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Modeling the resilience of interdependent critical infrastructure (ICI) requires a careful
assessment of interdependencies as these systems are becoming increasingly intercon-
nected. The interdependent connections across ICIs are often subject to uncertainty due
to the lack of relevant data. Yet, this uncertainty has not been properly characterized.
This paper develops an approach to model the resilience of ICIs founded in probabilistic
graphical models. The uncertainty of interdependency links between ICIs is modeled
using stochastic block models (SBMs). Specifically, the approach estimates the probabil-
ity of links between individual systems considered as blocks in the SBM. The proposed
model employs several attributes as predictors. Two recovery strategies based on static
and dynamic component importance ranking are developed and compared. The proposed
approach is illustrated with a case study of the interdependent water and power networks
in Shelby County, TN. Results show that the probability of interdependency links varies
depending on the predictors considered in the estimation. Accounting for the uncertainty
in interdependency links allows for a dynamic recovery process. A recovery strategy
based on dynamically updated component importance ranking accelerates recovery,
thereby improving the resilience of ICIs. [DOI: 10.1115/1.4046472]
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1 Introduction

Modern society depends on critical infrastructure for security,
safety, health, and overall well-being. Critical infrastructure sys-
tems include water distribution systems, transportation systems,
and power grids, among other sectors. Recent changes in social
and economic development as well as advances in technology
have led to increasing interdependent connections between critical
infrastructure systems [1]. On one hand, these interdependencies
can enhance the overall efficiency and robustness of these systems
under normal operations by providing a platform for information,
services, and product sharing. On the other hand, highly con-
nected critical infrastructure can be more vulnerable to hazards,
whereby a disruptive event in one system can result in cascading
failures across other connected infrastructure systems [2–4]. For
example, a power outage cascades into the water supply system as
pumping stations fail due to loss of power, and the lack of water
for cooling impacts the generation of electricity. As such, interde-
pendencies among infrastructures must be taken into account to
understand the operational characteristics of infrastructure sys-
tems [5] and inform operations and future design of robust and
resilient systems. One of the major challenges in evaluating the
impact of disruptive events on interdependent critical infrastruc-
ture (ICIs) lies in understanding the influence of multiple interde-
pendencies on the systemic performance after a disruption.

Rinaldi et al. [6] define interdependency as “the bidirectional
relationship between two infrastructures through which the state
of each infrastructure influences or is correlated to the state of the
other.” After formalizing the concept of interdependency, Rinaldi
et al. [6] propose four principal classes of interdependencies: (1)
physical interdependency, when energy or materials flow between

two systems; (2) cyber interdependency, when information is
transmitted between systems; (3) geographic interdependency,
when the state of one system can be altered due to spatial proxim-
ity of another system; and (4) logical interdependency, when two
systems influence each other via a mechanism that is not based on
physical, cyber, or geographic connection. Although other classifi-
cations have also been proposed [7–10], this study employs the
classification proposed by Rinaldi et al. [6] as the proposed
approach can be directly extended to other types of interdepen-
dencies [11], which can be found in Ref. [12]. Modeling the resil-
ience or recovery of ICIs has been extensively studied [9,13–19].
In most studies, ICIs are often modeled in a deterministic way by
establishing interdependency links first and then evaluating the
systemic performance. These links are established between ran-
domly generated nodes [20], or based on either degree centrality
[16] or spatial proximity (minimum Euclidean distance)
[11,15,21–23]. One approach to assessing resilience under uncer-
tainty is the use of Bayesian networks (BNs), such as Refs.
[24–26]. The majority of studies that use BNs examine a single
network instead of multiple interdependent networks. Further-
more, BNs are an acyclic graphical model and thus have great dif-
ficulty in handling the bidirectional relationship in interdependent
networks.

