
Algebra &
Number
Theory

msp

Volume 15

2021
No. 4

A proof of the Brown–Goodearl conjecture
for module-finite weak Hopf algebras
Daniel Rogalski, Robert Won and James J. Zhang





msp
ALGEBRA AND NUMBER THEORY 15:4 (2021)

https://doi.org/10.2140/ant.2021.15.971

A proof of the Brown–Goodearl conjecture
for module-finite weak Hopf algebras

Daniel Rogalski, Robert Won and James J. Zhang

Let H be a weak Hopf algebra that is a finitely generated module over its affine center. We show that H
has finite self-injective dimension and so the Brown–Goodearl conjecture holds in this special weak Hopf
setting.

0. Introduction

In his Seattle lecture in 1997, Brown [1998] posed several open questions about noetherian Hopf algebras
which satisfy a polynomial identity. Since then, the homological properties of infinite-dimensional
noetherian Hopf algebras have been investigated extensively. While quite a few of the questions in
Brown’s lecture have been answered, one important question, now called either the Brown–Goodearl
question or the Brown–Goodearl conjecture, is still open:

Does every noetherian Hopf algebra have finite injective dimension? (Q1)

Or, asking for a slightly stronger property,

Is every noetherian Hopf algebra Artin–Schelter Gorenstein? (Q2)

(The definition of Artin–Schelter Gorenstein will be recalled in Section 1.) In recent years, the Brown–
Goodearl question has been posed in many lectures and survey papers [Brown 1998; 2007; Goodearl
2013], as it is related to the existence of rigid dualizing complexes, and therefore related to the twisted
Calabi–Yau property of these Hopf algebras. An affirmative answer to this question has many other
consequences, especially in the study of the ring-theoretic properties of noetherian Hopf algebras.

It is natural to ask the Brown–Goodearl question for other classes of noetherian algebras that are similar
to Hopf algebras, for example, weak Hopf algebras, braided Hopf algebras, Nichols algebras, and so on.
In fact Andruskiewitsch [2004, after Definition 2.1] independently asked the following question: if a
Nichols algebra is a domain with finite Gelfand–Kirillov dimension, is it then Artin–Schelter regular (and
therefore of finite global dimension)?

In this paper, we consider weak Hopf algebras, which are natural generalizations of Hopf algebras
that have applications in conformal field theory, quantum field theory, and the study of operator algebras,
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subfactors, tensor categories, and fusion categories. One important fact is that any fusion category is
equivalent to the category of modules over a weak Hopf algebra [Hayashi 1999a; Szlachányi 2001], see
also [Etingof et al. 2005, Theorem 2.20 and Corollary 2.22]. We refer the reader to Section 5 for the
definition of a weak Hopf algebra and a few examples. Much of the existing literature on weak Hopf
algebras has focused on the finite-dimensional case. For example, Böhm, Nill, and Szlachányi [Böhm
et al. 1999, Theorem 3.11] proved that every finite-dimensional weak Hopf algebra over a field is quasi-
Frobenius, or equivalently, has (self-)injective dimension zero (see also [Vecsernyés 2003, Corollary 3.3]).
In contrast with the Hopf case, a finite-dimensional weak Hopf algebra may not be Frobenius [Iovanov
and Kadison 2010, Proposition 2.5].

The main result of this paper is to affirmatively answer the analog of the Brown–Goodearl question (Q1)
for weak Hopf algebras that are module-finite over their affine centers. In fact, our proof works not just
for weak Hopf algebras, but for any such algebra whose module category has a monoidal structure with
certain basic properties.

In most of our results, we restrict our attention to algebras satisfying the following ring-theoretic
hypothesis.

Hypothesis 0.1. Let A be an algebra with center Z(A). Suppose that A is a finitely generated module
over Z(A) and that Z(A) is a finitely generated algebra over the base field k.

The favorable homological properties of Hopf algebras seem to arise primarily from the fact that there
is an internal tensor product of modules over a Hopf algebra. We abstract this idea here to study the
following condition.

Hypothesis 0.2. Let A be an algebra over k. Assume that there is a monoidal structure ⊗ on the
category A-Mod of left A-modules, where ⊗ is bilinear on morphisms and biexact, such that every finite
dimensional M ∈ A-Mod has a left dual M∗ in that monoidal category. Assume further that the same
hypotheses hold for the category Aop-Mod of right A-modules.

We refer the reader to [Etingof et al. 2015] for basic notions concerning monoidal categories; in any
case, we will remind the reader of the undefined terms in Section 6. For any weak Hopf algebra A, the
category A-Mod has a monoidal structure as in Hypothesis 0.2, where M ⊗ N is a subspace of the usual
tensor product M ⊗k N (see [Böhm et al. 2011; Nill 1998]). If A is a Hopf algebra or a quasibialgebra
with antipode, then A also satisfies Hypothesis 0.2 where ⊗ is the usual tensor product ⊗k.

For a module M over an algebra, let GKdim M denote the Gelfand–Kirillov dimension (or GK
dimension) of M . (We refer to [Krause and Lenagan 1985] for the definition of GK dimension.) We say
an algebra A is homogeneous if

GKdim L = GKdim A

for all nonzero left ideals L ⊆ A.
Our main result is the following:

Theorem 0.3. Let A be an algebra over a field k.
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(1) Assume Hypotheses 0.1 and 0.2 for A. Then A has finite injective dimension. Further, as an algebra,
A is a finite direct sum of indecomposable noetherian algebras which are Artin–Schelter Gorenstein,
Auslander Gorenstein, Cohen–Macaulay, and homogeneous of finite Gelfand–Kirillov dimension
equal to their injective dimension.

(2) If H is a weak Hopf algebra, then H satisfies Hypothesis 0.2. In particular, if H also satisfies
Hypothesis 0.1 then H satisfies all of the conclusions of part (1).

We remark that the direct sum of two Artin–Schelter Gorenstein weak Hopf algebras of different
injective dimensions is a weak Hopf algebra which is not Artin–Schelter Gorenstein. Hence, this theorem
gives the strongest answer to the analog of question (Q2) that is possible in this setting.

While we focus on weak Hopf algebras in this paper, we expect other generalizations of Hopf algebras
to satisfy Theorem 0.3(2). As an example, we show this for quasibialgebras with antipode in Theorem 7.1
below. It would be interesting to extend this theory to different kinds of Hopf-like structures.

We also note that if A satisfies Hypothesis 0.2 because it is a weak Hopf algebra or other similar structure,
as in Theorem 0.3(2), the coproduct need not respect the direct sum decomposition in Theorem 0.3(1).

Theorem 0.3 has many applications. Below we list some of the consequences of this theorem. Undefined
terminology will be reviewed in later sections.

Theorem 0.4. Assume Hypotheses 0.1 and 0.2 for A. Then A has a quasi-Frobenius artinian quotient
ring.

Theorem 0.5. Assume Hypotheses 0.1 and 0.2 for A. If A has finite global dimension, then A is a direct
sum of prime algebras and each summand is homogeneous, Artin–Schelter regular, Auslander regular,
and Cohen–Macaulay.

The following is a version of the Nichols–Zoeller theorem for infinite-dimensional algebras.

Theorem 0.6. Assume Hypotheses 0.1 and 0.2 for both A1 and A2. Let A1 and A2 be homogeneous of
the same Gelfand–Kirillov dimension. Suppose that A1 has finite global dimension. If there is an algebra
map (which is not necessarily a coalgebra map) f : A1 → A2 such that A2 is a finitely generated module
over A1 on both sides, then A2 is a projective module over A1 on both sides.

Theorem 0.7. Assume Hypotheses 0.1 and 0.2 for A.

(1) A has a rigid Auslander and Cohen–Macaulay dualizing complex which is also an invertible complex
of A-bimodules.

(2) A has a residue complex.

(3) If A is homogeneous, then A has a minimal pure injective resolution on both sides.

The following result concerns the homological properties of A-modules.

Theorem 0.8. Assume Hypotheses 0.1 and 0.2 for A and let d = GKdim A. Let M be a nonzero finitely
generated left A-module.
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(1) The Auslander–Buchsbaum formula. If projdim M < ∞, then

projdim M ≤ d − depth M.

If , further, A is homogeneous, then

projdim M = d − depth M.

(2) Bass’s theorem. If injdim M < ∞, then

injdim M ≤ d.

If , further, A is homogeneous, then

injdim M = d.

(3) The no-holes theorem. Suppose either A is homogeneous or M is indecomposable. For every integer
i between depth M and injdim M, there is a simple left A-module S such that ExtiA(S, M) 6= 0.

