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AMoritaCancellationProblem

D.-M.Lu,Q.-S.Wu,andJ.J.Zhang

Abstract.WestudyaMorita-equivalentversionoftheZariskicancellationproblem.

1Introduction

AnalgebraAiscalledcancellativeifanyalgebraisomorphismA[t]≅B[t]ofpoly-
nomialalgebrasforsomealgebraBimpliesthatAisisomorphictoB.hefamous
ZariskiCancellationProblem(ZCP)asks

Isthecommutativepolynomialringk[x1,...,xn]overafeldkcancellativefor
n≥Ë?

See[Kr,BZË,Guq].hereisalonghistoryofstudyingthecancellationproperty
ofaõnecommutativedomains.Forexample,k[x1]iscancellativebyaresultof
Abhyankar,Eakin,andHeinzerinË™8…[AEH],whilek[x1,x2]iscancellativebya
resultofFujitainË™8™[Fu]andMiyanishiandSugieinË™Ç̈[MS]incharacteristic
zero,andbyaresultofRussellinË™ÇË[Ru]inpositivecharacteristic.heZCPfor
n≥qhasbeenopenformanyyears.Oneremarkableachievementinthisresearch
areaisaresultofGuptain…̈Ë [GuË,Gu…],whichsettledtheZCPnegativelyinpos-
itivecharacteristicforn≥q.heZCPincharacteristiczeroremainsopenforn≥q.
heZCP(especiallyindimensiontwo)iscloselyrelatedtotheAutomorphism

Problem,theCharacterizationProblem,theLinearizationProblem,theEmbedding
Problem,andtheJacobianConjecture;see[Kr,EH,Guq,BZË]forhistory,partialre-
sultsandreferencesconcerningthecancellationproblem.
heZCPfornoncommutativealgebraswasintroducedin[BZË]andfurtherin-

vestigatedin[LWZ].Duringthelastfewyears,severalresearchershavebeenmaking
signiÿcantcontributionstothecancellationprobleminthenoncommutativesetting
andrelatedtopics;see,forexample,[BZË,BZ…,BY,CPWZË,CPWZ…,CYZË,CYZ…,Ga,
GKM,GWY,LY,LWZ,LMZ,NTY,TaË,Ta…,WZ].
heÿrstgoalofthispaperistheintroductionofanewcancellationpropertyfor

noncommutativealgebras.Letkbeabaseÿeld;inthesequel,everythingisoverk.
ForanyalgebraA,letM(A)denotethecategoryofrightA-modules.
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Deûnition 1.1 An algebra A is called Morita cancellative if for any algebra B,

M(A[t]) is equivalent to M(B[t])

implies that
M(A) is equivalent to M(B).

h is Morita version of the cancellation property is one of the natural generaliza-
tions of the original Zariski cancellation property when we study noncommutative
algebras. Another generalization involves the derived category of modules. Let D(A)
denote the derived category of right A-modules for an algebra A.

Deûnition 1.2 An algebra A is called derived cancellative if for any algebra B,

D(A[t]) is triangulated equivalent to D(B[t])

implies that
D(A) is triangulated equivalent to D(B).

We will show [h eorem Ë.8] that if Z is a commutative domain, then

Z is Morita cancellative if and only if Z is cancellative

and
Z is derived cancellative if and only if Z is cancellative.

In general, whenA is noncommutative, the relationships between these three diòerent
versions of cancellation property are not clear. Lemma …. (together with Example ….þ)
provides noncommutative algebras that are neither cancellative, nor Morita cancella-
tive, nor derived cancellative. We will introduce some general methods to handle the
Morita cancellation problems for noncommutative algebras.

h e second aim of the paper is to show several classes of algebras are Morita
(or derived) cancellative. First, we generalize a result of [LWZ, h eorem ¨.…].

heorem 1.3 Suppose A is strongly Hopûan (Deûnition  . …) and the center of A is
artinian. hen A is Morita cancellative.

Note that le� (or right) noetherian algebras and locally ÿnite N-graded algebras
are strongly Hopÿan [Example  . þ]. So h eorem Ë.q covers a large class of algebras.
h e following are consequences of the above theorem; see also [LWZ, Corollary ¨.q
and h eorem ¨. ] for comparison.

heorem 1.4 Let A be a le� (or right) noetherian algebra such that its center is ar-
tinian.hen A isMorita cancellative.As a consequence, every ûnite dimensional algebra
over a base ûeld k is Morita cancellative.

For non-noetherian algebras we have the following theorem.

heorem 1.5 For every ûnite quiver Q, the path algebra kQ is Morita cancellative.
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Recall from [BZË, h eorem ¨.þ] that, if A is an aõ ne domain of GK-dimension
two over an algebraically closed ÿeld of characteristic zero and A is not commutative,
then A is cancellative. It is well-known that, in contrast, noncommutative aõ ne prime
(non-domain) algebras of GK-dimension two need not be cancellative [LWZ, Exam-
ple Ë.q(þ)] and that commutative aõ ne domains of GK-dimension two need not be
cancellative, by examples of Hochster [Ho] and Danielewski [Da]; see Example ….þ(i)
and (ii). For GK-dimension one, a classical result of Abhyankar, Eakin, and Heinzer
[AEH, h eorem q.q] says that every aõ ne commutative domain of GK-dimension
one is cancellative. Recently, it was proved that every aõ ne prime k-algebra of
GK-dimension one is cancellative. Next we add another result in low GK-dimension.

heorem 1.6 Let k be algebraically closed. hen every aõne prime k-algebra of
GK-dimension one is Morita cancellative.

We are mainly dealing with the Morita cancellation property in this paper, but
occasionally, we have some results concerning the derived cancellation property, such
as the next result.

heorem 1.7 (Corollary Ç.…) Let Z be a commutative domain. hen Z is cancellative
if and only if Z is Morita cancellative, if and only if Z is derived cancellative.

A question in [LWZ, Question þ. ( q)] asks if the Sklyanin algebras are cancellative.
We partially answer this question.

Corollary 1.8 (Example B.Ë̈ (…)) Let Abe a non-PI Sklyanin algebra of global dimen-
sion three. hen A is both cancellative andMorita cancellative.

h e paper is organized as follows. Section …contains deÿnitions, known exam-
ples, and preliminaries. In Sections q and  , we introduce the Morita version of the
retractable and detectable properties. In Section þ, we prove h eorems Ë.q and Ë. .
h eorems Ë.B and Ë.8 are proved in Section B and Section 8, respectively. h e derived
cancellation property is brie�y studied in Section Ç. Section Çalso contains some com-
ments, remarks, and examples.

2 Definitions and Preliminaries

Some deÿnitions and examples are copied from [BZË,LWZ]. First, we recall a classical
deÿnition. Let A[t] (or A[s]) be the polynomial algebra over A by adding one central
indeterminate.

Deûnition 2.1 Let A be an algebra.
(i) We call A cancellative if any algebra isomorphism A[t] ≅ B[s] implies that

A ≅ B.
(ii) We call A strongly cancellative if, for each n ≥ Ë, any algebra isomorphism

A[t1 , . . . , tn] ≅ B[s1 , . . . , sn]

implies that A ≅ B.
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h e following are two new cancellation properties that we will study in this paper.

Deûnition 2.2 Let A be an algebra.
(i) We call A m-cancellative if any equivalence of abelian categories M(A[t]) ≅

M(B[s]) implies that M(A) ≅ M(B).
(ii) We call A strongly m-cancellative if, for each n ≥ Ë, any equivalence of abelian

categories
M(A[t1 , . . . , tn]) ≅ M(B[s1 , . . . , sn])

implies that M(A) ≅ M(B).
h e letter m here stands for the word “Morita”.

