
The sum is greater than the parts: exploiting microbial
communities to achieve complex functions
Livia S Zaramela1, Oriane Moyne1, Manish Kumar1,
Cristal Zuniga1, Juan D Tibocha-Bonilla1,2 and
Karsten Zengler1,3,4

Available online at www.sciencedirect.com

ScienceDirect
Multi-species microbial communities are ubiquitous in nature.

The widespread prevalence of these communities is due to

highly elaborated interactions among their members thereby

accomplishing metabolic functions that are unattainable by

individual members alone. Harnessing these communal

capabilities is an emerging field in biotechnology. The rational

intervention of microbial communities for the purpose of

improved function has been facilitated in part by developments

in multi-omics approaches, synthetic biology, and

computational methods. Recent studies have demonstrated

the benefits of rational interventions to human and animal

health as well as agricultural productivity. Emergent

technologies, such as in situ modification of complex microbial

community and community metabolic modeling, represent an

avenue to engineer sustainable microbial communities. In this

opinion, we review relevant computational and experimental

approaches to study and engineer microbial communities and

discuss their potential for biotechnological applications.
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Introduction
Life as we know it is not possible in the absence of

microorganisms. Essential biogeochemical processes are

only possible due to the interaction of many different
www.sciencedirect.com 
microbes involved in carbon-, nitrogen-, and sulfur-

cycling [1]. Many biotechnological processes, such as

the production of fermented foods [2], or of biofuels

[3] also rely on the concerted effort of different micro-

organisms. Additionally, higher animals and plants

depend on the metabolism of the microbial communities

associated with them [4]. All these processes rely on the

ability of microbial communities to perform complex

functions, for instance, the sequential metabolism of

macro-molecules, nitrogen fixation, and microbial fer-

mentation. The importance of the microbiome, that is,

the sum of all microbial genetic material, in health and

disease has gained substantial recognition over the last

decade and has led to various therapeutic developments

[5]. These developments range from the use of single

microbes with beneficial features, that is, probiotics, to

the transfer of entire communities, that is, fecal microbial

transplantation [6] to sustain or improve health.

Exploiting microbial co-cultures or whole communities

for biotechnological and medical purposes requires the

identification of relevant microbes serving as microbial

cell factories or therapeutic agents. Many approaches to

distinguish the right microbes for the job from all the

other community members have been based on correla-

tions, such as composition, coexistence, and co-exclusion

[7,8�]. However, detailed mechanistic insights into

microbe-microbe and microbe-host interactions often

remain undetermined [9�]. Understanding the mecha-

nisms and rules of metabolic exchanges are critical i) to

unravel community architecture and dynamic, ii) to

maintain a stable community, and iii) to design and

build community-based biotechnological or medical

applications.

Determining the parts list for microbial
communities
Designing, building, and manipulating microbial commu-

nities require detailed knowledge of their taxonomic

composition. Over the past decade, an increasing number

of studies have characterized the composition (i.e. micro-

biota) and the genomic features (i.e. microbiome) of

microbial ecosystems [7,10]. Most of these studies have

deployed 16S rRNA amplicon or shotgun metagenomic

sequencing to evaluate relative changes in community

composition (Figure 1). Retrieving partial or complete

genome sequences by metagenomic analyses revealed
Current Opinion in Biotechnology 2021, 67:149–157
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Figure 1

(a) (b)
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Overview of widely used meta-omics approaches for microbiome studies.

