This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2973380, IEEE

Transactions on Power Systems

SUBMITTED TO IEEE FOR POSSIBLE PUBLICATION. COPYRIGHT MAY BE TRANSFERRED WITHOUT NOTICE 1

Statistical Modeling of Networked Solar Resources
for Assessing and Mitigating Risk of Interdependent
Inverter Tripping Events in Distribution Grids

Kaveh Dehghanpour, Member, IEEE, Yuxuan Yuan, Student Member, IEEE, Fankun Bu, Student Member, IEEE
Zhaoyu Wang, Member, IEEE

Abstract—It is speculated that higher penetration of inverter-
based distributed photo-voltaic (PV) power generators can in-
crease the risk of tripping events due to voltage fluctuations. To
quantify this risk utilities need to solve the interactive equations
of tripping events for networked PVs in real-time. However,
these equations are non-differentiable, nonlinear, and exponen-
tially complex, and thus, cannot be used as a tractable basis
for solar curtailment prediction and mitigation. Furthermore,
load/PV power values might not be available in real-time due
to limited grid observability, which further complicates tripping
event prediction. To address these challenges, we have employed
Chebyshev’s inequality to obtain an alternative probabilistic
model for quantifying the risk of tripping for networked PVs.
The proposed model enables operators to estimate the probability
of interdependent inverter tripping events using only PV/load
statistics and in a scalable manner. Furthermore, by integrat-
ing this probabilistic model into an optimization framework,
countermeasures are designed to mitigate massive interdependent
tripping events. Since the proposed model is parameterized
using only the statistical characteristics of nodal active/reactive
powers, it is especially beneficial in practical systems, which have
limited real-time observability. Numerical experiments have been
performed employing real data and feeder models to verify the
performance of the proposed technique.

Index Terms—Probabilistic modeling; power statistics; risk
assessment; tripping events;

I. INTRODUCTION

Increasing penetration of distributed energy resources
(DERs), including inverter-based photo-voltaic (PV) power
generators, in distribution grids represents opportunities for
enhancing system resilience and customer self-sufficiency, as
well as challenges in grid control and operation. One of these
challenges is the potential increase in the risk of tripping of
inverter-based resources due to undesirable fluctuations in the
grid’s voltage profile [1]. This can put a hard limit on the
feasible capacity of operational PVs in distribution grids, re-
duce the economic value of renewable resources for customers,
and cause loss of service in stand-alone systems [2], [3]. The
possibility of DER power generation disruption due to voltage-
related vulnerabilities in unbalanced distribution grids has been
discussed in the literature: in [4], [5], risk of interdependent
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tripping of PVs, with ON/OFF current interruption mechanism
was demonstrated numerically in a distribution grid test case
for the first time. It was shown that the unbalanced and re-
sistive nature of networks can further exacerbate this problem
by causing positive inter-phase voltage sensitivity terms that
act as destabilizing positive feedback loops, leading to voltage
deviations after tripping of an individual inverter. The impact
of grid voltage sensitivity on DER curtailment was also studied
and observed in [2]. Based on these insights, guidelines were
provided in [6] to roughly estimate the impact of new DER
capacity connections on the maximum voltage deviations in
the grid. It was shown in [7] that very large or small number
of inverter-based resources in distribution systems can lead
to interdependent failure events that contribute to voltage
collapse in transmission level. Detailed realistic numerical
studies were performed on practical feeder models in [8]-
[13] that corroborated the considerable impacts of extreme PV
integration levels, and inverter control modes on grid voltage
fluctuations, which is the critical factor in causing massive
solar curtailment scenarios.

Most existing works relied on scenario-based simulations
and numerical studies to capture the likelihood of inverter
tripping under high renewable penetration. While this has led
to useful guidelines and invaluable intuitions, it falls short
of providing a generic theoretical foundation for predicting
and containing tripping events. Specifically, the dependencies
between nodal solar power distributions, nodal voltage pro-
files, and inverter tripping events have not been explicitly
analyzed in the literature thus far. These dependencies are
influenced by inverter protection settings and governed by
a set of networked power-flow-based equations, which turn
out to be non-differentiable and nonlinear. In this regard,
several fundamental challenges have not been addressed: (1)
Lack of scalability: Solving the inverter tripping equations
directly in real-time requires a large-scale search process
to explore almost all the joint combinations of “ON/OFF”’
configurations for the inverters. The computational complexity
is due to the interactive and networked nature of tripping
events, meaning that the states of inverters influence each other
and are not independent [14]. The source of interdependency
in chances of inverter tripping is the dependencies in nodal
voltages of power grid (i.e., disruption of power injection
at one node impacts nodal voltages of other neighboring
inverters, which in turn could influence their probability of
tripping.) For example, tripping of an inverter (or a cluster
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of inverters) leads to a change in loading distributions, which
can most likely increase/decrease the chance of tripping for
other inverters during under/over-voltage scenarios, especially
in weak grids. This interdependency prevents the solver from
decoupling the tripping equations into separate equations for
individual inverters. Thus, the scale of search for finding
the correct configuration increases exponentially (2VV) with
the number of inverters (/N). Another factor that contributes
to computational complexity is the volatility of PV power,
which forces the solver to explore, not only various tripping
configurations, but also numerous solar scenarios at granular
time steps. (2) Limited tractability for mitigation: A direct
solution strategy for tripping equations cannot be easily inte-
grated into optimization-based decision models, since it has
no predictive capability and cannot be use to answer what if
queries, unless a thorough expensive search is performed over
all possible future load/PV scenarios. Also, due to their non-
differntiability, integrating the tripping equations into decision
models complicates formulation by adding integer variables
to the problem. (3) Limited access to online data: Practical
distribution grids have low online observability, meaning that
the values of real-time nodal power injections can be unknown
in real-time for a large number of PVs/loads due to commu-
nication time delays or limited number of sensors. Thus, we
might not have access to sufficient online information to solve
the tripping problem directly.

