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Abstract—This paper presents a supervised multi-agent safe
policy learning (SMAS-PL) method for optimal power manage-
ment of networked microgrids (MGs) in distribution systems.
While unconstrained reinforcement learning (RL) algorithms are
black-box decision models that could fail to satisfy grid oper-
ational constraints, our proposed method considers AC power
flow equations and other operational limits. Accordingly, the
training process employs the gradient information of operational
constraints to ensure that the optimal control policy functions
generate safe and feasible decisions. Furthermore, we have
developed a distributed consensus-based optimization approach
to train the agents’ policy functions while maintaining MGs’
privacy and data ownership boundaries. After training, the
learned optimal policy functions can be safely used by the MGs to
dispatch their local resources, without the need to solve a complex
optimization problem from scratch. Numerical experiments have
been devised to verify the performance of the proposed method.

Index Terms—Safe policy learning, multi-agent framework,
networked microgrids, power management, policy gradient.

NOMENCLATURE

Indices
i, j Indices of buses, ∀i, j ∈ ΩI .
ij Index of branch between bus i and bus j, ∀ij ∈

ΩBr.
k Iteration index in distributed optimization, k ∈

{1, ..., kmax}.
m Constraint index, m ∈ {1, ...,Mc}.
n Agent index, n ∈ {1, ..., N}.
t′ Episode index in training process, t′ ∈ [t, t +

T ].
Parameters
afn, b

f
n, c

f
n Coefficients of the DG quadratic cost function

for agent n.
bm,µn
bm,µnbm,µn

Gradient vector of the constraint return func-
tion m w.r.t. the parameters µn.

bm,Σn
bm,Σnbm,Σn

Gradient vectors of the constraint return func-
tion m w.r.t. the parameters Σn.

Dn Dimension of multivariate Gaussian distribu-
tion function for agent n.
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dm Upper limit for constraint m.
ECap Max. capacity of ESS unit.
Hn Fisher information matrix of agent n.
gµn
gµngµn

Gradient vector of the reward functions w.r.t.
the parameters µn.

gΣn
gΣngΣn

Gradient vector of the reward functions w.r.t.
the parameters Σn.

IMij Max. current limit on branch ij.
Mc Number of constraints.
MG
c Number of global constraints.

ML
c Number of local constraints.

N Number of MGs.
Nn Number of neighboring MGs for agent n.
PCh,M Max. ESS charging limits.
PDis,M Max. ESS discharging limits.
PD, QD Active and reactive load power.
PDG,M Max. DG active power capacity.
QDG,M Max. DG reactive power capacity.
PDG,R Max. DG ramp limit.
PPV PV active power output.
PPCC,M Max. active power flow at the PCCs.
QPCC,M Max. reactive power flow at the PCCs.
QPV,M Max. PV reactive power output limit.
SOCM Max. SOC limits.
SOCm Min. SOC limits.
T Length of the moving decision window.
VMi , V mi Max. and min. voltage limit on bus i.
wn(n′) Weight parameters assigned of agent n to

neighboring agent n′.
Y Re, Y Im Real and imaginary parts of the nodal admit-

tance matrix Y .
ηCh, ηDis Charging and discharging efficiency of ESS.
λF Diesel generator fuel price.
λR Retail price signals at the PCCs.
θµn
θµnθµn

, θΣn
θΣnθΣn

Vector of DNN weights and bias of agent n.
µnµnµn,Σn Mean vector and covariance matrices for con-

trol action of agent n.
δ, ρ1 Step sizes for updating θ and λ.
ρ2 Penalty factor for constraints violation.
∆t Time step.
∆θn Threshold for parameter updating.
γ Discount factor.
τ Tightening multiplier.
Variables
ananan Vector of control actions of agent n.
Cm(π) Return value of constraint m based on the

control policy π.
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Fi,n Fuel consumption of DG at bus i of agent n.
IRei , IImi Real and imaginary parts of the injected current

at bus i.
IReij , I

Im
ij Real and imaginary parts of the branch current

at branch ij.
OtOtOt Vectors of observation variable.
PCh, PDis Charging and discharging power of ESS unit.
PDG, QDG DG active and reactive power outputs
PPCC Active power flow at the PCC.
QPCC Reactive power flow at the PCC.
QESS Reactive power outputs of ESS unit.
QPV PV inverter reactive power output.
SOC SOC of the battery system.
SnSnSn Vectors of system state of agent n.
V Rei , V Imi Real and imaginary parts of the bus voltage

magnitude at bus i.
λnλnλn Vector of Lagrangian multipliers.
Functions
JRn Expected reward function of agent n.
JCm Expected return function of constraint m.
πn Multivariate distribution function over control

actions of agent n.
∆ Kullback Leibler (KL)-divergence function.

I. INTRODUCTION

M ICROGRIDS (MGs) are active clusters of distributed
energy resources (DERs), loads, energy storage system

(ESS), and other onsite electric components. A smart distribu-
tion system may consist of multiple MGs and the coordinated
control of the networked MGs can offer various benefits,
including higher perpetration of local DERs, improved con-
trollability, and enhancement of power system resilience and
reliability [1], [2]. Solving the power management problem of
networked MGs is a complex task. While previous works in
this area have provided valuable insight, we have identified
two shortcomings in the literature:

(1) Limitations of model-based optimization methods: In
the existing literature, there are quite a few model-based
methods for solving the optimal power management problem
of networked MGs, such as centralized decision models [3]–
[5] and distributed control frameworks [6]–[8]. However, with
increasing number of MGs in distribution networks, these
methods have to solve large-scale optimization problems with
numerous nonlinear constraints that incur high computational
costs and hinder real-time decision making. Furthermore,
model-based methods are unable to adapt to the continuously
evolving system conditions, as they need to re-solve the
problem at each time step.

(2) Potential infeasibility of model-free machine learning
methods: To address the limitations of model-based methods,
model-free reinforcement learning (RL) techniques have been
used to solve the optimal power management problem through
repeated interactions between a control agent and its envi-
ronment. This approach eliminates the need to solve a large-
scale optimization problem at each time point and enables
the control agent to provide adaptive response to time-varying
system states. Existing examples of RL application in power

systems include economic dispatch and energy consumption
scheduling of individual MGs [9]–[11] and multi-area smart
control of generation in interconnected power grids [12], [13].
Further, in our previous paper [14], we have proposed a bi-
level power management method for networked MGs, where a
centralized RL agent determines retail prices in a cooperative
business model for each MG under the incomplete information
of physical model. Current RL-based solutions employ control
agents to train black-box functions to approximate the optimal
actions through trial and error. However, the trained black-
box functions can fail to satisfy critical operational constraints,
such as network nodal voltage and capacity limits, since these
constraints have not been encoded in the training process.
This can lead to unsafe operational states and control action
infeasibility.

However, incorporating constraints into the training process
of conventional black-box methods is challenging since these
methods have generally relied on adding penalty terms to
training objective functions for enforcing constraints, which
cannot guarantee the safety of control policies as the number of
constraints grows. Inspired by recent advances in constrained
policy learning (PL) [15]–[17] and to address the shortcomings
in the existing literature, we have cast the power manage-
ment of networked MGs as a supervised multi-agent safe PL
problem (SMAS-PL). The various resources inside each MG
and the collaborative behavior of MGs are both controlled to
optimize the total cost of operation, while satisfying all the
local and global constraints. Moreover, we have proposed a
multi-agent policy gradient solution strategy, which enables
individual MGs learn control policy functions to maximize
the social welfare and ensure safety in a distributed way. The
proposed method introduces a trade-off between model-free
and model-based methods and combines the benefits offered
by both sides. The purpose is to leverage the advantages
of both model-free and model-based methods, for scalable
real-time decision making while also maintaining a user-
defined level of safety by considering constraints in the train-
ing process. Hence, on one hand, MGs’ power management
policy functions are modeled using black-box deep neural
networks (DNNs); while on the other hand, to ensure decision
feasibility, a constrained gradient-based training method is
proposed that exploits the derivatives of the constraints and
objective functions of the power management problem w.r.t.
control actions and learning parameters. The training process
employs these gradient factors to provide a convex quadrat-
ically constrained linear program (QCLP) approximation to
the power management problem at each episode. This enables
the proposed method to be both adaptable to changes in the
inputs of the black-box components, and feasible with respect
to operational constraints, including AC power flow. Finally, a
distributed consensus-based primal-dual optimization method
[18] is adopted to decompose the training task among MG
agents. In summary, compared to existing decision making
solutions, the main advantages of this paper are as follows:

• Compared to the black-box learning-based methods, the
proposed SMAS-PL leverages the gradient information
of all the operational constraints to devise a tractable
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QCLP-based training process to promote the safety and
feasibility of control policies. A backtracking mechanism
is added into the PL framework to perform a final verifi-
cation of feasibility before issuing control commands to
the assets.