Deûnition 2.3 Let A be an algebra.
(i) We call A d-cancellative if any equivalence of triangulated categories

D(A[t]) ≅ D(B[s])

implies that D(A) ≅ D(B).
(ii) We call A strongly d-cancellative if, for each n ≥ Ë, any equivalence of triangu-

lated categories
D(A[t1 , . . . , tn]) ≅ D(B[s1 , . . . , sn])

implies that D(A) ≅ D(B).
h e letter d here stands for the word “derived”.

Let A[t] denote the polynomial algebra A[t1 , . . . , tn] and A[s] the polynomial al-
gebra A[s1 , . . . , sn] for an integer n (that is not speciÿed) when no confusion occurs.

Lemma 2.4 Let A be a commutative algebra that is not (strongly) cancellative. Let B
be an algebra with center Z(B) = k. hen A⊗ B is neither (strongly) cancellative, nor
(strongly) m-cancellative, nor (strongly) d-cancellative.

Proof Since A is not (strongly) cancellative, there is a commutative algebra C such
that A is not isomorphic to C, but A[t1 , . . . , tn] ≅ C[s1 , . . . , sn] for n = Ë(or some
n ≥ Ë).h en A⊗ B[t] ≅ C ⊗ B[s]. As a consequence, we obtain that

M(A⊗ B[t]) ≅ M(C ⊗ B[s]) and D(A⊗ B[t]) ≅ D(C ⊗ B[s]) .

Since the center Z(A⊗ B) = A is not isomorphic to Z(C ⊗ B) = C, we obtain that
M(A⊗ B) ≇ M(C ⊗ B) and that D(A⊗ B) ≇ D(C ⊗ B). h erefore, the assertions
follow. ∎

Next we give some precise examples of non-cancellative commutative algebras.
h e above lemma gives an easy way of producing non-cancellative noncommutative
algebras.

Example 2.5 (i) Let k be the ÿeld of real numbers R. Hochster showed that
k[P, Q , X ,Y , Z]/(X2 + Y 2 + Z2 − Ë) is not cancellative [Ho].

(ii) h e following example is due to Danielewski [Da]. Let n ≥ Ëand let Bn be
the coordinate ring of the surface xn y = z2 − Ëover k ∶= C. h en B i /≅ B j if i ≠ j,
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but B i[t] ≅ B j[s] for all i , j ≥ Ë; see [Fi, Wi] for more details. h erefore, all the Bn ’s
are not cancellative.

(iii) Suppose chark > ¨. Gupta showed that k[x1 , . . . , xn] is not cancellative for
every n ≥ q [GuË, Gu…].

As a consequence of Lemma …. (by taking B = k), the algebras above are neither
m-cancellative nor d-cancellative.

We also need to recall higher derivations and Makar–Limanov invariants.

Deûnition 2.6 Let A be an algebra.
(i) [HS] A higher derivation (or Hasse–Schmidt derivation) on A is a sequence of

k-linear endomorphisms ∂ ∶= {∂ i}
∞
i=0 such that:

∂0 = idA and ∂n(ab) =
n

∑
i=0

∂ i(a)∂n−i(b)

for all a, b ∈ A and all n ≥ ¨. h e collection of all higher derivations on A is denoted
by DerH(A).

(ii) A higher derivation is called locally nilpotent if
(a) given any a ∈ A there exists n ≥ Ësuch that ∂ i(a) = ¨ for all i ≥ n,
(b) the map

G∂ ,t ∶ A[t]Ð→ A[t]
deÿned by

a z→
∞
∑
i=0

∂ i(a)t i for all a ∈ A and t z→ t

is an algebra automorphism of A[t].
(iii) For any ∂ ∈ DerH(A), the kernel of ∂ is deÿned to be

ker ∂ =⋂
i≥1

ker ∂ i .

(iv) h e set of locally nilpotent higher derivations is denoted by LNDH(A). Given
a nonzero element d ∈ A, let

LNDH
d (A) = {∂ ∈ LNDH

(A) ∣ d ∈ ker ∂}.

Note that (a) in part (ii) of the above deÿnition implies that the map G∂ ,t deÿned
in (b) is an algebra endomorphism. It is not clear to us whether G∂ ,t is automatically
an automorphism. However, by [BZË, Lemma ….…(…)], when ∂ is an iterative higher
derivation, G∂ ,t is automatically an automorphism.

It is easy to see that Ë ∈ ker ∂ for all higher derivations ∂. Hence, LNDH
1 (A) =

LNDH(A). We generalize the original deÿnition of the Makar–Limanov invariant
[Mak].

Deûnition 2.7 Let A be an algebra and d a nonzero element in A.
(i) h e Makar-LimanovHd invariant of A is deÿned to be

(EË.8.Ë) MLH
d (A) ∶= ⋂

δ∈LNDH
d (A)

ker(δ).
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(ii) We say that A is LNDH
d -rigid if MLH

d (A) = A.
(iii) A is called strongly LNDH

d -rigid if MLH
d (A[t1 , . . . , tn]) = A, for all n ≥ Ë.

(iv) h e Makar–LimanovHd center of A is deÿned to be

MLH
d ,Z(A) = MLH

d (A) ∩ Z(A).

(v) A is called strongly LNDH
d ,Z-rigid if MLH

d ,Z(A[t1 , . . . , tn]) = Z(A), for all n ≥ Ë.

3 Morita Invariant Properties and the P-discriminant

In this section we will recall some well-known facts about Morita equivalence. Two
algebras A and B are Morita equivalent if their right module categories M(A) and
M(B) are equivalent. We list some properties concerning Morita theory.

Lemma 3.1 ([AF, Ch. B]) Let A and B be two algebras that areMorita equivalent.
(i) here is an (A, B)-bimodule Ä that is invertible, namely, Ä ⊗B Ä∨ ≅ A and

Ä∨ ⊗A Ä ≅ B as bimodules, where Ä∨ ∶= HomB(ÄB , BB).
(ii) he bimodule Ä induces naturally algebra isomorphisms A ≅ End(ÄB) and

Bop ≅ End(AÄ).
(iii) Further, Z(A) ≅ Hom(A,B)(Ä, Ä) ≅ Z(B), which induces an isomorphism

(E….Ë.Ë) ω ∶ Z(A)Ð→ Z(B)

such that, for each x ∈ Z(A), the le� multiplication of x on Ä equals the right multipli-
cation of ω(x) on Ä .

(iv) By using ω to identify the center Z = Z(A) of Awith the center of B, both Aand
B are central Z-algebras. In this case, both Ä and Ä∨ are central Z-modules.

(v) Let ω be given as in (E….Ë.Ë). hen, for any ideal I of Z(A), A/IA and B/ω(I)B
areMorita equivalent.

(vi) [AF, Ex.™, p.…B8] Let A, B, T be K-algebra for some commutative ring K. hen
A⊗K T and B ⊗K T areMorita equivalent.

Morita equivalences have been studied extensively for decades. A ring theoretic
property is called a Morita invariant if it is preserved by Morita equivalences.

Example 3.2 h e following properties are Morita invariants:
(i) being simple (resp., semisimple);
(ii) being right (or le�) noetherian, right (or le�) artinian;
(iii) having global dimension d (Krull dimension d, GK-dimension d, etc);
(iv) being a full matrix algebra Mn(k) for some n, when k is algebraically closed;
(v) being an Azumaya algebra [Sc, h eorem  ];
(vi) being quasi-Frobenius;
(vii) being prime, semiprime, right (or le�) primitive, semiprimitive;
(viii) being semilocal;
(ix) being primitive, but not simple;
(x) being noetherian, but not artinian;
(xi) the center being k;
(xii) being projective over its center.
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Let R be a commutative algebra, Spec R be the prime spectrum of R and
MaxSpec(R) ∶= {m ∣ m is a maximal ideal of R} be the maximal spectrum of R. For
any S ⊆ Spec R, I(S) is the ideal of R vanishing on S, namely,

I(S) = ⋂
p∈S

p.