To tackle these challenges, we propose an alternative proba-
bilistic modeling approach to quantify and mitigate the risk of
voltage-driven tripping events. Instead of complex scenario-
based look-ahead search over numerous possible tripping
configurations, our methodology is built upon probabilistic
manipulation of power flow equations in radial networks to
estimate the probability of inverter tripping using only the
available statistical properties of loads/PVs. Interdependent
Bernoulli random variables are used to model probabilities of
inverter tripping and capture their mutua. These probabilities
are voltage-dependent and serve as unknown micro-states in
the equations of tripping events. Then, Chebyshev’s inequality
[15] is applied to determine a stationary lower bound for the
values that these micro-states can assume under any probable
nodal power injection scenarios. This lower bound provides
a conservative estimation of expected PV curtailment, and
thus, represents a statistical risk metric for tripping events.
Furthermore, due to its simple matrix-form and differentiable
structure, the proposed probabilistic model can be conveniently
integrated into an optimization framework as a constraint,
which enables mitigating unwanted solar curtailment events
by designing optimal voltage regulation countermeasures. The
proposed methodology is generic and can capture the behavior
of arbitrary radial distribution feeders using only load/PV
statistics and network topology/parameters. This implies that
tripping events can be conservatively predicted using the
proposed model and without the need for online access to
granular PV/load data or expensive scenario-based search
process, which makes our strategy specifically suitable for
practical networks.

Numerical experiments have been performed using real ad-
vanced metering infrastructure (AMI) data and feeder models
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Fig. 1. Distribution feeder structure with PVs, loads, and voltage-sensitive
current interruption mechanisms (i.e., switches).

from our utility partners to validate the developed probabilistic
framework. The numerical validates the performance of the
probabilistic model for both over- and under-voltage scenarios,
and show that ignoring the possibility of tripping in voltage
regulation can exacerbate voltage deviations.

II. DERIVING A CONSERVATIVE PROBABILISTIC MODEL
OF PV TRIPPING EVENTS

In this section, we will develop and then parameterize
a probabilistic model of networked inverter-based PVs to
quantify the possibility of emergent tripping events. To do this,
first, we begin with the original model of inverter tripping with
ON/OFF voltage-driven current interruption mechanism, and
then, we will show that by adopting a probabilistic approach
towards the original model and using Chebyshev’s inequality,
tripping probabilities can be conservatively estimated using the
statistical properties of nodal available load/PV power.

A. Original Interactive Switching Equations

In this paper, it is assumed that PV resources are protected
against voltage deviations using ON/OFF switching mecha-
nisms. Note that here a “switch” can be a mechanical relay,
as well as a non-physical inverter control function that stops
current injection into the grid under abnormal voltage even if
the inverter is still physically connected to the grid [16]. The
PV is tripped in case the nodal voltage deviates from a user-
defined permissible range, [Vinin, Vinaz). In this paper, this
range is adopted from the literature [4], as Vi,;, = 0.9 p.u.
and Viqr = 1.1 p.u.. The switching mechanisms are simply
modelled as binary micro-state variables with the following
voltage-dependent function (see Fig. 1):

Vmin S ‘/;(t) S Vmam

sz(t) > Vmaw

1
si(t) =40 (1
0

where, s;(t) is the micro-state assigned to the i’th PV at time
t as a function of the inverter node’s voltage magnitude V;.
Here, s;(t) = 1 implies ON and s;(¢) = 0 indicates OFF. The
assumption in this switching model is that over long enough
time intervals the impact of inverter dynamics, e.g., ride-
through capabilities [17]-[20], can be conservatively ignored.
This assumption considerably enhances the tractability of the
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model at the expense of loss of accuracy. In this sense, the
switching model is a worst-case representation of inverter
tripping. Since the approximate power flow equations for
distribution grids are linear with respect to the squared values
of nodal voltage magnitudes [21], we re-write equation (1)
using a variable transformation, v; = V;2, and employing unit
step functions as follows:

Sl(t) = U(Uz(t) - vmin) -

_ 12 _ 12
where, Viin = V.5 ins Vmaz =V,

m max?®

U(-) is defined as follows:

U(Ui (t) - Umax) (2)

and the unit step function

U@ =4 ©=2Y 3)
0 x<0,

Note that inverters’ micro-states are influenced by nodal
voltages and are thus highly interdependent on each other, as
changes in the state of one switch will cause nodal power
variations, which leads to a change of voltage at other nodes
that can in turn influence probability of tripping events. To
obtain the overall governing equations of inverter tripping,
the mutual impacts of switch micro-states on each other are
captured using an approximate unbalanced power flow model
for radial distribution grids [21], which determines voltage at
node ¢ as a function of active/reactive power injections of every
other node in a grid (with a total of NV + 1 nodes):