It would be interesting to study in more detail the tensor categories given by the finite-dimensional
modules over infinite-dimensional weak Hopf algebras, but we have not attempted to do so here.

We begin, in Section 1, by reviewing the definitions of various homological properties and introducing,
for a noetherian algebra A, important homological conditions (L1) and (R1) on the categories of left and
right A-modules, respectively. In Section 2, we prove some key lemmas which allow us, in Section 3, to
prove that if A is a finite module over its affine center and satisfies (L1) and (R1), then A is a finite direct
sum of AS Gorenstein, Auslander Gorenstein, and Cohen–Macaulay algebras. We study the consequences
of this result in Section 4 and show that the conclusions of Theorems 0.4–0.8 hold for A. In Section 5,
we recall the definition of a weak Hopf algebra and provide some examples. In Section 6, we study the
relationship between Hypothesis 0.2 and the conditions (L1) and (R1) and conclude in Section 7 that
weak Hopf algebras which are module-finite over their affine centers satisfy (L1) and (R1). We then
prove Theorems 0.3–0.8, settling the Brown–Goodearl question for this class of weak Hopf algebras. We
conclude in Section 8 by posing some open questions.

1. Preliminaries

We first recall some definitions concerning different homological properties. For an algebra A, let A-Mod
denote the category of left A-modules; for M, N ∈ A-Mod we write HomA(M, N ) for the space of left
module homomorphisms. We identify the category Mod-A of right A-modules with Aop-Mod when
convenient. In particular, for right modules M and N we write HomAop(M, N ) for the space of right
A-module homomorphisms.

Definition 1.1 [Levasseur 1992, Definitions 1.2 and 2.1]. Let A be an algebra and M a left A-module.

(1) The grade number of M is defined to be

jA(M) := inf{i | ExtiA(M, A) 6= 0} ∈ N ∪ {+∞}.



A proof of the Brown–Goodearl conjecture for module-finite weak Hopf algebras 975

We often write j (M) for jA(M). Note that jA(0) = +∞.

(2) We say that M satisfies the Auslander condition if for any q ≥0, jA(N )≥q for all right A-submodules
N of ExtqA(M, A).

(3) We say a noetherian algebra A is Auslander Gorenstein (respectively, Auslander regular) of dimension
n if injdim AA = injdim A A = n < ∞ (respectively, gldim A = n < ∞), and every finitely generated
left and right A-module satisfies the Auslander condition.

The following notions are defined and used in many papers, for example, [Ajitabh et al. 1998; Wu and
Zhang 2003].

Definition 1.2. We say A is Cohen–Macaulay (or, CM for short) if GKdim(A) = d < ∞ and

j (M) + GKdim(M) = GKdim(A)

for every finitely generated nonzero left (or right) A-module M .

In this paper we will use the following slightly modified version of the Artin–Schelter Gorenstein
property.

Definition 1.3. A noetherian algebra A is called Artin–Schelter Gorenstein (or AS Gorenstein, for short)
if the following conditions hold:

(1) A has finite injective dimension d < ∞ on both sides.

(2) For every finite-dimensional left A-module S, ExtiA(S, A) = 0 for all i 6= d and dim ExtdA(S, A) < ∞.

(3) The analog of part (2) for right A-modules holds.

If, moreover,

(4) A has finite global dimension,

then A is called Artin–Schelter regular (or AS regular, for short).

Let A-Modfd denote the category of finite-dimensional left A-modules. The category of finite-
dimensional right A-modules will be written Modfd-A or Aop-Modfd.

Lemma 1.4. Suppose A is AS Gorenstein of injective dimension d. Then A-Modfd is contravariant
equivalent to Aop-Modfd via the functor ExtdA(−, A). As a consequence, for each i , both ExtiA(−, A) and
ExtiAop(−, A) are exact functors when restricted to finite-dimensional A-modules.

Proof. By Definition 1.3(2), ExtdA(−, A) is an exact functor on finite-dimensional left A-modules. For
every finite-dimensional left A-module S, by Ischebeck’s double Ext-spectral sequence [Ajitabh et al.
1998, (0-2)], we have

ExtdAop ExtdA(S, A), A ∼= S.

A similar statement holds for finite-dimensional right A-modules S. The assertion follows, and the
consequence is clear.
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Lemma 1.4 implies that if A is AS Gorenstein of dimension d then ExtdA(S, A) is simple right A-
module for each finite-dimensional simple left module S, and similarly on the other side. This shows that
Definition 1.3 is equivalent to the definition of AS Gorenstein in [Wu and Zhang 2003, Definition 3.1] for
any algebra A for which all simple modules are finite-dimensional. In particular, this is the case for the
affine noetherian PI algebras of main interest in this paper by [Brown and Goodearl 1997, Proposition 3.1].

Definition 1.5. Let A be a noetherian algebra.

(1) We say that A satisfies (L1) (respectively, (R1)) if, for each i ≥ 0, the functor ExtiA(−, A) is
exact when applied to the category A-Modfd (respectively, ExtiAop(−, A) is exact when applied to
Modfd-A).

(2) We say that A satisfies (L2) (respectively, (R2)) if A satisfies (L1) (respectively, (R1)), and for each
i ≥ 0, for 0 6= S, T ∈ A-Modfd, ExtiA(S, A) = 0 if and only if ExtiA(T, A) = 0 (respectively, for
0 6= S, T ∈ Modfd-A, ExtiAop(S, A) = 0 if and only if ExtiAop(T, A) = 0).

By [Wu and Zhang 2003, Proposition 3.2], if A is affine noetherian PI, then A is AS Gorenstein if
and only if A satisfies (L2) (or equivalently, satisfies (R2)). The following lemma follows from algebra
decomposition and [Wu and Zhang 2003, Proposition 3.2].

Lemma 1.6. Suppose that A is an affine noetherian PI algebra. If A is a direct sum of finitely many AS
Gorenstein algebras (of possibly different dimensions), then A satisfies (L1) and (R1).

One of our main goals is to show that the converse of Lemma 1.6 holds under some extra hypotheses.
We will need the following easy lemmas about algebra decompositions.

Lemma 1.7. Let A be an algebra.

(1) Let e and e0 be two idempotents such that eA = Ae0. Then e = e0 is a central idempotent.

(2) Let I be a two sided ideal of A such that A = I ⊕ B as left A-modules and A = I ⊕ C as right
A-modules. Then B = C and A = I ⊕ B as algebras.

Proof. (1) Since eA = Ae0, there are elements a, b ∈ A such that e = ae0 and e0
= eb. Then

e = ae0
= ae0e0

= ee0
= eeb = eb = e0.

For every a ∈ A, ea, ae ∈ eA = Ae. Hence ea = eae = ae. This shows that e is a central idempotent.

(2) Since A = I ⊕ B, 1 = e + (1 − e), where e ∈ I and (1 − e) ∈ B. Since e(1 − e) ∈ I ∩ B = 0, we
have e = e2 and so e is idempotent. Since Ae ⊕ A(1 − e) = A = I ⊕ B, we obtain that Ae = I and
A(1 − e) = B.

Similarly, there is an idempotent e0 such that I = e0 A. By part (1), e = e0 which is central. Therefore
A = eA ⊕ (1 − e)A, where both eA and (1 − e)A are two-sided ideals of A. The assertion follows.

We say that A is indecomposable if A is not isomorphic to a direct sum of two algebras. The following
lemma is standard.
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Lemma 1.8 [Lam 1991, Proposition 22.2]. Let A be a noetherian algebra. Then

A =

M
i∈I

Ai

for a finite set of indecomposable algebras {Ai }i∈I . Further, this decomposition is unique up to permuta-
tion.

2. Some key lemmas

While we primarily consider the GK dimension of modules as our dimension function in this paper, in
this section it is convenient to use also the (Gabriel–Rentschler) Krull dimension of a module M , which
we denote by Kdim M . Fortunately, if A is finite over its affine center, then by [Wu and Zhang 2003,
Lemma 1.2(3)], for all finitely generated left (or right) A-modules M ,

Kdim M = GKdim M.

For any such module M , for every s, let τs(M) denote the largest submodule of M with GK dimension
which is less than or equal to s. If M is an (A, A)-bimodule which is finitely generated on both sides,
then

τs( A M) = τs(MA)

since GK dimension is symmetric [Krause and Lenagan 1985, Corollary 5.4]. In particular,

τs( A A) = τs(AA)

which we denote by τs(A).
Let us introduce some temporary notation. Let A-mod denote the category of finitely generated left

A-modules. For each integer d, let A-modd denote the category of finitely generated left A-modules of
Krull dimension no more than d . The following is a key lemma.

