carbon Nitrogen Experimental Predicted Reference
source source value (1/h) growth (1/h)
Glucose Ammonium 0.0505 0.0486 Clementi
(1997)
Mannitol Ammonium 0.045 + 0.003 0.0472 Revin et al.
(2018)
Sucrose Ammonium 0.076 + 0.004 0.07 Diaz-Barrera
et al. (2016)
Glucose Nitrogen 0.06 + 0.0002 0.09 Wong (1988)
Fructose Nitrogen 0.048 + 0.002 0.0517 Wong (1988)
Galactose Nitrogen 0.074 + 0.007 0.065 Wong (1988)

83%. Table 2 shows the comparison between experimental data from
literature and predicted values for A. vinelandii DJ. Initial results showed
higher model accuracy (12% more) when predicting growth rates using
ammonium as nitrogen source compared to Ny. Subsequently, flux bal-
ance analysis (FBA, Orth et al., 2010) was performed for a group of 38
carbon sources in diazotrophic and Hp-consuming conditions (Wong and
Maier, 1985). Statistical results show for the subset of 38 carbon sources
(Fig. 3C) an accuracy of 95%, with 20 true positive predictions (100%
positive predicted) and 16 true negative predicted results (89% negative
predicted). Matthews correlation coefficient (MCC) was calculated under
the conditions previously mentioned, obtaining a value of 0.67 (Fig. 3C).
The false negative predictions obtained during the validation of aconitate
and lactose are related to the absence of literature information about the
enzymes which metabolize the carbon sources into familiar metabolites
for the microorganism (e.g. the model lacks enzymes to convert lactose
into glucose and fructose).

Additional experimental validation was performed using Biolog
plates for a set of carbon (PM1 and PM2) and nitrogen (PM3) sources to
determine the growth rate values of A. vinelandii DJ. Out of 190 carbon
sources from the Biolog plates, 123 compounds were identified in the
model; the simulations were performed under two specific conditions:
diazotrophic and non-diazotrophic simulation conditions. However,
experimental results were obtained only under growth with ammonium
as the unique nitrogen source. The same procedure used in PM1 and PM2
experiments was followed to estimate the growth rates with 75 different
nitrogen sources. For this case, simulations were performed using pyru-
vate as the carbon source. Fig. 3 shows the complete analysis of the
experimental and predicted data for all carbon (Fig. 3A) and nitrogen
sources (Fig. 3B); statistical parameters (accuracy, sensitivity, specificity,
positive predicted, negative predicted and Matthews correlation coeffi-
cient) were calculated for non-diazotrophic conditions. Subsequently, the
same experimental results from the Biolog plates were used to calculate
the statistical parameters of the CarveMe model to establish a comparison
between iDT1278 and the CarveMe metabolic model accuracy. Details of
CarveMe predictions and statistical parameters using Biolog plates data
are presented in Table S3.

For carbon sources validation, an accuracy of 89% was achieved with
58 true positive predictions (95% positive predicted) and 50 true nega-
tive estimations (84% negative predicted). For this subset of compounds,
accuracy decreased significantly in negative predictions (10 false nega-
tive estimations). These negative prediction disagreements involve car-
bohydrates and some amino acids as carbon sources. Some false
negatives appear to be related to the lack of evidence about required
transporters. Simulated growth rate values in ammonium assimilation
conditions were significantly higher than in the nitrogen fixation con-
ditions (>26%). Higher accuracy was observed in both positive and
negative predictions in iDT1278 compared to CarveMe simulations
(global accuracy of 61%, 72% positive predicted and 54% negative
predicted). These statistical results support the clear differences between
the quality predictions of iDT1278 and other metabolic models available
for A. vinelandii. Significant changes in the growth rate values were not
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Fig. 3. Model validation using high-throughput
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observed when using amino acids as carbon sources since these organic
molecules contain nitrogen, which provides an indirect supply of this
element to the microbe. For the nitrogen source validation, an overall
accuracy of 91% was accomplished, nonetheless, the number of non-
growing conditions increased considerably in comparison with the car-
bon condition experiments (almost 91% of nitrogen experiments resulted
in no growth), indicating a reduced capability to grow in a wide range of
nitrogen sources.