N
vi(t) = ij +vo, Vi€ {l,..,N} 4)
j=1
where, vg = VOQ, with V4 denoting the voltage magnitude at a
grid reference bus, and the intermediary variable v;; represents
the impact of active/reactive power injection at node j on v;,
which is obtained as follows:

Ui = Rijp;(t) + Xi5G;(t) (5)
where, R;; and X;; are the aggregated series resistance and
reactance values corresponding to the intersecting branches

in the paths connecting nodes i and j to the reference bus
calculated as follows [21]:

Ri]‘ =2
{n,m}ePa(i,j)

>

{n,m}ePa(i,j)

Tnm (6)

Xij =2 Tnm (7)

where, Pa(i, j) represents the set of pairwise nodes consisting
of the neighboring nodes that are on the intersection of the
unique paths connecting nodes ¢ and j to the reference bus;
nm and x,,, denote the real series resistance and reactance of
the branch connecting nodes n and m. Also, p; and g; denote
the active and reactive power injections at bus j, which are in
turn determined by the micro-state of the PV at node j (see
Fig. 1):

B (1) = py(1)s; (1) (8)

q;(t) = q;(t)s;(1) ©)

with p; and g; representing the available load/PV power at
node j, where p; > 0 implies generation. Equations (4)-(7)

are obtained in vector form for all three phases of unbalanced
distribution grids [21].

Equations (2)-(9) fully determine the states of networked
PVs. The difficulty in solving these equations is due to three
factors: (I) the size of solution space increases exponentially
as the number of micro-states {s, ..., sy} grows. Since these
micro-states are not independent and influence each other in
complex and non-trivial ways they cannot be obtained indi-
vidually, and a thorough search process is needed to explore
all possible switching configurations. This can be extremely
expensive and impossible to scale to large systems with high
population of inverters. (II) Due to the discrete step functions
in (2), tripping equations are nonlinear and non-differentiable.
This contributes to problem difficulty since gradient-based
methods cannot be applied. (III) p; and ¢; act as time-varying
input parameters within the model. This implies that using
the tripping equations for predicting probability of tripping
events requires extensive search process to cover all probable
PV/load time-series scenarios. This expensive search process
hinders the tractability of optimization-based frameworks for
designing tripping mitigation strategy.

Not all the nodes in the tripping model are necessarily con-
trolled by ON/OFF voltage-sensitive switching mechanisms.
For examples, ordinary load nodes are generally not governed
by equation (2). In this paper, for the sake of brevity, the
switching equations are still written for all the nodes in the
grid as presented, however, we will simply assign constant
values, s;(t) = 1, V¢ to the nodes without ON/OFF control
and remove their corresponding switching from the equations
(see Fig. 1).

B. Alternative Approximate Probabilistic Model

We adopt a probabilistic point of view towards tripping
model. This allows us to obtain a stationary differentiable
statistical model that has a simple matrix-form formulation.
Accordingly, the ON/OFF current interruption mechanisms,
s;’s, are modelled as random variables following Bernoulli
probability distributions with parameters A;,Vi € {1,..., N}:
s; ~ B(\;), where parameter )\, is defined as the probability of
the 7’th inverter switch being ON, X;(t) = Pr{s;(t) = 1}. The
goal is to transform micro-states from discontinuous binary
variables (s; € {0,1}) into continuous variables ()\; € [0, 1]).
To rewrite the equations in terms of new micro-states note
that we have E{s;(t)} = X;(¢) for Bernoulli probability
distributions, where F{-} represents the expectation operation.
Thus, by performing an expectation operation over both sides
of (2), probability of inverter tripping in terms of the new
micro-states can be obtained as follows:

Az(t) - Pr{vmin S Uz(t) S Umaw} (10)

where, we have exploited E{U(f(z))} = Pr{f(z) > 0}.
Note that the probability of tripping for an inverter is an
implicit function of nodal voltage probability distribution,
which in turn is influenced by the states of other inverters.
Due to the interconnected nature of the problem, no inde-
pendency assumptions has been made on random variables
Ai, Vi € {1,..,N}. However, the exact distributions of
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nodal voltages are unknown and complex functions of nodal
active/reactive injections, which implies that (10) cannot be
determined analytically unless over-simplifying assumptions
are made. Instead, we employ Chebyshev’s inequality [15] to
provide a lower bound on micro-state as a function of nodal
voltage statistics without making any assumption on voltage
distributions,

Ymaz+Vmin )2
2

( YUmaz —VUmin \2

Pr{vmin S Uz(t) S 'Umax} Z 1-—

(11)
where, aﬁi and p,, are the variance and mean of v;, re-
spectively. Hence, the approximate probabilistic model can be
formulated for each micro-state as follows:

012)71 + (ﬂvi _ 'Uma.a:;"umin )2

( Umax ;’Umin )2

Ai(t)=1— (12)
This new tripping model has two features: (1) it is a
conservative estimator of the original system since it over-
estimates the probability of inverter tripping, i < A 2) As
will be shown in Section II-C, the approximate probabilistic
model can be conveniently parameterized in terms of nodal
available active/reactive power statistics. Hence, as long as
certain statistics are known (or estimated), the model allows
us to accurately track probability of inverter tripping without
running time-series simulations under numerous scenarios.