For any algebra A, A× denotes the set of invertible elements in A.
A property P considered in the following means a property deÿned on a class of

algebras that is an invariant under algebra isomorphisms.

Deûnition 3.3 Let Abe an algebra, Z = Z(A) be the center of A. LetP be a property
deÿned for k-algebras (not necessarily a Morita invariant).

(i) h e P-locus of A is deÿned to be

LP(A) ∶= {m ∈ MaxSpec(Z) ∣ A/mA has property P}.

(ii) h e P-discriminant set of A is deÿned to be

DP(A) ∶= MaxSpec(Z) ∖ LP(A).

(iii) h e P-discriminant ideal of A is deÿned to be

IP(A) ∶= I(DP(A)) ⊆ Z .

(iv) If IP(A) is a principal ideal of Z generated by d ∈ Z, then d is called the
P-discriminant of A, denoted by dP(A). In this case dP(A) is unique up to an element
in Z×.

(v) Let C be a class of algebras over k. We say that P is C-stable if for every algebra
A in C and every n ≥ Ë,

IP(A⊗ k[t1 , . . . , tn]) = IP(A)⊗ k[t1 , . . . , tn]

as an ideal of Z ⊗ k[t1 , . . . , tn]. If C is a singleton {A}, we simply call P A-stable. If
C is the whole collection of k-algebras with the center aõ ne over k, we simply call P
stable.

In general, neither LP(A) nor DP(A) is a subscheme of Spec Z(A).

Example 3.4 Supposek = C. LetAbe the universal enveloping algebra of the simple
Lie algebra sl2. It is well known that Z(A) = k[Q], where Q = …(e f + f e) + h2.

Let S be the property of being simple. h en DS(A) is the set of integer points of
the form {n2 + …n ∣ n ∈ N} inside the MaxSpeck[Q]; see [Di] or [Sm, p. ™Ç]. In this
case, the S-discriminant ideal of A is the zero ideal of k[Q] and the S-discriminant
of A is the element ¨ ∈ k[Q].

Note from [Di] or [Sm, p. ™Ç]that for each c = n2 +…n, A/(Q − c)A has a unique
proper two-sided ideal Mc and Mc is of codimension (n+Ë)2. Let Pn be the property
of not having a factor ring isomorphic to the matrix algebra Mn+1(k). h enDPn(A) is
the singleton {n2+…n}, as a subset of DS(A). As a consequence, the Pn-discriminant
ideal of A is (Q − (n2 + …n)) ⊆ k[Q] and the Pn-discriminant of A is the element
Q − (n2 +…n) ∈ k[Q].

It is clear that S is a Morita invariant, but Pn is not for each ÿxed n.
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Lemma 3.5 Let P be a property.
(i) Suppose ϕ ∶ A→ B is an isomorphism. hen ϕ preserves the following:

(a) P-locus;
(b) P-discriminant set;
(c) P-discriminant ideal;
(d) P-discriminant (if it exists).

(ii) Suppose that P is a Morita invariant and that A and B are Morita equivalent.
hen the algebramap ω in (E….Ë.Ë) preserves the following:
(a) P-locus;
(b) P-discriminant set;
(c) P-discriminant ideal;
(d) P-discriminant (if it exists).

Proof (i) h is is clear.
(ii) h is follows from the deÿnition, Lemma q.Ë(v) and the hypothesis that P is a

Morita invariant. ∎

In this and the next sections we study two properties that are closely related to the
m-cancellative property. h e retractable property was introduced in [LWZ, Deÿni-
tions ….Ëand ….þ]. Next we generalize Z-retractability to the Morita setting.

Deûnition 3.6 Let A be an algebra.
(i) [LWZ, Deÿnition ….þ(Ë)] We callAZ-retractable, if for any algebra B, an algebra

isomorphism ϕ ∶ A[t] ≅ B[s] implies that ϕ(Z(A)) = Z(B).
(ii) [LWZ, Deÿnition ….þ(…)] We call A strongly Z-retractable, if for any algebra B

and integer n ≥ Ë, an algebra isomorphism ϕ ∶ A[t1 , . . . , tn] ≅ B[s1 , . . . , sn] implies
that ϕ(Z(A)) = Z(B).

(iii) We call A m-Z-retractable if, for any algebra B, an equivalence of categories
M(A[t]) ≅ M(B[s]) implies that ω(Z(A)) = Z(B), where ω ∶ Z(A)[t] → Z(B)[s]
is given as in (E….Ë.Ë).

(iv) We call A strongly m-Z-retractable if, for any algebra B and n ≥ Ë, an equiva-
lence of categories M(A[t1 , . . . , tn])≅M(B[s1 , . . . , sn]) implies that ω(Z(A))= Z(B),
where ω ∶ Z(A)[t1 , . . . , tn]→ Z(B)[s1 , . . . , sn] is given as in (E….Ë.Ë).

h e following proposition is similar to [LWZ, Lemma ….B].

Proposition 3.7 Let A be an algebra whose center Z ∶= Z(A) is an aõne domain.
Let P be a stableMorita invariant property (resp., stable property) and assume that the
P-discriminant of A, denoted by d, exists.

(i) Suppose MLH
d (Z[t]) = Z. hen A is m-Z-retractable (resp., Z-retractable).

(ii) Suppose that Z is stronglyLNDH
d -rigid.henA is stronglym-Z-retractable (resp.,

strongly Z-retractable).

Proof h e proofs of (i) and (ii) are similar, so we prove only (ii). We only work on
the strongly m-Z-retractable version; the strongly Z-retractable version is similar.
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Suppose that A[t1 , . . . , tn] is Morita equivalent to B[s1 , . . . , sn] for some algebra B
and for some n ≥ Ë.Let ω ∶ Z⊗k[t]→ Z(B)⊗k[s] be the map given in (E….Ë.Ë). Since
P is stable, dP(A[t]) = d ⊗ Ë, where Ëis the identity element of the polynomial ring
k[t]. In other words, the principal ideal (d ⊗ Ë) is the P-discriminant ideal of A[t].
Since ω preserves the discriminant ideal [Lemma q.þ(…c)] and P is stable, we obtain
that

(E….8.Ë) ω((d ⊗Ë)) = ω((d)⊗k[t]) = ω(IP(A[t])) = IP(B[s]) = IP(B)⊗k[s].

As a consequence, IP(B) is a principal ideal, denoted by (d′), where d′ is the
P-discriminant of B. Equation (E….8.Ë) implies that

ω(d ⊗ Ë) =Z(B[s])× d′ ⊗ Ë′ ,

where Ë′ is the identity element of the polynomial ring k[s]. Since Z(B) is a domain,
Z(B[s])× = Z(B)×. Hence ω maps d to d′ up to a scalar in Z(B)×.

Now consider the map ω ∶ Z ⊗ k[t] → Z(B) ⊗ k[s] again. Since ω maps d to d′,
by the strongly LNDH

d -rigidity of Z, we have

ω(Z) = ω(MLH
d (Z ⊗ k[t])) = MLH

d′(Z(B)⊗ k[s]) ⊆ Z(B),

where the last⊆ follows from the computation given in [BZË, Example …. ]. h is means
that the isomorphism ω induces an algebra map from Z to Z(B). Let Z′ be the subal-
gebra ω−1(Z(B)) ⊂ Z[t]. h en Z′ contains Z, which is considered as the degree zero
part of the algebra Z[t], and we have

GKdim Z′ = GKdim Z(B) = GKdim Z(B)[s] − n = GKdim Z[t] − n
= GKdim Z .

By [BZË, Lemma q.…], Z′ = Z. h erefore, ω(Z) = Z(B) as required. ∎

h e rest of this section follows closely [LWZ, Section …]. By [BZË, Section þ], eòec-
tiveness (and the dominating property) of the discriminant controls LNDH-rigidity.
We now recall the deÿnition of the eòectiveness of an element. An algebra is called PI
if it satisÿes a polynomial identity.