3.3. Carbon and nitrogen partitioning analysis

The average metabolic fluxes of carbon and nitrogen elements were
determined for all carbon sources with growth rate values greater than
0.001 from Biolog plates data (61 total). The complete dataset with the
experimental data is summarized in Table S2. The metabolic fluxes for
both elements were grouped in 43 specific subsystems to identify the
activity of the main pathways for all the experimental conditions. The
highest average carbon fluxes (see Methods) were obtained from energy
metabolism (82 mmol/gDW/h), oxidative phosphorylation (67.5 mmol/
gDW/h), biomass and maintenance functions (36 mmol/gDW/h), and
TCA cycle (25 mmol/gDW/h) for both nitrogen (N2 and NHy4) conditions
(disregarding transport fluxes). Similar tendencies were observed for the
internal nitrogen flux distributions across the subsystems for diazo-
trophic and non-diazotrophic growth. However, the average flux distri-
butions of carbon and nitrogen decline under diazotrophic conditions.

Regarding global metabolic fluxes, the global carbon flux drops 4.9% and
the nitrogen global flux value decreases 5.5%. The pathways with higher
variation between carbon and nitrogen fluxes in diazotrophic and non-
diazotrophic conditions were riboflavin metabolism (45%), glycine,
serine and threonine metabolism (22%), alanine, aspartate and gluta-
mate metabolism (26%), and nucleotide synthesis (10%). These sub-
systems are well-known for containing metabolites with high nitrogen
content. The decline in the carbon and nitrogen global flux values of
these pathways can be related to the low available nitrogen under diaz-
otroph conditions due to the high energy cost of nitrogen fixation.

The grouped average fluxes of carbon and nitrogen elements per
subsystem calculated for diazotrophic and non-diazotrophic conditions
were compared through a linear correlation analysis to determine how
the subsystem flux values behave under both nitrogen (N, and NHy)
conditions. Fig. 4 presents the linear correlations values between diazo-
trophic and non-diazotrophic conditions of the active subsystems. For
carbon and nitrogen partitioning analysis, the highest correlation co-
efficients (Pearson correlation >0.95, p-value <1 x 10’30) were
observed in all the amino acids pathways, biomass and maintenance
functions, energy metabolism, carbohydrate metabolism, and some
subsystems related to lipid metabolism (lipopolysaccharide biosynthesis
and glycerophospholipid metabolism), demonstrating similar metabolic
flux distributions through these specific subsystems when comparing
diazotrophic and non-diazotrophic conditions. However, weak correla-
tion values were obtained in riboflavin metabolism (r = 0.66), oxidative
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Fig. 4. Carbon and nitrogen partitioning distribution from Biolog plates experimental data. A) Average carbon flux correlation coefficients through all subsystems in
diazotrophic and non-diazotrophic conditions; B) average nitrogen flux correlation coefficients through all subsystems in diazotrophic and non-

diazotrophic conditions.

phosphorylation (r = 0.32 in carbon fluxes and r = 0.37 in nitrogen
distributions) and transport to the inner membrane (r = 0.12 and r =
0.31, respectively), showing an average flux distribution decrease of 45%
for these specific subsystems when comparing carbon and nitrogen ac-
tivity in diazotrophic against non-diazotrophic conditions. Additionally,
strong correlation values were observed in specific subsystem clusters for
both nitrogen conditions.

3.4. Alginate and PHB production estimated through in-silico experiments

A. vinelandii DJ contains specific mechanisms to produce and secrete
alginate into the extracellular space. In iDT1278 we manually curated six
specific reactions related to alginate biosynthesis including 16 different
genes. One of the most important reactions involved in this pathway is
the alginate epimerase (EC 5.1.3.37), which encompass a complex pro-
tein system to synthetize the alginate polymer (Pacheco-Leyva et al.,
2016).