C. Probabilistic Model Parameterization

To parameterize the alternative tripping model (12), nodal
voltage statistics, agi and ji,,, are obtained in terms of nodal
available active/reactive power statistics. To do this, power
flow/injection equations (4)-(9) are leveraged.

Stage 1: 1, Parameterization - The expected value of
voltage magnitude squared is determined using (4)-(5) as,

N
poy = B{Bi;} + o
=1

j=
N
> (R E{p;} + Xi; E{G;}) + vo (13)
j=1

To calculate E{p,;} and E{g;}, we will first obtain their
cumulative distribution functions (CDFs) [15], Fj, and Fg,,
respectively. This process is shown for p; as follows (Fy, is
obtained similarly): '

Fy, (P) = Pr{p;(t) < P} = (1= X;(1)U(P) +X; (1) Fy, (113
(
The rational behind (14) is that the distribution of power
injection is determined by two functions: the distribution of
PV switch (which is ON with probability A;(¢)), and the
CDF of available PV power, F),.. Now, the probability density
functions (PDF) of the realized active nodal power injection,
/5,» can be calculated as a function of the available active
solar power, f,. (a similar operation is performed for reactive
power): '
dFy, (P)

fﬁj(P)_T:(l_

Aj(£)3(P) + ;) fp, (P) (15)

Then, using the active/reactive power injection PDFs,
E{p;} and E{g,}, can be obtained through integration:

o0

Bl = [ afpl@da=xp a6)
+oo

E{q} = Bfz;(B)dB = \;Q; (17

where, P; and Q; denote the mean values of the available ac-
tive and reactive powers at node j, respectively (P; = E{p,}
and Q; = E{g;}). Thus, the mean nodal voltage magnitude
squared can be written in terms of inverter switch statistics
and expected PV/load available powers:

N
Mo, = Z{R”)\j(t)P] + XijAj(t)Qj} + Vo

Jj=1

(18)

Stage 2: azi Parameterization - Using (4), the variance of
nodal voltage magnitude squared can be formulated as,

N
2 _ 2
o, = g 05, T2
j=1
2

where, 0., is the variance of ¥;;, and the operator Q{z1, z2}
denotes the covariance of the two random variables z;
and xo, which itself can be written in terms of their cor-
relation, p,, .,, and standard deviations, o,, and o,,, as
{21, %2} = poy 2200, 00, To fully parameterize o7 using
available load/PV power statistics, O’%ij and Q{¥;;, Vi } have
to be determined separately.

Stage 2-1: oF  Parameterization - Using (5), o3 is

formulated as a function of p; and g; statistics:

+ ijo:?j +2R;; X,;Up;,q; }

Z {0ij, Vi }

1<k<j<N

19)

2 _ p2 2
oﬂlj—Rijaﬁj

(20)

2

where, 9%, and orgj are the active/reactive power injection

variances, which can in turn be determined as follows:

o3, = E{sip}} — E{p;}’ @1
where, E{s3p3} is calculated through a similar process in-
volved in (14)-(17) (i.e., obtain the CDF, determine the PDF,
and integrate). Noting that in our case sf = s;, the PDF of
s3p5 is derived as follows (similar derivation applies to s3¢7):

€)= (= X005 + L2 (V3 + £, (V0
(22)

By integrating (22) and using (16)-(17) to substitute for
E{p;} and E{g;}, the following results are obtained to param-
eterize the variances of nodal active/reactive power injections:

o = N(P+P7) = NP} (23)
oz = X(QF +Q;) - X@Q; 24)

where, Pj+ = E{p3lp; > 0} and P; = E{pilp; < 0};
similar definitions apply to Q;r and ()} . Note that given that

p; > 0 for PVs, PjJr = O’Zj + Pj2 and P, = 0. Employing an

analogous logic, PjJr =0and P;” = U;J + sz for loads.
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To obtain Q{p;,q¢;} in (20), we leverage the fact that
a1, 20} = E{x122} — E{x1 } E{x2} as follows:

Upj, i} = E{p;q;} — E{D;} E{d;}

where, the term E{p;G;} is calculated similar to previous
derivations (i.e., CDF—PDF—integration), which combined
with (16) and (17) yields the following result:

Ups 45} = \PQj — NiPQ; + A ps, ¢;}

where, Q{p;,q;} can be determined in terms of available
active/reactive power statistics, including correlation and stan-
dard deviations as Q{p;,q;} = pp,.q,0p,04;-

Thus, using (23), (24), and (26), a?}i] can be parameterized
in terms of the available active/reactive power statistics, and
with respect to micro-states:

(25)

(26)

2y pl _ y212
o2 = M\TL = N1

27)

where, the time-invariant parameters I'}; and T'}; are given
below:

Tl =R5(Pf+P7) + X5(Q) + Q)

+ 2R X, (PQ5 + Q{P;,Q;}) (28)

Tf = 2R Xy PiQ; + IR, + Q5X5 (29)

Stage 2-2: Q{0;;, 0, } Parameterization - Similar to (26),
Q{0;;,Vix }, is broken down to its components:

U{0ij, Vi) = E{030ir} — E{0s; } E{Oir }

By adopting a CDF—PDF—integration strategy, E{0;;;x } is
determined in terms of active/reactive power injection statistics
as follows:

(30)

