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Abstract—Advanced metering infrastructure (AMI) enables
utilities to obtain granular energy consumption data, which
offers a unique opportunity to design customer segmentation
strategies based on their impact on various operational metrics
in distribution grids. However, performing utility-scale segmen-
tation for unobservable customers with only monthly billing
information, remains a challenging problem. To address this
challenge, we propose a new metric, the coincident monthly
peak contribution (CMPC), that quantifies the contribution of
individual customers to system peak demand. Furthermore, a
novel multi-state machine learning-based segmentation method
is developed that estimates CMPC for customers without smart
meters (SMs): first, a clustering technique is used to build
a databank containing typical daily load patterns in different
seasons using the SM data of observable customers. Next, to
associate unobservable customers with the discovered typical
load profiles, a classification approach is leveraged to compute
the likelihood of daily consumption patterns for different unob-
servable households. In the third stage, a weighted clusterwise
regression (WCR) model is utilized to estimate the CMPC of
unobservable customers using their monthly billing data and the
outcomes of the classification module. The proposed segmentation
methodology has been tested and verified using real utility data.

Index Terms—Customer segmentation, peak load contribution,
observability, machine learning

I. INTRODUCTION

Advent of Advanced metering infrastructure (AMI) has fa-
cilitated a deeper understanding of customer behaviors in low-
voltage networks for distribution system operators. Individual
customers’ demand consumption can be recorded by smart
meters (SMs) with high temporal resolution, which enables
developing novel data-centric grid operation mechanisms. One
of these mechanisms is utility-scale customer segmentation
[1], which is extremely useful in enhancing system operation
and management by intelligently targeting customers for peak
shaving programs, AMI investment, and retail price/incentive
design. This will help utilities under strict financial constraints
to optimize their investment portfolio. However, for small-
to-medium utilities, a key barrier against investigating an
efficient customer segmentation is the absence of real-time
measurements due to financial limitations [2]. Currently, more
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than half of all U.S. electricity customer accounts do not have
SMs to record their detailed consumption behavior [3].

Several papers have focused on developing customer seg-
mentation strategies using SM data. One of the most common
approaches is to leverage clustering techniques for identifying
typical load profiles [4]–[6]. In [4], principal component analy-
sis (PCA) is performed to extract the dominant features within
customer consumption data and then k-means algorithm is
employed to classify consumers. In [5], a finite mixture model-
based clustering is presented to obtain distinct behavioral
groups. In [6], a C-vine copulas-based clustering framework is
proposed to carry out consumer categorization. However, the
typical load profile extraction alone is insufficient to assess
customers’ impacts on system peak demand, which limits
utilities’ ability to target suitable customers for reducing the
operation costs.

Apart from typical load profiles, several customer segmenta-
tion methodologies have been developed based on the feature
characterization and extraction [7]–[10]. In [7], residential
customers are ranked using their appliance energy efficiency
to reduce building energy consumption. In [8], the entropy of
household power demand is used to evaluate the variability
of consumption behavior, which is considered to be a key
component in peak shaving program targeting and customer
engagement. In [9], a customer’s marginal contribution to
system cost is obtained using daily demand profiles. In [10],
a four-stage data-driven probabilistic method is proposed to
estimate the coincident peak demand estimation of new cus-
tomers for designing new systems. Compared to the clus-
tering approaches, these methods directly quantify customer-
level features from SM data and use them to determine the
segmentation strategies. Nevertheless, the previously-proposed
metrics fall short of considering customers’ impact on system
peak demand, which is a major problem considering that
continuous growth in system peak load raises the possibility of
power failure and increases the marginal cost of supply [11].
Furthermore, previous works have only focused on observable
customers.