Next we will use ÿltered algebras and associated graded algebras; see [YZ…, Sec-
tion Ë] for more details. By a ÿltration of a k-algebra A, we mean an ascending ÿltra-
tion F ∶= {FiA}i≥0 of vector spaces such that Ë ∈ F0A and FiAF jA ⊆ Fi+ jA for all
i , j ≥ ¨. We assume that F is (separated and) exhaustive. By [YZ…, Lemma Ë.Ë], giving
a ÿltration on an algebra A is equivalent to giving a degree on the set of generators
of A.

Deûnition 3.8 ([BZË, Deÿnition þ.Ë]) LetAbe a domain and suppose thatY=⊕n
i=1kx i

generates A as an algebra. An element ¨ ≠ f ∈ A is called eòective if the following
conditions hold.

(i) h ere is anN-ÿltration {FiA}i≥0 on A such that the associated graded ring grA
is a domain (one possible ÿltration is the trivial ÿltration F0A = A). With this ÿltration
we deÿne the degree of elements in A, denoted by degA.

(ii) For every testing N-ÿltered PI algebra T with gr T being an N-graded domain
and for every testing subset {y1 , . . . , yn} ⊂ T satisfying the following:
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(a) it is linearly independent in the quotient k-module T/kËT , and
(b) degT y i ≥ degA x i for all i and degT y i0 > degA x i0 for some i0,
then there is a presentation of f of the form f (x1 , . . . , xn) in the free algebra
k⟨x1 , . . . , xn⟩, such that either

f (y1 , . . . , yn) = ¨ or degT f (y1 , . . . , yn) > degA f .

Here is an easy example.

Example 3.9 ([LWZ, Example ….Ç]) Every non-invertible nonzero element in k[t]
is eòective in k[t].

Other examples of eòective elements are given in [BZË, Section þ]. h ere is another
concept, called “dominating”; see [BZË, Deÿnition  . þ] or [CPWZË, Deÿnition ….Ë(…)],
that is similar to eòectiveness. Both of these properties control LNDH-rigidity. h e
following result is similar to [BZË, h eorem þ.…] and [LWZ, h eorem ….™].

heorem 3.10 If d is an eòective (resp., dominating) element in an aõne commutative
domain Z, then Z is strongly LNDH

d -rigid.

Proof Since the proofs for the “eòective” case and the “dominating” case are very
similar, we prove only the “eòective” case.

Suppose Z is generated by {x j}
m
j=1. Let ∂ ∈ LNDH

d (Z[t1 , . . . , tn]) and G ∶= G∂ ,t ∈

Autk[t](Z[t1 , . . . , tn][t]) as in Deÿnition ….B(…). h en, for each j,

G(x j) = x j +∑
i≥1

t i∂ i(x j).

Since d ∈ ker ∂, by deÿnition,

(E….Ë̈ .Ë) G(d) = d .

Recall from Deÿnition q.Çthat, when d is eòective, Z is a ÿltered algebra with degZ is
deÿned as in [YZ…, Lemma Ë.Ë]. It is clear that Z′ ∶= Z[t1 , . . . , tn] is a ÿltered algebra
with degZ′ z = degZ z for all z ∈ Z and degZ′ ts = Ëfor s = Ë, . . . , n. We take the test
algebra T to be Z[t1 , . . . , tn][t] = Z′[t], where the ÿltration on T is determined by
degT(z) = degZ(z) for all z ∈ Z, degT ts = Ëfor s = Ë, . . . , n, and degT t = α, where

α > sup{degZ′ ∂ i(x j) ∣ j = Ë, . . . , m, i ≥ ¨}.

Now set y j = G(x j) ∈ T . By the choice of α, we have that
(a) degT y j ≥ degZ x j , and that
(b) degT y j = degZ x j if and only if y j = x j .
Let f (x1 , . . . , xm) be some polynomial presentation of d as in Deÿnition q.Ç. If
G(x j) ≠ x j for some j, by the eòectiveness of d as in Deÿnition q.Ç, f (y1 , . . . , ym) = ¨
or degT f (y1 , . . . , ym) > degZ d = degT d. So f (y1 , . . . , ym) ≠Z× d. But f (y1 , . . . , ym)

= G(d) =Z× d by (E….Ë̈ .Ë), a contradiction. h erefore, G(x j) = x j for all j. As a conse-
quence, ∂ i(x j) = ¨ for all i ≥ Ë, or equivalently, x j ∈ ker ∂. Since Z is generated by x j ’s,
Z ⊂ ker ∂. h us, Z ⊆ MLH

d (Z[t1 , . . . , tn]). It is clear that Z ⊇ MLH
d (Z[t1 , . . . , tn]);

see [BZË, Example …. ]. h erefore, Z = MLH
d (Z[t1 , . . . , tn]), as required. ∎
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h e following corollary will be used several times.

Corollary 3.11 Let A be an algebra such that the center of A is k[x]. Let P be a
stableMorita invariant property (resp., stable property) such that the P-discriminant of
A, denoted by d, is a nonzero non-invertible element in Z(A) = k[x]. hen Z(A) is
strongly LNDH

d -rigid and A is strongly m-Z-retractable (resp., strongly Z-retractable).

Proof By Example q.™, d is an eòective element in Z(A). By h eorem q.Ë̈ , Z(A)
is strongly LNDH

d -rigid. By Proposition q.8(ii), A is strongly m-Z-retractable (resp.,
strongly Z-retractable). ∎

4 Morita Detectability

First, we recall the detectability introduced in [LWZ]. If B is a subring of C and
f1 , . . . , fm are elements of C, then the subring generated by B and the subset
{ f1 , . . . , fm} is denoted by B{ f1 , . . . , fm}.

Deûnition 4.1 ([LWZ, Deÿnition q.Ë]) Let A be an algebra.
(i) We call A detectable if any algebra isomorphism ϕ ∶ A[t] ≅ B[s] implies that

B[s] = B{ϕ(t)}, or equivalently, s ∈ B{ϕ(t)}.
(ii) We call A strongly detectable if for each integer n ≥ Ë, any algebra isomorphism

ϕ ∶ A[t1 , . . . , tn] ≅ B[s1 , . . . , sn]

implies that B[s1 , . . . , sn] = B{ϕ(t1), . . . , ϕ(tn)}, or equivalently, for each i = Ë, . . . , n,
s i ∈ B{ϕ(t1), . . . , ϕ(tn)}.

In the above deÿnition, we do not assume that ϕ(t) = s. Every strongly detectable
algebra is detectable. h e polynomial ring k[x] is cancellative, but not detectable. By
[LWZ, Lemma q.…], if A is Z-retractable in the sense of [LWZ, Deÿnition ….þ], then it
is detectable. We ÿrst recall a deÿnition from [LWZ, Deÿnition q. ].

Deûnition 4.2 ([LWZ, Deÿnition q. ]) Let A be an algebra over k.
(i) We say A is Hopûan if every k-algebra epimorphism from A to itself is an au-

tomorphism.
(ii) We say A is strongly Hopûan if A[t1 , . . . , tn] is Hopÿan for every n ≥ ¨.

By [LWZ, Lemma q.B], if A is detectable and strongly Hopÿan, then A is cancella-
tive. We will generalize these facts in the Morita setting. In the following deÿnition,
we use ω−1 instead of ω for technical reasons.

Deûnition 4.3 Let A be an algebra. Let ω be the map given in (E….Ë.Ë) when in a
Morita context.

(i) We call A m-detectable if any equivalence of categories M(A[t]) ≅ M(B[s])
implies that

A[t] = A{ω−1
(s)},

or equivalently, t ∈ A{ω−1(s)}.
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(ii) We call A strongly m-detectable if for each n ≥ Ë, any equivalence of categories
M(A[t1 , . . . , tn]) ≅ M(B[s1 , . . . , sn]) implies that

A[t1 , . . . , tn] = A{ω−1
(s1), . . . , ω−1

(sn)},

or equivalently, t i ∈ A{ω−1(s1), . . . , ω−1(sn)} for i = Ë, . . . , n.

h e following result is analogous to [LWZ, Lemma q.…].