We evaluated the model accuracy to growth and alginate production
using four carbon sources under diazotrophic and non-diazotrophic
conditions. Experimental data retrieved from the literature (Revin
et al., 2018) was only available for growth with ammonium. Simulations
were confirmed to accurately predict (true positive predictions) alginate

production rates with three carbon sources (glucose, mannitol, and su-
crose). For example, the predicted growth using glucose (uptake rate of
0.33 mmol/gDW/h) as the sole carbon source was 0.1478 1/h and an
alginate production rate of 0.25 mmol/gDW/h, agreeing with the
experimental data (growth rate of 0.152 + 0.012 1/h and alginate pro-
duction rate of 0.265 + 0.018 mmol/gDW/h). Lactose was the only
compound with a mismatch between reported values and in-silico outputs
(false negative). The disagreement appears to be associated to the lack of
information in the literature and bioinformatic databases about the
essential enzymes in the metabolism of this disaccharide in A. vinelandii
DJ.

We compared the growth rates determined under diazotrophic and
non-diazotrophic conditions for alginate production. The simulation
analysis showed a significant increase in the growth rates (close to 28%)
when the A. vinelandii consumes ammonium as a nitrogen source instead
of molecular nitrogen. Additionally, a second comparison of alginate
production rates between ammonium and molecular nitrogen exhibited
the same increasing tendency when ammonium is used as a unique ni-
trogen source instead of molecular nitrogen (around 27%).

While alginate is transported to the extracellular space, PHB is
intracellularly stored (Yoneyama et al., 2015). To simulate PHB accu-
mulation in A. vinelandii we incorporated a sink reaction to the model
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Fig. 5. Metabolic flux map distribution of A. vinelandii under diazotrophic and
non-diazotrophic conditions. The map displays major metabolic pathways
involved in the PHB production. Values of metabolic flux are normalized to a
glucose uptake rate of 100. Predicted metabolic fluxes were compared against
fluxomic data determined by Wu et al., in 2019. The reactions were labeled
according to their percent error (green, blue and red) and nitrogen source (green
and yellow). Abbreviations: G6P, glucose-6-phosphate; F6P, fructose-6-
phosphate; FDP, fructose-1,6-bisphosphate; G3P, 3-phosphoglycerate; DHAP,
dihydroxyacetone phosphate; 13DPG, 3-phosphoglyceroil phosphate; 2 PG, 2-
phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; Cit, citrate;
Acon, aconitate; iCit, isocitrate; AKG, a-ketoglutarate; sucCoA, succinyl coen-
zyme A; Suc, succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate; GLX,
glyoxylate; PHB, polyhydroxybutyrate; 6PGL, 6-phospho-glucono-1,5-lactone;
6PGC, 6-phospho-gluconate; 2DDG6P, 2-Dehydro-3-deoxygluconate 6-phos-
phate; Ru5P, ribulose-5-phosphate; R5P,  ribose-5-phosphate;  S7P,
sedoheptulose-7-phosphate; X5P, xylulose-5-phosphate; E4P, erythrose-4-
phosphate. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

iDT1278. Simulated flux distributions about PHB production were vali-
dated using fluxomic data retrieved from Wu et al. (2019). The metabolic
fluxes of the reactions involved in the PHB synthesis and related path-
ways (glycolysis, pentose phosphate pathway, the Entner-Deundoroff
pathway, and the TCA cycle) were calculated through FBA for diazo-
trophic and non-diazotrophic conditions. The simulation results were
compared with the experimental measured fluxes (Wu et al., 2019) and
the percent error was estimated by reaction (Fig. 5). A general agreement
in the reaction fluxes was observed under both nitrogen (N, and NHy)
conditions. A total of 16 out of 19 reaction flux estimations presented a
global accuracy above 90% for diazotrophic and non-diazotrophic con-
ditions. Disagreements were detected in three specific reactions: the
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transketolase (TKT2), aconitase (ACONTa/ACONTD) and isocitrate de-
hydrogenase (ICDHyr) in which the percent errors were above 20%.
According to the predicted and experimental results, a higher PHB pro-
duction is obtained under non-diazotroph conditions due to higher en-
ergy cost for nitrogen fixation. Additionally, most of the carbon coming
from the glucose is metabolized through the Entner-Doudoroff (ED)
pathway, generating less energy than glycolysis, but producing pyruvate
(PHB precursor) in fewer steps. The available pyruvate generated though
the ED pathway is mostly used in the TCA cycle and the PHB synthesis
(Castillo et al., 2013; Wu et al., 2019), allowing the growth of the
microorganism and the production of this biopolymer.