(a) Microbial communities can be studied at the rRNA, DNA, mRNA, protein and/or metabolite level [7,11–14]. Each of these meta-omics methods

provides a representation of what taxa are present (16S rRNA) [12], what genes and what set of possible biochemical reactions are present

(metagenomics) [7], which of those genes are transcribed (metatranscriptomics) [14], or have been translated (metaproteomics) [13], or defining

the metabolic state of the organisms (metabolomics) [7,15]. (b) Proportions of PubMed-referenced studies containing the terms “16S rRNA”,

“metagenom*, metatranscriptom*, metaproteom*, or metabolom*” AND microbiome (a total of 68 377 articles published between 2010 and 2020).
biochemical pathways and provided insight into microbial

metabolism [7]. However, these genome-centric analyses

are often blind to downstream biological regulation and

have a limited ability to yield a functional, condition-

resolved, and time-resolved view, that is, ecological suc-

cession, of community organization. Thus, post-genomic

approaches have been developed that aim at providing

functional profiling in microbiome studies [7,11–14]

(Figure 1).

These post-genomic analyses are focused on measuring the

levels of messenger RNAs (mRNA) (metatranscriptomics),

proteins (metaproteomics), and/or metabolites (metabolo-

mics) [13–15]. Metatranscriptomics allows to identify dif-

ferential gene expression in response to changing environ-

mental conditions and has been applied, for example, to

study the mechanism of biogas production [14] or to iden-

tify lignocellulose degrading enzymes [16]. While meta-

transcriptomics is a good proxy of biological activity [17],

metaproteomics provides a readout of biological function

independent of post-transcriptional and post-translational

regulation [17]. Although comprehensive metaproteomics

studies are still technically challenging due to relatively low

coverage compared to sequencing-based methods, this

approach was successfully deployed to study the detrimen-

tal effect of phage-induced cell lysis in the production of

biogas [13]. In turn, metabolomics aims at measuring all

metabolites present in a sample [7]. A recent example

demonstrated how the gut microbiota affects the chemistry

of its human host by revealing previously uncharacterized

bile acid conjugations that are enriched in patients with

inflammatory diseases [15]. However, distinguishing if a
Current Opinion in Biotechnology 2021, 67:149–157 
metabolite is associated with the host or the microbiota or

assigning metabolites to a certain species is currently still a

chalenge.

Mathematical modeling: reconstructing the
sum from its parts
After the parts of a microbial community have been

identified we often face the challenge of how to contex-

tualize this data. Multi-omics data integration offers an

opportunity to untangle complex microbial interactions

that shape and constrain a microbial community. Addi-

tionally, multi-omics approaches in combination with

computational approaches allows to overcome one of

the biggest challenge of studying highly diverse microbial

communities, that is our inability to cultivate most of the

microorganisms in the laboratory. The increasing amount

of information makes the development of computational

methods essential for the analysis of different types of

datasets and for interpretation of results. Mathematical

modeling of biological systems has been a resourceful tool

to elucidate underlying drivers of cellular metabolism in

several fields of research, including medical [18,19],

environmental [18], agricultural [20], and biotechnologi-

cal sciences [18].

Different mathematical models are currently available to

analyze biological systems and to identify and quantify

metabolite exchanges in microbial communities [9�]. For

example, kinetic models have been used to describe

metabolites consumption, enzyme synthesis, growth

rates, and abundance patterns in microbial cultures

[21], while sequence-based models have been deployed
www.sciencedirect.com
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Figure 2

(a) (b)
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Microbial community modeling.

(a) Black box-like [21,28–34] and community metabolic (CM)-models methods [25–27,35,36] to understand the role of different species in a given

community. (b) CM-models methods use different optimization algorithms to simulate the microbial communities for exploring metabolic

interactions among different species in a given community. Main outcomes and experimental validation were included by optimization method.

Arrows between species 1 and species 2 represent known or possible metabolic exchanges. ODE - Ordinary Differential Equation. gLV -

generalized Lotka–Volterra. CoNet - Cytoscape app version. LSA - Local Similarity Analysis. MENA - Molecular Ecological Network Analyses.

SPIEC-EASI - SParse InversE Covariance Estimation for Ecological Association Inference. FBA - Flux Balance Analysis. OptCom - Optimization

Framework for the Metabolic Modeling and Analysis of Microbial Communities. cFBA - community Flux Balance Analysis. CASINO - Community

And Systems-level INteractive Optimization. SteadyCom - optimization framework for predicting metabolic flux distributions consistent with the

steady-state requirement. Please refer Table 1 for a complete overview of microbial community modeling methods.