Lemma 2.1. Let A be a noetherian PI complete semilocal algebra and M be a finitely generated left
A-module. If HomA(M, −) is exact when applied to A-mod0, then M is projective.

Proof. Since A is noetherian and complete semilocal, it is semiperfect in the sense of [Lam 1991,
Definition 23.1]. Then by [Lam 1991, Proposition 24.12], every finitely generated A-module has a
projective cover. Let P be the projective cover of M and let K be the kernel of the surjective map P → M .
Then we have a short exact sequence

0 → K
f

−→ P
g
−→ M → 0.

It suffices to show that K = 0.
Let m be the Jacobson radical of A. Then a finitely generated left A-module N has finite length if and

only if ms N = 0 for some integer s. Let n be any positive integer. By adjunction,

HomA/mn (A/mn
⊗A M, −) ∼= HomA(M, −)
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when applied to modules over A/mn . Hence HomA/mn (A/mn
⊗A M, −) is exact when applied to modules

in A/mn-mod0 = A/mn-mod. Since A/mn
⊗A M is a finitely generated A/mn-module, it follows that

A/mn
⊗A M is a projective module over A/mn .

It is easy to check that A/mn
⊗A P is a projective cover of A/mn

⊗A M . Then

A/mn
⊗A g : A/mn

⊗A P → A/mn
⊗A M

is an isomorphism. Therefore

A/mn
⊗A f : A/mn

⊗A K → A/mn
⊗A P

is the zero map for all n ≥ 1. Equivalently, f (K ) ⊆ mn P for all n. Since A is PI, by [Goodearl and
Warfield 2004, Theorem 9.13],

T
n m

n
= 0. Hence

T
n m

n P = 0, as P is a finitely generated projective
A-module, and consequently, f (K ) = 0. Since f is monomorphism, K = 0 as required.

Assume that A is finitely generated over its affine center Z(A). Let n be a maximal ideal of Z(A). Let
Zn denote the completion of the commutative noetherian local ring Z(A)n with respect to its maximal
ideal. Then

(1) Zn is noetherian [Atiyah and Macdonald 1969, Theorem 10.26].

(2) An := Zn ⊗Z(A) A is finitely generated over Zn (but its center could be bigger than Zn).

(3) An is complete semilocal.

(4) The functor Zn⊗Z(A) − : A-mod→ An-mod is exact [Atiyah and Macdonald 1969, Proposition 10.14].

Every left A-module M can be considered as an (A, Z(A))-bimodule. It is well-known that if M and
W are left A-modules, then ExtiA(M, W ) has a central (Z(A), Z(A))-bimodule structure.

Lemma 2.2. Let A be a finitely generated module over its affine center. Suppose M is a finitely generated
left A-module. Then M is projective over A if and only if

M ⊗Z(A) Zn
∼= Zn ⊗Z(A) M

is projective over An for all maximal ideals n of Z(A).

Proof. Since M ⊗Z(A) Zn
∼= An ⊗A M , one implication is clear. For the other implication, assume that

M ⊗Z(A) Zn is projective for all maximal ideals n of Z(A). If M is not projective, then there is a finitely
generated A-module W such that ExtiA(M, W ) 6= 0 for some i > 0. Let n be a maximal ideal of Z(A)

such that
ExtiA(M, W ) ⊗Z(A) Zn 6= 0.

By [Yekutieli and Zhang 2003, Lemma 3.7],

ExtiAn
M ⊗Z(A) Zn, W ⊗Z(A) Zn

∼= ExtiA(M, W ) ⊗Z(A) Zn 6= 0.

Hence M ⊗Z(A) Zn is not projective, a contradiction.
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We will use the following result in the analysis of the dualizing complex over A.

Proposition 2.3. Let A be a finitely generated module over its affine center. Suppose M is a finitely
generated left A-module such that HomA(M, −) is exact on finite-dimensional left A-modules. Then M
is projective.

Proof. By Lemma 2.2, it suffices to show that Mn := M ⊗Z(A) Zn is projective for all maximal ideals n
of Z(A).

Let W be a finite-dimensional left An-module. Then

W ∼= An ⊗A W ∼= W ⊗Z(A) Zn.

By adjunction, we have
HomAn(Mn, W ) ∼= HomA(M, W ).

Since Z(A)/n is finite-dimensional, every finitely generated artinian module over An is finite-dimensional.
Hence, by hypothesis HomAn(Mn, −) ∼= HomA(M, −) is exact when applied to objects in An-mod0. By
Lemma 2.1, Mn is projective.

We need one more homological lemma, which depends on the basic properties of Krull dimension for
PI algebras.

Lemma 2.4. Let A be a noetherian PI algebra of finite Krull dimension. Let M be an (A, A)-bimodule
which is finitely generated on both sides and let w be a nonnegative integer.

(1) Suppose that for all simple left A-modules S, we have ExtsA(S, M) = 0 for all s ≤ w. Then, for each
integer d ≥ 0, if N is a finitely generated left A-module with Kdim N ≤ d , we have ExtsA(N , M) = 0
for all s ≤ w − d. As a consequence, A M does not contain any nonzero left A-submodules of Krull
dimension less than or equal to w.

(2) Suppose that for all simple left A-modules S, we have ExtsA(S, M) = 0 for all s > w. Then for all
finitely generated left A-modules N, we have ExtsA(N , M) = 0 for all s > w. As a consequence,
injdim(A M) ≤ w.

Proof. (1) We prove the assertion by induction on d. When d = 0, it follows from exact sequences and
the hypothesis that ExtsA(S, M) = 0 for all finite length left A-modules S and for all s ≤ w. Since the
A-modules of finite length are precisely the A-modules of Krull dimension 0, the result holds for d = 0.

Now let d > 0 and assume that the assertion ExtsA(N 0, M) = 0 holds for all finitely generated left
A-modules N 0 with Kdim N 0

≤ d −1 and for all s ≤ w − (d −1). We wish to show that ExtsA(N , M) = 0
for all finitely generated left A-modules N of Krull dimension d and for all s ≤ w − d. By choosing a
prime filtration of N , similarly as in [Stafford and Zhang 1994, Lemma 2.1(i,ii)], we may assume that
N = A/p=: B for some prime ideal p, and where Kdim(B) = d . If x is a nonzero central element x ∈ B,
then x is regular and there is a short exact sequence

0 → B
rx
−→ B → B/(x) → 0,
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where rx denotes right multiplication by x and B/(x) is a left A-module with Kdim(B/(x)) ≤ d − 1. By
the induction hypothesis, ExtsA(B/(x), M) = 0 for all s ≤ w −d +1. Then, for every s ≤ w −d , the long
exact sequence

· · · → ExtsA(B/(x), M) → ExtsA(B, M)
(rx )

∗

−−→ ExtsA(B, M) → Exts+1
A (B/(x), M) → · · ·

implies that (rx)
∗

: ExtsA(B, M) → ExtsA(B, M) is an isomorphism. Note that ExtsA(B, M) is a left
B-module, and that (rx)

∗ is just left multiplication lx by x [Stafford and Zhang 1994, Lemma 3.4]. Let
Q(B) be the total fraction ring of B, obtained by inverting all central nonzero elements x . Since lx = (rx)

∗

is an isomorphism, we can naturally define a left Q(B)-action on ExtsA(B, M) by setting lx−1 = (lx)
−1. So

W := ExtsA(B, M) is a (Q(B), A)-bimodule. By [Stafford and Zhang 1994, Theorem 3.5], W is finitely
generated as a left B-module. Since A is noetherian and M is a noetherian right A-module, computing
W = ExtsA(B, M) with a projective resolution of B by finite rank free A-modules shows that W is also a
finitely generated right A-module. Thus W is a (B, A)-bimodule, finitely generated on both sides (as
well as a (Q(B), A)-bimodule, also finitely generated on both sides). By Krull symmetry [Goodearl and
Warfield 2004, Theorem 15.15],

Kdim B W = Kdim WA = Kdim Q(B)W = 0.

Since Kdim B =d >0, there is a nonzero ideal I of B such that I W =0. Since any nonzero ideal in a prime
PI ring contains a nonzero central element, Q(B) = Q(B)I . Therefore W = Q(B)W = Q(B)I W = 0,
as desired.

The consequence follows by taking d = w and s = 0.

(2) The assertion follows by induction on d := Kdim N . The proof is similar to the proof of (1), so it is
omitted.