In order to address these shortcomings, this paper proposes
a new metric for customer segmentation, which is denoted
as coincident monthly peak contribution (CMPC). CMPC is
defined as the ratio of individual customer’s demand during
system daily peak load time over the real-time total system
peak demand in a course of a month. Compared with con-
ventional coincident peak demand metrics, which quantify the
peak consumption levels of multiple customers based on their
empirical diversified maximum demand [10], the proposed

Authorized licensed use limited to: Iowa State University. Downloaded on May 11,2020 at 18:10:07 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2979943, IEEE
Transactions on Power Systems

2

CMPC focuses on the impact of individual customer and
conveys information on how individual customer’s peak time
differs from the system’s peak demand time. Based on the def-
inition of CMPC, we develop a multi-stage machine learning-
based customer segmentation strategy that estimates CMPCs
of unobservable customers using only their monthly billing
information. The developed method consists of three modules:
1) Using a graph theoretic clustering, a seasonal typical
load pattern bank is constructed to classify various customer
consumption behaviors. 2) To connect unobservable customers
to the seasonal databank, a multinomial classification model
is presented which identifies typical load profiles of customers
without SMs. 3) According to the outcome of the classification
module, a weighted clusterwise regression (WCR) model is
trained to map the unobservable customers’ monthly energy
consumption data to CMPC values. Utilizing our segmentation
method, within a certain range of consumption, customers with
heavy demand but small contribution to the system peak could
be excluded from AMI investment/peak shaving investment
portfolios, whereas those with a similar demand level but a
larger peak contribution can be targeted in such programs as
impactful customers. The main contributions of this paper can
be summarized as follows:

• A new metric, CMPC, is proposed as a measure for cus-
tomer segmentation strategy, which accurately assesses
the individual customer impact on system peak from
a real dataset. We will show that the proposed metric
contains different and unique information compared to
the existing metrics.

• A three-stage machine learning framework is developed
to obtain CMPC for unobservable customers by accu-
rately estimating their contribution to system peak de-
mand.

• The proposed framework is innovative and intuitive, and
considers various specific properties of our real data: 1)
the linear nature of the relationship between the CMPC
and demand level in the same cluster; 2) concentration
of residential customers demand within a small range; 3)
strong seasonal changes in customer behaviors.

• The proposed framework can handle the uncertainty of
the classification process by integrating the probabilistic
values for each typical pattern in the regression model.

II. DATA DESCRIPTION AND CMPC DEFINITION

A. Data Description

The available data used in this paper is provided by several
mid-west U.S. utilities. The data includes the energy con-
sumption measurements of over 3000 residential customers
from SMs, and the corresponding supervisory control and data
acquisition (SCADA) data. The data ranges from January 2015
to May 2018 [12]. The SM data was initially processed to
eliminate grossly erroneous and missing samples. Accordingly,
the data points with a z-score magnitude of larger than 5 are
marked as “erroneous” and replaced using local interpolation
[13]. The empirical distribution and cumulative distribution
function (CDF) of customer monthly energy consumption are
obtained and presented in Fig. 1. As shown in the figure,

Fig. 1. Monthly consumption distribution: consumption histogram (left),
consumption CDF (right).

Fig. 2. Percentage of customers whose peak demand coincide with the system
peak.

the majority of residential customer monthly consumption
samples are concentrated around 1000 kWh, and almost 80%
of customers have monthly consumption levels below 1000
kWh. Compared to the industrial and commercial customers,
the demand level of residential households is distributed within
a smaller range. This indicates that using only demand level
for customer segmentation can be a difficult task.

B. CMPC Definition

The system peak demand is one of the most important
operational factors for utilities due to the high marginal cost of
energy procurement at the peak time. Hence, it is obligatory
to investigate a customer segmentation methodology based on
each load’s contribution to system peak demand. However,
individual customer’s peak demand cannot be employed as
a measure to assess this contribution, since individual cus-
tomer peak demand does not necessarily coincide with the
system peak. In order to illustrate this, a statistical analysis
is performed on the available SM dataset. Fig. 2 shows the
percentage of customers whose peak demand coincides with
the system peak load. On average only 6% of customers have
the same peak time as the system, with a standard deviation
of 12%. This means that a customer’s peak demand cannot be
relied upon to estimate its contribution to the overall system
peak load. Thus, in this paper, we propose a new metric,
denoted as CMPC, to accurately quantify the contribution of
an individual customer to the system peak demand:

Fj,m =
1

n

n∑
d=1

pdj,m(td)

P d
m(td)

(1)

where CMPC of the j’th customer at the m’th month is
denoted by Fj,m. Here, pdj,m(td) is the customer’s demand
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Fig. 3. Proposed data-driven framework.

at time td on the d’th day of the month, with n denoting
the total number of days in the month. Note that P d

m and td
are the value and the time of system peak demand on the d-th
day of the m-th month. Hence, CMPC is basically the average
customer contribution to the daily system peak demand during
a month. A few related but different indices can be found in
the literature, such as coincidence contribution factor, which
is defined as the gap between the aggregate peak demand of a
group of customers and their actual consumption at the system
peak time [14]. However, the coincidence contribution factor
cannot be used as a customer-level metric due to its inability
to quantify individual customers’ contributions to the system
peak load.

CMPC can be directly calculated for observable customers
using the real-time SM measurements. Considering that not
all customers have SMs in practice, especially for residential
households, we propose a multi-stage data-driven method for
estimating CMPC. The flowchart of the proposed approach is
presented in Fig. 3. (I) In the first stage, the demand profiles of
observable customers are utilized to build a seasonal consump-
tion pattern bank, [{Cspr}, {Csum}, {Caut}, {Cwin}], using
a graph theoretic clustering technique. Here, each {C(·)} is
the set of the typical daily load profiles for a specific season
(detailed in Section III). Seasonal data clustering shows a
better load behavior identification performance due to its
ability to capture the critical seasonal behaviors of customers
[15]. (II) Then, a classification module is developed to infer
the likelihood of identified seasonal daily consumption profiles
for customers without SM data utilizing sociodemographic
information. (III) For each typical pattern, a regression model
is trained to provide an inference function to estimate the
CMPC from customers’ monthly billing data. To take into
account the variances of CMPC in different typical patterns, a
WCR approach is developed based on the results of classifi-
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(a) Summer statistics
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(b) Winter statistics

Fig. 4. Seasonal system peak time distribution.

cation module. Basically, the proposed customer segmentation
approach is able to infer CMPC of customers without SMs
using their monthly billing information and limited context
information.

III. GRAPH THEORETICAL CLUSTERING ALGORITHM

In this paper, a graph theory-based clustering technique,
known as spectral clustering (SC), is adopted. Due to the
strong seasonal changes in the customers’ behavior, the SC
uses seasonal average customer load profiles to identify typical
daily load patterns corresponding to different seasons [16],
[17]. According to the statistical analysis, both customer
behaviors and system peak timing are affected by seasonal
changes, as shown in Fig. 4. In Fig. 4(a), the peak time
distribution in summer is concentrated around evening interval
(17:00-18:00 pm). Meanwhile, the peak time probability rises
during daytime and falls sharply at night. One possible reason
is the increase of air conditioning usage during summer
daytime. In contrast, the peak time distribution of winter is
presented in Fig. 4(b). Compared to the summer, the distri-
bution of peak demand time in winter has two concentration
points: one in morning hours (8:00-12:00 am), and the other in
the evening (18:00-20:00 pm). Also, the peak time probability
shows relatively low values during the afternoon interval
(13:00-17:00 pm). Hence, in this work, instead of assigning a
single pattern to each customer, various patterns are obtained
for different seasons to capture the seasonality of customer
behaviors [15].

In each season, the AMI dataset is represented as an
undirected similarity graph, G = (V,E). V is the set of
vertices in the graph, where the i’th vertex represents the
average daily profile of the i’th customer, Vi = [Ci

1, ..., C
i
24],
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with Ci
j denoting the average load value at the j’ hour of

day for the i’th customer. E is the set of edges in the graph
that connect different vertices, where a non-negative weight,
Wi,j , is assigned to the edge connecting vertices i and j. The
weight value represents the level of similarity between the
two customers’ average daily load profiles, with Wi,j = 0
indicating that the vertices Vi and Vj are not connected. In
this paper, the weight Wi,j is obtained by adopting a Gaussian
kernel function:

Wi,j = exp(
−||Vi − Vj ||2

α2
) (2)

where α is a scaling parameter that controls how rapidly the
weight Wi,j falls off with the distance between vertices Vi
and Vj . To enhance computational efficiency and adaptability
to the dataset, we have adopted a localized scaling parameter
αi for each vertex that allows self-tuning of the point-to-point
distances based on the local distance of the neighbor of Vi
[18]:

αi = ||Vi − Vϕ|| (3)

where, Vϕ is the ϕ’th neighbor of Vi, which is selected
according to [18]. Therefore, the weight between a pair of
points can be re-written as:

Wi,j = exp(
−||Vi − Vj ||2

αiαj
) (4)

Given a set of vertices and weight matrix W =
(Wi,j)i,j=1,...,n, the clustering process is converted to a graph
partitioning problem. In this paper, the objective function
of graph partitioning is to maximize both the dissimilarity
between the different clusters and the total similarity within
each cluster [19]:

N(G) = min
A1,...,An

n∑
i=1

c(Ai, V \Ai)

d(Ai)
(5)

where, n is the number of vertices, Ai is a cluster of vertices
in V , V \ Ai represents the nodes of set V that are not in
set Ai, c(Ai, V \Ai) is the sum of the edge weights between
vertices in Ai and V \Ai, d(Ai) is the sum of the weights of
vertices in Ai. It has been shown in [16] that the minimum
of N(G) is reached at the second smallest eigenvector of the
graph’s Laplacian matrix, L, which can be determined using
the weight matrix W , as demonstrated in:

L = D− 1
2WD− 1

2 (6)

where, D is a diagonal matrix, which (i, i)’th element is
the sum of W ’s i’th row. The k smallest eigenvalues,
[y1, y2, ..., yk], of the Laplacian matrix are extracted in the
clustering algorithm (see Alg. 1) to build a new matrix U ∈
Rn×k, where k ranges from 2 to n. Leveraging the properties
of the graph Laplacians, the data point Vi is reconstructed
using the i’th row of the U matrix, which enhances the cluster-
properties of the data [18]. After data reconstruction, a simple
clustering algorithm is able to detect the clusters. In this work,
we utilized the k-means algorithm to obtain the final solutions
from matrix U .

Compared to conventional clustering techniques, the SC
algorithm has two main advantages: (1) it mainly relies on
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Fig. 5. Cluster validation index performance for summer season.

the weight matrix of the dataset rather than using the high-
dimensional demand profile data directly. Also, computing the
eigenvalues of matrix W for data reconstruction is equivalent
to achieving dimension reduction by employing a linear PCA
in a high dimensional kernel space; (2) as a basic idea of
SC, graph partitioning problem can be solved without making
any assumptions on the data distribution. This improves the
robustness of SC, and leads to better clustering performance
for complex and unknown data structures [18]. (3) According
to equations 2-6, SC converts the clustering process to a
graph partitioning optimization problem. Based on Rayleigh-
Ritz theorem, the solution of this optimization problem is
obtained using the k eigenvectors of the Laplacian matrix,
which guarantees a good approximation to the optimal cut.
[20]–[22] The main challenge of SC is that the k value still
needs to be determined as a priori. To obtain the optimal k,
we employ the Davies-Bouldin validation index (DBI), which
aims to maximize the internal consistency of each cluster and
minimize the overlap of different clusters [23]. The optimal
value of k can be obtained when the DBI is minimized. This
is shown in Fig. 5 for summer data subset.

IV. CMPC ESTIMATION FOR UNOBSERVABLE CUSTOMERS

In order to assess the CMPC of unobservable customers, a
WCR approach is proposed using only their monthly consump-
tion information, as shown in Fig. 6. This framework includes
two stages: the first stage is unobservable customer classi-
fication based on the seasonal typical consumption pattern
bank, and the second stage is cluster-based CMPC inference.
It should be noted the two stages cannot be directly combined
into one step since they address two different problems.