4. Discussion
4.1. Model reconstruction

Here we have created the first comprehensive genome-scale meta-
bolic model for A. vinelandii DJ (iDT1278) that focuses on nitrogen
assimilation, nitrogen fixation, as well as on alginate and PHB produc-
tion. The model consists of 1,278 genes involved in 2,469 reactions.
Compared to the first microorganism template used in the present work
(Escherichia coli str. K-12 substr. MG1655, iML1515), the percentage of
metabolic genes per genome decreases from 31% (iML1515) to 26%
(iDT1278). However, a higher percentage of metabolic genes (from 26%
of A. vinelandii to 12% of the average genes in the photosynthetic models)
was observed when iDT1278 was compared to three photosynthetic or-
ganisms in the BiGG database: C. vulgaris UTEX 395, iCZ843 (Zuniga
et al., 2016), Synechocystis sp. PCC 6803, iJN678 (Nogales et al., 2012)
and C. reinhardtii, iCR1080 (Chang et al., 2011). The M-model is accurate
to 89% for all the carbon sources and 91% for nitrogen sources. The
model was validated using a wide variety of carbon (159 compounds)
and nitrogen (75 metabolites) sources. iDT1278 shown a significant
higher accuracy (27% upper) in the predictions compared to the Car-
veMe model simulations. Additionally, iDT1278 predicted accurately the
growth ratio and production values of alginate and PHB production
under diazotrophic and non-diazotrophic conditions. To our knowledge,
this is the first M-model at genome-scale capable to simulate several
carbon and nitrogen conditions (close to 250 conditions) with a high
precision even when comparing internal metabolic fluxes.

4.2. Model validation

4.2.1. Nitrogen fixation

iDT1278 accurately predicts the growth of A. vinelandii using different
carbon sources under diazotrophic and non-diazotrophic conditions. The
model contains all required reactions and constraints to successfully
simulate the BOF representing the growth of the organism. Model pre-
dictions have been confirmed by experimental validation using Biolog
plates (PM1, PM2 and PM3). With this information we elucidated the
preferred mechanism used by the A. vinelandii DJ to fix nitrogen while
growing with different carbon sources. The Ny uptake depends on the
ammonium concentration and metal cofactor concentrations required for
the nitrogenases (Garcia et al., 2018; Inomura et al., 2018). In our model,
a difference in growth rate can be observed under diazotrophic and
non-diazotrophic conditions. The growth rate under different carbon
sources is higher during NH4 assimilation than during Nj fixation.
However, the growth rates are quite similar for growth with amino acids
under diazotrophic and non-diazotrophic conditions. This can be
explained by the fact that amino acids release ammonium when metab-
olized which then becomes readily available to the organism. N fixation
on the other hand is an ATP-dependent process and the organism must
employ more energy to convert the Ny into ammonium.

Growth rate values decrease considerably when A. vinelandii DJ grows
diazotrophically but nitrogen and carbon flux distributions per subsys-
tem (e.g. amino acid, lipid, and carbohydrate metabolism) behave very
similar in both nitrogen conditions. These flux distribution correlations
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suggest that the major discrepancies in the metabolism of A. vinelandii
fixing nitrogen are related to the cofactor and vitamin pathways (ribo-
flavin metabolism) and oxidative phosphorylation (energy generation).
According to the model predictions (iDT1278), the vitamin, cofactor and
oxidative phosphorylation pathways in A. vinelandii are involved in the
generation of the precursors for the BOF; when ammonium is used as a
nitrogen source, the carbon and nitrogen fluxes in these pathways are
significantly higher (30%) than the fluxes estimated using molecular
nitrogen as nitrogen source.