3. Dualizing complexes and residue complexes

The noncommutative version of a dualizing complex was introduced by Yekutieli [1992] (we also refer
the reader to [Yekutieli 2019]). Let Db

f.g.(A-Mod) denote the bounded derived category of complexes of
left A-modules with finitely generated cohomology modules. Roughly speaking, a dualizing complex
over an algebra A is a complex R of A-bimodules, such that the two derived functors RHomA(−, R)

and RHomAop(−, R) induce a duality between the derived categories Db
f.g.(A-Mod) and Db

f.g.(Aop-Mod).
Let Ae

= A ⊗k Aop denote the enveloping algebra of A.

Definition 3.1. Let A be a noetherian algebra. A complex R ∈ Db(Ae-Mod) is called a dualizing complex
over A if it satisfies the three conditions below:

(i) R has finite injective dimension on both sides.

(ii) R has finitely generated cohomology modules on both sides.
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(iii) The canonical morphisms A → RHomA(R, R) and A → RHomAop(R, R) in D(Ae-Mod) are both
isomorphisms.

We also need a few other definitions related to dualizing complexes.

Definition 3.2. Let A be a noetherian algebra and R a dualizing complex over A.

(1) Let M be a finitely generated left A-module. The grade of M (with respect to R) is defined to be

jR(M) = min i | ExtiA(M, R) 6= 0 ∈ Z ∪ {+∞}.

We write the grade of M as j (M) when the choice of R is clear. The grade of a right A-module is defined
similarly.

(2) [Yekutieli and Zhang 1999, Definition 2.1]. We say that R has the Auslander property, or that R is
an Auslander dualizing complex, if

(i) for every finitely generated left A-module M , integer q, and right A-submodule N ⊆ ExtqA(M, R),
one has j (N ) ≥ q;

(ii) the same holds after exchanging left and right.

(3) [van den Bergh 1997, Definition 8.1]. A dualizing complex R is called rigid if there is an isomorphism

R
∼=
−→ RHomAe(A, R ⊗ R)

in D(Ae-Mod).

(4) [Yekutieli and Zhang 1999, Definition 2.24]. Suppose R is an Auslander dualizing complex over A.
We say R is Cohen–Macaulay if for every finitely generated left (respectively, right) A-module M ,

j (M) + GKdim M = 0.

(This is a slightly stronger version than [Yekutieli and Zhang 1999, Definition 2.24].)

(5) Suppose that A has finite injective dimension d as a left and right A-module, and that GKdim(A) = d .
Then the complex R = A[d] is a dualizing complex for A, and we say that A is Auslander Gorenstein if R
is an Auslander dualizing complex, and that A is Cohen–Macaulay if R is a Cohen–Macaulay dualizing
complex.

Since we are working with algebras that are finite over their affine centers, the natural dimension
function to use is Gelfand–Kirillov dimension. Recall that an algebra A is called (left) homogeneous
if GKdim L = GKdim A for all nonzero left ideals L ⊆ A. This notion generalizes to A-modules M as
defined below.

Definition 3.3. Let A be a noetherian algebra and M be a nonzero left A-module.

(1) [Ajitabh et al. 1998, Definition 0.2]. Suppose GKdim M = s. We say M is s-pure, if GKdim N = s
for all nonzero submodules N of M .
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(2) [Ajitabh et al. 1998, Definition 0.3]. Suppose injdimA A = d < ∞ and let

0 → A → I 0
→ I 1

→ · · · → I d
→ 0

be a minimal injective resolution of the left A-module A A. We say this resolution is pure if each I i

is (d−i)-pure.

Definition 3.4 [Yekutieli and Zhang 2003, Definitions 4.3 and 5.1]. A dualizing complex K over A is
called a residual complex over A if the following conditions are satisfied:

(i) K is Auslander,

(ii) each K −q is an injective module over A on both sides,

(iii) each K −q is q-pure on both sides.

A rigid residual complex K is called a residue complex.

When a residue complex K exists, then A K (respectively, K A) can be viewed as a minimal injective
resolution of a rigid dualizing complex A R (respectively, RA).

Here are some basic facts about dualizing complexes for the algebras A of interest in this paper.

Lemma 3.5. Let A be a finitely generated module over its affine center. Then the following hold.

(1) There is a rigid dualizing complex, denoted by R, over A that is Auslander and Cohen–Macaulay.

(2) There is a residue complex, denoted by K , over A that is Auslander and Cohen–Macaulay.

(3) Let M be a finitely generated left A-module. If ExtiA(M, K ) is nonzero only when i = −d, then
GKdim M = d.

Proof. (1) If A is a finitely generated module over its affine center then it admits a noetherian connected
filtration (see [Yekutieli and Zhang 2003, Remark 6.4]). Hence [Yekutieli and Zhang 2003, Proposition 6.5]
applies, and shows that A has an Auslander rigid dualizing complex R. For a module M , the canonical
dimension of M is defined in [Yekutieli and Zhang 2003] to be Cdim(M) = − jR(M). The proof of
[Yekutieli and Zhang 2003, Proposition 6.5] shows that for finitely generated left and right modules, the
canonical dimension is equal to the GK dimension. This implies that R is Cohen–Macaulay.

(2) A has a residue complex K by [Yekutieli and Zhang 2003, Proposition 6.6]. Since a residue complex
is rigid, and a rigid dualizing complex is unique up to isomorphism in the derived category [van den
Bergh 1997, Proposition 8.2], K is also Auslander and Cohen–Macaulay by part (1).

(3) By definition, j (M) = −d , and by the Cohen–Macaulay property (Definition 3.2(4)), GKdim M = d .

Recall that an algebra A is called indecomposable if it is not possible to write A = B ⊕ C as a direct
sum of algebras. The next result contains the bulk of the work needed for the proof of our main theorem.

Theorem 3.6. Let A be a finite module over its affine center. Suppose A is indecomposable and satisfies
(L1) and (R1) of Definition 1.5(1). Then the following hold:
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(1) A is AS Gorenstein of injective dimension GKdim A; in particular, A satisfies conditions (L2) and
(R2) of Definition 1.5(2).

(2) A is Auslander Gorenstein and Cohen–Macaulay.

(3) A is a homogeneous A-module on both sides.

Proof. Part (2) follows from part (1) and [Stafford and Zhang 1994, Theorem 1.3]. Part (3) follows from
the Cohen–Macaulay property of A. Hence, we only need to prove part (1).

By Lemma 3.5(2), A has a residue complex K which is Auslander and Cohen–Macaulay. Let
d = GKdim A. Note that by the definition of residue complex, we must have K −i

= 0 for i < 0 and i > d .
First, we claim that for all i 6= d , H−i (K ) = 0. Suppose this claim is not true. Then there is 0 ≤ s < d

such that H−s(K ) 6= 0. Choose the smallest such s. Let be the nonzero (A, A)-bimodule H−s(K ). By
the definition of a dualizing complex, is finitely generated over A on both sides. Let

D := RHomA(−, K ) : Db
f.g.(A-Mod) → Db

f.g(Mod-A)

and
Dop

:= RHomAop(−, K ) : Db
f.g.(Mod-A) → Db

f.g.(A-Mod)

be the duality functors in [Yekutieli 1992, Proposition 3.4]. Recall from the definition that each term K −i

is an injective, i-pure module on both the left and the right. It follows that if S is a finite-dimensional left
A-module then

H i (D(S)) = H i (RHomA(S, K )) = H i (HomA(S, K )) =
0, i 6= 0,

HomA(S, K 0), i = 0,

and H 0(D(S)) is finitely generated on the right. Since K is Auslander and Cohen–Macaulay, it follows
that H 0(D(S)) is finite-dimensional. Since the complex D(S) has cohomology in only one degree, we
have D(S) ∼= T in Db

f.g.(Mod-A) for some finite-dimensional right module T = HomA(S, K 0) ∈ Mod-A.
We have Dop(D(S)) ∼= S in Db

f.g.(A-Mod) [Yekutieli 1999, Proposition 4.2(2)], and hence also in A-Mod.
A similar result holds on the other side, and we conclude that D and Dop induce a duality between
finite-dimensional left and right A-modules.

Next, let S be any left A-module. Let P be a projective resolution of K (as a complex of left
A-modules). Since H−i (K ) = 0 for all i ≤ s, we can assume that P−s+i

= 0 for all i > 0. Then
ExtiA(K , S) ∼= ExtiA(P, S) = 0 for all i < s. Using the fact that HomA(−, S) is left exact, one sees that

ExtsA(K , S) ∼= ExtsA(P, S) ∼= HomA(H−s(P), S) ∼= HomA( , S).