A. Unobservable customer classification

Since the detailed time-series SM data of unobservable
customers is not available, their daily consumption patterns
cannot be directly determined beforehand. To link the existing
typical load patterns, obtained from the SC technique, to unob-
servable customers, a pattern classification model is developed.
Thus, the goal of this model is to design a classifier that is
able to distinguish different behavioral classes based on an
input vector that contains sociodemographic information of
unobservable customers. The proposed model in this paper
maps the sociodemographic information of customers (i.e.
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Fig. 6. The structure of WCR model.

(a) Monthly energy and CMPC of different patterns in spring

(b) Monthly energy and CMPC of different patterns in summer

Fig. 7. Performance of clusterwise.

working period and dining time) to the typical daily pattern

databank. The basic idea is that the typical daily load profiles

of customers can be discovered using prior knowledge of their

peak consumption timing.

Based on the sociodemographic information of customers,

the knowledge of customer behavior over a few distinctive in-

tervals in the day can be obtained, namely the morning interval

(from 7:00 am to 9:00 am), the afternoon interval (from 12:00

pm to 14:00 pm), and the evening interval (from 18:00 pm to

21:00 pm). This prior information is then used to obtain an

approximate probability distribution function of customer peak

timing defined as Xj = {Xj
1 , X

j
2 , ..., X

j
h−1, X

j
h}, where Xj

i

is the probability of j’th customer peak demand occurring at

time instant i, with h denoting the maximum number of time

points. In this work, using the SM measurements of observable

customers, Xj
i is determined as follows:

Xj
i =

∑n
d=1 Φ(t

j
d)

n
(7)

Φ(tjd) =

{
1 for tjd = i

0 for otherwise
(8)

where, tjd is the peak demand time of j’th customer at

the d-th day. Thus, the peak timing likelihood distribution,

{Xj
1 , X

j
2 , ..., X

j
h−1, X

j
h}, is utilized as the input of the clas-

sification model. This classification model for unobservable

customers is developed using the multinomial logistic regres-

sion (MLR) algorithm. Compared to other binary classification

methods such as random forests, MLR is able to obtain the

likelihood of different typical profiles for customers rather than

picking a single consumption pattern from the databank [23].

The probability that the j’th customer follows the z’th typical

load profile can be written as [24]:

P (Cj = z|Xj) =
exp(wT

z X
j)∑k

j=1 exp(w
T
j X

j)
(9)

where, Cj represents the class of the j’th unobservable cus-

tomer, T is the transposition operator, and wz is the weight

vector corresponding to pattern z. The learning parameters wz

are obtained by solving ∇wz
J = 0 over the training set, where

J is the classification risk function, defined as follows [25]:

J =
M∑
j=1

[
k∑

z=1

czj (wz)
TXj − log

k∑
z=1

exp
(
(wz)

TXj
)
] (10)

where, czj is the j’th element of cz , which is a binary string

representing customer class membership. To maximize the

log-likelihood function, J , with respect to wz , we need to

compute the gradient and Hessian of equation (10). Based

on the block-structured property of learning parameters and

Kronecker product of matrices, the gradient and Hessian of

the objective function can be obtained and passed to any

gradient-based optimizer to find the maximum a posterior

(MAP) estimation of model parameters [26]. In this paper, an

iterative reweighted least squares (IRLS) training mechanism

was implemented [27]. It should be noted that although there
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Fig. 8. Seasonal Typical load patterns databank.

Fig. 9. Proportion of typical load patterns for different seasons.

are other methods for performing this maximization, none

clearly outperforms IRLS [25].

B. Estimation of CMPC for Unobservable Customers

To infer the CMPC for unobservable customers, a WCR

model is developed by combining two variables: daily load

profile and demand level. The basic idea of WCR approach

is to utilize the linear nature of the relationship between

the CMPC and monthly energy consumption when the load

profiles of customers are similar. This is demonstrated in

Fig. 7, where the CMPC and monthly energy consumption of

customers in different clusters are shown. As depicted in Fig.

7, the correlation between monthly energy consumption and

the CMPC is largely different for customers with two distinct

behavioral patterns in the same season.