• Compared to conventional centralized training methods,
the distributed training process in the SMAS-PL offers
two advantages: it preserves the privacy of MG agents,
including their control policies parameters and structures,
operation cost functions, and local asset constraints; it
also enhances computational efficiency and maintains
scalability as the number of learning parameters grows
into a humongous size.

• The proposed SMAS-PL method does not need to solve a
complex optimization problem in real-time. The agents’
policy functions, that are trained offline, can be leveraged
online to select optimal control actions in response to
latest system state data.

The reminder of the paper is organized as follows: Section
II presents the overall framework of the proposed solution.
Section III introduces the SMAS-PL problem and integrates
problem gradients into the solver. Section IV describes the
multi-agent consensus-based training algorithm for SMAS-PL.
Simulation results and conclusions are given in Section V and
Section VI, respectively.

II. OVERVIEW OF THE PROPOSED FRAMEWORK

The general framework of the proposed SMAS-PL method
is shown in Fig. 1. Note that vectors are denoted in bold letters
throughout the paper. The micro-sources within each MG are
controlled by an agent that adopts a private control policy.
Here, the control policy for the n’th agent, πn, is a parametric
probability distribution function, with parameters θnθnθn, over the
agent’s control actions (an,tan,tan,t), including active/reactive power
dispatching signals for local diesel generators (DGs), ESS and
solar photo-voltaic (PV) panels. Note that the control policy
πn is a function of the MG’s state variables (Sn,tSn,tSn,t), defined
by the aggregate MG load and solar irradiance. To ensure the
safety of the control policies, MG agents receive the observed
variables from the grid, including network nodal voltages VtVtVt
and injection currents ItItIt, to determine gradient factors of the
problem constraints and objectives w.r.t. to learning param-
eters, ∇θθθJJJ . These gradient factors are then integrated into
a multi-agent constrained training algorithm, which employs
local inter-MG communication to satisfy all global and local
operational constraints through exchanging and processing
dual Lagrangian variables, λ(t). The Lagrangian multipliers
embody the interactions among the MGs and capture the
impacts of MGs’ decisions on each other. Theoretical analysis
and numerical simulations are conducted to show that the
proposed SMAS-PL method can minimize the MG agents’
operational cost and satisfy operational constraints. Note that
the proposed SMAS-PL is not a purely model-free approach,
since the AC power flow equations are used to calculate gra-
dient factors and ensure the decision feasibility when training
the DNNs.

In this paper, the MGs are chosen to be collaborative,
because the satisfaction of the global constraints (i.e., limits
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Fig. 1. Structure of the proposed SMAS-PL method for power management
of networked MGs

on nodal voltages and line flows) for the whole network
needs coordination among all MGs. Since global constraints
are impacted by the response of all the MGs, we have
devised a collaborative policy learning to ensure that grid-
wide operation remains safe. Specifically, the consensus-based
training method leverages the Lagrange multipliers of the
global constraints to coordinate the policy optimization of the
MGs. Thus, each Lagrange multiplier serves as a penalty factor
or a shadow price, which enforces safety in the data-driven
procedure.

III. SAFE POLICY LEARNING FOR POWER MANAGEMENT
OF NETWORKED MGS

To facilitate the discussion, Section III-A introduces a
general power management formulation that is commonly
used in literature [4], [6], [14]. Sections III-B defines each
component of the proposed SMAS-PL. In Sections III-C and
III-D, we propose a tractable SMAS-PL method, employing
the gradient factors of reward function and constraint return
functions w.r.t. actions and learning parameters, to solve the
power management of networked MGs.

A. Power Management Problem Statement
Each MG is assumed to have local DGs, ESS, solar PV

panels and a number of loads. This optimization problem is
solved over a moving look-ahead decision window t′ ∈ [t, t+
T ], using the latest estimations of solar and load power at
different instants. Here, n is the MG index (n ∈ {1, ..., N}),
i and j define the node numbers (∀i, j ∈ Ωi), ij defines the
branch numbers (∀ij ∈ ΩBr).

1) Problem objective: The objective function (1), with
control action vector [PDG, PCh, PDis, QDG, QPV , QESS ] ∈
(xpxpxp,xqxqxq), minimizes MGs’ total cost of operation, which is
composed of the income/cost from power transfer with the
grid and cost of running local DG. Here, λFn is the DG fuel
price, λRn is the electricity price, and PPCCn,t′ is active power
transfer between grid and the n’th MG at the point of common
coupling (PCC). The fuel consumption of DG, Fi,n,t′ , can be
expressed as a quadratic polynomial function of its power,
PDGi,n,t′ , with parameters afn, bfn and cfn.

min
xpxpxp,xqxqxq

N∑
n=1

t+T∑
t′=t

(−λRnPPCCn,t′ + λFi,nFi,n,t′) (1)
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Fi,n,t′ = afn(PDGi,n,t′)
2 + bfnP

DG
i,n,t′ + cfn (2)

2) Global constraints: These constraints are defined over
variables that are impacted by control actions of all the MGs,
including the voltage amplitude limits for the entire nodes,
[V mi , VMi ], and the maximum permissible branch current flow
magnitudes IMij throughout the distribution grid and the MGs:

V mi ≤ Vi,t′ ≤ VMi (3)

−IMij ≤ Iij,t′ ≤ IMij (4)

The global constraints (3)-(4) are implicitly determined by
the AC power flow equations, which will be used to calculate
the gradient factors of objective (1) and constraints (3)-(16)
w.r.t. learning parameters as elaborated in Section III-D. Note
that unlike previous centralized optimization solutions that are
generally model-based, our strategy is a combination of both
model-based and model-free approaches. Thus, while power
flow equations appear explicitly in centralized optimization
models, our solution only leverage power flow equations in an
implicit way in the training process to ensure that the learning
modules are generating feasible outcomes.

3) Local constraints: These constraints are defined over
the local control actions of each MG. Constraints (5)-(6)
ensure that the DG active/reactive power outputs, PDGi,n /QDGi,n ,
are within the DG power capacity PDG,Mi,n /QDG,Mi,n , and (7)
enforces the maximum DG ramp limit, PDG,Ri,n . PV reactive
power output, QPVi,n , is constrained by its maximum limit
QPV,Mi,n per (8). The active power transfer PPCCn,t′ and the
reactive power transfer QPCCn,t′ at the PCCs are bounded with
the constraints (9) and (10), respectively.

0 ≤ PDGi,n,t′ ≤ P
DG,M
i,n (5)

0 ≤ QDGi,n,t′ ≤ Q
DG,M
i,n (6)

|PDGi,n,t′ − PDGi,n,t′−1| ≤ P
DG,R
i,n (7)

|QPVi,n,t′ | ≤ Q
PV,M
i,n (8)

|PPCCn,t′ | ≤ PPCC,Mn (9)

|QPCCn,t′ | ≤ QPCC,Mn (10)

The operational ESS constraints are described by (11)-(16),
where (11) determines the state of charge (SOC) of ESSs,
SOCi,n. ECapi,n denotes the maximum capacity of ESSs. To
ensure safe ESS operation, the SOC and charging/discharging
power of ESS, PChi,n , PDisi,n , are constrained as shown in (12)-
(16). Here, [SOCmi,n, SOC

M
i,n], PCh,Mi,n and PDis,Mi,n define

the permissible range of SOC, and maximum charging and
discharging power, respectively. Constraint (15) indicates that
ESSs cannot charge and discharge at the same time instant.
And ηCh/ηDis represents the charging/discharging efficiency.
The reactive power of ESS, QESSi,n , is kept within maximum
limit, QESS,Mi,n , through constraint (16).

SOCi,n,t′ = SOCi,n,t′−1 + ∆t
(PChi,n,t′ηCh − PDisi,n,t′/ηDis)

ECapi,n
(11)

SOCmi,n ≤ SOCi,n,t′ ≤ SOCMi,n (12)

0 ≤ PChi,n,t′ ≤ P
Ch,M
i,n (13)

0 ≤ PDisi,n,t′ ≤ P
Dis,M
i,n (14)

PChi,n,t′P
Dis
i,n,t′ = 0 (15)

|QESSi,n,t′ | ≤ Q
ESS,M
i,n (16)

Note that the distribution system and networked MGs are
operated in normal condition, which means the switch opera-
tion and the network topology are assumed to be unchanged
during the operation period.