Box 1 Genome-scale metabolic modeling

A genome-scale metabolic (GSM) model is a mathematical repre-

sentation of the metabolic reaction network of an organism, directly

defined by its annotated genome. The significant increase in the

wealth of omics data in recent years opened the door for GSM

models [24��], with ever-increasing quality as new data integration

methods arise. These models contain a steady-state algebraic sys-

tem of metabolite mass balance equations, which are solved as a

linear programming (LP) problem. This approach, called Flux Balance

Analysis (FBA), determines the fluxes throughout the network that

maximize an objective function, widely defined as the biomass pro-

duction, to describe the exponential growth of single organisms

[Feist2010]. However, several other objective functions have suc-

cessfully been used to describe sub-optimal and non-growth-

oriented phenotypes [24��]. As a result, GSM models are tightly

tailored models that predict the response of one or multiple organ-

isms to perturbations and changes in nutrient levels, organism

abundances, and genome content [9�], thus rendering GSM models

suitable to study multi-cell systems.
to identify microbial associations [9�] (Figure 2a). While

many methods rely on abundances to predict associations,

the elucidation of what metabolic exchanges contribute to

community metabolism is often challenging. These black

box-like community modeling approaches are in general

incapable of revealing the underlying mechanism of

interactions between microbes (Figure 2a). Lack of

mechanistic insight makes it problematic to design inter-

ventions in a predictable fashion, which result in repro-

ducible outcomes. Robust, stable, and predictable micro-

bial communities are crucial for any industrial application.

So far only genome-scale community metabolic models

(CM-models) have been able to offer quantitative insight

into metabolite exchanges and microbial interactions

[9�,22,23��] (Figure 2b, Box 1; Table 1). Similar to other

constraint-based models, CM-models use flux balance

analysis (FBA) to calculate metabolic flux distributions

[24��]. FBA-based computational approaches were devel-

oped to model microbial communities and to evaluate the
www.sciencedirect.com Current Opinion in Biotechnology 2021, 67:149–157
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Table 1

An overview of modeling approaches for studying microbial communities

Modeling framework Scale Remarks References

Black box-like modeling

ODE-based modeling Microbial community

of a few members
� This method is limited to model a simple microbial

community of a few members.

� It depends significantly on metabolic (e.g. fermentation)

data to estimate modeling parameters.

� This dependence makes this method less desirable to

explore a large microbial community since many of the

microorganisms in natural communities cannot be culti-

vated in the laboratory yet.

[61–63]

gLV equations Simplified microbial

community (e.g.

genus-level)

� This method relies on longitudinal abundance datasets and

can capture the time-dependent variations in the

communities.

� However, it cannot explain the underlying interaction

mechanisms between members, such as metabolite

exchanges.

[64]

Agent-based

modeling

(ABM)

Microbial community

of a few members
� ABM can be used to explore temporal and spatial inter-

actions between species.

� It can predict the particular behavior of microorganisms as

a group, but not of individual microorganisms.

� It can be computationally expensive for analyzing the

large communities.

� No study has been published yet that employed ABM for a

diverse microbial community.

[65]

Correlation-based

modeling:

CoNet, LSA, MENA,

SparCC, SPIEC-

EASI

Large microbial

community
� These methods can predict associations between species/

operational taxonomic units in terms of co-occurrence and

co-exclusion.

� These methods can be applied to large communities but

cannot determine the interactions between different com-

munity members.

� These methods are also incapable of providing any func-

tional similarities or dissimilarities responsible for co-

occurrence or co-exclusion of community members.