Note that we have A ∼= D(Dop(A))= D(K ) in Mod-A [Yekutieli 1999, Proposition 4.2(1)]. The dualizing
functor D also gives an isomorphism

RHomA(M, N ) ∼= RHomAop(D(N ), D(M)),
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which is functorial in all M, N ∈ Db
f.g.(Mod-A) [Yekutieli 1999, Proposition 4.2(2)]. Hence

ExtiAop(D(S), A) ∼= ExtiAop(D(S), D(K )) ∼= ExtiA(K , S) =
0, i < s,
HomA( , S), i = s.

(E3.6.1)

As a consequence, if T is any finite-dimensional right A-module, then since T = D(S) where S =

Dop(T ) is a finite-dimensional left module, we have ExtiAop(T, A) = 0 for all i < s. Now D, considered as
a duality from finite-dimensional left A-modules to finite-dimensional right A-modules, is an exact functor.
Since the functor ExtsAop(−, A) is exact on finite-dimensional right modules by hypothesis (R1), we see
that ExtsAop(D(−), A) is an exact functor from finite-dimensional left A-modules to left A-modules. Now
(E3.6.1) is functorial in S and so

ExtsAop(D(−), A) ∼= HomA( , −)

is exact on finite-dimensional left A-modules. By Proposition 2.3, is projective over A as a left module.
Now because ∼= H−s(K ) is projective, where H−i (K ) = 0 for i < s, the complex K is quasi-

isomorphic to K 0
⊕ [s] as a complex of left A-modules, where H−i (K 0) = 0 for all i ≤ s. Since K is a

dualizing complex, we have, as complexes of right A-modules,

A ∼= RHomA(K , K ) ∼= RHomA(K 0
⊕ [s], K )

∼= RHomA(K 0, K ) ⊕ RHomA( [s], K )

∼= RHomA(K 0, K ) ⊕ Ext0A( [s], K )

and ExtiA( [s], K ) = 0 for all i 6= 0. The last assertion is equivalent to

ExtiA( , K ) = 0

for all i 6= −s. By Lemma 3.5(3), GKdim = s. So we have a right A-module decomposition

A ∼= A0
⊕ V,

where A0
= RHomA(K 0, K ) and V ∼= Ext−s

A ( , K ). By the Auslander and Cohen–Macaulay properties
of K , GKdim V ≤ s. Now from the equation ExtiA(K , S) ∼= ExtiA(K 0, S) ⊕ Exti−s

A ( , S) and (E3.6.1),
we obtain for every finite-dimensional left A-module S that ExtiA(K 0, S) = 0 for all i ≤ s. Then for any
finite dimensional right A-module T , writing T ∼= D(S) for S = Dop(T ), for all i ≤ s we obtain

ExtiAop(T, A0) = ExtiAop(D(S), A0) ∼= ExtiAop(D(S), D(K 0)) ∼= ExtiA(K 0, S) = 0.

By the right-sided version of Lemma 2.4(1), A0 does not have a submodule of GKdim ≤ s. Therefore
V = τs(A). So we have a canonical decomposition

A = A0
⊕ τs(A)

as right A-modules. By symmetry, there is a decomposition

A = A00
⊕ τs(A)
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as left A-modules. By Lemma 1.7(2), A = B ⊕ τs(A) as algebras. This yields a contradiction to the
hypothesis that A is indecomposable. This, finally, proves the claim that H−i (K ) = 0 for i 6= d .

We conclude that K is quasi-isomorphic to [d] for some (A, A)-bimodule , which we have seen is
projective as a left A-module. By repeating the above proof, we obtain that is a projective A-module
on both sides. This means that K has finite projective dimension on both sides. Further, by (E3.6.1), for
every finite-dimensional left A-module S,

ExtiAop(D(S), A) =
0, i < d,

HomA( , S), i = d.

For every i > d ,

ExtiAop(D(S), A) ∼= ExtiA(K , S) ∼= ExtiA( [d], S) ∼= Exti−d
A ( , S) = 0

as is projective as a left A-module. Thus for every finite dimensional right A-module T , we have
ExtiAop(T, A) = 0 unless i = d, in which case Extd(T, A) is a finite dimensional left A-module, as we
have seen. Also, by a right-sided version of Lemma 2.4(2), A has finite injective dimension d as a right
module. Symmetric arguments prove these facts on the other side. Thus we have proved that A is AS
Gorenstein by definition. That A satisfies conditions (L2) and (R2) follows from Lemma 1.4.

Corollary 3.7. Let A be a finite module over its affine center. Suppose A satisfies (L1) and (R1) of
Definition 1.5(1). Then A is a finite direct sum A =

L
i∈I Ai of homogeneous AS Gorenstein algebras of

injective dimension ≤ GKdim A. Further, for each i ∈ I , Ai satisfies the conclusions of Theorem 3.6.

Proof. By Lemma 1.8, A is a finite direct sum of indecomposable algebras, A =
L

i∈I Ai . It is easy to
show that each Ai satisfies (L1) and (R1) of Definition 1.5(1). Since Z(A) =

L
i∈I Z(Ai ), it is also easy

to see that each Ai is finite over its affine center. The assertion follows by applying Theorem 3.6 to each
component Ai .

Corollary 3.8. Let A be a finite module over its affine center. Suppose A satisfies (L1) and (R1) of
Definition 1.5(1). Write A =

L
i∈I Ai , where each Ai is indecomposable of GK dimension di . Then A has

a rigid dualizing complex R of the form
L

i∈I i [di ], where each i is an invertible (Ai , Ai )-bimodule.
As a consequence, R is an invertible complex of (A, A)-bimodules.

Proof. If R =
L

i∈I i [di ] where i is an invertible Ai -bimodule, then R has inverse
L

i∈I
−1
i [−di ].

So we only need to prove the assertion when A is indecomposable. Let d = GKdim A. By the proof of
Theorem 3.6, A has a rigid dualizing complex of the form [d], where is a projective on both sides.
We have also seen in Theorem 3.6 that A has finite injective dimension d as a left and right A-module.
It is then obvious from the definition that A is also a dualizing complex over A. By [Yekutieli 1999,
Theorem 4.5(ii)], [d] = RHomA(A, [d]) is a tilting complex over A, which is a (derived) invertible
complex of A-bimodules [Yekutieli 1999, Theorem 1.6]. Since is projective over A on both sides,
must be an invertible (A, A)-bimodule.
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4. Some consequences

In this section we give some immediate consequences for algebras that satisfy the conclusions of
Corollary 3.7 or, in other words, the following hypothesis.

Hypothesis 4.1. Let A be a finite direct sum A =
L

i∈I Ai of indecomposable, noetherian, homogeneous,
AS Gorenstein, Auslander Gorenstein, Cohen–Macaulay algebras. For each i ∈ I , suppose injdim Ai =

GKdim Ai .

Lemma 4.2. Suppose A satisfies Hypothesis 4.1. Then A has a quasi-Frobenius artinian quotient ring.

Proof. It suffices to show that for each i ∈ I , Ai has a quasi-Frobenius artinian quotient ring. This follows
from [Ajitabh et al. 1998, Corollary 6.2].

Lemma 4.3. Suppose A =
L

i∈I Ai satisfies Hypothesis 4.1. If A is a PI algebra of finite global dimension,
then each Ai is a prime, homogeneous, AS regular, Auslander regular and Cohen–Macaulay algebra.

Proof. By definition, Ai is AS regular, Auslander regular and Cohen–Macaulay for each i . By [Stafford
and Zhang 1994, Theorem 5.4], Ai is prime. A prime PI algebra of finite GK dimension is homogeneous
[Krause and Lenagan 1985, Lemma 10.18]. The assertion follows.

We also recall:

Lemma 4.4 [Wu and Zhang 2003, Proposition 4.3]. Let A and B be noetherian, PI, AS Gorenstein
algebras of the same injective dimension and let A → B be an algebra homomorphism such that A B and
BA are finitely generated. Then the following are equivalent:

(1) injdim BA < ∞.

(2) injdim A B < ∞.

(3) projdim BA < ∞.

(4) projdim A B < ∞.

(5) BA is projective over A.

(6) A B is projective over A.

As a consequence, if A has finite global dimension, then both BA and A B are projective.

We recall the following definition given in [Wu and Zhang 2003, p. 1059] or [2001, p. 521].

Definition 4.5. Let A be an algebra and M be a left A-module. The depth of M is defined to be

depth M := min i | ExtiA(S, M) 6= 0 for some simple A-module S .

Proposition 4.6. Let A be a PI algebra satisfying Hypothesis 4.1. Let d = GKdim A. Let M be a nonzero
finitely generated left (or right) A-module.
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(1) The Auslander–Buchsbaum formula. If projdim M < ∞, then

projdim M ≤ d − depth M.