B. Safe Policy Learning Setup

In this section, the optimal power management of networked
MGs is transformed into a SMAS-PL problem. The purpose
of the SMAS-PL is to provide a framework for control agents
to collaboratively find control policies to maximize their total
accumulated reward while satisfying all problem constraints.
To do this, we have provided formulations to ensure that the
outcome of the SMAS-PL also corresponds to the solution of
optimal power management of networked MGs (1)-(16). To
show this, first we provide a description of the components of
the SMAS-PL method:

1) Control agents: The problem consists of N autonomous
control agents, where each agent is in charge of dispatching
the resources within an individual MG. The MGs are collabo-
rative, in the sense that they depend on local communication
with each other to optimize their behaviors.

2) State set: The state vector for the n’th MG agent at
time t is defined as Sn,tSn,tSn,t over the time window [t, t + T ], as
Sn,tSn,tSn,t = [ÎPVn,t′ÎPVn,t′ÎPVn,t′ , P̂

D
n,t′P̂Dn,t′P̂Dn,t′ ]

t+T
t′=t, where ÎPVn,t′ÎPVn,t′ÎPVn,t′ and P̂Dn,t′P̂Dn,t′P̂Dn,t′ are the vectors

of predicted aggregate internal load power and solar irradiance
of the n’th MG at time t′, respectively. The prediction errors
follow random distributions with zero mean and the standard
deviations selected from the beta and Gaussian distributions
adopted from [19]–[21]. Note that the parameters of forecast-
ing error distributions are different for different MG agents.

3) Action Set: The control action vector for the n’th agent at
time t is denoted as an,tan,tan,t ∈ RDn and consists of the dispatching
decision variables for the n’th MG over the time window [t, t+
T ], as an,tan,tan,t = [PDGn,t′ , P

Ch
n,t′ , P

Dis
n,t′ , Q

DG
n,t′ , Q

PV
n,t′ , Q

ESS
n,t′ ]t+Tt′=t.

4) Observation Set: The observation variable vector for the
agents at time t is denoted as OtOtOt, and includes grid’s nodal
voltages VtVtVt and current injections ItItIt at that time,OtOtOt = [VtVtVt, ItItIt].
Note that the observations are implicitly determined by the
agents’ control actions, and thus, cannot be predicted indepen-
dently of the agents’ policies. However, unlike the observation
variables, the state variables are independent of the agents’
control actions and can be predicted for the whole decision
window without the need to consider agents’ policies. In
the power management problem, nodal sensors or distribution
grid’s state estimation module will provide the latest values of
observations.

5) Control policy: In this work, the control policies are
modelled as multivariate Gaussian distributions due to several
reasons: (i) Gaussian distributions allow for explicit learning of
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both expectations and uncertainties of control policies, which
are directly represented by the parameters of the distribution.
Most of other distributions are parameterized by unintuitive
parameters that make the decision model harder to interpret
and verify. (ii) The gradients of Gaussian policy functions with
respect to actions and learning parameters are easy to compute
(see Appendices A and B). (iii) Gaussian policy functions have
been adopted and suggested by [22] and [23]. Thus, the control
policy for the n’th agent, denoted as πn, is defined as a Dn-
dimensional multivariate Gaussian distribution over control
actions ananan. The policy function determines the probability of
the agent’s optimal control action after training, as follows:

ananan ∼ πn(ananan|θnθnθn) =
1√

|Σn|(2π)Dn

e−
1
2 (ananan−µnµnµn)>Σ−1

n (ananan−µnµnµn)

(17)
where µnµnµn ∈ RDn×1 is the mean vector and Σn ∈ RDn×Dn is
the covariance matrix of of multivariate Gaussian distribution
for the n’th agent. The Gaussian policy function explicitly
determines the expected value and uncertainties of optimal
control actions for each agent. Each agent’s learning parameter
vector, θnθnθn, consists of two parametric subsets θµn

θµnθµn and θΣn
θΣnθΣn ,

corresponding to the mean vector and the covariance matrix of
the agent’s policy function. To do this, two DNNs are used for
each MG agent as parametric learning functions to represent
control policy components. These DNNs receive the agent’s
states, SnSnSn, as input to fully quantify the sufficient statistics of
optimal control policies of MGs, i.e., the mean vector and the
covariance matrix of the agent’s actions, as follows:

µµµn = DNN(SnSnSn|θµn
θµnθµn

) (18)

Σn = DNN(SnSnSn|θΣn
θΣnθΣn

) (19)

The DNNs are maintained, continuously updated, and de-
ployed in real-time by local control agents of each MG. Note
that the proposed SMAS-PL method introduces a trade-off
between model-free and model-based methods and combines
the benefits offered by both sides. Thus, the reasons for the
use of DNN-based distributions for modeling actions are as
follows: (i) we have leveraged the model information to train
safe policy functions that guarantee feasibility (i.e., the model-
based aspect of the solution); (ii) the trained policy functions
are deployed online for action selection, simply by inserting
the latest data samples into the DNN-based policy functions
(i.e., the model-free aspect of the solution).

6) Reward function: The reward function for the n’th MG
is defined as the discounted negative accumulated operational
cost of individual MG over the decision window [t, t + T ],
Rn,t′ = −[

∑t+T
t′=t(−λRnPPCCn,t′ + λFi,nFi,n,t′)], obtained from

the objective functions of the networked MGs power manage-
ment problem, (1), as follows:

JRn
(πn) = Eπn

[
t+T∑
t′=t

γt
′
Rn,t′ ],∀n ∈ {1, ..., N} (20)

where, γ ∈ [0, 1) is a discount factor that determines each
MG agent’s bias towards rewards received at different time
instances. An agent with γ = 0 is a purely-myopic decision
maker, which favors immediate reward at the expense of later

expected reward values. On the other hand, γ = 1 represents
an unbiased agent, which assigns equal weights to the reward
received at all time instants. This parameter is user-defined and
depends on each MG’s economic priorities. The expectation
operation Eπn{} is used to calculate reward with respect to
the future expected action-states, which are in turn impacted
by the uncertainties of states and observations.

7) Constraint return: The SMAS-PL consists of a total of
M constraints, including ML

c local and MG
c global constraints,

defined by (3)-(4) and (5)-(16), respectively, and denoted as
Cm(π) ≤ dm,m ∈ {1, ...,Mc}, where Cm(π) represents the
return value of m’th constraint under the control policy π
and dm is the upper-boundary of the m’th constraint. Note
that all constraints in the power management problem have
been transformed into this format (equality constraint (15)
can be transformed into two inequality constraints). Constraint
satisfaction is encoded into the SMAS-PL using the discounted
constraint return values of agents’ policies π as:

JCm(π) = Eπ[

t+T∑
t′=t

γt
′
Cm,t′ ] ≤ dm,∀m ∈ {1, ...,Mc} (21)

where, expectation operation has been leveraged in (21) to
handle the state and observation uncertainties.

C. Safe Policy Learning Formulation

Given the definitions of the components of the SMAS-PL
(Section III-B), the power management problem of the net-
worked MGs (1)-(16) is transformed into an iterative SMAS-
PL problem, where the control policies of the agents are
updated at time t, around their latest values, by maximizing a
reward function (22), while satisfying constraint return criteria:

πππt+1 = arg max
π1,...,πN

N∑
n=1

JRn
(πn) (22)

s.t. ananan ∼ πn(SnSnSn) (23)

JCm(πππ) ≤ dm, ∀m (24)

∆(πn, π
t
n) ≤ δ, ∀n (25)

where, πππ = {π1, ..., πn} denotes the set of control policies
of all agents. In (23), the agent’s policy is a function of the
state vector, SnSnSn. In (24), the expected constraint return value
are used to ensure the satisfaction of m’th constraint based on
control policies. In (25), ∆(·, ·) is the Kullback Leibler (KL)-
divergence function [15] that serves as a distance measure
between the previous policy, πtn, and the updated policy, πt+1

n ,
and is constrained by a step size, δ. Note that (25) ensures that
consecutive policies are within close distance from each other.