Lemma 4.4 If A is m-Z-retractable (resp., strongly m-Z-retractable), then it is
m-detectable (resp., strongly m-detectable).

Proof We show only the “strongly” version.
Suppose that A is strongly m-Z-retractable. Let B be any algebra such that

the abelian categories M(A[t]) and M(B[s]) are equivalent. Since A is strongly
m-Z-retractable, the map ω ∶ Z(A)[t] → Z(B)[s] in (E….Ë.Ë) restricts to an algebra
isomorphism Z(A)→ Z(B). Write ϕ = ω−1 and f i ∶= ϕ(s i) for i = Ë, . . . , n. h en

Z(A){ f1 , . . . , fn} = ϕ(Z(B)){ϕ(s1), . . . , ϕ(sn)}
= ϕ(Z(B){s1 , . . . , sn})
= ϕ(Z(B)[s]) = Z(A)[t].

h en, for every i, t i ∈ Z(A)[t] = Z(A){ f1 , . . . , fn} ⊆ A{ f1 , . . . , fn}, as desired. ∎

Next we show that m-detectability implies m-cancellative property under some
mild conditions.

Example 4.5 ([LWZ, Lemma q.þ]) h e following algebras are strongly Hopÿan:
(i) le� or right noetherian algebras;
(ii) ÿnitely generated locally ÿnite N-graded algebras;
(iii) prime aõ ne k-algebras satisfying a polynomial identity.

Lemma 4.6 Suppose A is strongly Hopûan.
(i) If A is m-detectable, then A is m-cancellative and cancellative.
(ii) If A is stronglym-detectable, then A is stronglym-cancellative and strongly can-

cellative.

Proof We prove only (ii).
First, we consider the Morita version. Suppose thatA[t] and B[s] are Morita equiv-

alent and ω ∶ Z(A)[t] → Z(B)[s] is the algebra isomorphism given as in (E….Ë.Ë).
Write ϕ = ω−1 and f i = ϕ(s i) for i = Ë, . . . , n. h en f i are central elements in A[t].
h us, A{ f1 , . . . , fn} is a homomorphic image of A[t1 , . . . , tn] by sending t i ↦ f i .
Since A is strongly m-detectable, A{ f1 , . . . , fn} = A[t]. h en we have an algebra
homomorphism

(Eq.B.Ë) A[t]
π
Ð→ A{ f1 , . . . , fn}

=
Ð→ A[t].

Since A is strongly Hopÿan, A[t] is Hopÿan. Now (Eq.B.Ë) implies that π is an iso-
morphism. As a consequence, A{ f1 , . . . , fn} = A[ f1 , . . . , fn] viewing f i as central
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indeterminates in A[ f1 , . . . , fn]. As a consequence, A[t] = A[ f ]. Going back to the
map

ω ∶ Z(A[t]) = Z(A[ f ])Ð→ Z(B[s]),

one sees that ω maps f i to s i for i = Ë, . . . , n. Let J be the ideal of Z(A[t]) generated
by { f i}n

i=1 and J′ be the ideal of Z(B[s]) generated by {s i}n
i=1. h en J′ = ω(J). By

Lemma q.Ë(v), the algebra A (which is isomorphic to A[t]/JA) is Morita equivalent to
B (which is isomorphic to B[s]/J′B). h e assertion follows.

Next we consider the “cancellative” version. Suppose that ω′ ∶ A[t] → B[s] is an
isomorphism that restricts to an isomorphism between the centers ω ∶ Z(A)[t] →
Z(B)[s]. h en ω′ induces a (trivial) Morita equivalence, and ω is the map given in
(E….Ë.Ë). Re-use the notation introduced in the above proof. h e above proof shows
that A[t] = A[ f ], where f i = ω−1(s i) for all i. h erefore, ω′ induces an isomorphism

A ≅ A[ f ]/({ f i}n
i=1)

ω′
Ð→ B[s]/({s i}n

i=1) ≅ B,

as desired. ∎

For the rest of this section we study more properties concerning m-detectability.

Lemma 4.7 Let A be an algebra with center Z. Suppose Z is (strongly) cancellative.
(i) If Z is (strongly) detectable, then A is (strongly) m-detectable.
(ii) Z is (strongly) detectable if and only if it is (strongly) m-detectable.

Proof Following the pattern before, we prove only the “strongly” version.
(i) Suppose B is an algebra such that A[t] and B[s] are Morita equivalent. Let ω ∶

Z[t]→ Z(B)[s] be the algebra isomorphism given in (E….Ë.Ë). Since Z is strongly can-
cellative, one has that Z(B) ≅ Z. Now we have an isomorphism ω−1 ∶ Z(B)[s] ≅ Z[t].
Since Z(B) (or Z) is strongly detectable, t i ∈ Z{ω−1(s1), . . . , ω−1(sn)} for all i. h us,
t i ∈ A{ω−1(s1), . . . , ω−1(sn)} for all i. h is means that A is strongly m-detectable.

(ii) One direction is part (i). For the other direction, assume that Z is strongly
m-detectable. Consider any algebra isomorphism ϕ ∶ Z[t] → B[s]. It is clear that B
is commutative and B ≅ Z, since Z is strongly cancellative. h en ϕ induces a (trivial)
Morita equivalent, and the map ω in (E….Ë.Ë) is just ϕ. Now the strong m-detectability
of Z implies that Z is strongly detectable. ∎

h e next result is similar to [LWZ, Proposition q.Ë̈ ].

Proposition 4.8 If the center Z of A is an aõne domain of GK-dimension one that is
not isomorphic to k′[x] for some ûeld extension k′ ⊇ k, then A is stronglym-detectable.

Proof By [AEH, h eorem q.q], Z is strongly retractable and cancellative. As a conse-
quence, Z is a strongly m-Z-retractable. By Lemma  . , A is strongly m-detectable. ∎

5 Proofs of Theorems 1.3 and 1.4

In this section we will use the results in the previous sections to show some classes of
algebras are m-cancellative. We ÿrst prove h eorem Ë. .
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heorem 5.1 If A is le� (or right) noetherian, and the center of A is artinian, then A
is strongly m-detectable. As a consequence, A is strongly m-cancellative.

Proof Let Z be the center of A. h en Z is artinian by hypothesis. By [LWZ, h e-
orem  .Ë], Z is strongly detectable and strongly cancellative. By Lemma  . 8(i), A is
strongly m-detectable. By Example  . þ(i), A is strongly Hopÿan. h e consequence
follows from Lemma  . B(ii). ∎

h eorem Ë. is a special case of h eorem þ.Ë.

heorem 5.2 Let A be an algebra with strongly cancellative center Z. Suppose J is the
prime radical of Z such that (a) J is nilpotent and (b) Z/J is a ûnite direct sum of ûelds.
hen the following hold.
(i) A is strongly m-detectable.
(ii) If further A is strongly Hopûan, then A is strongly m-cancellative.

Proof (i) By the proof of [LWZ, h eorem  . …], Z is strongly detectable. By Lemma  . 8,
A is strongly m-detectable.

(ii) Follows from Lemma  . B and part (Ë). ∎

Next is h eorem Ë.q.

Corollary 5.3 Suppose A is strongly Hopûan and the center of A is artinian. hen A
is strongly m-detectable and strongly m-cancellative.

Proof Let Z be the center of A. By [LWZ, h eorem  .Ë], Z is strongly detectable and
strongly cancellative. Since Z is artinian, it satisÿes conditions (a) and (b) in h eo-
rem þ.…. h e assertion follows by h eorem þ.…. ∎

6 Proof of Theorem 1.6

We assume in this section that k is algebraically closed. Under this hypothesis, a
P-discriminant ideal has the following nice property. h is is one of the reasons we
need the above hypothesis.