Hence, for z’th typical pattern, a linear regression model

is trained for mapping the customer’s monthly billing infor-

mation to the CMPC values. The monthly billing data of

consumers is obtained by aggregating their SM data. As shown

in Fig. 1 the majority of monthly consumption values are

concentrated around 1000 kWh. Then, the actual CMPC value

is calculated using the SCADA and SM data at the system peak

time. To estimate the parameters Wz and bz of this regression

model, ordinary least square (OLS) is used in this paper [28].

The basic idea is to minimize the sum of the squares of the

differences between the estimated and actual CMPCs. The

objective function can be written as follows:

fz = minWz,bz

n∑
i=1

(F i
j,m − (Ei

j,mWz + bz))
2 (11)

where, Ej,m and Fj,m are the monthly consumption level

and the actual CMPC for the j’th customer at the m’th

month. It should be noted that our dataset includes the real

SM measurements of over 3000 residential customer and

the corresponding SCADA records over 3 years. For each

regression model, to reduce the overfitting risk, the dataset

is randomly divided into two separate subsets for training

(80% of the total data) and testing (20% of the total data).

After training, all regression models are then merged into

a WCR to estimate the CMPC for unobservable residential

customers. Using the cluster probability values obtained from

the classification model, P (Cj = z|Xj), the estimated CMPC

for the j’th customer at the m’th month, F̂j,m, is determined

as follows:

F̂j,m =
k∑

z=1

P (Cj = z|Xj)(WzEj,m + bz) (12)

Hence, the proposed WCR is able to estimate the CMPC of

unobservable customers using only their measured monthly

consumption within a probabilistic classification setting. OLS

regression can produce unbiased estimates that have the small-

est variance among all possible linear estimators if the model

follows several basic assumptions to satisfy the conditions of

Gauss-Markov theorem [29]. In our work, the linear nature

of the relationship between the CMPC and monthly energy

consumption in the same cluster and random selection of

training data help satisfy these assumptions, thus ensuring the

theoretical performance of WCR. Also, it should be noted that

in general the performance of the OLS is impacted by outliers

and extreme observations [28]. However, in our problem

outliers and extreme values are highly unlikely since the

residential customers’ monthly demand levels are concentrated

within a small range; almost 80% of customers have monthly

consumption levels below 1000 kWh.

V. NUMERICAL RESULTS

The real distribution system provided by our utility col-

laborator is equipped with SMs, thus fully observable. This

enables us to calculate the exact CMPC of each customer. To
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Fig. 10. Comparison of WCR-based estimation value and real value.

test the proposed customer segmentation method for partially
observable systems, we assume that 20% of customers are
unobservable and then compare the estimation results with
the actual CMPCs. Thus, the data of observable customers
(the remaining 80% of the total data) is divided into 4 subsets
corresponding to different seasons of the year for model
training.

A. SC Algorithm Performance

For every subset, the optimal cluster number is determined
using DBI and typical load patterns are obtained employing
the SC algorithm (detailed in Section III). Fig. 8 and Fig. 9
present the 22 typical load shapes, namely C1, C2, ..., C22,
and the distribution of population of customers belonging to
each cluster during all the seasons. As shown in the figures,
the number of typical load profiles in different seasons is
not the same and the SC approach is able to capture the
critical seasonal consumption patterns. In spring, around 22%
of customers show typically higher consumption levels during
the morning (around 7:00 am). In contrast, more than 38% of
customers have higher energy consumption during the evening
(around 20:00 pm). Meanwhile, more than half of customers
present low energy consumption value during the afternoon
period. The typical load profiles in summer are different from
spring. Except for C5, the typical load patterns of 85% of all
customers show similar behavioral tendencies. This could be
due to air-conditioning load consumption during time intervals
with higher temperature. Based on the typical load patterns, the
majority of peak demand occurs during the evening interval.
For around 74% of customers in summer, the peak time ranges
from 17:00 pm to 19:00 pm. In fall, the number of typical load
patterns is relatively larger rather than other seasons due to
variability of customer behavior. Compared to summer, when
peak demand barely happens in the morning, more than 40%
of customers have high consumption at around 7:00 am in
fall, such as C11, C12, C13 and C14. Also, around 23% of
customers provide almost zero consumption from 10:00 am to
15:00 pm, and nearly one-third of customers show two peaks
in the morning and evening periods. The winter typical daily
patterns are similar to the results of spring since these two
seasons have similar weather in mid-west U.S.