[30,31,33,34]

Community Metabolic (CM)-Modeling-based methods

Compartmentalized

FBA-based

community

modeling

Pairwise analysis � Although, in general, CM-models-based methods are

advantageous for investigating metabolic exchanges

between members, this approach has only been used to

perform pairwise analyses.

� This concept was used to develop other CM-models-based

methods by defining different biological objective func-

tions (see below).

[35]

OptCom Microbial community

of two to four species
� This approach involves multi-level and multi-objective

optimization.

� The growth of individual microorganisms and the whole

community is optimized.

[25]

dOptCom Microbial community

of three species
� dOptCom is advantageous over OptCom, as it can capture

the temporal dynamics of growth members and the whole

community, as well as metabolite exchanges between

members.

[66]

CASINO Microbial community

of six species
� Unlike OptCom and dOptCom, CASINO optimizes a

biological objective function iteratively at microorgan-

ism-level and community-level.

[26]

Current Opinion in Biotechnology 2021, 67:149–157 www.sciencedirect.com



Exploiting microbial communities Zaramela et al. 153

Table 1 (Continued )

Modeling framework Scale Remarks References

cFBA Pairwise analysis � This method includes a non-linear, multi-objective func-

tion assuming a fixed growth rate of microorganisms in the

community.

� It was tested on a synthetic community of two different

strains of E. coli.

[36]

SteadyCom Microbial

communities of four

and nine species

� SteadyCom simulates the community-level problem at a

steady-state, making this method easy to implement for

larger communities requiring less computational power

than cFBA.

� Unlike other CM-models-based methods, this method

includes flux variability analysis to capture the variation

in microbial abundances due to perturbations in nutrient

availability.

[27]

Computation of

Microbial

Ecosystems in Time

and Space

(COMETS)

Microbial

communities up to

three species

� Like other CM-models-based methods, this approach can

capture the growth of individual members and the whole

community, and metabolic exchanges.

� This method can help predict the temporal dynamics and

spatial organization of members in the community.

[67]

MICOM (Microbial

Community)

Large microbial

community
� MICOM simulates microbial community based on the

linear dependency of growth rate on the abundance of

individual members in the community.

� In an initial attempt, the growth rates of microorganisms in

a large gut microbial community were found in agreement

with the replication rates.

[19]
interactions between members. These approaches are

primarily different from each other based on what func-

tion is used to simulate the models [25–27] (Figure 2b).

An overview of these methods, highlighting their differ-

ences, advantages, and limitations, is summarized in

Table 1.

Initial modeling approaches were applied to communities

of a few species [23��,26,27] and so far no further devel-

opments of these tools using complex communities, that

is, highly diverse microbial communities, have been

published. One reason why these tools have not been

applied to model diverse microbial communities is

because of the infinite number of possible metabolite

exchanges between species that result in a computational

infeasible solution space. This underlines a need for

future efforts for optimizing existing tools and to develop

new methods to analyze highly diverse microbial com-

munities. One promising development in this field has

been the integration of experimental measurements

(growth phenotype and meta-omics data) to constrain

community-scale metabolic models, which enables simu-

lations of large communities but also enhances the capa-

bilities of the modeling framework [19,37–39]. Combin-

ing these efforts with recently developed tools, such as

adaptive laboratory evolution of auxotrophic strains

[40,41] and synthetic microbial communities, will yield

more effective ways to predict community outcomes in
www.sciencedirect.com 
the future and thus open the door to engineer complex

communities for stability or desired metabolic tasks

[42,43].

Engineering of microbial communities by
changing their parts
The idea of modifying microbial communities for health

benefits or biotechnological applications is not new

(Figure 3a). For instance, probiotics, that is, beneficial

live microbes, as part of fermented food, have been

consumed and associated with health benefits for thou-

sands of years [44] (Figure 3b). However, probiotics are

highly species- or strain-dependent, and often have a

narrow host-spectrum, rendering individual responses,

for example, in different humans, unpredictable [45].