The majority of existing studies do not consider the uncertainty
associated with the interdependency between the networks and
few studies can be found in the literature that addresses dynamic
and uncertain interdependencies. Full knowledge of interdepen-
dencies across infrastructure networks, despite its key importance,
is often not available due to lack of data [27]. Therefore, the
topology of ICIs is subject to uncertainty. Neglect or improper
characterization of this uncertainty can lead to underestimation or
overestimation of system performance as the metrics cannot be
assessed within an acceptable level of fidelity [28,29].

The objective of this paper is to model the resilience of ICIs by
accounting for the uncertainty and dynamics of interdependencies
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after the disruption in order to guide restoration strategies. The
specific contributions of this study are listed below:

(1) The application of statistical network models to evaluate
uncertain network interdependencies. Specifically, the use
of stochastic block models (SBMs) provides a probabilistic
characterization of interdependency links between infra-
structure networks.

(2) A formulation for estimating the likelihood that an interde-
pendency link exists using multiple predictors to represent
major factors influencing the presence of interdependency
links. To avoid zero values in normalizing the variables
that will be used in the denominator, a variant of min–max
normalization called truncated min–max normalization is
developed.

(3) A network recovery strategy based on dynamic ranking of
component importance. Network restoration based on
dynamic component ranking results in a faster recovery of
ICIs when compared to static ranking.

The remainder of this paper is outlined as follows: In Sec. 2, we
introduce the mathematical representation of interdependent net-
works, SBM, and network resilience. Section 3 outlines the
approach to assessing the resilience of ICIs along with two resto-
ration strategies based on static and dynamic component impor-
tance ranking. In Sec. 4, the proposed method is illustrated using
interdependent water and power networks. Finally, Sec. 6 pro-
vides the conclusion along with a discussion for future work.

2 Background

2.1 Interdependent Networks. This study considers interde-
pendent networks that are comprised of multiple individual
networks connected by interdependency links. This work consid-
ers two individual networks; however, the approach can be
extended to accommodate additional networks. Mathematically,
G ¼ ðG1,G2, E12, E21Þ where G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ
represent the individual networks and E12 and E21 represent the
interdependency links from G1 to G2 and those from G2 to G1,
respectively. The number of nodes and the number of links in G
are denoted by jVj and jEj, respectively. Each of the G1 and G2 is
comprised of multiple supply nodes (S), transmission nodes (T),
demand nodes (D), and the links that connect them (Fig. 1). The
connectivity of a graph can be encoded using the adjacency

matrix where rows and columns are labeled by nodes. Let AjVj�jVj
represent the adjacency matrix of the graph. If there is a link
between node i and node j, Aij¼ 1, and Aij¼ 0 otherwise. Since
self-edges are not possible, we assume Aii¼ 0, which is a valid
assumption for the network representing infrastructure systems.
For the undirected graphs considered in this study, the adjacency
matrix is symmetric. As an illustrative example, the adjacency
matrix for the interdependent networks in Fig. 1 is shown in
Fig. 2.

2.2 Stochastic Block Models. The SBM is a probabilistic
graphical model for describing and analyzing the structure of a
network [30]. Pioneered by Holland et al. [31], SBM has been
widely used in community detection in social networks [32–34].
In SBM, the nodes in a graph are divided into different blocks
based on the class membership of the nodes. The probability of a
link between two nodes depends on the blocks (class) to which the
nodes belong. Let z ¼ ½z1; z2;…; zjVj�T represent the class mem-
bership vector and h represent the block probability matrix [35],
the matrix of probabilities of forming edges between blocks and
within a block (Fig. 3).

Formally, SBM is defined as follows [31,35]:
DEFINITION 1 (SBM). A is generated according to an SBM with

respect to z if and only if: 1. 8 i 6¼ j, Aij are statistically independ-
ent. 2. 8 i 6¼ j and i0 6¼ j0 with zi ¼ z0i and zj ¼ z0j, Aij and Aij are
identically distributed.