TABLE I
PERFORMANCE OF SEASONAL WCR MODELS WITH R2 AND MAPE.

Season Average R2 Average MAPE
Spring 0.9446 12.44%

Summer 0.9071 14.24%
Fall 0.9384 13.18%

Winter 0.9204 13.7%

B. WCR Performance

When the seasonal consumption pattern bank is developed
using the SM data of observable customers, the WCR models
are utilized to infer the CMPC of unobservable customers.

1) Classification Performance Analysis: For the classifica-
tion part, the Area under the Curve (AUC) index is employed
to assess the performance of MLR model [30]. AUC is
determined as follows:

γ =

∫ 1

0

TP

TP + FN
d

FP

FP + TN
=

∫ 1

0

TP

P
d
FP

N
(13)

where, TP is the True Positive, TN is the True Negative, FP
is the False Positive, FN is the False Negative, and N is the
number of total Negatives. Compared to the commonly-used
metric, accuracy, the AUC does not depend on the cut-off
value that is applied to the posterior probabilities to evaluate
the performance of a classification model [31].

The meaningful range of AUC is between 0.5 to 1. In order
to avoid the overfitting problem, the k-fold cross-validation
method is applied to the MLR to ensure the randomness of the
training set [32]. Based on the prior information on customer
peak timing distribution, the MLR achieves an AUC value
of 0.7 when assigning daily load patterns to unobservable
customers.

2) Regression Performance Analysis: Based on the WCR
approach, the CMPC of unobservable customers can be es-
timated using the monthly billing data. Fig. 10 shows the
performance of WCR by comparing the actual CMPC with
the estimated CMPC for each customer in the testing set for
one month. As can be seen, the estimated values are able to
accurately track the unobservable customer’s real contribution
to system peak demand. To assess the performance of the
model, the goodness-of-fit measure, R2, and the mean absolute
percentage error (MAPE) are utilized in this paper. These two
indices are presented in Table I for all seasons. Based on
these results, the regression model has a good performance
for estimation of CMPC of unobservable customers in this
case.

C. Metric and Method Comparison

In this section, we demonstrate that the proposed segmen-
tation strategy can target suitable customers, which cannot
be classified by existing method in the literature, including
customer peak demand-based and load profile entropy-based
segmentation strategies [6], [8]. Furthermore, to validate the
performance of our multi-stage machine learning framework,
we have compared the peak contribution estimation MAPE of
the proposed learning-based framework with previous method
[33].
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Fig. 12. The histogram of customer peak demand over CMPC ratio.

1) Comparing customer peak demand-based strategy and
proposed method: Customer peak demand is a conventional
index to describe the potential impact of individual customers
on the overall peak demand, which is commonly-used by
utilities to perform customer segmentation [8]. In Fig. 11,
the difference between the proposed CMPC and customer
peak demand values are presented. It can be seen that the
customer peak demand values are generally much higher
than CMPC values due to the diversity of load behaviors.
According to Fig. 12, the customer’s peak demand can reach
five times the customer’s actual contribution to the system
peak. This considerable difference shows that compared to the
proposed method, customer peak demand-based strategy is a
very conservative method of quantifying the actual impact of
customers, which could lead to unnecessary over-investments
in AMI expansion.

2) Comparing load profile entropy-based strategy and pro-
posed method: Entropy is a measure of the variability and
uncertainty of customer demand, which has been used to
develop customer segmentation approach for peak shaving
program targeting [6]. Customers with lower entropy levels
have stable consumption behaviors, which makes them higher
priority candidates for peak reduction. In Fig. 13, the relation-
ship between CMPC and entropy is presented. It is observable
that customers with high CMPC do not necessarily have low
entropy values. This indicates that these two concepts are
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Fig. 13. The relationship between CMPC and entropy.
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Fig. 14. Comparison of proposed method and existing method [33].

almost uncorrelated and do not contain mutual information.
Hence, unlike the proposed method, the entropy-based strategy
does not provide information about customers’ impact on
system peak demand, and thus, cannot be used as a generic
strategy for guiding peak shaving/AMI planning.