E{0ij0in} =RijRix E{Dj, Pr} + Rij Xin E{Dj, i} +

XiiRi E{q;,pe} + Xij X E{q;, @} (31)
where, using previous derivations and through algebraic
manipulations, the following parameterization is obtained
in terms of available active/reactive power statistics for

Q{ﬁij, ’lNJzk}

i, vir} = MjAe(Tij — Thjp) (32)

where, the parameters I'}

2 ; .
ij1 and 17, are determined as:

R
ijk
RijRi(Upj, i} + P Pr) + Rij X, (U pj, qr } + PiQr)+
XijRin (U qj, pr} + Q5 Pr) + X Xon (U gy, qr } + Q;Qr)
(33)

02, = (Ri; P + Xi;Q;)(Rix Py + X Qx)  (34)

By substituting (32) and (27) into (19), 012)1, is now fully
determined as a function of micro-states and in terms of
available nodal active/reactive power statistics.

Stage 3. Probabilistic Inverter Tripping Model Repre-
sentation: Finally, using the parameterized afi and p,,, the

probabilistic model (12) yields a the following bilinear matrix-
form representation for the approximate micro-state vector
A= [)\1, ceny /\N]TZ

At)TCiA(®)
A(t) = ao + BA(t) + : (35)
A TCNA()

where, all the time-invariant parameters of the model are con-
catenated into the vector ag and matrices B, and {C1, ..., Cn }.
The elements of these parameters are determined by organizing
the previous derivations in Stages 1 and 2, as follows:

(36)

Q0 — — Vs
ao(i) —1_ ( Vo Umaz Umzn)g

Umax — Umin

B(i, j) =
—1 1

Ymaz —Ymin |2 ij
(Pmasgtmin)

200 — Umaz — Umi
0( YUmax _a;;nin );nzn (PJR’L] + Q]XZ])
2
(37)

Cilji k) = {( B (38)

0 J =k,

where, ag(¢) denotes the i’th element of ag, and B(i, ) and
C;(j, k) are the (i,7)’th and (j, k)’th elements of B and Cj,
respectively. The aggregate switching equation can be written
as a function of approximate macro-state, S = Zf\il N, as
follows:

N
S(t) = [Zao(i)] + ) B(i,)]

N
A+ A0 CIAE)

i=1 i=1 (39)
where, S is a conservative estimator of the real macro-state,
S, which is the actual expected population of inverter that are
ON, ie., S(t) < S(t). Also, B(i,:) is the i’th row of matrix B.
To summarize, the proposed approximate probabilistic model
leverages available load/PV power statistics shown in Table
I. Previous works have used various data-driven and machine
learning methods that can be applied for obtaining statistical
properties of nodal load/PV powers in partially observable
networks from limited available data (for example see [22]-
[24]). Also, although the micro-states in the probabilistic
model are random variables, the model itself is governed by
deterministic functions of load/PV statistics.

A related problem in distribution grids that testifies to the
dependent nature of tripping is known as sympathetic tripping
of inverters in weak grids [14], [25]: overloading/faults on one
feeder can trigger the voltage protection mechanism of invert-
ers on a healthy neighboring feeder. The sympathetic tripping
of inverters is also caused by dependencies in nodal voltages
within the distribution grid (i.e., excessive load/fault current
on one feeder contributing to voltage drops on other nodes).
While sympathetic tripping is not exactly what the proposed
statistical model in this paper captures, it still provides further
support that dependency in tripping is possible in practice.
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TABLE I in (38), captures the joint impacts of inverter 5 and inverter k
NEEDED STATISTICS FOR DEVELOPING THE PROPOSED MODEL on probability of tripping for inverter 7. As can be seen, the
. . 1

Voltage Statistics | Corresponding Nodal Active/Reactive Power Statistics absoluFe valu§ of thlS. parameter decreases. with Vmaz —Vmin)? "’
P Vi €(1,...N} Thus, increasing the inverter upper protection threshold, vy,

Uy Qi j efl,..., . . .
v » or decreasing the lower protection threshold, .5, (i.€., mak-
2 P Q. P Qf . P, Q5. 0y, 04, Vi €{L...N} ing the inverter less sensitive to voltage events) will result

oy, L

Pojap Poipic Pojae Pajar ik €{1,...N} in a decline in mutual impacts of inverters on each other. In

D. Discussion on Probabilistic Tripping Model Properties

The probabilistic model (35) represents a set of self-
consistent equations; in other words, any A that satisfies
these equations is a conservative estimator of probability of
inverter tripping. Furthermore, this probabilistic model can
be thought of as the asymptotic equilibrium of an abstract
discrete dynamic system:

(k) TCLA(K)