If , further, A is homogeneous, then

projdim M = d − depth M.

(2) Bass’s theorem. If injdim M < ∞, then

injdim M ≤ d.

If , further, A is homogeneous, then

injdim M = d.

(3) The no-holes theorem. Suppose either A is homogeneous or M is indecomposable. Then for every
integer i between depth M and injdim M , there is a simple left (or right) A-module S such that
ExtiA(S, M) 6= 0.

Proof. First, if A is homogeneous, then A is AS Gorenstein. In this case all statements are given in [Wu
and Zhang 2001, Theorem 0.1].

Next, we suppose that A is not homogeneous. As in Hypothesis 4.1, write A =
L

i∈I Ai where each
Ai is homogeneous. Write M =

L
i∈I Mi where each Mi is a left Ai -module. By the assertions in the

homogeneous case, for each i ∈ I , we have:

(1i ) If projdim Mi < ∞,
projdim Mi = di − depth Mi ,

where di = injdim Ai .

(2i ) If injdim Mi < ∞, then
injdim Mi = di .

(3i ) For every integer s between depth Mi and injdim Mi , there is a simple left Ai -module T such that
ExtsAi

(T, Mi ) 6= 0.

(1) Suppose that projdim M < ∞. Then

projdim M = max
i∈I

{projdim Mi } and depth M = min
i∈I

{depth Mi }.

Choose j ∈ I such that projdim M = projdim M j . Then

projdim M = projdim M j = d j − depth M j ≤ d − depth M

as desired.

(2) Let j ∈ I satisfy injdim M = injdim M j . Then

injdim M = injdim M j = d j ≤ d

as desired.
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(3) Since we are in the case that A is not homogeneous, M is indecomposable by hypothesis. In this case
M = M j for some j . But then M is an A j -module and A j is homogeneous, so the assertion follows by
[Wu and Zhang 2001, Theorem 0.1(3)].

5. Weak Hopf algebras

Our goal is to apply the main results in Sections 3 and 4 to weak Hopf algebras. In this section, we recall
the definition of a weak Hopf algebra and give some examples. Throughout, we use Sweedler notation.
If (C, 1, ) is a coalgebra, then for c ∈ C , we write 1(c) =

P
c1 ⊗ c2. When there is no danger of

confusion, we suppress the summation notation and simply write 1(c) = c1 ⊗ c2.

Definition 5.1 [Böhm et al. 1999; Hayashi 1993; 1999b]. A weak bialgebra consists of a 5-tuple
(H, µ, u, 1, ), where (H, µ, u) is a unital associative k-algebra and (H, 1, ) is a counital coassociative
k-coalgebra, satisfying:

(a) Multiplicativity of comultiplication:

1(ab) = 1(a)1(b)

for all a, b ∈ H .

(b) Weak comultiplicativity of the unit:

12(1) = (1(1) ⊗ 1)(1 ⊗ 1(1)) = (1 ⊗ 1(1))(1(1) ⊗ 1).

(c) Weak multiplicativity of the counit:

(abc) = (ab1) (b2c) = (ab2) (b1c)

for all a, b, c ∈ H .

We do not assume that H is finite-dimensional over k.

Because the coproduct does not necessarily preserve the unit, applying the usual sumless Sweedler
notation we write 1(1) = 11 ⊗12. A weak bialgebra is a bialgebra if and only if 1(1) = 1⊗1, if and only
if (ab) = (a) (b) for all a, b ∈ H . For a weak bialgebra H , the source counital map s : H → H is
defined by s(h) = 11 (h12) for all h ∈ H . The source counital subalgebra Hs is defined to be the image
of s . Similarly, the target counital map t : H → H is defined by t(h) = (11h)12 for all h ∈ H , and
the target counital subalgebra is Ht = t(H). The counital subalgebras are finite-dimensional, separable,
coideal subalgebras of H that commute with each other [Nikshych and Vainerman 2002, Propositions 2.2.2
and 2.3.4].

Definition 5.2 [Böhm et al. 1999; Hayashi 1993; 1999b]. Let H be a weak bialgebra.

(1) H is a weak Hopf algebra if there exists an algebra antihomomorphism S : H → H called the
antipode satisfying, for all a ∈ H :

S(a1)a2 = s(a), a1S(a2) = t(a), S(a1)a2S(a3) = S(a).
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(2) A morphism between weak Hopf algebras H1 and H2 with antipodes S1 and S2 is a map f : H1 → H2

which is a unital algebra homomorphism and a counital coalgebra homomorphism satisfying f ◦S1 =

S2 ◦ f .

There are many examples of finite-dimensional weak Hopf algebras in the literature, see for example,
[Böhm et al. 1999; 2011; Hayashi 1993; 1999a; 1999b; Nikshych and Vainerman 2002; Szlachányi 2001].
We now provide several examples of weak Hopf algebras.

Example 5.3. (1) Every Hopf algebra is a weak Hopf algebra.

(2) If H1 and H2 are weak Hopf algebras, then so are H1 ⊕ H2 and H1 ⊗ H2, with their usual algebra
and coalgebra structures.

(3) For every positive integer n, the matrix algebra Mn(k) is a weak Hopf algebra, which is a special
case of a groupoid algebra. As a consequence of part (2), if H is a weak Hopf algebra, so is Mn(H).

In contrast to the examples above, note that if H1 and H2 are Hopf algebras, then H1 ⊕ H2 and Mn(H1)

(for n > 1) are not Hopf algebras.
The face algebras defined by Hayashi [1993] are a special class of weak Hopf algebras. Other

examples include groupoid algebras and their duals, Temperley–Lieb algebras, and quantum transformation
groupoids (see [Nikshych and Vainerman 2002]). The focus of this paper is on infinite-dimensional weak
Hopf algebras (of finite GK dimension). In addition to the Hopf algebras of finite positive GK dimension,
we also provide the following examples and constructions.

Example 5.4. Suppose that (W, µW , uW , 1W , W , SW ) is a weak Hopf algebra and that σ is a weak
Hopf algebra automorphism of W . Then the group Z = hai acts on W via σ , so W is a kZ-module algebra.
Hence, we may form the smash product H = W # kZ.

As a vector space, H = W ⊗ kZ. As an algebra,

(w ⊗ am)(v ⊗ an) = wσ m(v) ⊗ am+n

for w, v ∈ W and m, n ∈ Z. The unit of H is given by 1H = 1W ⊗a0. As a coalgebra, define 1(w⊗am) =

(w1 ⊗ am) ⊗ (w2 ⊗ am) and (w ⊗ am) = W (w) kZ(am) = W (w) for all w ∈ W and m ∈ Z. We claim
that this makes H a weak bialgebra.

Note that since σ is a weak Hopf algebra automorphism of W, we have that for all w ∈ W, (σ (w)) =

(w) and σ(w)1 ⊗ σ(w)2 = σ(w1) ⊗ σ(w2). First, 1 is multiplicative as

1 (w ⊗ am)(v ⊗ an) = 1(wσ m(v) ⊗ am+n)

= (wσ m(v))1 ⊗ am+n
⊗ (wσ m(v))2 ⊗ am+n

= w1σ
m(v)1 ⊗ am+n

⊗ w2σ
m(v)2 ⊗ am+n

= w1σ
m(v1) ⊗ am+n

⊗ w2σ
m(v2) ⊗ am+n

= (w1 ⊗ am) ⊗ (w2 ⊗ am) (v1 ⊗ an) ⊗ (v2 ⊗ an)

= 1(w ⊗ am)1(v ⊗ an).
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We also have that the unit is weakly comultiplicative, since

12(1H ) = (11 ⊗ a0) ⊗ (12 ⊗ a0) ⊗ (13 ⊗ a0)

= (11 ⊗ a0) ⊗ (12 ⊗ a0) ⊗ (1W ⊗ a0) (1W ⊗ a0) ⊗ (10

1 ⊗ a0) ⊗ (10

2 ⊗ a0)

= (1(1H ) ⊗ 1H )(1H ⊗ 1(1H )),

and similarly for the other weak comultiplicativity axiom.
Finally, to see that is weakly multiplicative, we have

(u ⊗ al)(v ⊗ am)(w ⊗ an) = uσ l(v)σ l+m(w) ⊗ al+m+n

= W uσ l(v)σ l+m(w)

= W (uσ l(v)1) W σ l(v)2σ
l+m(w)

= W (uσ l(v)1) W σ l(v2σ
m(w))

= W (uσ l(v1)) W (v2σ
m(w))

= (u ⊗ al)(v1 ⊗ am) (v2 ⊗ am)(w ⊗ an)

= (u ⊗ al)(v ⊗ am)1 (v ⊗ am)2(w ⊗ an) ,

and similarly for the other weak multiplicativity axiom. Thus H is a weak bialgebra, as claimed.
It is now easy to check that we can give H the structure of a weak Hopf algebra by defining the

antipode as

S(w ⊗ am) = (1 ⊗ SkZ(am))(SW (w) ⊗ a0) = (1 ⊗ a−m)(SW (w) ⊗ a0) = σ−m(SW (w)) ⊗ a−m .