The intractable non-convex PL formulation, (22)-(25), can
be solved in principle using a trust region policy optimization
(TRPO) method [15]; however, in this paper we apply a
further approximation to TRPO to transform the problem into a
tractable convex iterative QCLP, which enables learning the PL
parameters, θθθ = {θ1θ1θ1, ..., θNθNθN}, in a more scalable and efficient
manner. Our solution leverages the linear approximations of
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the objective and constraint returns around the latest parameter
values θtθtθt:

θt+1θt+1θt+1 = arg max
θ1θ1θ1,...,θNθNθN

N∑
n=1

gngngn
T (θnθnθn − θtnθ

t
nθ
t
n) (26)

s.t. Jcm(θtθtθt) + bmbmbm
T (θθθ − θtθtθt) ≤ dm, ∀m (27)

1

2
(θnθnθn − θtnθ

t
nθ
t
n)THn(θnθnθn − θtnθ

t
nθ
t
n) ≤ δ, ∀n (28)

where, gngngn = ∇θJR and bmbmbm = ∇θJCm
are the gradient factors

of the reward and constraint return functions w.r.t. the learning
parameters. Constraint (25) is transformed into (28) using the
Fisher information matrix (FIM) of the policy functions, πn,
denoted by Hn. The FIM is a positive semi-definite matrix,
whose (c, d)’th entry for policy functions with a Gaussian
structure is determined as follows [24]:

Hn(c, d) = E[
∂ log πn(ananan|θnθnθn)

∂θnθnθn(c)

∂ log πn(ananan|θnθnθn)

∂θnθnθn(d)
]

= 2(
∂µHn
∂θnθnθn(c)

Σ−1
n

∂µnµnµn
∂θnθnθn(d)

) + Tr

{
Σ−1
n

∂Σn
∂θnθnθn(c)

Σ−1
n

∂Σn
∂θnθnθn(d)

}
(29)

Note that (26)-(28) provides a convexified constrained
gradient-based method for training the policy functions’ pa-
rameters of the MG agents; using this QCLP-based strategy the
agents do not need to learn an action-value function explicitly.
Instead, the power-flow-based gradient factors, gngngn and bmbmbm,
have to be determined for the two sets of learning parameters,
[θµn
θµnθµn , θΣn

θΣnθΣn ]. This process is outlined in Section III-D.

D. Gradient Factor Determination

To determine gradient factors, the following information are
used: (i) the observation variables,OtOtOt, including nodal voltage
VVV and current injections III; (ii) the latest system states Sn,tSn,tSn,t for
each MG agent; (iii) the latest control actions ananan of each MG
agent; (iv) the latest learning parameters θnθnθn = [θµn

θµnθµn , θΣn
θΣnθΣn ]; (v)

network parameters, including the nodal admittance matrix, Y .
Using information (i)-(v) and chain rule, gngngn = [gµn

gµngµn
, gΣn
gΣngΣn

] and
bmbmbm = [bm,µn

bm,µnbm,µn
, bm,Σn
bm,Σnbm,Σn

] in (26) and (27) can be written as:

gµn
gµngµn

=
∂JRn

∂ananan

∂ananan
∂πn

∂πn
∂µnµnµn

∂µnµnµn
∂θµn
θµnθµn

(30a)

bm,µn
bm,µnbm,µn =

∂JCm

∂ananan

∂ananan
∂πn

∂πn
∂µnµnµn

∂µnµnµn
∂θµn
θµnθµn

(30b)

gΣn
gΣngΣn =

∂JRn

∂ananan

∂ananan
∂πn

∂πn
∂Σn

∂Σn
∂θΣn
θΣnθΣn

(31a)

bm,Σn
bm,Σnbm,Σn =

∂JCm

∂ananan

∂ananan
∂πn

∂πn
∂Σn

∂Σn
∂θΣn
θΣnθΣn

(31b)

where, each gradient factor, gµn
gµngµn

, bm,µn
bm,µnbm,µn

, gΣn
gΣngΣn

, and bm,Σn
bm,Σnbm,Σn

,
consists of four elements. All the elements in (30) and (31)
can be obtained as follows:

1) ∂JRn
/∂ananan and ∂JCm

/∂ananan: The gradients of the ex-
pected reward JRn and the expected constraint return JCm

w.r.t. control actions ananan can be obtained using a proposed
four-step process, that leverages the current injection-based AC

power flow equations. The details of this process are shown
in Appendix A.

2) ∂ananan/∂πn: Using the latest values for parameters µnµnµn, Σn,
and actions ananan, the gradient of control actions w.r.t. πn is
obtained from (17), as shown in (32):

∂ananan
∂πn

= −(
Σ−1
n (ananan −µn)µn)µn)√
|Σn|(2π)Dn

e−
1
2A)−1 (32)

where, A = (ananan−µnµnµn)>Σ−1
n (ananan−µnµnµn). The detailed derivation

of (32) can be found in Appendix B.
3) ∂πn/∂µnµnµn and ∂πn/∂Σn: using the latest values for

parameters µnµnµn, Σn and actions ananan, the gradients of control
policies, w.r.t. µnµnµn and Σn are determined using (17), as shown
in (33) and (34):

∂πn
∂µnµnµn

=
Σ−1
n (ananan −µnµnµn)√
|Σn|(2π)Dn

e−
1
2A (33)

∂πn
∂Σn

= −1

2

(Σ−1
n − Σ−1

n (ananan −µnµnµn)(ananan −µnµnµn)>Σ−1
n )√

|Σn|(2π)Dn

e−
1
2A

(34)
where, the detailed derivations of (33) and (34) are shown in
Appendix B.

4) ∂µnµnµn/∂θµn
θµnθµn and ∂Σn/∂θΣn

θΣnθΣn : A back-propagation pro-
cess [25] is performed on the two DNNs within each MG
agent’s control policy function, (18) and (19), to determine
the gradients of DNNs’ outputs w.r.t. their parameters. In each
iteration, the latest values of state variables are employed as
inputs of the DNNs. The back-propagation process exploits
chain rule for stage-by-stage spreading of gradient information
through layers of the DNNs, starting from the output layer and
moving towards the input [25]. To enhance the stability of the
back-propagation process, a sample batch approach is adopted,
where the gradients obtained from several sampled actions are
averaged to ensure robustness against outliers.

IV. MULTI-AGENT CONSENSUS-BASED SAFE POLICY
LEARNING

A. Offline Policy Training

Using the gradient factors (30) and (31), the QCLP, (26)-
(28), is fully specified and can be solved at each policy update
iteration for training the agents’ PL frameworks. However,
we have identified two challenges in this problem: (i) the
size of the DNN parameters θθθ can be extremely large, which
results in high computational costs during training; (ii) the
control policy privacy of the MG agents needs to be preserved
during training, which implies that the agents might not have
access to each other’s control policies, cost functions, and local
constraints on assets. Centralized solvers can be both time-
consuming and lack guarantees for maintaining data ownership
boundaries.

In order to address these two challenges, we have de-
veloped a multi-agent consensus-based constrained training
algorithm [18]. Due to its distributed nature this method is
both scalable and does not require sharing control policy
parameters among agents. Thus, the proposed algorithm is
able to efficiently solve the QCLP (26)-(28), while relying
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only on local inter-MG communication. The purpose of inter-
MG interactions is to satisfy global constraints, (3)-(4). To
do this, the agents repeatedly estimate and communicate dual
variable λnλnλn, corresponding to the Lagrangian multiplier of
global constraints. Furthermore, a local primal-dual gradient
step is included in the algorithm to move the primal and
dual parameters towards their global optimum. The proposed
distributed algorithm consists of four stages that are performed
iteratively, as follows:

Stage I. Initialize (k ← 1): Gradient factors gngngn and bmbmbm are
obtained from Section II-D. The previous values of learning
parameters are input to the QCLP, θtnθ

t
nθ
t
n(0)← θt−1

nθ
t−1
nθ
t−1
n . Lagrangian

multipliers are initialized as zero for each MG agent.
Stage II. Weighted averaging operation: MG agent n

receives the Lagrangian multiplier λn′λn′λn′ , for global constraints
(3)-(4), from its neighbouring MG agents n′ ∈ {1, ..., Nn} and
combines the received estimates using weighted averaging:

λ̄nλ̄nλ̄n(k) =

Nn∑
n′=1

wn(n′)λn′λn′λn′(k) (35)

where, wn(n′) is the weight that MG agent n assigns to
the incoming message of the neighbouring MG agent n′.
To guarantee convergence to consensus, the weight matrix,
composed of the agents’ weight parameters is selected as a
doubly stochastic matrix [18], i.e., wn(n′) = 1

Nn
. This weight

selection strategy implies that the MG agents assign equal
importance to the information received from their neighboring
agents.