Ak +1) =ag + BA(k) + : (40)
A(k)TCNA(K)

where, the equilibrium is achieved at A(k + 1) = A(k)

and coincides with the solution of the proposed probabilistic
model (35). This abstract dynamic system has an intuitive
interpretation: matrix B represents the linear component of the
dynamics, which as can be observed in (37) and (29), is de-
termined only by each individual nodes’ active/reactive power
statistics, including the expected values and self-correlation
between active/reactive power at each node alone. However,
matrices {C1,...,Cn} capture the nonlinear components of
the dynamic system, where the element C;(j, k) determines
the coefficient assigned to the interactive nonlinear probability-
product term ):j(t) - Ae(t) in driving A;(t 4+ 1). In other
words, C;(j,k) quantifies the mutual impact of the j’th
and k’th PV micro-states on dynamics of the ¢’th switch.
Furthermore, as observed in (38) and (33) the elements of
C;, unlike B, are determined by the mutual correlations in
available active/reactive powers of different PVs. The inherent
nonlinearity of (40) hints at the possibility of stage transition
and bifurcation at equilibrium of the abstract dynamic system
as PV/load power statistics evolve over time, which could
potentially result into a cascading tripping event, as pointed
out in [4], [7], [18], [19]. A regime shift at the equilibrium of
the abstract nonlinear dynamic system basically corresponds
to qualitative changes in the solution of our probabilistic
tripping model, potentially, leading to a sudden increase in the
average chances of voltage-driven tripping events caused by
the growing penetration of solar energy in the system. In this
sense, the structure of the abstract dynamic model is similar
to other complex interactive dynamic systems in the literature,
including nonlinear combinatorial evolution models [26] and
asymmetric Ising systems [27], which are also known to
demonstrate critical behavior and emergent non-trivial patterns
at the macro-level under certain conditions.

An important factor in tripping studies is the impact of
setting of inverter protection systems. This can be seen in
equations (36), (37), and (38) that present the parameters of
the proposed statistical model. Specifically, parameter C; (7, k)

other words, relaxing the protection boundaries significantly
weakens the dependencies among inverter tripping. If C;(j, k)
is thought of as a measure of strength of interdependency
among inverters, then our model suggests that loss of inter-
dependency is approximately proportional to the inverse of
inverter protection dead-band width squared.

E. Integrating Voltage-Dependent Resources Into the Pro-
posed Probabilistic Tripping Model

Note that so far we have assumed that the nodal active and
reactive power injections, p; and g;, are external inputs to the
model. However, active and reactive power injection of certain
nodes can show high levels of voltage-dependency and cannot
be treated as external inputs. The voltage-dependency can be
caused by reactive power support from the inverters or load
power voltage-sensitivity. In this section, we will demonstrate
that voltage-dependent resources can also be included in our
probabilistic model. To do this, the active/reactive power
injections are linearized around the nominal squared voltage

(vp):

dp;(v;
pj(v;) = pj(vn) + %_J) X (vj —vn)  (41)
J Vj=Vn
dg;(v;
qj(v;) = qj(vn) + % X (vj — vn) (42)
Vi =0

The active/reactive power injections in (41) and (42) consist
of two terms: one is the voltage-independent term, and the
second is caused by non-zero sensitivity to nodal voltage.
Our model can conveniently include the first term as outlined
previously. The second term can also be integrated in the
model if the operator has a rough estimation of active/reactive
power voltage-sensitivity values. For example, this sensitivity
can be obtained for ZIP loads [28] and inverters that are
capable of reactive power support [18], [19] as follows:

dpj(vj) Bj + 20]
— =pi(vn) - (L2 43
B OO e
dg; (v;) .
T = k; (44)

Vj=VUn

where, B; and C; represent the ZIP coefficients corresponding
to the fixed-current and fixed-impedance portions of ZIP load,
respectively, and k; < 0 is the local inverter droop coefficient.
Given the voltage-sensitivity values, the second terms in (41)
and (42) simply serve as new additional nodal active/reactive
power injections and can be treated in the model similar to
other loads. For example, the surrogate nodal active/reactive
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injections for ZIP loads and inverters with reactive support
capability can be conservatively estimated as follows:

B: + 20,
Ap; ~ (%)(@ — 0n)p; (vn) (45)
Agj = k(v —vp) (46)

where, v denotes a conservative user-defined value that can
be used by the utilities to model worst-case tripping scenar-
ios. However, note that (45) and (46) are still conservative
estimations. Developing more accurate models for integrating
voltage-dependent power injection into tripping equations re-
mains the subject of future research.

ITII. SOLAR CURTAILMENT QUANTIFICATION AND
MITIGATION

Using (35) as a conservative probabilistic lower bound
for the real system, an optimization problem is formulated
to provide a realistic estimation of the actual values of the
micro-states of the grid. This problem is solved at any given
time-window at which available nodal active/reactive power
statistics are known:

min —(P" - ),
A

ATCi

st. A=ao+ B\ + (47)

ATCONA
0<X\ <1 Vje{l, ., N}

where, P = [Py, ..., Py|". The objective of this optimization
problem is to find the maximum achievable expected solar
power in the gird according to the conservative statistical
model. While the solution to this problem is still a lower
bound estimation of the real achievable PV power, the esti-
mation gap between A and A is minimized. In other words,
the optimization searches for the most optimistic values for
micro-states with respect to the conservative approximate
probabilistic tripping model. The problem is constrained by
the matrix equations that govern the probabilities of inverter
tripping. Furthermore, the physical characteristics of micro-
states are constrained by valid probability assignments within
[0, 1] interval.