Given Definition 1, the block probability matrix, and the adja-
cency matrix, the probability of a link connecting node i in block
a and j in block b can be given by

PðAij ¼ 1jzi ¼ a; zj ¼ bÞ ¼ hab (1)

In Eq. (1), hab represents the probability of forming a link
between block a and block b. Equivalently, Aijjzi ¼ a; zj ¼ b �
BernoulliðhabÞ, meaning that entries of A can be modeled as statis-
tically independent Bernoulli random variables [36]. Depending
on the available dataset, SBM can be applied to a priori setting
where the partition of nodes is predefined and a posteriori setting
where the block partition is uncertain [35]. In this study, SBM is
used in the a priori setting.

The SBM offers several computational and application
advantages such as the ability to estimate missing links based on
incomplete data [37], the integration of statistical and network
properties, and the flexibility in the analysis of stochastic interde-
pendent links. However, this model does not consider the hetero-
geneity of nodes besides their block membership. In order to
account for such heterogeneity, SBM is modified to give a proba-
bilistic estimate of the presence of interdependency links E12 and
E21. The estimation of the probability of these links can be consid-
ered as a regression problem in which node attributes are the pre-
dictors and the probability of Aij is the response variable. For
example, suppose the class membership and the distance between
nodes are used as the predictors, the regression model is shown in
the following equation:

PðAij ¼ 1jz1; z2Þ ¼ f ðz1; z2; dvivjÞ (2)

In Eq. (2), dvivj represents the distance between vi and vj. Once
the data on other nodal attributes are available, Eq. (2) can be
modified to include more predictors, and the model form can be
identified by use of statistical methods for model selection.

2.3 Network Resilience. First introduced in ecology [38], the
concept of resilience has triggered significant interest during the
past decades in several other fields, ranging from psychology to
engineering [39]. Within the engineering domain, multiple defini-
tions of resilience have been proposed by different organizations,
such as Refs. [40–42] as well as several scholars in the field of
engineering resilience analysis, such as Refs. [39], [43], and [44].

Fig. 1 A schematic of interdependent networks (dash lines
represent interdependency links. Nodes labeled with S, T, D
represent supply nodes, transmission nodes, and demand
nodes, respectively).
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In many of the definitions, resilience commonly refers to the
performance of a system of networks before, during, and after a
disruptive event [23,44].

Consider an engineering system where uðtÞ represents a service
function describing system performance. Depending on the type
of system, uðtÞ can describe network capacity, maximum flow,
flowrate, or network connectivity [45]. The performance measure
can also incorporate social and economic factors that indirectly
impact the system performance and resilience. Figure 4 provides a
general approach for understanding and analyzing system resil-
ience where the y-axis is a measure of system performance. Ini-
tially, the system is at the original stable state with performance
level uðt0Þ. Following the disruptive event e at time te, the system
begins to degrade due to reduced or loss of functionality of com-
ponents. The systemic performance decreases gradually due to
cascading effects until the maximum loss is incurred at time td,
after which the system enters the disrupted state. Starting at ts,
recovery activities begin to restore the network from its disrupted
state, Sd. The recovery continues until time tf when the system
reaches a new stable state.

Systemic resilience can be calculated as the ratio of recovered
performance to the maximum loss [44]. Let R(t) denote the resil-
ience at time t during the recovery process. R(t) is computed as
follows:

R tð Þ ¼ u tjeð Þ � u tsjeð Þ
u t0jeð Þ � u tsjeð Þ (3)

In Eq. (3), t 2 ðts; tf Þ; RðtÞ 2 ½0; 1�, with 1 indicating that the
system has been fully recovered from the disruptive event to the
original state.

3 Methodology

3.1 Estimation of Interdependency Between Networks.
This study assumes that the interdependency links connect the
demand node of one network to a supply node in another network.
This assumption is realistic for many real-world ICIs. For exam-
ple, in interdependent water and power network, the interdepend-
ency links are established as follows:

(1) The end-user node (demand node) in the water network and
the power station (supply node) in the power network that
requires water for generating steam.