3) Comparing the performance of the proposed multi-stage
machine learning-based framework with an existing method:
The performance of the proposed multi-stage machine learning
framework is compared with an existing baseline method [33]
in terms of estimation accuracy. The baseline method uses
ordinary least square regression to determine the peak demand
based on the periodic energy consumption. As shown in Fig.
14, the estimation MAPE values for our proposed method are
generally lower than the results obtained from the previous
method in [33]. Our framework has been able to improve
the estimation MAPE by 5% on average. Furthermore, a
maximum point-wise improvement level of 18% has been
achieved over the previous baseline method. Hence, based
on this AMI dataset, the proposed method shows a better
estimation accuracy compared to the previous work.

D. Application of the Proposed Metric and Strategy

To evaluate the performance of the proposed metric and
the strategy in system operation, we have applied our works
to a basic direct load control-based demand response model,
which gives utilities the option to remotely shut down appli-
ances during daily peak demand periods [34]. A 300-house

Authorized licensed use limited to: Iowa State University. Downloaded on May 11,2020 at 18:10:07 UTC from IEEE Xplore.  Restrictions apply. 



0885-8950 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2020.2979943, IEEE
Transactions on Power Systems

9

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Time (Day)

20

30

40

50

60

70

80
Pe

ak
 R

ed
uc

tio
n 

(k
W

h)
Basic Segmentation Strategy
Demand Level-based Segmentation Strategy
CMPC-based Segmentation Strategy

Fig. 15. Comparison of peak reduction using three different segmentation
strategies.

radial distribution network has been considered to evaluate
the performance of different segmentation strategies. 35% of
unobservable customers are selected for meter installation and
participation in peak shaving using three different segmenta-
tion metrics: 1) select residential candidates randomly (base
strategy); 2) select residential candidates by ranking monthly
demand level; 3) select residential candidates based on the
proposed CMPC. According to the existing works [35], [36],
we have assumed average load elasticity of customers to
be 0.21 p.u. We have the compared daily peak reductions
in one month (28 days) under the three different customer
segmentation strategies. As shown in Fig. 15, using the
proposed CMPC strategy, over 1400kWh peak demand has
been saved in this month, which is higher than the other two
segmentation strategies. Specifically, in this case, when basic
and demand level-based strategies are replaced by CMPC-
based strategy, the average peak reduction increases by 50.4%
and 19.7%, respectively. Thus, by comparison, the proposed
customer segmentation strategy and the CMPC metric have the
potential to provide enhanced customer targeting guidelines
for improving operational frameworks. As a future research
direction, we will utilize the proposed metric in more advanced
and detailed operation models.

VI. CONCLUSION

In this paper, we have presented a new metric for customer
segmentation, CMPC, which can quantify the contributions
of individual customers to system peak demand. Moreover,
to accurately estimate the CMPC of unobservable residen-
tial customers, an innovative three-stage machine learning
framework is developed using only their monthly billing
data. Employing our real SM data, it is demonstrated and
validated that the proposed metric provides utilities with
additional actionable information for customer segmentation
compared to the existing metrics. This segmentation strategy
helps utilities effectively identify impactful customers from
thousands of unobservable customers for investment decisions,
such as AMI expansion. Also, these customers can be targeted
as candidates for residential-level demand-side management
(DSM) programs to reduce the critical system peak demand,
thus, decreasing the high marginal cost and the risk of system
failure. Our work offers other potential benefits for utilities.
For example, recently, utilities have been showing increasing

interest in residential-level retail price design due to the signif-
icant contribution of residential customers to the system peak.
The proposed CMPC, together with the developed machine
learning framework, can provide a reasonable strategy to ob-
tain guidelines for retail price design by accurately quantifying
the impact of residential customers on the system.
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