Stage III. Primal gradient update: The n’th MG agent
updates its primal parameters θtnθ

t
nθ
t
n employing a gradient descent

operation, using the gradients of the agent’s reward and the
global constraint returns, m′ ∈MG

c , and step size ρ1:

θ̄n̄θn̄θn(k) = θtnθ
t
nθ
t
n(k)− ρ1(gngngn(θtnθ

t
nθ
t
n(k)) + bm′bm′bm′(θ

t
nθ
t
nθ
t
n(k))λ̄nλ̄nλ̄n(k)) (36)

Stage IV. Projection on local constraints: The agent
projects the local learning parameters to the feasible region
defined by the gradients of the local constraints (5)-(16):

θtnθ
t
nθ
t
n(k + 1) = arg min

θθθ
||θ̄n̄θn̄θn(k)− θθθ|| (37)

s.t. Jcm(θtnθ
t
nθ
t
n(0)) + bmbmbm

T (θtnθ
t
nθ
t
n(0)− θθθ) ≤ dm, ∀m ∈ML

c (38)
1

2
(θtnθ
t
nθ
t
n(0)− θθθ)THn(θtnθ

t
nθ
t
n(0)− θθθ) ≤ δ, ∀n (39)

Stage V. Dual gradient update: Each agent’s estimations of
dual variables λnλnλn for the global constraints, (3) and (4), will
be updated using a gradient ascent process over λ̄nλ̄nλ̄n:

λnλnλn(k+1) = [(λ̄nλ̄nλ̄n(k)+ρ2(bm′bm′bm′θ
t
nθ
t
nθ
t
n(k+1)−dm′)]+,∀m′ ∈MG

c

(40)
where, ρ2 is a penalty factor for global constraints violation,
and the operator [·]+ returns the non-negative part of its input.

Stage VI. Stopping criteria: Check algorithm convergence
using the changes of θtnθ

t
nθ
t
n(k); stop when the changes in param-

eters falls below the threshold value ∆θn; otherwise, go back
to Stage II.

The overall flowchart of the SMAS-PL training process
using the proposed distributed training technique is shown in
Algorithm 1. The calculations of Steps 8 and 9 can be found
in Appendix A.

Algorithm 1 SMAS-PL Training
1: Select tmax, T, δ, kmax, wn(n′), ρ1, ρ2,∆θn
2: Initialize θt0nθ

t0
nθ
t0
n

3: for t← 1 to tmax do
4: SnSnSn ← [SnSnSn(t), ...,SnSnSn(t+ T )]
5: µnµnµn ← (18) [Parameter insertion]
6: ΣnΣnΣn ← (19) [Parameter insertion]
7: ananan ∼ πn(SnSnSn|θnθnθn)← (17) [Action selection]
8: ∂JRn

/∂ananan ← (55)-(56)
9: ∂JCm/∂ananan ← (59), (57)-(58)

10: ∂ananan/∂πn ← (32)
11: ∂πn/∂µnµnµn ← (33)
12: ∂πn/∂Σn ← (34)
13: ∂µnµnµn/∂θµn

θµnθµn
← DNNµn

[Back-propagation]
14: ∂Σn/∂θΣn

θΣnθΣn ← DNNΣn [Back-propagation]
15: gµn

gµngµn , bm,µn
bm,µnbm,µn ← (30) [Chain rule]

16: gΣn
gΣngΣn

, bm,Σn
bm,Σnbm,Σn

← (31) [Chain rule]
17: Hn ← (29) [FIM Construction]
18: Initialize λnλnλn(k0)
19: for k ← 1 to kmax do
20: λ̄nλ̄nλ̄n(k)← (35) [Averaging operation]
21: θ̄n̄θn̄θn(k)← (36) [Primal gradient update]
22: θtnθ

t
nθ
t
n(k + 1)← (37)-(39) [Projection on ML]

23: λnλnλn(k + 1)← (40) [Dual gradient update]
24: if ||θtnθtnθtn(k + 1)− θtnθtnθtn(k)|| ≤ ∆θn then
25: θt+1

nθ
t+1
nθ
t+1
n ← θtnθ

t
nθ
t
n(k + 1); Break;

26: end if
27: end for
28: if ||θt+1

nθ
t+1
nθ
t+1
n − θtnθtnθtn|| ≤ ∆θn then

29: Output θ∗nθ
∗
nθ
∗
n ← θt+1

nθ
t+1
nθ
t+1
n ; Break;

30: end if
31: end for
32: Output well-trained parameterized policy πn(θ∗nθ

∗
nθ
∗
n)

B. Online Action Selection

The trained policy functions are used by the MG agents for
online action selection. This process can be simply represented
as sampling from the learned Gaussian policy functions (17).
First, the agents receive the latest values of the states, including
the predicted solar irradiance and aggregate internal load
power of MGs. These values are inserted into the trained
DNNs (18) and (19) to obtain the mean and covariance
matrices of the policy functions. Finally, samples are generated
from the multivariate Gaussian distributions. These samples
are averaged and passed to the local controllers of each
controllable asset as a reference signal.

C. Backtracking Strategy

Due to convex approximations in the formulations (26)-
(28), it is possible for few global constraints to be marginally
violated in practice. To ensure feasibility, we can add a
backtracking strategy into the proposed solution. This closed-
loop backtracking strategy consists of two components, as
shown in Fig. 2:

Component 1. Power flow engine (PFE): The PFE receives
the control actions from MG agents and runs a simple power
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Backtracking module
(Tighten the upper-bound)
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Power flow engine 
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𝒂𝟏 𝒂𝑵 

𝒂𝟏,…,𝒂𝑵 

Fig. 2. Flowchart of the backtracking strategy

flow program to obtain the status of all constraints. If no
constraint is violated, the control signals are passed to con-
trollable assets. If some constraints are violated, then the PFE
will engage the backtracking process.

Component 2. Backtracking module: The backtracking
module tightens the upper-bound limit (dm) (only) for the
constraints that have been violated. The parameters of the
trained DNNs will be re-updated according to update rules
(35)-(40) and with the modified upper-bounds. The purpose
of tightening the upper-bound is to provide a safety margin.
In this paper the tightening process is performed using a user-
defined coefficient multiplier, 0 < τ < 1, as follows:

d∗m = τdm (41)

V. SIMULATION RESULTS

The proposed method is tested on a modified 33-bus dis-
tribution network [26], which consists of five MGs as shown
in Fig. 3a. Each MG is modeled as a modified IEEE 13-bus
network [26] at a low voltage level as shown in Fig. 3b. When
calculating the gradient factors, a single-phase AC power flow
model is used for the sake of brevity. In the case study, the base
power value is 100 kVA and base voltage values in the 33-bus
distribution network and 13-bus MG networks are 12.66 kV
and 4.16 kV, respectively.

The input data for load demands and PV generations have
15-minute time resolution are obtained from smart meter
database [27] to provide realistic numerical experiments. The
assumption in this paper is that smart meters are installed
throughout the network and the agents have access to a
diverse data. The training and testing datasets are selected
through uniform randomization to ensure that the proposed
solver functions reasonably. Here, 1-month of the randomly
selected data is used for testing and 11-month of the data
is used for training. The energy price for the transferred
power at the MG PCCs and the fuel price for the local DGs
are adopted from [28] and [29], respectively. The quadratic
polynomial parameters of DG fuel consumption are adopted
from [30]. Table I presents selected parameters for operational
cost calculation in simulations. The average capacities for DGs
in MGs are 60 kWh. The average capacities for ESSs in MGs

MG2 MG3

MG1

Main grid

MG4 MG5

(a) 33-bus system for distribution network

33
-B

us
 N

et
w

or
k

(b) 13-bus system for MGs

Fig. 3. Test system under study.

TABLE I
SELECTED COST FUNCTION PARAMETERS

Description Notion Value

Average electricity price ($/kWh) λR 0.046
Average DG fuel price ($/L) λf 0.57

Fuel cons. quadratic function parameter (L/kW 2) af 0.0001773
Fuel cons. quadratic function parameter (L/kW ) bf 0.1709

Fuel cons. quadratic function parameter (L) cf 14.67

are 20 kWh, the maximum charging/discharging rate is 4kW
and the charging/discharging efficiencies are 95% and 90%,
respectively.

All the case studies are simulated using a PC with Intel Core
i7-4790 3.6 GHz CPU and 16 GB RAM hardware. The sim-
ulations are performed in MATLAB [31] and OpenDSS [32]
to obtain the gradient factors, update the learning parameters,
solve the distributed training problem, and validate the results.
In training, each episode is a learning update iteration based
on the data that comes from one moving decision window. The
length of the moving window is 4 samples with a 15-minute
time step, which gives us a 1-hour window. The activation
functions of each layer (including the output layer) of the
feedforward networks are hyperbolic tangent-sigmoid (tansig).
After various numerical tests, the parameters θµθµθµ and θΣθΣθΣ of
the neural networks are initialized using uniform distributions
defined over the intervals (0,0.2) and (-0.03,0.03), respectively.
In our simulations, we have observed that τ = 0.9 is sufficient
for ensuring feasibility for those constraints that have been
marginally violated after one-to-two rounds of backtracking.
Table II summarizes selected DNN hyperparameters and other
user-defined coefficients in simulations. The hyperparameters
were optimized using a randomly-selected validation set (2
months worth of data) and Bayesian optimization with unin-
formative priors in MATLAB environment.