(2) The end-user node (demand node) in the power network
and the pumping station (supply node) in the water network
that requires electric power [11].

In order to model the uncertainty of interdependencies across
ICIs, interdependency links are estimated probabilistically. The
model shown in Eq. (4) is proposed to evaluate the probability an
interdependency link exists based on a set of nodal attributes.
These attributes can represent physical, economic, and social
characteristics of the networks. The attributes considered in this
paper account for the distance between the networks, the number
of customers served by the nodes, and the vulnerability of the cus-
tomers represented with the social vulnerability index (SoVI).
Distance is used as a predictor as distance-based features are
found to be significant in estimating the missing link [46]. The
model includes the number of customers (modeled using the pop-
ulation) since disrupted components serving a large number of
customers might be given higher priority during the restoration.
The third predictor, SoVI, was originally developed to identify the
characteristics of the population that render social communities
vulnerable to external disturbances [47]. It is calculated based on
a large number of factors, including socioeconomic status, age,
house type, education level, race, among others. SoVI values
range from 0 to 1 with higher values indicating a higher level of
vulnerability. Social vulnerability can inform underlying and
intangible interdependency links that would guide restoration
activities to achieve community resilience by prioritizing vulnera-
ble customers who might disproportionately suffer more damage
from disruptions [48,49]

PðAij ¼ 1Þ ¼ b0 þ b1 � d�1
vivj

þ b2 � pvnd þ b3 � svnd (4)

In Eq. (4), Aij¼ 1 indicates the presence of an interdependency
link between vi and vj (vi and vj belong to different individual net-
works). bi ði ¼ 1; 2; 3Þ represents the regression coefficient, pvnd
represents the population served by the parent node of the

Fig. 2 Adjacency matrix for the interdependent networks in
Fig. 1

Fig. 3 An example of SBM with the corresponding block probability matrix
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interdependency link on which the dependent (child) node relies,
and svnd represents the SoVI of the census tract where the parent
node is located. Note that both dvivj and pvnd should be normalized
before they are used in the model and the obtained probabilities
should also be normalized such that they sum to one. The model
can be conveniently refined when data about real-world interde-
pendency links and nodal attributes are available.

Since the reciprocal of distance between nodes is used in
Eq. (4), zero values must be avoided in the normalized distance.
To this end, the min–max normalization is modified (Eq. (5)) to
scale the distance data to the range ½ a

1þa ; 1�. As ða=1þ aÞ should
approach zero, a small value of a is preferred, i.e., a � 1. There-
fore, ða=1þ aÞ � a indicates that the normalized data have an
approximate lower bound equal to a

x0 ¼
x� xmin þ a xmax � xminð Þ

1þ að Þ xmax � xminð Þ
(5)

In Eq. (5), x represents the data to be normalized and x0 repre-
sents data after normalization. This variant of min–max normal-
ization can be referred to as truncated min–max normalization.

3.2 Component Importance Ranking and Restoration. In
this study, the sequence of infrastructure network restoration is
determined according to the ranking of components. Resilience-
based component importance ranking can help inform resource
allocation and prioritization of repair activities when multiple
components are damaged [50]. The importance is quantified by
the relative resilience improvement of the interdependent net-
works after each component is restored individually. Two restora-
tion sequences are proposed, the first one is based on static
ranking and the second one is based on dynamic ranking. In the
case of static ranking, the damaged components to be repaired are
ranked only once before the start of recovery; therefore, the
benchmark for resilience improvement is the resilience of the ICIs
at the disrupted state RðtdÞ. The importance of a component can
be calculated using the following equation:

Ici ¼ Rci tdð Þ � R tdð Þ
R tdð Þ

(6)

In Eq. (6), Ici represents the importance of component i, RciðtdÞ
represents the resilience of the ICIs after component i is restored

at time td before initiating recovery activities. The damaged com-
ponents are then restored sequentially according to the ranking.