Lemma 6.1 Let P be a property. hen P is stable.

Proof Let Z be the center of A. By Deÿnition q.q(v), we may assume that Z is
aõ ne and write it as k[z1 , . . . , zm]/(R), where {z1 , . . . , zm} is a generating set
of Z and R is a set of relations. Every maximal ideal of Z is of the form (z i − α i) ∶=

(z1 − α1 , . . . , zm − αm), where α i ∈ k for all i. Every maximal ideal of Z[t] is of the
form

(z i − α i , t j − β j) ∶= (z1 − α1 , . . . , zm − αm , t1 − β1 , . . . , tn − βn),
where α i , β j ∈ k. h e natural embedding Z → Z[t] induces a projection

π ∶ MaxSpec(Z[t])Ð→MaxSpec Z

by sending m ∶= (z i − α i , t j − β j) to π(m) ∶= (z i − α i).
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Let DP(A) be the P-discriminant set of A. A maximal ideal m is in DP(A[t]) if
and only if A[t]/mA[t] does not have property P. Since

A[t]/mA[t] ≅ A/π(m)A,

m ∈DP(A[t]) if and only if π(m) ∈DP(A). h is implies thatDP(A[t])=DP(A)×An .
As a consequence,

IP(A[t]) = ⋂
m∈DP(A[t])

m = ( ⋂
p∈DP(A)

p) ⊗ k[t] = IP(A)⊗ k[t].

h erefore, P is stable by Deÿnition q.q(v). ∎

Let A be an algebra with the center Z being a domain. Let τ(A/Z) be the ideal of A
consisting of elements in A that are annihilated by some nonzero element in Z. Deÿne
the annihilator ideal of Z to be

κ(A/Z) = {z ∈ Z ∣ z(τ(A/Z)) = ¨}.

Lemma 6.2 Retain the notation as above.
(i) κ is stable in the sense that κ(A[t]/Z[t]) = κ(A/Z)⊗ k[t].
(ii) If A and B are Morita equivalent, then ω maps κ(A/Z) to κ(B/Z(B)) bijec-

tively.
(iii) If A is le� noetherian and suppose the center Z is a domain, then τ(A/Z) ≠ ¨

if and only if κ(A/Z) is a proper ideal, neither Z nor 0.

Proof h is is easy to check, so details are omitted. ∎

Lemma 6.3 Suppose A is a ûnitely generated module over its center Z and Z is a
domain. If A is prime, then τ(A/Z) = ¨ .

Proof h is is easy to check, so details are omitted. ∎

Proposition 6.4 Let A be le� noetherian such that the center Z is an aõne domain
of GK-dimension one.

(i) If Z is not k[x], then A is strongly m-Z-retractable, m-detectable, and
m-cancellative.

(ii) If Z = k[x] and τ(A/Z) ≠ ¨ , then A is strongly m-Z-retractable, m-detectable,
andm-cancellative.

Proof (i) By [AEH, h eorem q.q and Corollary q. ], Z is strongly retractable. By
Deÿnition q.B(iii), A is strongly m-Z-retractable. By Lemma  . , A is strongly m-de-
tectable. Since A is le� noetherian, by Lemma  . B(ii), A is strongly m-cancellative.

(ii) Since A is le� noetherian and τ(A/Z) ≠ ¨, κ(A/Z) is a nonzero proper ideal of
k[x] by Lemma B.…(iii). So there is a nonzero non-invertible element f ∈ k[x] such
that κ(A/Z) = ( f ). By Lemma B.…(i) and (ii), κ is a stable Morita invariant property.
By replacing P by κ, Corollary q.ËËimplies that A is strongly m-Z-retractable. h e rest
of the proof is similar to the proof of part (i). ∎
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For the rest of the section we consider the case when Z = k[x] and τ(A/Z) = ¨, or
more precisely, when A is aõ ne prime PI of GK-dimension one with Z = k[x]. We
need to recall some concepts.

Let A be an aõ ne prime algebra of GK-dimension one. By a result of Small and
Warÿeld [SW], A is a ÿnitely generated module over its aõ ne center. As a conse-
quence, A is noetherian.

Let R be a commutative algebra, an R-algebra A is called Azumaya if A is a ÿnitely
generated faithful projective R-module and the canonical morphism

(Eþ. .Ë) A⊗R Aop
Ð→ EndR(A)

is an isomorphism. By [DeI, h eorem q. ], A is Azumaya if and only if A is a central
separable algebra over R. Since we assume that k is algebraically closed, we have the
following equivalent deÿnition.

Deûnition 6.5 ([BY, Introduction]) Let A be an aõ ne prime k-algebra which is
a ÿnitely generated module over its aõ ne center Z(A). Let n be the PI-degree of A,
which is also the maximal possible k-dimension of irreducible A-modules.

(i) h e Azumaya locus of A, denoted by A(A), is the dense open subset
of MaxSpec Z(A) which parametrizes the irreducible A-modules of maximal
k-dimension. In other words, m ∈ A(A) if and only if mA is the annihilator in A
of an irreducible A-module V with dimV = n, if and only if A/mA ≅ Mn(k).

(ii) If A(A) = MaxSpec Z(A), A is called Azumaya.

We can relate the Azumaya locus with the “simple”-locus. Let S be the property of
being simple.

Lemma 6.6 Assume that A is free over its aõne center Z.
(i) A[t] is free over Z[t].
(ii) A(A) = LS(A), where the latter is deûned in Deûnition q.q(i).

Proof (i) is obvious.
(ii) Since A is free over Z of rank n2, A/mA is isomorphic to Mn(k) if and only if

A/mA is simple. h e assertion follows. ∎

Proposition 6.7 Suppose that A is an aõne prime algebra ofGK-dimension onewith
center k[x].

(i) If A is not Azumaya, then A is strongly m-Z-retractable, m-detectable, and
m-cancellative.

(ii) If A is Azumaya, then A is strongly m-cancellative.

Proof (i) Since the Azumaya locus is open and dense, the non-Azumaya locus ofA is
a proper nonzero ideal of Z = k[x], which is principal. Since A is prime, τ(A/Z) = ¨
and whence A is projective and then free over Z. By Lemma B.B(ii), the Azumaya
locus of A[t] agrees with the S-locus of A[t]. Hence, S is a stable Morita invariant
property such that the S-discriminant is a nonzero non-invertible element in Z. By
Corollary q.ËË, A is strongly m-Z-retractable. h e rest of the proof follows from the
proof of Proposition B. (i).
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(ii) Since A is Azumaya, by [LWZ, Lemma  .™( q)], A = Mn(k[x]) for some integer
n ≥ Ë.If A[t] is Morita equivalent to B[s], then Z(A)[t] ≅ Z(B)[s]. Since Z(A) =

k[x] is strongly cancellative, Z(B) is also isomorphic to k[x]. If B is not Azumaya,
it follows from part (i) that A and B are Morita equivalent. If B is Azumaya, then by
[LWZ, Lemma  .™( q)], B is a matrix algebra Mn′(k[x]) for some n′ ≥ Ë, which is also
Morita equivalent to A. h erefore, A is strongly m-cancellative. ∎

Now we are ready to prove h eorem Ë.B.

heorem 6.8 Let A be an aõne prime algebra of GK-dimension one.
(i) A is strongly m-cancellative.
(ii) If either Z(A) ≠ k[x] or A is not Azumaya, then A is strongly m-Z-retractable

andm-detectable.

Proof Since we assume that k is algebraically closed in this section, by [LWZ,
Lemma  .™ ], there are three cases to consider.