A similar problem can be formulated to provide counter-
measures against massive tripping events at any given time
window. In general, the proposed statistical tripping model
can be integrated as a constraint into any volt-var optimiza-
tion formulation [29]-[31] to represent the possibility of PV
curtailment. For example, here we provide a formulation

for minimizing solar curtailment by controlling the voltage
magnitude at the system reference bus [29]:

min—(P" - }),
A,vo
ATCiA
st. A =ag(vo) + B(vo)A + :
S\TCN/A\ (48)

0< X\ <1 Vje{l,.,N}

Umin S Vo S Umax
R

max

R

Umin S,U/vi(Xﬂ)O) < Umax Vi € {17 7N}

where, vy is integrated into the optimization problem as a
decision variable. Constraints are added to ensure that the
control action and the expected nodal voltage magnitudes
remain within permissible boundaries [Vyin, Vmaz]. Here, vd
represents the initial setpoint value for vy, and [vF, v ]
is the permissible range of rate of change of voltage at the
reference bus with respect to the initial voltage setpoint. To
integrate vy into the problem, the expected nodal voltage
magnitude squared values are written as a function of network
parameters, expected available nodal active/reactive powers,
and the optimization decision variables using (18):

v Svo—végv

Moy

L Hon
Ry P+ X11Q1 RinPy + XinQN
: : h + vo
| BviP1+ XnQq RnnPyn + XnNn@N
49)

where, v = [vg, ..., vo] "

Despite its convenient differentiable matrix-form formula-
tion, the probabilistic tripping model introduces quadratic non-
convex constraints into optimization problems. This challenge
can be addressed using various relaxation techniques from
the literature, such as semidefinite program (SDP) relaxation
[32], second-order cone program (SOCP) relaxation [33], and
parabolic relaxation [34]. To handle the non-convexity, these
methods generally define an auxiliary matrix, A = AX ", which
enables obtaining a convex surrogate for the original problem.
For example, by applying parabolic relaxation, the constraints
defined by the model are replaced with the following alterna-
tive constraints:

CreA

ao + (B —In)A+ : —et <0 (50
CnyeA
CreA

—ag — (B —In)A— +e <0 (51
CneA

vi.j A(i,3) + A4, 5) — 2A3,5) > (%(i) - %(J’))2
U AG )+ AGL ) 4 203 5) > (AG) + AG))? -
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Fig. 3. Nodal PV outputs in the test system.

where, C; o A = YN SN 1Ci(n,m)A(n,m)}, Iy is
an N x N identity matrix, and e*/e™ are positive/negative
small-valued slack variables that are used for transforming
equality constraints defined by the model into two equivalent
inequality constraints. The obtained inequalitjes (50)-(52) are
convex constraints with respect to variables A and A.

IV. NUMERICAL EXPERIMENTS AND VALIDATION

Numerical experiments have been performed to validate the
proposed probabilistic tripping model. In this, we have used
real feeder model of an Iowa distribution system from our
utility partner as shown in Fig. 2. The network model in
OpenDSS and detailed parameters are available online [35].
To perform simulations we have used real solar and load data
with 1-second time resolution from [36]. Fig. 3 shows the PV
outputs at different nodes in the system for one day. Fig. 4
demonstrates 15-minute average nodal demand. The load/PV
data have been randomly distributed across the three phases
of the unbalanced grid at each node.

To verify the performance of the proposed approximate
statistical model, extensive time-series simulations were per-
formed on the test system under various loading and solar
generation scenarios over a course of day. Then, the real values
of original micro-states, \;, were determined empirically over
time windows of length 7" = 60 minutes. Intuitively, A\; serves
as the ground truth and roughly represents the portion of time
that s; is ON during each time window:

)\z(T) ~ Zf:l Sl(t)

T (53)

e
w

u
I
N
a
m

I
[

o
=
o
I

T
1

Average Nodal Demand (p.u.)
1

12 15 18 21 24
Time (Hour)

Fig. 4. Average 15-minute nodal consumption in the test system.

Thus, we have two distinct time windows throughout nu-
merical studies: a 1-second time step is used to perform
high-resolution simulations, and a 1-hour time window is
employed to obtain tripping statistics and empirically verify
the performance of the proposed probabilistic model. Fig.
5a demonstrates the empirical micro-states, \;, at different
time intervals, which are determined by applying (53) to
simulation outcomes. Based on the values of these micro-
states, the empirical macro-state value is calculated at all time
intervals, which represents the expec}ged percentage of PV
switches in ON state, i.e., Sp(T) = M % 100. Fig. 5b
compares the empirical macro-state value and the lower bound
value constructed using solutions of (47). As can be seen,
the solution from the probabilistic model actually represents
a lower bound to the empirical macro-state obtained from
simulations at all time windows, which corroborates the per-
formance of the method. This figure also shows another lower
bound obtained by simply using maximum PV capacities and
assuming zero nodal consumption. However, as can be seen,
this lower bound gives fixed over-conservative outcomes that
do not reflect the true conditions of the system and have no
correlation with the time-series PV/load data. Fig. 5c depicts
the aggregate maximum available solar power (all switches
ON at all time), empirical aggregate realized solar power from
numerical simulations (53), and solar power corresponding to
solution of (47). As observed, the lower bound solution still
holds and provides a conservative yet close estimation for the
empirical achievable solar power outcome. Fig. 6 compares the
empirical and model-based probabilities of inverter tripping in
a heavy-loaded time interval. Unlike the previous case, these
tripping probabilities are due to under-voltages. As can be
observed, the model still provides a conservative lower bound
on the probability of tripping. Note that the reason for higher
levels of volatility in this figure is the shorter time window
(15 minutes) used for assessing the empirical probability of
tripping.