In the case of dynamic ranking, the damaged components are
ranked at every time-step until all the components are restored. At
the time t, the benchmark for resilience improvement is R(t).
Accordingly, the dynamic component importance can be com-
puted using the following equation:

Ici tð Þ ¼ Rci tð Þ � R tð Þ
R tð Þ ; t 2 td; tfð Þ (7)

In Eq. (7), IciðtÞ is the importance of component i at time t and
RciðtÞ is the resilience of the ICIs after component i is restored at
time t. When t¼ td, Eq. (7) becomes Eq. (6), meaning that static
importance ranking is simply the initial dynamic importance rank-
ing of all the damaged components. The steps for dynamic com-
ponent importance ranking, coupled with component restoration,
are summarized in Algorithm 1.

Algorithm 1 Dynamic component importance ranking for resil-
ience assessment

Input: Adjacency matrix, node type, node coordinates, component failure
probability, etc.
Output: The resilience over the restoration process RðtÞ; t 2 ðtd ; tf Þ:
1: Compute the initial resilience RðtdÞ.
2: for t¼ 1 to T do � T: time needed to restore all the

damaged components
3: for i¼ 1 to Nr

t do � Nr
t : # of remaining damaged

components at time t
4: Rank the remaining components based on the importance calcu-

lated by Eq. (7).
5: Return the resilience after restoring the component with the

highest importance, ct.
6: end for

7: Remove the component ct from the list of remaining components.
8: Calculate the resilience according to Eq. (8) and record it as R(t).
9: end for

3.3 Resilience Assessment of Interdependent Networks.
Network performance is determined by the ratio of the number of
functional demand nodes to the total number of demand nodes of
each network. The resilience of the interdependent networks is

Fig. 4 System performance over time (adapted from Ref. [44])
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calculated as the weighted average of the resilience of individual
networks

R tð Þ ¼
XK

k¼1

wk
nkt � nkd
nk0 � nkd

; t 2 td; tfð Þ (8)

In Eq. (8), K is the number of infrastructure networks. wk is the
weight for individual network k with

PK
k¼1 ¼ 1. nkt ; n

k
d , and nk0

represent the number of functional demand nodes of network k at
time t, td, and t0, respectively.

As a network component in real-world ICIs can lose functional-
ity due to (i) direct physical damage caused by the disruptive
event or (ii) loss of necessary supply from the components of
other networks, the following definitions are proposed to differen-
tiate between the two cases.

DEFINITION 2. A network component is operable if the physical
entity represented by the component is not damaged by the disrup-
tive event.

DEFINITION 3. A network component is functional if the compo-
nent is operable and can receive supply from other components to
maintain functionality.

In a single network, we assume that an operable demand node
is functional as long as it is connected to a functional supply node
according to the two definitions, so the functionality of a demand
node can be evaluated using shortest path algorithms, such as
Dijkstra’s algorithm [51], and Floyd-Warshall algorithm [52]. The
Floyd-Warshall algorithm is used in this study because it can find
the shortest path between all pairs of nodes simultaneously. How-
ever, in interdependent networks, the functional supply node in an
individual network, for example, G1, must also be connected to a
demand node in the other network G2, as shown in Fig. 1. The fol-
lowing theorem shows the conditions that must be satisfied for a
node to be functional in interdependent networks (the proof is pro-
vided in the Appendix).

THEOREM 1. In undirected interdependent networks represented
by the underlying graph G, a demand node v is functional if v is
contained in an operable cycle that consists of at least one inter-
dependency link or if v is connected to such a cycle.

Based on this sufficient condition, a key step to determine the
functionality of a node is to detect functional cycles in the interde-
pendent networks. Building on the depth first search (DFS) [53]
algorithm for detecting cycles in graphs and the Floyd-Warshall
algorithm for checking connectivity, the steps for detecting the
functional nodes in interdependent networks are provided in
Algorithm 2.