Case Ë: Z(A) /≅ k[x].
Case …: Z(A) ≅ k[x] and A is not Azumaya.
Case q: Z(A) ≅ k[x] and A is Azumaya.
Applying Proposition B. (i) in Case Ë, Proposition B.8(i) in Case …and Proposi-

tion B.8(ii) in Case q, the assertion follows. ∎

It is clear that h eorem Ë.B is an immediate consequence of h eorem B.Ç. As far
as we know there are no examples of algebras with the center being an aõ ne domain
of GK-dimension one that are not m-cancellative. h erefore, we ask the following
question.

Question 6.9 Let A be a le� noetherian algebra such that Z(A) is an aõ ne domain
of GK-dimension one. h en is Am-cancellative?

We ÿnish this section with some examples of non-PI algebras that are strongly
(m-)cancellative.

Example 6.10 Let Z denote the center of the given algebra A. Assume that k has
characteristic zero.

(i) LetAbe the homogenization of the ÿrst Weyl algebra that is generated by x , y, t
subject to the relations

[x , t] = [y, t] = ¨ , [x , y] = t2 .

It is well known that the center of A is k[t]. Let S be the property of being simple.
Since m ∶= (t − ¨) is the only maximal ideal of k[t] such that A/mA is not sim-
ple, the S-discriminant dS(A) exists and equals t. By Corollary q.ËË, A is strongly
m-Z-retractable. By Lemma  . , A is strongly m-detectable. By Lemma  . B(ii), A is
both strongly cancellative and strongly m-cancellative.

(ii) Let A be a non-PI quadratic Sklyanin algebra of global dimension q. It is well
known that the center of A is k[g] where g ∈ A has degree q. We claim that A/(g − α)
is simple if and only if α ≠ ¨. If α = ¨, then A/(g) is connected graded which is not
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simple. Now assume that α ≠ ¨. It is well known that (A[g−1])0 is simple. Let T be
the qrd Veronese subring of A. h en (T[g−1])0 ≅ (A[g−1])0 is simple. Now

T/(g − α) ≅ T/(α−1g − Ë) ≅ (T[(α−1g)−1
]) 0 =

(T[g−1
]) 0 ≅

(A[g−1
]) 0 ,

where the second ≅ is due to [RSS, Lemma ….Ë]. It is clear that A/(g − α) contains
T/(g − α). Since T/(g − α) is simple and hence has no ÿnite dimensional modules,
A/(g − α) does not have ÿnite dimensional modules. Since the algebra A/(g − α) is
aõ ne of GK-dimension two, it must be simple. So we proved the claim.

h e claim implies that the S-discriminant dS(A) exists and equals g ∈ k[g]. Fol-
lowing the last part of the above example, A is both strongly cancellative and strongly
m-cancellative.

Example 6.11 Suppose chark = ¨. Let A be the universal enveloping algebra of the
simple Lie algebra sl2. By Example q. , the center of A is k[Q], where Q is the Casimir
element. In this example, we will consider two diòerent properties.

Let W be the property of not having a factor ring isomorphic to Mn+1(k) (for
a ÿxed integer n). h en dW(A) = Q − (n2 + …n), which is a nonzero non-invertible
element in k[Q]. By Corollary q.ËË, A is strongly Z-retractable. By [LWZ, Lemma q.…],
A is strongly detectable, and by [LWZ, Lemma q.B(…)], A is strongly cancellative.

Next we show that A is strongly m-cancellative by using a Morita invariant prop-
erty. Let H be the property that HH3(R) = ¨, where HH i(R) denotes the i-th
Hochschild homology of an algebra R. By [We, h eorem ™.þ.B], the Hochschild ho-
mology is Morita invariant. Hence H is Morita invariant. We claim that the discrim-
inant dH(A) is Q + 1

4 . h is claim is equivalent to the following assertions:
(a) HH3(A/(Q − λ)) = ¨ for all λ ≠ − 1

4 ;
(b) HH3(A/(Q + 1

4 )) ≠ ¨ (this is the case when λ = − 1
4 ).

Let Bλ = A/(Q − λ). h en Bλ agrees with the algebra Bλ in [FSS, Example ….q]. By
[FSS, Example ….q], Bλ is a generalized Weyl algebra with σ(h) = h−Ë, a = λ−h(h+Ë).
Hence, Bλ satisÿes the hypotheses of [FSS, h eorem ….Ë]. If λ ≠ − 1

4 , then a′(h) and
a(h) are coprime. By [FSS, h eorem ….Ë(Ë)], HH3(Bλ) = ¨, which is part (a). If
λ = − 1

4 , then the common divisor of a′(h) and a(h) is a′(h), which has degree Ë.
By [FSS, h eorem ….Ë(…)], HH3(Bλ) = k, which is part (b). h erefore, we proved
the claim. By Corollary q.ËË, A is strongly m-Z-retractable. By Lemma  . , A is
strongly m-detectable. By Lemma  . B(ii), A is both strongly cancellative and strongly
m-cancellative.

Remark 6.12 (i) h e second half of Example B.ËËshows that using a Morita in-
variant property results a better conclusion.

(ii) Another consequence of the discussion in Example B.ËËis the following. If
σ is an algebra automorphism of A ∶= U(sl2), then σ(Q) = Q. Further, for every
locally nilpotent derivation ∂ ∈ LND(A), we have ∂(Q) = ¨. h is could be a useful
fact to use in calculating the automorphism group Aut(A). According to [CL, Section
q.…], the full automorphism group of A is still unknown. A result of Joseph [Jo] says
that Aut(A) contains a wild automorphism. h e automorphism of A/(Q − α)A was
computed in [Di] when α ≠ n2 +…n for all n ∈ N.
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7 Proof of Theorem 1.5

In this section we prove h eorem Ë.þ. We refer to [ASS] for basic deÿnitions of quivers
and their path algebra. LetCn be the cyclic quiver with n vertices and n arrow connect-
ing these vertices in one oriented direction. In representation theory of ÿnite dimen-
sional algebras, quiver Cn is also called type Ãn−1. Let ¨ , Ë, . . . , n − Ëbe the vertices of
Cn , and a i ∶ i → i +Ë(in Z/(n)) be the arrows in Cn . h en w ∶= ∑

n−1
i=0 a ia i+1 ⋅ ⋅ ⋅ a i+n−1

is a central element in kCn . By [LWZ, Lemma  . ], we have the following result con-
cerning the center of the path algebra kQ when Q is connected:

(EB.¨ .Ë) Z(kQ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k if Q has no arrow,
k[x] if Q = C1 or equivalently kQ = k[x],
k[w] if Q = Cn for n ≥ …,
k otherwise.

Similar to [LWZ, Lemma q.ËË], we have the following lemma, whose proof is
omitted.

Lemma 7.1 Let k′ be a ûeld extension of k. If A⊗k k′ is (strongly) m-detectable as an
algebra over k′, then A is (strongly) m-detectable as an algebra over k.

Lemma 7.2 Let Q = Cn for n ≥ …. hen kQ is strongly m-detectable and strongly
m-cancellative.

Proof By [LWZ, Lemma  . þ], kCn is prime of GK-dimension one while not being
Azumaya. If k is algebraically closed, the assertion is a special case of h eorem B.Ç(ii).
If k is not algebraically closed, let k′ be the closure of k. By h eorem B.Ç(ii), k′Q is
strongly m-detectable over k′. By Lemma 8.Ë, kQ is strongly m-detectable over k, and
then strongly m-cancellative by Lemmas  . þ(ii) and  . B(ii). ∎

We need another lemma before proving the main result of this section. h e ideas
of the proof are similar to the proof of [LWZ, Lemma  . B], so the proof is omitted.

Lemma 7.3 Let A and B be two algebras.
(i) If A and B are (strongly) m-cancellative, so is A⊕ B.
(ii) If A and B are (strongly) m-retractable, so is A⊕ B.
(iii) If A and B are (strongly) m-detectable, so is A⊕ B.