Advances in synthetic biology, metabolic engineering,

and computational biology have been utilized to over-

come these limitations. The constant improvement of

molecular biology and genetic engineering tools, such as

DNA assembly, cloning strategies, synthetic DNA syn-

thesis have enabled the designing and optimization of

new metabolic pathways for biotechnological applications

[8�]. In turn, computational approaches can narrow down

the solution space to select more promising targets, for

instance, identifying highly conserved promoter regions

to improve gene expression or optimizing codon usage for

protein translation. Over the past years, these tools have
Current Opinion in Biotechnology 2021, 67:149–157
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Figure 3

(a) (c)

(b)

Current Opinion in Biotechnology

Engineering of microbial communities.

(a) Rational engineering of microbes will allow us to control growth and metabolism of complex microbial communities. (b) Approaches to

rationally intervene in microbial community composition. Probiotics can be used for short-term alterations by producing metabolites of interest,

such as short chain fatty acids [44]. The use of genetically engineered microbes can provide a more controlled intervention, targeting specific host

cells or community members [47�]. In situ genome engineering provides a unique opportunity to community engineering by modifying bacterial

genomes in situ, without the need of growing them in the laboratory [53,54��,55]. (c) Computational framework and applications of community

metabolic (CM) modeling. CM-models can be used to design interventions (e.g. partner selection) and to improve the production of value-added

compounds [9�,18,23��,25,27].
enabled the rapid engineering of single organisms to

improve the production of enzymes, to synthesize bio-

products; such as biofuels, solvents and polymers; and to

improve food and animal feedstock production [8�,46].

Although the use of genetically modified microorganisms

is widespread in the biotech industry, their application in

humans and their unintentional release into the environ-

ment is a matter of current debate. Over the past few

years, there has been an increase in studies using engi-

neered probiotics for therapeutic interventions in humans

and in agriculture (Figure 3b). Among the different

strains, the probiotic E. coli Nissle 1917 has been used

extensively for applications that prevent or treat diseases

[47�], with notable examples in cancer therapy [48,49��].
Other microorganisms, such as Azorhizobium caulinodans
ORS571 and Rhizobium sp. IRBG74, have been engi-

neered to improve nitrogen-fixation in the rhizosphere

to benefit crops [50].

Albeit great advances have been made in engineering

single microbes for biotechnological applications, the
Current Opinion in Biotechnology 2021, 67:149–157 
incorporation of large or complex heterologous pathways

can still be challenging. Furthermore, heterologous

expression represents an additional metabolic burden

and can result in metabolic impairments, rendering these

strains less competitive in a community setting or in

nature [51�]. Most importantly, many microbes of poten-

tial interest cannot be readily cultivated in the laboratory

and controlled genetic manipulation in vitro is thus lim-

ited [8�,52]. These limitations jeopardize the rational

intervention of microbial communities, once they prevent

to cultivate and genetically modify diverse microbial

communities in the laboratory. Advances are being made

to mimic environmental conditions and reproduce natural

microbial communities. Some of these efforts will be

discussed later.

A recent approach with remarkable potential is the in situ
engineering of microbial communities using integrative

and conjugative platforms [53,54��,55]. These methods

enable direct modification of microbes with desired

genetic features and circumvents propagation of so far

uncultured microbes in the laboratory (Figure 3b). In
www.sciencedirect.com
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addition, in situ engineering allows the genetic modifica-

tion of microbes already adapted to the environment,

instead of introducing a new one. Recent methods

involve donor strains and transfer of replicative or inte-

grative vectors into heterogeneous microbial communi-

ties, for example, in soil or in the mammalian gut

[54��,55]. A CRISPR-based genome editing method dem-

onstrated that genetic material could be transferred across

numerous microbial genera, including bacteria not previ-

ously genetically modified, such as Prevotella and Cam-
pylobacter [54��]. A study using integrative and conjuga-