Algorithm 2 Identification of functional nodes

Input: Adjacency matrix A of the interdependent networks
Output: An array that contains the identity (ID) of functional nodes
1 Apply DFS to detect cycles.

2: Select cycles that contain at least one interdependency link (The start
node and end node belong to different individual networks).

3: Apply Floyd-Warshall algorithm to find the distance from all nodes
to the nodes contained in the selected cycles.

4: If the distance value is greater than zero, then the corresponding node
is functional; otherwise, the node is not functional.

Once the functional nodes are detected, the resilience of the
interdependent networks at time t is obtained using Eq. (8). Con-
sidering the uncertainty of interdependency links and the failure
of network components, the process for assessing the resilience of
interdependent networks is proposed as follows:

(1) Import data on the interdependent networks, including the
adjacency matrix, distance between nodes (normalized),
population of the census tract where each node is located
(normalized), and SoVI, among others.

(2) Estimate interdependency links based on Eq. (4).

(3) Draw samples of interdependency links according to their
respective probabilities.

(4) Define disruption scenario and calculate the disruption
intensity at the site of each network component.

(5) Calculate failure probability of each network component
(including the estimated interdependency links) using
empirical equations from HAZUS, a standardized method-
ology provided by the Federal Emergency Management
Agency (FEMA) to estimate potential losses from multiple
types of hazards [54]. For simplicity, components are
assumed to be inoperable once they are damaged, i.e., par-
tial functionality is not considered.

(6) Generate a sufficient number of network configurations,
i.e., the possible network topology after the damage of a
subset of components by the disruptive event e according
to different probabilities. The randomness of the network
configurations can be modeled by first comparing a random
vector u (u � Uð0; 1Þ) to the vector containing the failure
probability of each component, and then, if the failure prob-
ability of a certain component is greater than the random
number drawn from U(0, 1), the component is assumed to
be inoperable.

(7) Generate new interdependency links if the links or nodes
on the interdependency links are damaged. New interde-
pendency links are considered to account for the interde-
pendency that emerges in the aftermath of the disruption.

(8) Rank components based on the static ranking or dynamic
ranking (Algorithm 1).

(9) Restore one component and record resilience at each time
step t.

4 Case Study

4.1 Data. The system of two interdependent power and water
networks shown in Fig. 5 is used to illustrate the proposed model
in this study. The water distribution network includes six elevated
storage tanks, nine pumping stations, 34 intermediate delivery
nodes, and 71 water pipes while the power network (modified
from Ref. [55]) consists of 14 gate stations, {23} 23-kV substa-
tions, and {22} 12-kV substations, respectively. Gate stations and
pumping stations are considered to be the supply facilities, 23-kV
substations, and storage tanks as transmission facilities, and
12-kV substations and intermediate delivery nodes as demand
facilities. It should be noted that intermediate delivery nodes are
the intersection points of water pipes and they are assumed to be
undamaged after earthquakes since there do not exist large-scale
facilities at the site of these nodes. In this study, physical interde-
pendency is considered since pumping stations rely on the 12-kV
substations for power supply [56] while the gate stations require
clean water to generate high-pressure steam to drive the turbines.
Note that the power stations may rely on the river nearby instead
of the water distribution network for water to be used for cooling
purposes [22].

Data on the population and SoVI at the census tract level where
each node of the interdependent networks is located are publicly
available through the Census Bureau [57] and Centers for Disease
Control and Prevention [58], respectively.

4.2 Disruption Intensity and Component Fragility. The
disruptive event considered in this case study is a hypothetical
earthquake. An earthquake centered at ð35:3N; 90:3WÞ (the max-
imum probable earthquake [59]) is used to calculate the seismic
intensity at the site of each component. In calculating the failure
probability of each component given the earthquake scenario, the
fragility curve of power and water network facilities under earth-
quakes is adapted from HAZUS. In HAZUS, five damage states
are defined: none (ds1), minor (ds2), moderate (ds3), extensive
(ds4), and complete (ds5). Each damage state corresponds to one
component fragility curve. This case study adopts the damage
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state ds5. More details on the determination of seismic intensities
at the site of network components and the failure probability of
components can be found in the Earthquake Model Technical
Manual [60]. Components of the power network are assumed to
respond in a similar way as water network to seismic events. This
assumption can be relaxed when data about the fragility of power
network components become available.