The gap between the empirical macro-state obtained from
numerical experiments and the proposed lower bound is an
implicit function of PV penetration. Sensitivity analysis was
performed to quantify the relationship between this gap and
PV penetration percentage, as shown in Fig. 7. Here, PV
penetration is defined as the mean value of peak nodal solar
power over peak nodal demand. The maximum, minimum, and
mean values of the gap between the provided lower bound and
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penetration. As is observed in the figure, the optimistic value
of the gap drops and eventually reaches 5% as PV penetration
increases, which indicates that the lower bound approaches the
true macro-state value in grids with higher PV penetration.
On the other hand, the maximum value of the gap shows an
increase after a certain PV penetration level which points out
to higher variations in solutions obtained from the probabilistic
model.

-
a

Aggregate PV Power (p.u.)
o

0 3 6 9 12 15 18 21 23
Time (Hour) Fig. 8 shows the overall daily solar curtailment levels, both

(c) Aggregate expected PV power empirical and the lower bound, as a function of changes
Fig. 5. Comparing the empirical and statistical lower bound solutions. in inverter control parameter. The inverters in the system
are assumed to be controlled in constant power factor (PF)
mode. As the reference PF setpoint increases and the system
moves towards unity PF the voltage fluctuations increase,
which leads to higher solar curtailment. This confirms previous
observations in the literature [9]. Furthermore, our proposed
probabilistic lower bound always slightly over-estimates the
curtailment level, as expected correctly from the conservative
estimator.
Further tests were performed to corroborate the performance
of countermeasure design strategy introduced in (48). Fig.
9a shows the outcome of the optimization problem (48),
compared to a base case without any voltage regulation. As
[ Empkical Resti observed, vy is optimally decreased during solar-rich intervals
205 208 214 214 217 2 23 to compensate for the increased voltage fluctuation levels.
Time (Hour) Fig. 9b compares the aggregate solar power injection values
Fig. 6. Model performance for a case of heavy-loaded system and 15-minute under the nery acquired vo values and the base case without
empirical tripping probability assessment time window. voltage control. As can be seen, the obtained countermeasure
has assisted significantly in mitigating the overall solar power
curtailments during critical time intervals.
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Fig. 9. Solar curtailment countermeasure design verification

We have performed another numerical experiment to analyse
and verify the behavior of our tripping model during an under-
voltage case study in a temporary heavy loading scenario
in a weak grid under two strategies (see Fig. 10): (1) No
voltage regulation is applied (baseline), and (2) Voltage regu-
lation is applied with the objective of minimizing the average
squared voltage deviations across the whole system, subject
to linearized power flow equations and the proposed statistical
tripping model. As can be seen in Fig. 10a, under the baseline
strategy (no voltage regulation) a portion of inverters (around
13%) have tripped due to under-voltage protection during later
hours of the day. This has resulted in a loss of renewable power
injection in the grid (Fig. 10b). However, by applying voltage
regulation using the proposed tripping model we have been
able to maintain the voltages much closer to their nominal
values (see Fig. 10c) and prevent tripping events and loss
of solar generation resources altogether. Note that Fig. 10c
shows the average value of nodal voltages across the whole
system; thus, while most of the nodes maintain healthy voltage
levels (as they should), the excessive loading on weak system
lines under the baseline has resulted to a temporary voltage
drop below inverters’ protection activation threshold, which
has engaged their under-voltage protection devices. This issue
was mitigated using the deployed voltage regulation strategy
that leverages our proposed statistical tripping model.

Fig. 11 demonstrates the average realized daily PV power
ratio as a function of average PV penetration. As can be seen,
the increasing penetration of solar has led to a regime shift
after a certain threshold, from an initial state, in which the
system shows almost no extensive tripping, to a new state,
in which the average probability of solar curtailment steadily
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Fig. 10. An under-voltage case study.

increases and extended tripping events can be expected. The
existence of this threshold attests to a stage transition in the
extent of switching events, which has been observed in other
nonlinear systems as well [26]. Above the PV integration
threshold, which is around 30% for the test system, massive
solar curtailment can be expected due to voltage fluctuations.
It can be observed that the proposed statistical lower bound
accurately tracks the behavior of the real system, and can
be used to convey information on the whereabouts of the
transition. The exact value of the regime shift threshold
depends on many factors, including network topology and
spatial-temporal distribution of loads/generators.

V. CONCLUSIONS

In this paper, a probabilistic model of interdependent solar
inverter tripping is presented to assess the risk of solar power
curtailments due to voltage fluctuations in distribution grids.
This model is developed using only the statistical properties of
available load/PV active/reactive power. Numerical results on a
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real distribution feeder using real data successfully validate the
estimated conservative lower bounds on inverter micro-states.
Furthermore, it is demonstrated that the proposed model can
be used for identifying regime shifts in tripping events and
designing countermeasures to minimize risk of solar power
curtailment. As a future research direction, we will explore
integrating the more dynamic functions of inverter control
and protection, including ride-through capabilities, [17]-[20]
into the probabilistic tripping model. For example, the pro-
posed statistical lower bound, which is based on Chebyshev’s
inequality, might become too conservative over short time
windows if inverters’ disturbance ride-through capabilities are
activated. A less conservative lower bound that incorporates all
aspects of inverter behavior will enable operators to monitor

the

sequence and transitions of tripping events, and mitigate

potential cascading failure of resources.
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