tive elements from Bacillus subtilis, successfully

transferred the gene cluster for nitrogen-fixation (nif) to

soil bacteria [55]. Moreover, Hsu et al. demonstrated that

oral delivery of the temperate phage l, expressing a

programmable dCas9, could modulate the expression of

a specific bacterial gene in the gut [53]. While these

studies have exemplified the great biotechnological

potential of manipulating microbial communities in situ,
several questions remain. For example, can we predict a

priory, which microbes should be modified and what

effect such modification will have on the entire commu-

nity, its activity, and its stability over time? Can we

rationally design communities and will these designs

be reproducible and applicable to different hosts, for

example, different human subjects or different plants?

Many of these questions are not easily addressable exper-

imentally because they require i) highly reproducible

ecosystems or ii) the ability to screen an extremely large

number of samples [40,56]. However, computational

approaches, such as CM-model simulations, can assist

in answering these questions in remarkably short time-

frames. CM-models scan a myriad of possibilities and

select for environmental conditions and genotypes that

trigger a specific phenotype (Figure 3c). Adjusting for

different environmental conditions allows testing com-

munity responses at large scale. For example, when the

metabolic networks of the alga Chlorella vulgaris and the

yeast Saccharomyces cerevisiae were combined into a CM-

model, simulations identified specific environmental con-

ditions that were driving either cooperative or competi-

tive coexistence of the alga and the yeast [23��]. Addi-

tionally, these CM-models are able to unravel detailed

interactions by simulating the exchange of various metab-

olites [57�]. CM-model simulations can also explore how

communities respond to stress and how metabolic

exchanges are adjusted under such conditions. For exam-

ple, C. vulgaris increases the exchange of amino acids in

co-culture to compensate for nitrogen starvation [23��,58].

CM-models have recently been applied to study biopro-

duction in phototrophic microbial communities. These

communities consist of a phototropic and a heterotrophic

partner and hold great promise for sustainable biotech-

nology by producing value-added compounds from car-

bon dioxide [7,10,59]. A study containing the engineered
www.sciencedirect.com 
cyanobacterium Synechococcus elongatus cscB+ and various

heterotrophic partners showed that communities with

phylogenetically distant members were able to exchange

larger numbers of metabolites [57�]. CM-models for these

co-cultures not only identified the optimal heterotrophic

partner for Synechococcus but also predicted strain designs

and growth conditions that would lead to increased

growth and higher production of value-added compounds

[57�] (Figure 3c). These computational models allow for

the intricate design of improved community stability and

productivity, potentially facilitating the rise of commu-

nity-based biotechnology, eliminating current metabolic

limitations of monocultures.

Future directions
Integration of experimental and computational methods

are essential to understand microbe-microbe and

microbe-host interactions in complex biological systems.

The recent development of synthetic biology tools

applied to community engineering creates new opportu-

nities for biotechnological applications. However, the

dynamic nature of microbial communities requires mech-

anistic knowledge of interactions to rationally re-program

community function. This dynamic includes for example

fluctuations in community composition, genetic stability,

and condition-specific phenotypes. The use of synthetic

communities to unravel the basis of these interactions and

gain mechanistic insight is crucial to lay the foundation for

future studies and ultimately for rational design of com-

munities for biotechnological applications. The recent

development of synthetic communities circumvents

some of the essential problems in microbiome research,

that is, standardization and reproducibility [57�]. Repro-

ducible fabricated ecosystems, that is, EcoFABs [56], are

an attractive solution to study microbial communities.

EcoFABs enable researchers to design and create model

microbial ecosystems and couple them to standardized

workflows, computational tools, and computational mod-

els. These standardized systems facilitate inter-laboratory

comparisons [60] and have been applied to study micro-

bial interactions in gut and plant synthetic environments

[56,60]. Integration of standardized ecosystems with new

genetic manipulation tools and computational modeling

will ultimately develop stable consortia and communities

for the biotech industry, and expedite broad applications

by providing new metabolic capabilities.
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