Further, to demonstrate the effectiveness of SMAS-PL,
three benchmark methods have been considered, including an
optimization-based method, an on-policy method and an off-
policy method. The first benchmark method is an optimization-
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TABLE II
SELECTED DNN HYPERPARAMETERS AND USER-DEFINED COEFFICIENTS

Description Notion Value

Length of the decision window in episode T 4
Discount factor γ 0.99

Step size for updating θ δ 1 × 10−3

Maximum iteration kmax 200
Weight assigned to received information wn 0.2

Step size for primal gradient update ρ1 0.01
Step size for dual gradient update ρ2 0.01
Threshold for parameter updating ∆θ 1 × 10−4

Tightening multiplier τ 0.9
Number of hidden layer - 3

Number of neurons per hidden layer - 10
Size of minibatches - 128

Activation function of DNNs - tansig

based method, which leverages YALMIP toolbox to solve the
optimal power management of networked MGs using IBM
ILOF CPLEX 12.9. The second one is the unconstrained
policy gradient learning (U-PL) method, which leverages the
same algorithm as the proposed SMAS-PL, however, certain
constraints are removed during the training process of U-PL.
By comparing the SMAS-PL and the U-PL, we can show
the effectiveness of the SMAS-PL when handling different
local and global constraints. The U-PL can be considered
as an on-policy benchmark. We also consider an off-policy
benchmark method, namely the deep Q-network (DQN). In
[23], [33], DQN uses deep neural networks (DNNs) to ap-
proximate the Q-function and provide Q-value estimation for
discretized control actions. To include the constraints in DQN,
we have followed the suggestion in [23], [34] and added
penalty terms to the reward function of the benchmark DQN
to discourage constraint violation. The penalty coefficients
for global and local constraints are manually tuned based on
the DQN performance. However, since the benchmark DQN
was not originally designed for continuous actions, we have
first discretized the agents’ action space with a step size of
33% of the constraint upper limit. For example, if the upper
limit of a diesel generation (DG) power output is 60 kW,
then, the power output action of DG has been discretized
as (0,20,40,60) kW. Similar discretization has been applied
to the actions of PV inverters and ESSs.The inputs of the
DNN are the system states, and the outputs of the DNN are
estimations for the Q-value function for each discrete action.
The DNN is parameterized as a function approximator to
represent the Q-value function. The temporal difference (TD)
learning algorithm is used to train the DNN by minimizing the
mean-squared TD error. The discount factor and learning rate
in DQN are set to the same values as those of SMAS-PL. The
exploration factor is set to 0.1 in the ε-greedy action selection
of DQN. The structure of DNN in the benchmark DQN has
been obtained using cross-validation. The dimensions of the
input and output layers have been extended by the number of
MG agents and the number of discrete actions. Note that the
benchmark U-PL is implemented in a multi-agent framework,

TABLE III
COMPARISON BETWEEN CENTRALIZED SOLVER, DQN AND SMAS-PL

METHOD

Cen. solver DQN SMAS-PL

Average daily cost ($) 1356.60 1928.4 1372.11

Average time (second) 145.50 10.30 1.40 (per agent)

MG privacy maintenance No No Yes

while the benchmark DQN is implemented in a centralized
way.

A. System Operation Outcomes

In the case study, action selection is performed by sampling
100 times from the trained policy functions (distributions).
Then the dispatching action is obtained by averaging the se-
lected samples. A trade-off is involved in choosing the number
of action samples: if this number is too large, then the selected
actions will converge to the policy mean, which implies that
model uncertainties are ignored. This could result in erroneous
and sub-optimal solutions in case the learned model is over-
fitting (i.e., when the estimated mean has large errors). On the
other hand, if the number of samples is too small, then the
outcomes can deviate from the learned mean value, which can
also result in low-quality outcomes. The average outcomes
are shown in Fig. 4, Fig. 5 and Table III. The aggregate
MG demand, aggregate MG generation, and aggregate power
transfer through PCCs of MGs over a day are shown in Fig.
4. It can be seen that the main MG demands are supplied by
the local generation within MGs due to low DG fuel prices
and renewable outputs. While most MGs are exporting power
to the upstream distribution grid, MG4 is importing power
to satisfy the heavy local load that cannot be fully supplied
internally. In all cases the power balance is maintained within
the MGs. The ESS SOCs for each MG are shown in Fig. 5,
where can be seen that ESSs charge during off-peak period and
discharge during peak time to provide optimal power balancing
support for MGs. Table III presents comparisons between the
benchmark optimization-based method, the benchmark DQN
and the proposed SMAS-PL, including the average daily cost
of operation over numerous scenarios, average online decision
time, and MG privacy maintenance.
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Fig. 4. Aggregated power of local demand, local generation and power
transfer for MG1-MG5.

In general, the SMAS-PL method has three fundamental
advantages over centralized optimization method: 1) Even
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Fig. 5. ESS dispatching results for MG1-MG5.

though the offline training process in our method takes a
long time (around 35 minutes per agent), the average online
decision time for the proposed SMAS-PL is about only 1.4
seconds per agent, which is much shorter than the average
time 145.5 seconds for the centralized optimization solver.
Thus, the real-time response of the trained policy function
is almost 100 times faster than that of the OPF solver. The
reason for this is that the OPF solver needs to find the
optimal solution of a complex optimization problem in real-
time, while our approach simply samples from multivariate
Gaussian distributions that embody optimal control policies.
Furthermore, we have observed that the computational cost
of the centralized OPF solver rises almost quadratically with
the size of the system; beyond a certain point the commercial
solver is not able to provide solutions in a reasonable time.
On the other hand, our SMAS-PL retains an almost constant
online decision time, while the cost of offline training increases
almost linearly. 2) The proposed PL method takes advantage of
a multi-agent (distributed) framework to train the policy func-
tion of each MG agent; in practice, this distributed framework
can be implemented using parallel computation techniques,
which also enhances the scalability of the proposed SMAS-
PL method compared to centralized solvers. 3) Due to its
distributed nature, the proposed SMAS-PL method maintains
the privacy and data ownership boundaries of individual MGs.
During the training process, the MG agents do not need
to share control policy parameters, policy functions, cost
functions, and local asset constraints with each other. The only
variables that are shared among MG agents are the Lagrangian
multipliers corresponding to global network constraints. These
multipliers do not have a physical meaning and thus, do not
contain sensitive information.

Based on the comparison between the centralized solver and
our proposed method, there is still a 1.14% difference between
the solutions from the centralized solver and the SMAS-PL
method, which might be caused by the following reasons:
(i) Unlike the centralized solver, which has access to the full
systemic model information, and thus, can guarantee at least a
local optimal solution, the proposed SMAS-PL method lacks a
guarantee of optimality. Also, in order to obtain a high-quality
solution, the SMAS-PL needs to first approximate the original
problem with a convex surrogate, which despite enhancing the
problem tractability, comes at the expense of loss of accuracy
and a reduction in performance. (ii) The proposed backtracking
mechanism is a heuristic strategy, which is aimed at obtaining
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Fig. 6. Convergence of learning parameters θµ and θΣ for MG1-MG5 .

a feasible solution that might come at the expense of a loss
in the reward. (iii) To obtain a consensus-based solution,
the SMAS-PL needs a reliable inter-agent communication
infrastructure, which could be costly. (iv) In case of changes
in system structure, the SMAS-PL will need an offline re-
training phase to adapt to new system conditions. This could
take some time, during which the agents will experience a
temporary decline in their payoffs. The comparison between
DQN and SMAS-PL is discussed in Section V-B.

B. Algorithm Performance

Fig. 6a and Fig. 6b show the convergence of a selected
group of learning parameters, θµθµθµ and θΣθΣθΣ during the training
process, for each MG agent. As can be seen, the changes in
θµθµθµ are relatively larger than that of θΣθΣθΣ. This is due to the
higher levels of sensitivity of MG agents’ objective functions
to the mean values of the control actions compared with their
variance levels.