As an algebra, H is isomorphic to the skew Laurent ring W [t±1
; σ ], where w ∈ W corresponds to

w ⊗ a0 and t corresponds to 1 ⊗ a. Hence, when W is finite-dimensional, H is a weak Hopf algebra
of GK dimension 1. Under this isomorphism, 1(t) = 1(1)(t ⊗ t), so t is group-like in the sense of
[Nikshych and Vainerman 2002].

Example 5.5. Let W be a weak Hopf algebra. Let σ : W → W be an algebra automorphism and assume
that (i) there is an algebra homomorphism χ : W → k such that σ(w) =

P
χ(w1)w2 =

P
w1χ(w2) for

all w ∈ W , that is, σ is both a left and right winding homomorphism of some character χ ; and (ii) the
antipode S of W satisfies S = σ Sσ .

Then by [Lomp et al. 2019, Theorem 4.4], there is a unique weak Hopf algebra structure on the Ore
extension H = W [t; σ ] such that 1H , H , and SH restrict on W to 1W , W , and SW respectively and t is
primitive in the weak sense, in other words, 1(t) = 1(1)(1 ⊗ t + t ⊗ 1), (t) = 0, and S(t) = −t .

Note that if W is finite-dimensional, then H has GK dimension 1.

Remark 5.6. In fact, Lomp, Sant’Ana, and Leite dos Santos [Lomp et al. 2019, Theorem 4.4] give
necessary and sufficient conditions for the existence of a weak Hopf algebra structure on a more general
Ore extension W [t; σ, δ] which extends the weak Hopf algebra structure on W , under the assumption that
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t is weakly skew-primitive. When W is finite-dimensional, these Ore extensions give additional examples
of weak Hopf algebras of GK dimension 1 which generalize the previous example.

Applying the constructions in the previous examples repeatedly, we can obtain many different weak
Hopf algebras of positive GK dimension.

6. An analog of (L1) and (R1) for monoidal categories

It is well-known that if H is a weak Hopf algebra, then there is a monoidal product endowing H -Mod
with the structure of a monoidal category. In this section, we study analogs of (L1) and (R1) in the more
general setting of monoidal categories, and then apply these results to the special case of modules over a
weak Hopf algebra in the next section. The reader can find the basic definitions of monoidal categories
and related concepts in [Etingof et al. 2015].

Definition 6.1. Let C be a k-linear abelian category. We say that C satisfies (C1) if, for all projective
objects P ∈ C and all i ≥ 0, the functor ExtiC(−, P) is exact on the subcategory of objects of finite length
in C.

In this definition Ext means Yoneda Ext, though in our main intended application where C = H -Mod
for an algebra H , the Ext functors can be computed with projective or injective resolutions, as usual. We
want to show that (C1) follows from quite general hypotheses when C is a monoidal category. For the rest
of this section, suppose that the k-linear abelian category C is also a monoidal category, with bilinear,
biexact tensor product denoted ⊗. Let 1 denote the unit object of C.

Definition 6.2. Suppose that for some object M ∈ C, the functor − ⊗ M has a right adjoint. We write
Hom(M, −) for the right adjoint. By definition, for all P, N ∈ C there is an adjoint isomorphism

8P,M,N : HomC(P ⊗ M, N ) → HomC(P, Hom(M, N ))

which is natural in P and N . The object Hom(M, N ) is called the internal Hom from M to N .

Another way of describing the definition above is as follows: Hom(M, N )∈ C is the object representing
the functor HomC(− ⊗ M, N ), when that functor is representable. If D is a full subcategory of C such
that − ⊗ M has a right adjoint for all M ∈ D, then Hom(M, N ) is defined for all M ∈ D, N ∈ C. It is
easy to see in this case that Hom(−, −) is a bifunctor D × C → C, which is contravariant in the first
coordinate.

We have the following version of Freyd’s adjoint functor theorem.

Lemma 6.3. Assume that C is cocomplete, in other words that C has (small) direct sums, and that C has a
generator. Then the functor − ⊗ M : C → C has a right adjoint if and only if it commutes with all (small)
direct sums in C, for all M ∈ C.

Recall the definition of a left dual V ∗ of an object V ∈ C [Etingof et al. 2015, Definition 2.10.1].

Lemma 6.4. Let C be as above. Suppose that V ∈ C has a left dual V ∗.
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(1) The functor − ⊗ V ∗ is a right adjoint of − ⊗ V . In particular, the internal Hom, Hom(V, N ), exists
for all N ∈ C, and Hom(V, N ) ∼= N ⊗ V ∗.

(2) The functor Hom(V, −) is exact.

(3) For any projective object P ∈ C, the object P ⊗ V is also projective.

Proof. (1) See [Etingof et al. 2015, Proposition 2.10.8].

(2) This follows from part (1), since Hom(V, −) ∼= − ⊗ V ∗ and ⊗ is biexact.

(3) This is the same proof as in [Etingof et al. 2015, Proposition 4.2.12]. We have an isomorphism of
functors HomC(P ⊗ V, −) ∼= HomC(P, − ⊗ V ∗) by part (1). Since ⊗ is biexact and P is projective, the
second functor is exact. So the first functor is exact, implying that P ⊗ V is projective.

We now get the following adjunction at the level of Ext.

Lemma 6.5. Suppose that C has enough projectives. Let D be a full subcategory of C such that every
V ∈ D has a left dual V ∗. Then for all M, N ∈ C and V ∈ D there is a vector space isomorphism

ExtiC(M, Hom(V, N )) ∼= ExtiC(M ⊗ V, N ),

which is natural in M , V , and N.

Proof. This is similar to the proof in [Brown and Goodearl 1997, Proposition 1.3]. Let P• be a projective
resolution of M . By Lemma 6.4(3), the complex P•

⊗V consists of projectives, and since − ⊗V is exact,
it forms a projective resolution of M ⊗V . Then HomC(P•

⊗V, N ) has homology groups ExtiC(M ⊗V, N ).
On the other hand, using that − ⊗ V has a right adjoint by Lemma 6.4(1), this complex is isomorphic to
HomC(P•

, Hom(V, N )), which has homology groups ExtiC(M, Hom(V, N )). The naturality is easy to
check.

The main result of this section is the following version of [Brown and Goodearl 1997, Lemma 1.11;
Wu and Zhang 2003, Lemma 3.4].

Proposition 6.6. let C be as above. Suppose that C has enough projectives. Let D be a full abelian
subcategory of C such that every V ∈ D has a left dual V ∗

∈ D.

(1) Suppose Q ∈ C is projective and let V ∈ D. Then P = Q ⊗ V ∗ is projective and for any i ≥ 0, there
is an isomorphism ExtiC(V, Q) ∼= ExtiC(1, Q ⊗ V ∗), which is natural in V ∈ D.

(2) For any projective object Q ∈ C and any i ≥ 0, the functor ExtiC(−, Q) is a contravariant exact
functor D → k-Mod.

Proof. (1) By Lemma 6.4(1), there is an isomorphism Q ⊗V ∗
→ Hom(V, Q), which it is straightforward

to check is natural in V ∈ D. Moreover, by Lemma 6.4(3), P = Q ⊗ V ∗ is projective. Now by the adjoint
isomorphism in Lemma 6.5, we see that

ExtiC(1, Q ⊗ V ∗) ∼= ExtiC(1, Hom(V, Q)) ∼= ExtiC(1 ⊗ V, Q) ∼= ExtiC(V, Q),

where all of the displayed isomorphisms are natural in V ∈ D.
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(2) Let 0 → V1 → V2 → V3 → 0 be an exact sequence in D. By assumption, V1, V2, and V3 all have left
duals. Note that the functor which assigns to an object its left dual is an exact functor, by the same proof as
in [Etingof et al. 2015, Proposition 4.2.9]. We therefore have an exact sequence 0 → V ∗

3 → V ∗

2 → V ∗

1 → 0
of objects in D. Since ⊗ is biexact, 0 → Q ⊗ V ∗

3 → Q ⊗ V ∗

2 → Q ⊗ V ∗

1 → 0 is an exact sequence as
well. As the terms of this sequence are all projective by Lemma 6.4, the sequence is split. Then setting
Pi = Q ⊗ V ∗

i , we have

0 → ExtiC(1, P3) → ExtiC(1, P2) → ExtiC(1, P1) → 0

is exact, since ExtiC commutes with finite direct sums in the second coordinate. By the isomorphism in
part (1),

0 → ExtiC(V3, Q) → ExtiC(V2, Q) → ExtiC(V1, Q) → 0

is exact, as required.