4.3 Interdependency Links. The estimated parameters of the
probabilistic model for interdependency links from Eq. (4) are
b0 ¼ 0; b1 ¼ 0:5; b2 ¼ b3 ¼ 0:25; a ¼ 0:01. For one particular
node in each network, the probabilities of interdependency links
between this node and components from the other network are
shown in Figs. 6 and 7. Specifically, the likelihood of an interde-
pendency link is described by the probability using the estimation
model from Eq. (4) under two scenarios. The first scenario only
considers the physical interdependence by including the distance
as the sole predictor, while the second scenario incorporates social
aspects such as population and SoVI besides the distance. It is
noted that the interdependency links with the highest probability
of occurrence are different under the two scenarios, especially in
Fig. 7 where the two rankings of power nodes are entirely differ-
ent. In addition, the distribution for these probabilities of all possi-
ble links becomes a bit flatter when social aspects are considered.
The reason is that the ranking of nodes based on the population or
SoVI is strikingly different from that based on the distance. The
change in the probability of interdependency links after including
the social attributes indicates that the social aspects do not differ-
entiate between possible interdependency links like the geographi-
cal distance does. Collecting additional information allows for a
more comprehensive model with additional predictors to identify
the contributing factors to the existence of an interdependency
link.

4.4 Resilience Assessment. Without loss of generality, this
study assumes that the water network and power network weigh
equally in calculating the resilience of the interdependent net-
works, thus wk ¼ ð1=2Þ with K¼ 2. Due to the probabilistic

failure of network components, each of the possible network
structures generated by each estimation of interdependency links
can have a myriad of new network structures at time td after the
disruption. To characterize the randomness in the network struc-
ture at time td, 100 simulation runs are used to obtain the mean
value and the range of resilience for each potential scenario of
interdependency links between the networks. During the recovery
process, it is assumed that one component can be restored at each
time-step, which can be modified to represent other possible resto-
ration strategies. The resilience curves from the disrupted stage to
the new stable stage under different seismic intensities (Fig. 8)
show the response of different network structures to the same dis-
ruptive event.

Throughout the recovery process, the mean value, lower bound,
and upper bound of resilience based on dynamic ranking are
greater than or equal to those based on static ranking. Dynamic
ranking yields a more rapid recovery process and improved resil-
ience in the early stage of restoration. Further, the overall range
under the static ranking approach is much larger than the dynamic
ranking approach. This outcome suggests that accounting for the
dynamic nature of interdependencies by updating the ranking of
components at each time-step given the new configuration of the
network is critical to improving the resilience of these systems.

5 Discussion

Interdependencies between infrastructure networks not only
lead to cascading failures but also impact the recovery process.
Failure to fully capture interdependencies can lead to inaccurate
estimation of the resilience, which would mislead utility managers
in making suboptimal restoration plans that would result in
increased disruption duration and subsequently higher repair costs
[29,61]. These interdependency links are uncertain and can
change over time in response to disruption, restoration activities,
and reconfiguration of infrastructure networks. As such, modeling
the resilience of ICIs should account for the inherent uncertainty
and dynamic behavior of interdependency links after a disruption.
The outcome of this work is a data-driven stochastic method that
estimates the likelihood that an interdependency link exists based