4.3. Alginate production

Alginate represents an important exopolysaccharide for A. vinelandii
and is synthetized to reduce oxygen availability and thus increase
nitrogenase activity for enhanced nitrogen fixation (Galindo et al., 2007;
Nosrati et al., 2012). Additionally, this polymer has industrial relevance
to multiple fields such as in pharmaceutical (Azevedo et al., 2014),
biotechnological (Tomida et al., 2010), and food industry applications
(Kuda et al., 1998). Therefore, elucidating the mechanism of alginate
production could potentially provide insights for increasing production
of this valuable biopolymer. iDT1278 accurately predicts three out of
four carbon sources capable of producing alginate and the accompanying
nitrogen sources to maximize biosynthesis of this polymer. The model
also successfully predicts the decline in the growth and alginate pro-
duction when molecular nitrogen is used as a nitrogen source. Alginate
metabolism has been studied using genetic and regulation approaches to
explain the synthesis of this valuable biopolymer, since most of the genes
involved in this metabolic pathway are regulated by the presence of
oxygen (Ertesvag et al., 1995; Lloret et al., 1996; Ntinez et al., 2000). In
the present work we show that alginate production can also be explained
based exclusively on metabolic requirements using mathematical and
metabolic representations.

4.4. PHB production

PHB, like alginate, is synthesized by A. vinelandii to reduce oxygen
availability and promote nitrogen fixation. iDT1278 contains all the
genes and specific reactions involved in the production of PHB. The
polymer is a high value product used in the production of biodegradable
plastics and other environmental friendly polymers (Galindo et al.,
2007). iDT1278 accurately predicts most of the metabolic flux values in
the reactions (85% of the reactions) involved in PHB synthesis and
pathways related to the generation of PHB precursors and energy meta-
bolism (glycolysis, pentose phosphate pathway, the Entner-Doudoroff
pathway, and the TCA cycle) for diazotrophic and non-diazotrophic
conditions. The model is capable of accurately simulating all the varia-
tions presented in the flux distribution values for every reaction involved
in the PHB synthesis under different conditions (ammonium or molecular
nitrogen as unique nitrogen sources) using only metabolic data (stoi-
chiometry and biochemistry data).

As with alginate production, PHB metabolism in A. vinelandii has been
well studied using exclusively genetic and regulation perspectives since
PHB accumulation mainly occurs during oxygen limitations (Castillo
et al., 2013; Vijayendra et al., 2007); however, PHB metabolic distribu-
tion and biosynthesis can also be described using metabolic data ac-
cording to the predictions performed by iDT1278. Our model could as a
result be deployed to potentially optimize PHB production in
A. vinelandii.

4.5. Network properties

Most of the False Negative (6 out of 10 total) and False Positive (6 total)
predictions from the model related to carbohydrates and amino acids
substrates could not be confirmed to belong to a pathway or to an enzyme
that converts these carbon sources to internal metabolites present in the
model either from literature information or available genomic and
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metabolomic databases. Moreover, when using amino acids as growth
substrates, the model predicts very similar growth rate values for diazo-
trophic and non-diazotrophic conditions since some amino acids can
release ammonium further supporting growth. These discrepancies be-
tween experimental evidence and model predictions could be related to
the limited information available concerning specific metabolic mecha-
nisms for metabolizing carbon sources as carbohydrates, lipids and amino
acids in A. vinelandii or processes related to genetic, transcriptional and
regulation. Indeed, while nitrogen metabolism is tightly regulated in
A. vinelandii (Hamilton et al., 2011; Toukdarian and Kennedy, 1986),
transcriptional and translational regulation is not currently part of this
M-model but could in part be recapitulated by including all macromolec-
ular synthesis as part of a subsequent ME-models (Liu et al., 2019, 2014;
O’Brien et al., 2013). Furthermore, nitrogenase activity and activity of
other nitrogen-associated pathways are also regulated at the enzyme level
(Pacheco-Leyva et al., 2016), potentially also contributing further to the
lack of agreement between model predictions and experimental data.

4.6. Future aspects

Insight into the metabolic processes using the genome-scale model
iDT1278 could benefit low-cost media optimization for A. vinelandii and
to further improve production processes as PHB, alginate and other
biopolymers with high industrial value. Although this environmentally
important model organism has been isolated and studied for more than
100 years, its physiology and some metabolic pathways have yet to be
fully understood. We believe the current model provides a valuable step
along the path towards better characterization of this important microbe
in isolation as part of a microbial community (Tan et al., 2015; Zuniga
et al., 2019). Unraveling this knowledge for A. vinelandii could improve
its use in industrial applications (Noar and Bruno-Barcena, 2018), and
the systems biology approaches presented here may provide a tool to
help in achieving that goal.
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