In Fig. 7, the average hourly rewards under SMAS-PL,
U-PL, and DQN are compared with each other. Note that
here, the moving average rewards and the episodic rewards
of different methods are depicted by dark and light curves. It
can be observed that SMAS-PL and U-PL both outperform
DQN in term of the total reward. The reason for this is
that the SMAS-PL and U-PL leverage the proposed iterative
and distributed technique to adaptively tune the Lagrangian
multipliers through information exchange between MG agents;
on the other hand, the DQN needs to manually design
penalty coefficients for constraint violations, which either
offers inadequate penalization of the constraint violations or
excessive punishment for the constraints. Also, SMAS-PL and
U-PL have continuous action spaces, while DQN employs
action discretization, which hinders accurate exploration of
action space. After the NNs are fully trained, the SMAS-PL
samples the actions from the learned multivariate Gaussian
distributions that embody optimal control policies, while the
benchmark DQN selects the control actions that have the
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highest estimated Q-values for the given state according to the
trained DNN. Based on the results in Table III, the decision
time for the SMAS-PL is around 1.4 seconds per agent, while
the decision time for the benchmark DQN is approximately
10.3 seconds. Thus, the decision time for the proposed SMAS-
PL is faster than the benchmark DQN, because the multi-
agent framework enables the SMAS-PL to sample decision
actions in parallel for each MG agent, while the benchmark
DQN selects the control actions for all the MGs together in
a centralized way. Two cases are considered in implementing
U-PL: (i) no DG capacity constraints for MG1 and MG2; (ii)
no DG capacity constraints for MG1-MG5. In cases (i) and
(ii) of the U-PL, the agents obtain a higher reward compared
to the SMAS-PL due to the constraint omission; however,
this comes at the expense of decision infeasibility. In case
of the SMAS-PL, these operational constraints are satisfied,
which also leads to a drop in total reward, as expected. This
shows that our proposed constrained PL decision model can
ensure the feasibility of the control actions w.r.t. the constraints
of the power management problem. Note that even though
the proposed SMAS-PL framework is similar to the TRPO
[15], the TRPO has theoretical guarantees for monotonic
increase in return, while such guarantees do not exist for the
approximate QCLP formulation in the proposed SMAS-PL.
However, compared to TRPO our solution offers a simpler,
more efficient, and tractable alternative, with fewer learning
parameters.
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Fig. 7. Comparison of the average hourly rewards with different methods.

Furthermore, Fig. 8 shows the constraint values during the
training iterations for a 1-hour time window, for the two cases
with and without DG capacity constraints in MG1, where
the dark blue and red curves represent averaged constraint
values, and the light blue and red areas represent the variations
around the average curves for the SMAS-PL and U-PL,
respectively. During the training process, the U-PL violates the
upper boundary for DG generation limit (i.e., local constraint
case study); on the other hand, the SMAS-PL solver satisfies
the DG generation capacity constraints, which implies that
the local constraints can be safely maintained. Therefore,
compared to U-PL, the proposed SMAS-PL has shown to
be able to generate control actions that not only improve the
reward function but also satisfy the constraints.

One example of the distributed training convergence process
is shown in Fig. 9 for a policy gradient update step. As can be
seen, the Lagrangian multipliers λn reach zero over iterations
of the proposed multi-agent algorithm, which indicates that
all the global constraints, including nodal voltage and branch
current limits, are satisfied and feasible solutions are obtained.
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Fig. 8. Comparison of constraint values w/ and w/o DG capacity constraints
in MG1.

This also means that the bus voltage and line current con-
straints are not binding for this case.

Fig. 9. The performance of the iterative distributed training method in one
episode (no binding global constraints).

Another example is given to demonstrate the effectiveness
of the SMAS-PL in handling binding global constraints. This
case shows a line flow constraint in the grid under the proposed
SMAS-PL and a U-PL baseline; as is observed in Fig. 10,
the U-PL has generated infeasible decisions that violate the
constraint, while our approach has prevented the flow to go
above its upper bound. Further, as can be seen in Fig. 11,
the Lagrangian multipliers for this binding constraint reach a
non-zero constant number over iterations. This also shows the
agents’ estimations of Lagrange multipliers for a global line
flow constraint; as can be seen, using the proposed SMAS-
PL the agents are capable of reaching consensus on the value
of the multiplier without having any access to each other’s
policy functions, which corroborates the performance of our
proposed method under incomplete information.
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Fig. 10. Selected global branch current constraint return values for MG agents.

To validate the tightening parameter levels (τ ), we have
studied the impact of different τ values on the reward. Here,
at episode 400, the value of τ is decreased from 1 to (0.95,
0.9, 0.85). The average rewards for different drops in τ are
compared in Fig. 12. It can be observed that for values
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Fig. 11. MG agents’ consensus on λn for the selected global constraint.

of τ close to 1 (i.e., τ=0.95 and τ=0.9) the reward values
are very close to each other. However, as τ deviates from
unity and reaches τ=0.85, the reward drops significantly. In
our simulation, we have observed that τ=0.9 is sufficient for
ensuring feasibility for those few constraints that have been
marginally violated in certain operation scenarios after one-
to-two rounds of backtracking. Note that this threshold needs
to be fine-tuned for specific grids.
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Fig. 12. Impact of backtracking on algorithm performance.

To simulate the impact of bad network parameter data on
training model performance, we have added random errors
(with a 10% variance) to the network resistance (R) and
reactance (X) parameters during the training process. The bad
network data will lead to errors in gradient factors (42)-(59)
(see Appendix A). To validate the SMAS-PL under network
data imperfection, we have compared the average reward
obtained with perfect knowledge of network parameters and
under bad network parameter information. It can be observed
in Fig. 13, even though the learning process with bad network
data shows more volatility and needs more time to reach
convergence, the model still reaches reward values close to
the ideal case. However, due to the information imperfection,
a loss of reward is inevitable.
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Fig. 13. Analysing the impact of bad network data on decision model
outcomes.

VI. CONCLUSION

Conventional model-based optimization methods suffer
from high computational costs when solving large-scale multi-
MG power management problems. On the other hand, the
conventional model-free methods are black-box tools, which
may fail to satisfy the operational constraints. Motivated by
these challenges, in this paper, a SMAS-PL method has been
proposed for power management of networked MGs. Our
proposed method exploits the gradients of the decision prob-
lem to learn control policies that achieve both optimality and
feasibility. Furthermore, to enhance computational efficiency
and maintain the policy privacy of the control agents, a
distributed consensus-based training process is implemented
to update the agents’ policy functions over time using local
communication.

Note that the current case study has been conducted over
a balanced single-phase distribution system. However, our
proposed SMAS-PL is not limited to single-phase distribution
systems and can be potentially extended to unbalanced three-
phase systems. One solution to this challenge could be using a
single policy function for the resources connected to all phases
(note that theoretically-speaking our method is not limited by
the number of phases). However, this brute-force solution may
lack scalability. Another solution extension to a multi-phase
system cannot be fully addressed by having three separate
policy functions per phase. A more efficient and scalable
extension to unbalanced systems remains the subject of our
future research.

APPENDIX A
CALCULATION OF ∂JRn

/∂ananan AND ∂JCm
/∂ananan

The major difficulty in determining ∂JRn/∂ananan and
∂JCm/∂ananan pertains to the agents’ reward functions and global
constraint returns, (1)-(4), which are only implicitly related
to the control actions. Since the reward and all the global
constraint returns are functions of the observation variables,
VVV and III , the gradients of these variables w.r.t. control actions
are obtained and used to quantify ∂JRn/∂ananan and ∂JCm/∂ananan.
To do this, a four-step process is proposed that leverages the
current injection-based AC power flow equations:

Step 1 - First, the gradients of real and imaginary parts of
nodal current injection w.r.t. control actions are derived (de-
noted as ∂IReIReIRe/∂ananan and ∂IImIImIIm/∂ananan, respectively.) To achieve
this, the nodal power balance and nodal current injection
relationships in the network are employed [35]:

IRei,t′ =
pi,n,t′V

Re
i,t′ + qi,n,t′V

Im
i,t′

V 2
i,t′

(42)

IImi,t′ =
pi,n,t′V

Im
i,t′ − qi,n,t′V Rei,t′

V 2
i,t′

(43)

pi,n,t′ = PDi,n,t′ − PDGi,n,t′ − PPVi,n,t′ + PChi,n,t′ − PDisi,n,t′ (44)

qi,n,t′ = QDi,n,t′ −QDGi,n,t′ −QPVi,n,t′ +QESSi,n,t′ (45)

where, IRei , IImi and V Rei , V Imi denote the real and imaginary
parts of nodal voltage and current injection at node i. Using
these equations, ∂IReIReIRe/∂ananan and ∂IImIImIIm/∂ananan are derived and
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TABLE IV
PARTIAL DERIVATIONS OF IReIReIRe AND IImIImIIm W.R.T.
ananan = [PDGn , PChn , PDisn , QDGn , QPVn , QESSn ]

-
ananan

PDG
n,t′ PCh

n,t′ PDis
n,t′ QDG

n,t′ QPV
n,t′ QESS

n,t′

IRe
i,t′ −

V Re
i,t′

V 2
i,t′

V Re
i,t′

V 2
i,t′

−
V Re
i,t′

V 2
i,t′

V Im
i,t′

V 2
i,t′

V Im
i,t′

V 2
i,t′

−
V Im
i,t′

V 2
i,t′

IIm
i,t′ −

V Im
i,t′

V 2
i,t′

V Im
i,t′

V 2
i,t′

−
V Im
i,t′

V 2
i,t′

−
V Re
i,t′

V 2
i,t′

−
V Re
i,t′

V 2
i,t′

V Re
i,t′

V 2
i,t′

shown in Table IV. Note that the entries of this table can be
calculated using the real and imaginary parts of nodal voltages,
which in practice are either measured or estimated [35].