Now we are ready to prove h eorem Ë.þ.

heorem 7.4 Let Q be a ûnite quiver and let A be the path algebra kQ. hen A is
strongly m-cancellative. If, further, Q has no connected component being C1, then A is
strongly m-detectable.

Proof By Lemma 8.q, we can assume that Q is connected.
If Q = C1, then A = k[x] and the assertion follows from Proposition B.8(ii).
If Q = Cn , then this is Lemma 8.…(ii).
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If Q ≠ Cn for any n ≥ Ë, then by (EB.¨ .Ë), the center of A is k. By h eorem þ.…(i), A
is strongly m-detectable. Since A is N-graded and locally ÿnite, it is strongly Hopÿan
by Example  . þ(ii). By h eorem þ.…(ii), A is strongly m-cancellative. h is completes
the proof. ∎

h eorem Ë.þ is clearly a consequence of the above theorem.

8 Comments, Questions, and Examples

One of the remaining questions in this project is to understand whether the
cancellation property is equivalent to the m-cancellation property (as well as the
d-cancellation property). We will make some comments about it in this section.

First, we will show that three cancellation properties are equivalent for commuta-
tive algebras. h e next result was proved in [YZË] using slightly diòerent wording.

Proposition 8.1 ([YZË, Proposition þ.Ë]) Suppose that A is an Azumaya algebra over
its center Z and that Spec Z is connected. If D(A) and D(B) are triangulated equivalent
for another algebra B, then A and B areMorita equivalent.

Note that the Brauer group of a commutative algebra R, denoted by Br(R), is the
set of Morita-type-equivalence classes of Azumaya algebras over R; in other words,
Br(R) classiÿes Azumaya algebras over R up to an equivalence relation [AG]. See
[Sc] for some discussion about the Brauer group. One immediate consequence is the
following corollary.

Corollary 8.2 Suppose Z is a commutative algebra with Spec Z connected. hen the
following are equivalent.
(i) Z is (strongly) cancellative.
(ii) Z is (strongly) m-cancellative.
(iii) Z is (strongly) d-cancellative.

Proof By Proposition Ç.Ë, it remains to show that (i) and (ii) are equivalent. By
Lemma …. , part (i) follows from part (ii). Now we show that part (ii) is a consequence
of part (i).

Suppose A is an algebra such that Z[t] is Morita equivalent to A[s]. By the map ω
in (E….Ë.Ë), we obtain that Z[t] is isomorphic to Z(A)[s]. Since Z is (strongly) can-
cellative, Z(A) ≅ Z. Let us identify Z(A) with Z. Since Z[t] is Morita equivalent
to A[s], A[s] is Morita equivalent to its center, which is Z[s]. h en the Brauer-class
[A[s]] as an element in Br(Z[s]) is trivial by [AG, Proposition þ.q]. Since the natural
map Br(Z) → Br(Z[s]) is injective, the Brauer-class [A] as an element in Br(Z) is
trivial. By [Sc, h eorem  ] or [Ne, Proposition  .Ë], A is Morita equivalent to Z, as
required. ∎

Corollary 8.3 Let Z be a (strongly) detectable commutative algebra such that Spec Z
is connected. If A is an Azumaya algebra over Z that is stronglyHopûan, then A is both
(strongly) m-cancellative and (strongly) d-cancellative.

AMorita Cancellation Problem 727

Downloaded from https://www.cambridge.org/core. 02 Jun 2021 at 23:17:11, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Proof By Proposition Ç.Ë, we need to show only the claim that A is (strongly)
m-cancellative. Since A is strongly Hopÿan, the claim follows from Lemmas  . B(ii)
and  . 8(i). ∎

h e next example is similar to [LWZ, Example q.q].

Example 8.4 Let A = k[x , y]/(x2 = y2 = xy = ¨). By h eorem þ.Ë, A is strongly
m-detectable. By [LWZ, Example q.q] and Corollary Ç.…, the commutative algebra A
is neither retractable nor m-retractable.

For non-Azumaya (noncommutative) algebras, there is no general approach to
relating the m-cancellation property with the d-cancellation property. However, most
of cancellative algebras veriÿed by using the discriminant method in [BZË] are
m-cancellative, as we will see next.

Since most of algebras that we are interested in are strongly Hopÿan, to show that
an algebra is m-cancellative, it suõce s to show that it is m-detectable [Lemma  . B(i)].
By Lemma 8.Ë, under some mild hypotheses, we can assume the base ÿeld k is alge-
braically closed. For simplicity, we assume that k is algebraically closed of character-
istic zero for the rest of this section.

Let I be an ideal of a commutative algebra R. h en the radical of I is deÿned to be
√

I = ⋂
p∈Spec R ,I⊆p

p.

h e standard trace trst deÿned in [BY, Sect. ….Ë(…)] agrees with the regular trace trreg
deÿned in [CPWZ…, p. 8þÇ]. So we take tr = trst = trreg in this paper.

Proposition 8.5 Let Abe a prime algebra that is ûnitely generated as amodule over its
center Z and let v be the rank of A over Z. Let D ⊆ Z be either the v-discriminant ideal
Dv(B∶tr) in the sense of [CPWZ…, Deÿnition Ë.Ë(…)] or the modiûed v-discriminant
ideal MDv(B∶tr) in the sense of [CPWZ…, Deÿnition Ë.…(…)]. Suppose that
(i) the center Z is an aõne domain and the standard trace tr maps A to Z;
(ii)

√
D is a principal ideal of Z generated by an element f ;

(iii) f is an eòective (resp., dominating) element in Z.
hen the following hold.
(a) A is strongly m-Z-retractable.
(b) A is strongly Z-retractable.
(c) A is strongly m-detectable.
(d) A is strongly m-cancellative.
(e) A is strongly cancellative.

Proof Since we assume that k is algebraically closed of characteristic zero, we can
apply [BY, Main h eorem] by taking the standard trace. By [BY, Main h eorem], we
have

V(D) = MaxSpec(Z) ∖A(A),
where V(D) is the zero-set of D. By Lemma B.B(ii), A(A) = LS(A), where S denotes
the property of being simple. h us, the S-discriminant set of A is equal to V(D).
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As a consequence, the S-discriminant ideal of A is equal to I(V(D)), which is
√
D.

By hypothesis (ii), we obtain that the S-discriminant ideal of A is a principal
ideal of Z generated by an element f . Since f is eòective (resp., dominating), Z is
strongly LNDH

f -rigid by h eorem q.Ë̈ . Since S is a stable Morita invariant property
[Lemma B.Ë], by Proposition q.8(ii), A is both strongly m-Z-retractable and strongly
Z-retractable. h us, we proved parts (a) and (b). Note that part (c) follows from
part (a) and Lemma  . . Since A is noetherian, it is strongly Hopÿan [Example  . þ(Ë)].
Parts (d) and (e) follow from part (c) and Lemma  . B(ii). ∎

h e next example is similar to [LWZ, Example þ.Ë].

Example 8.6 Let R be an aõ ne commutative domain and let f be a product of a
set of generating elements of R. Let

A = (
R f R
R R ) .

It is easy to check that the (modiÿed)  - discriminant of A over its center R is the
ideal generated by − f 2. Clearly, the radical of (− f 2) is the principal ideal ( f ). By the
above proposition, A is strongly m-Z-retractable, m-detectable, m-cancellative, and
cancellative.

Other precise examples follow, but we omit some details. See also [BZË, Exam-
ple  . Ç].

Example 8.7 h e following algebras are m-cancellative by verifying the hypotheses
of Proposition Ç.þ:
(i) skew polynomial rings kq[x1 , . . . , xn] when n is an even number and Ë≠ q is a

root of unity;
(ii) k⟨x , y⟩/(x2 y − yx2 , y2x + xy2);
(iii) quantum Weyl algebra k⟨x , y⟩/(yx − qxy − Ë), where Ë≠ q is a root of unity;
(iv) every ÿnite tensor product of algebras of the form (i), (ii), and (iii).
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