Corollary 6.7. Suppose that C is a k-linear abelian monoidal category with bilinear, biexact tensor
product ⊗. Suppose that C has enough projectives. Let D be the full subcategory of C consisting of finite
length objects, and suppose that every V ∈ D has a left dual V ∗

∈ D. Then C satisfies the condition (C1)
of Definition 6.1.

7. Proofs of Theorems 0.3–0.8

Let H be a weak Hopf algebra. The monoidal product on H -Mod is defined as follows. For M, N ∈

H -Mod, M ⊗k N is a (nonunital) left H -module via the action h · (m ⊗ n) =
P

h1m ⊗ h2n. Then one
defines

M ⊗ N := 1(1)(M ⊗ N ) = 11m ⊗ 12n | m ∈ M, n ∈ N ,

which is a unital submodule of M ⊗ N and thus in H -Mod. This makes H -Mod into a monoidal category
[Nikshych and Vainerman 2002, Section 5.1].

There is also another way to describe this product which is often convenient. Recall the counital
subalgebra Ht = t(H), where t(h) = (11h)12. Let us define also s(h) = 11 (12h). If M ∈ H -Mod,
then of course M is also a left Ht -module by restriction. The module M also has a right Ht -structure,
where for m ∈ M , h ∈ Ht we define m · h := s(h)m. Under these two actions, M becomes an (Ht , Ht)-
bimodule. Then we can also identify M ⊗ N with M ⊗Ht N , with the same formula for the left H -action,
that is h · (m ⊗ n) = h1m ⊗ h2n [Böhm et al. 2011, Theorem 2.4].

We are now ready to prove the main results given in the Introduction.

Proof of Theorem 0.3. (1) Let A be an algebra which satisfies Hypotheses 0.1 and 0.2. Since A is a
finitely generated module over its affine center, by [Brown and Goodearl 1997, Proposition 3.1], every
finite length H -module is finite-dimensional over k. Since A satisfies Hypothesis 0.2, by Corollary 6.7,
both A-Mod and Aop-Mod satisfy (C1) of Definition 6.1 and so A satisfies (L1) and (R1). The assertions
follow from Corollary 3.7.
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(2) Let H be a weak Hopf algebra. Hypothesis 0.2 for H follows from well-known results, though
we will briefly review the details. The existing references sometimes assume a weak Hopf algebra is
finite-dimensional, but since we only claim that finite-dimensional objects have left duals, there is no
significant change to the proofs.

The category H -Mod is obviously abelian, and it is monoidal with the operation ⊗ defined at the
beginning of this section. The unit object is 1 = Ht , which is a left H -module with action h · z = t(hz)
for h ∈ H, z ∈ Ht [Nikshych and Vainerman 2002, Lemma 5.1.1]. By the description of ⊗ as ⊗Ht ,
where each M ∈ H -Mod has a canonical (Ht , Ht)-bimodule structure, since Ht is semisimple, it is clear
that ⊗ is bilinear on morphisms and biexact. If M ∈ H -Mod is finite-dimensional, it has a left dual
M∗

= Homk(M, k) with H -module action [h ·φ](m) = φ(S(h)m), using the antipode S of H [Nikshych
and Vainerman 2002, Lemma 5.1.2]. Note that we have not assumed that S is bijective, and the proof of
[Nikshych and Vainerman 2002, Lemma 5.1.2] uses S−1. But in fact S−1 is only applied in the proof to
elements of Hs , and for any weak Hopf algebra the antipode S gives a bijection from Ht to Hs [Böhm
et al. 1999, Theorem 2.10], so that S−1

|Hs makes sense.
This shows that the category H -Mod has the properties needed in Hypothesis 0.2. Since (H op, cop, S)

is also a weak Hopf algebra (see [Nikshych and Vainerman 2002, Remark 2.4.1]), the category Mod-H
also has these properties, so that Hypothesis 0.2 holds.

Proof of Theorem 0.4. By Theorem 0.3, A satisfies Hypothesis 4.1. The assertion follows from Lemma 4.2.

Proof of Theorem 0.5. By Theorem 0.3, A satisfies Hypothesis 4.1. The assertion follows from Lemma 4.3.

Proof of Theorem 0.6. By Theorem 0.3, A satisfies Hypothesis 4.1. The assertion follows from Lemma 4.4.

Proof of Theorem 0.7. (1) The assertion follows from Lemma 3.5(1) and Corollary 3.8.

(2) This follows from Lemma 3.5(2).

(3) By Lemma 3.5 and Corollary 3.8, A has a residue complex K that has nonzero cohomology only at
H−d(K ) = , where d = GKdim A. By Corollary 3.8, is an invertible A-bimodule. It follows from the
definition of residue complex that has a minimal pure injective resolution on both sides. By tensoring
with −1 we obtain that A has a minimal pure injective resolution on both sides.

Proof of Theorem 0.8. By Theorem 0.3, A satisfies Hypothesis 4.1. The assertion follows from
Proposition 4.6.

In this paper we have focused on the class of weak Hopf algebras, which seems to be an especially fertile
ground for generalizing the homological theory of infinite dimensional Hopf algebras. The conditions
in Hypothesis 0.2 are quite weak, however, and so we expect other generalizations of Hopf algebras to
satisfy the analog of Theorem 0.3(2). We have not attempted to catalog all of the structures for which this
theory applies, but mention one such further example here.
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A quasibialgebra is a generalization of a bialgebra for which the coproduct is not coassociative, but
satisfies a weaker form of coassociativity up to twisting by a unit. There is a natural notion of antipode S
for a quasibialgebra. Such algebras arise naturally in the theory of tensor categories; we refer to [Etingof
et al. 2015, Sections 5.13–5.15] for the definition and some basic properties. Traditionally, the term
quasi-Hopf algebra is reserved for quasibialgebras with invertible antipode.

Given a quasibialgebra H , the category H -Mod is monoidal, where for M, N ∈ H -Mod we have
M ⊗ N = M ⊗k N with action h · (m ⊗ n) = h1m ⊗ h2n, similarly as for Hopf algebras. In particular, it
is clear that ⊗ is bilinear on morphisms and biexact. The existence of an antipode S implies that every
finite dimensional M ∈ H -Mod has a left dual M∗, with H -action given by the same formula as in the
Hopf case [Etingof et al. 2015, p. 113]. Analogous results hold for the category of right modules, since
H op, cop is also a quasi-Hopf algebra with antipode S. Thus we have the following result.

Theorem 7.1. Let H be a quasibialgebra with antipode. Then H satisfies Hypothesis 0.2, and hence if H
is also finite over an affine center then H satisfies all of the conclusions of Theorem 0.3(1).

8. Further questions

We conclude by posing some further questions for weak Hopf algebras. For open questions in the Hopf
case, we refer the reader to [Brown 1998; Brown and Zhang 2008] and the survey papers [Brown 2007;
Goodearl 2013].

The main result of this paper (Theorem 0.3) is a proof of the Brown–Goodearl conjecture for weak
Hopf algebras that satisfy Hypothesis 0.1. It is natural to ask if the Brown–Goodearl conjecture holds for
weak Hopf algebras satisfying weaker hypotheses. In particular, we ask:

Question 8.1 (the Brown–Goodearl question for weak Hopf algebras). Let H be a noetherian weak Hopf
algebra. Does H have finite injective dimension? What if we assume further that H is affine and PI?

Again motivated by Theorem 0.3, we ask:

Question 8.2 (decomposition question). Suppose H is a noetherian weak Hopf algebra with finite
Gelfand–Kirillov dimension d. Is then H a direct sum of homogeneous weak Hopf subalgebras Hi of
Gelfand–Kirillov dimension i for integers 0 ≤ i ≤ d?

Wu and Zhang [2003] proved that noetherian affine PI Hopf algebras have artinian quotient rings. As a
corollary of [Skryabin 2006, Theorem A], Skryabin deduced that these Hopf algebras have a bijective
antipode. In light of Theorem 0.4, it is therefore natural to ask:

Question 8.3 (Skryabin’s question for weak Hopf algebras). Does every noetherian weak Hopf algebra
H have a bijective antipode? What if we assume further that H is affine and PI?
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