Fig. 5 Interdependent water and power networks of Shelby County, TN
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on the behavior of the networks after a disruption. The calculation
of the probability of an interdependency link incorporates multiple
predictors describing geographic proximity, physical connection,
and social impact. It is therefore possible to predict how interde-
pendency links emerge and disappear during and after a disrup-
tion. Given this additional information on infrastructure network
behavior, restoration strategies can be adapted in real time follow-
ing a dynamic ranking process for the most important

components. In addition, this approach provides the ability to
identify factors that impact the existence and strength of an inter-
dependency link. This work expands on existing studies of ICIs
where only geographic and physical interdependence are consid-
ered [21–23]. For example, the incorporation of SoVI in the esti-
mation of interdependency links and consequent dynamic ranking
of components significantly improves the resilience of ICIs by
decreasing the restoration time after a disruption. The restoration

Fig. 6 Probability of interdependency links between water nodes and gate stations: (a) with population and SoVI
and (b) without population and SoVI

Fig. 7 Probability of interdependency links between power nodes and pumping stations: (a) with popu-
lation and SoVI and (b) without population and SoVI
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activities in this case are informed by the updated prioritization of
components based on the needs of the communities measured
here by SoVI.

The approach presented in this paper is flexible that it can be
generalized to other types of ICIs and the probability of interde-
pendency links can incorporate additional and different factors
and variables. For example, in order to capture other sources of
uncertainty such as the success of the restoration or secondary
failures, the probability of an interdependency link or the reconfi-
guration of the networks can be dependent on stochastic variables
describing these phenomena.

A limitation of this approach is that topology-based metrics for
resilience provide a basic understanding of the dynamics of ICIs
after disruptive events. Future work will consider building a full
network flow model for a more accurate representation of the per-
formance and behavior of ICI after a disruption under uncertainty.
Additionally, incorporating more nodal attributes in the probabil-
istic model for estimating interdependency links will help with the
interpretation of the model.

6 Conclusion

This paper presents a new approach founded in stochastic block
models to capture the uncertainty associated with interdependency
links of ICIs. A case study using real-world data evaluates the
interdependent water and power networks of Shelby County, TN.
The results show that estimation of the presence of interdepend-
ency links based on distance between network components can be
significantly different from the estimation based on distance, pop-
ulation, and SoVI. This work demonstrates the importance of
evaluating uncertain interdependency links by comparing two res-
toration strategies, one based on dynamic ranking given updates
on the dynamic behavior of interdependencies and the other is
static. The recovery based on dynamic component importance
ranking results in faster restoration and improved resilience.
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Appendix: Proof of the Theorem

DEFINITION 4 (Functional path and functional cycle). A path or
cycle is operable if all the nodes and edges they contain are
operable.

Proof of Theorem 1. For the sake of contradiction, assume that
a demand node vx of G1 can be functional even if (a) no operable
cycles that contain interdependency links exist in G, or (b) the

Fig. 8 Resilience curves with lower/upper bounds under different seismic intensities: (a) magnitude5 5.0, (b)
magnitude56.0, (c) magnitude5 7.0, and (d) magnitude5 8.0

Fig. 9 Assumed functional longest path in interdependent net-
works without cycles
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demand node is neither a part of nor connected to such a cycle. In
case (a), since vx is functional, there must exist an operable path
from vx to a supply node in G1. Let P be the longest functional
path that starts from vx. Since vx is functional, the supply node
closest to vx in G1 must be adjacent to a functional demand node
in G2. Following this logic, P must be made up of D–T–S paths
that connect a demand node, transmission node, and supply node
by sequence, such as P1;P2;…;Pn in Fig. 9. Note that by defini-
tion, repeated nodes are not allowed in P otherwise a cycle will be
complete. Let vy be the endpoint of the last D–T–S path in P.
Because vy is the endpoint, it does not receive supply from the
demand node of another network, so vy is not functional, contra-
dicting that P is functional. In case (b), suppose a functional
demand vx is connected to some supply node vz in G1 and vz is not
part of any cycle that consists of an interdependency link. Using
the same logic of case (a), vz will not be functional, leading to a
contradiction. �
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