Step 2 - Using ∂IReIReIRe/∂ananan and ∂IImIImIIm/∂ananan from Step 1
(Table IV), ∂V ReV ReV Re/∂aaa and ∂V ImV ImV Im/∂aaa are obtained employing
the network-wide relationship between nodal voltages and
current injections:[

∂V ReV ReV Re

∂ananan
∂V ImV ImV Im

∂ananan

]
=

[
Y 11 Y 12

Y 21 Y 22

]−1
[

∂IReIReIRe

∂ananan
∂IImIImIIm

∂ananan

]
(46)

where, the modified network bus admittance sub-matrices are
determined as follows:

Y 11 = Y Re − Y (Re,Re)
D , Y 12 = −Y Im − Y (Re,Im)

D (47)

Y 21 = Y Im − Y (Im,Re)
D , Y 22 = Y Re − Y (Im,Im)

D (48)

here, Y Re and Y Im are the real and imaginary parts of
the original bus admittance matrix. The elements in diagonal
matrices Y

(Re,Re)
D , Y (Re,Im)

D , Y (Im,Re)
D and Y

(Im,Im)
D are

calculated using the following equations [35]:

Y
(Re,Re)
D (i, i) =

pi,n,t′

V 2
i,t′
−

2V Rei,t′ (pi,n,t′V
Re
i,t′ + qi,n,t′V

Im
i,t′ )

V 4
i,t′

(49)

Y
(Re,Im)
D (i, i) =

qi,n,t′

V 2
i,t′
−

2V Imi,t′ (pi,n,t′V
Re
i,t′ + qi,n,t′V

Im
i,t′ )

V 4
i,t′

(50)

Y
(Im,Re)
D (i, i) = −qi,n,t

′

V 2
i,t′
−

2V Rei,t′ (pi,n,t′V
Im
i,t′ − qi,n,t′V Rei,t′ )

V 4
i,t′

(51)

Y
(Im,Im)
D (i, i) =

pi,n,t′

V 2
i,t′
−

2V Imi,t′ (pi,n,t′V
Im
i,t′ − qi,n,t′V Rei,t′ )

V 4
i,t′

(52)
Step 3 - Noting that the current flow constraint returns

and the rewards are also functions of branch current flows,
the gradients of branch current flows are required to obtain
∂JRn

/∂ananan and ∂JCm
/∂ananan. Using the branch current flow

equations, these gradients are determined as a function of the
derivatives of nodal voltages and current injections, as follows:

∂IReij,t′

∂an,t′an,t′an,t′
= yImij (

∂V Imi,t′

∂an,t′an,t′an,t′
−
∂V Imj,t′

∂an,t′an,t′an,t′
)−yReij (

∂V Rei,t′

∂an,t′an,t′an,t′
−
∂V Rej,t′

∂an,t′an,t′an,t′
) (53)

∂IImij,t′

∂an,t′an,t′an,t′
= yImij (

∂V Rei,t′

∂an,t′an,t′an,t′
−
∂V Rej,t′

∂an,t′an,t′an,t′
)+yReij (

∂V Imi,t′

∂an,t′an,t′an,t′
−
∂V Imj,t′

∂an,t′an,t′an,t′
) (54)

where, IReij and IImij are the real and imaginary parts of branch
currents, yReij and yImij are the real and imaginary parts of
branch admittance.

Step 4 - Finally, using the derivatives obtained from Steps
1, 2, and 3, ∂JRn

/∂ananan and ∂JCm
/∂ananan are determined through

straightforward algebraic manipulations. As an example, the
gradient of reward function w.r.t. PDGn,t′ is calculated as:

∂JRn

∂PDGn,t′
=
t+T∑
t′=t

(λFi,n(2af + bf )− λRn
∂PPCCn,t′

∂PDGn,t′
) (55)

where, ∂PPCCn,t′ /∂PDGn,t′ is obtained using the outcomes of
Steps 2 and 3, as follows:

∂PPCCn,t′

∂PDGn,t′
=

∂V Rei,t′

∂PDGn,t′
IReij,t′ + V Rei,t′

∂IReij,t′

∂PDGn,t′

+
∂V Imi,t′

∂PDGn,t′
IImij,t′ + V Imi,t′

∂IImij,t′

∂PDGn,t′
(56)

Furthermore, ∂JCm
/∂ananan for the global constraints (3) and

(4) can be calculated using the outcomes of Steps 2 and 3:

∂Vi,t′

∂an,t′an,t′an,t′
=
V Rei,t′

Vi,t′

∂V Rei,t′

∂an,t′an,t′an,t′
+
V Imi,t′

Vi,t′

∂V Imi,t′

∂an,t′an,t′an,t′
(57)

∂Iij,t′

∂an,t′an,t′an,t′
=
IReij,t′

Iij,t′

∂IReij,t′

∂an,t′an,t′an,t′
+
IImij,t′

Iij,t′

∂IImij,t′

∂an,t′an,t′an,t′
(58)

As can be seen in (5)-(16), the local constraint returns
are trivial functions of the control actions. For example, the
constraint return value for (5) is JC5,t′ = PDGn,t′ which induces
a simple gradient element w.r.t. control action PDGn,t′ :

∂JC5,t′

∂PDGn,t′
= 1 (59)

The gradients of constraint returns w.r.t. control actions for
the remaining local constraints, (6)-(16), can be obtained in a
similar way.

APPENDIX B
DERIVATION OF ∂ananan/∂πn, ∂πn/∂µnµnµn AND ∂πn/∂Σn

∂ananan/∂πn, ∂πn/∂µnµnµn and ∂πn/∂Σn are obtained using the
probability density function of (D-dimensional) multivariate
Gaussian distribution [36], which has the following general
formulation:

f(xxx;µµµ,Σ) =
1√

|Σ|(2π)D
e−

1
2 (xxx−µµµ)>Σ−1(xxx−µµµ) (60)

where xxx is a random vector. To derive the gradients, first, the
log-likelihood function of this multivariate Gaussian distribu-
tion (60) is obtained as follows:

L = ln(f) = ln
1√

|Σ|(2π)D
− 1

2
(xxx−µµµ)>Σ−1(xxx−µµµ) (61)

The derivative of L w.r.t. mean vector µµµ and covariance
matrix Σ can be written as follows:

∂L

∂µµµ
= −1

2

∂(xxx−µµµ)>Σ−1(xxx−µµµ)

∂µµµ

= −1

2
(−2Σ−1(xxx−µµµ)) = Σ−1(xxx−µµµ) (62)
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∂L

∂Σ
= −1

2
(
∂ ln(|Σ|)
∂Σ

+
∂(xxx−µµµ)>Σ−1(xxx−µµµ)

∂Σ
)

= −1

2
(Σ−1 − Σ−1(xxx−µµµ)(xxx−µµµ)>Σ−1) (63)

Thus, using (62) and (63), the derivatives of the function f
w.r.t. µµµ and Σ can be shown in (64) and (65), respectively:

∂f

∂µµµ
=

Σ−1(xxx−µµµ)√
|Σ|(2π)D

e−
1
2A (64)

∂f

∂Σ
= −1

2

(Σ−1 − Σ−1(xxx−µµµ)(xxx−µµµ)>Σ−1)√
|Σ|(2π)D

e−
1
2A (65)

where A = (xxx−µµµ)>Σ−1(xxx−µµµ). Similarly, the derivative of
the function f w.r.t. xxx is shown as follows:

∂f

∂xxx
= −Σ−1(xxx−µµµ)√

|Σ|(2π)D
e−

1
2A (66)
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