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Abstract—In this paper, we present a novel data-driven ap-
proach to detect outage events in partially observable distribution
systems by capturing the changes in smart meters’ (SMs) data
distribution. To achieve this, first, a breadth-first search (BFS)-
based mechanism is proposed to decompose the network into
a set of zones that maximize outage location information in
partially observable systems. Then, using SM data in each zone,
a generative adversarial network (GAN) is designed to implicitly
extract the temporal-spatial behavior in normal conditions in
an unsupervised fashion. After training, an anomaly scoring
technique is leveraged to determine if real-time measurements
indicate an outage event in the zone. Finally, to infer the location
of the outage events in a multi-zone network, a zone coordination
process is proposed to take into account the interdependencies
of intersecting zones. We have provided analytical guarantees
of performance for our algorithm using the concept of entropy,
which is leveraged to quantify outage location information in
multi-zone grids. The proposed method has been tested and
verified on distribution feeder models with real SM data.

Index Terms—Generative adversarial networks, outage detec-
tion, partially observable system, smart meter, zone.

NOMENCLATURE

AMI Advanced metering infrastructure
BFS Breadth-first search
GAN Generative adversarial network
SM Smart meter
A \B Elements of set A that are not in set B
A � B A has a higher topological order than B
Bc Candidate branch set that are potentially the

location of outage event
Bg Set of grid branches
cosφi Power factor of node i
D Discriminator
G Generator
H(·) Entropy function for assessing outage location

information
Ii−1,i Branch current between nodes i− 1 and i
Ki−1,i Approximate voltage drop factor
li−1,i Length of distribution line segment between

nodes i− 1 and i
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m Number of batch size
M Number of branches in the system
nD Number of iterations for D per G iteration
N(g) Set of neighboring nodes in the grid
O Number of observable nodes
Oend Number of observable nodes that do not have

any observable downstream nodes
Pi Power consumption of node i
∆Ps Outage event magnitude
PXΨi

Probability density function of historical data
in zone Ψi

Sr Network’s root node
Sg Set of observable nodes in the partially observ-

able distribution system
So1 Upstream observable node of zone
So2 Downstream observable node of zone
T Length of the time window
uk k’th set of branches that are covered with the

exact same set of zones
U(Ψg) Undetectable branch set for the selected zone

set Ψg

VO Number of zones containing the faulted branch
in the system

|Vi| Voltage magnitude measurements at node i
∆V Voltage drop value in normal condition
∆Vo Post-outage voltage drop value
XΨi Training dataset for zone Ψi

z Noise signal with uniform distribution
z∗ Optimal solution for residual error
ZΨi Set of branch in zone Ψi

ZZZ(i−1,i),abc Phase impedance matrix between nodes i − 1
and i

α Learning rate
δR(·) Residual error
δD(·) Discriminator error
γg(bj) Set of zones in the grid that include branch bj
λ Weight factor for combining δR(·) and δD(·)
µΨi Sample mean of the anomaly scores for the

training dataset in zone Ψi

ω Number of zones in the system
Ψi i’th outage detection zone
Ψg Set of all selected zones for the partially ob-

servable grid
Ψa Target zone containing the maximum informa-

tion on the outage event
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σΨi Sample variance of the anomaly scores for the
training dataset in zone Ψi

θG, θD Learning parameters for G and D
ζΨi GAN-based anomaly score in zone Ψi

I. INTRODUCTION

Outage detection is a challenging problem in power systems,
especially in distribution networks where the majority of
outage events take place. According to the statistical data
provided by the U.S Energy Information Administration,
each customer lost power for around 4 hours on average
in 2016 [1]. To decrease outage duration, and improve sys-
tem reliability and customer satisfaction, distribution system
operators (DSOs) deploy state-of-the-art outage management
systems, using modern software tools and protection devices
with bidirectional communication function. This allows DSOs
to collect real-time up-to-the-second data from the network
[2]. Nevertheless, use of intelligent communication-capable
devices in distribution systems has not become prevalent,
mostly due to budgetary limitations of utilities [3]. Hence,
identification of distribution system outage events, especially
for small utilities, still relies on trouble calls from customers
and manual inspection. However, trouble calls alone are not
a reliable data source of outage detection because customers
may not make prompt calls to utilities [4]. Also, conventional
expert-experience-based outage discovery methods that use
customer calls are laborious, costly, and time-consuming [5].

In recent years, a number of papers have explored data-
driven alternatives for outage detection. According to the
type of data source, the previous works in this area can
be classified into two groups: Class I - Smart meter (SM)-
based methods: With the widespread deployment of advanced
metering infrastructure (AMI), SMs provide an opportunity
to rapidly detect outage events by recording the real-time
demand consumption and automatically sending “last gasp”
signals to the utilities. In [6], a multi-label support vector
machine classification method is presented that utilizes the
last gasp signals of SMs to detect and find the locations of
damaged lines in fully observable networks. In [7], a hier-
archical framework is developed to provide anomaly-related
insights using multivariate event counter data collected from
SMs. In [8], a fuzzy Petri nets-based approach is proposed to
detect nontechnical losses and outage events by tracking the
differences between profiled and irregular power consumption.
In [9], a probabilistic and fuzzy model-based algorithm is
presented to process outage data using AMI. In [10], a tree-
based polling algorithm is developed to obtain information
about the system conditions by polling local SMs. Class
II - non-SM-based methods: Other data sources have been
used in the literature for outage detection, as well. In [2], a
hypothesis testing-based outage detection method is developed
combining the use of real-time power flow measurements and
load forecasts of the nodes. In [4], a social network-based data-
driven method is proposed by leveraging real-time information
extraction from Twitter. In [11], a new boosting algorithm is
developed to estimate outages in overhead distribution systems
by utilizing weather information.

Even though previous works provide valuable results, crit-
ical questions remain unanswered in this area. The limitation
of most Class I models is their basic assumption that the
distribution system is fully observable, i.e., all the nodes
have measurement devices. However, this assumption does
not necessarily apply to practical systems, in which large
portions of customers do not own smart meters [6]. On
the other hand, Class II methods are generally based on
several limiting assumptions, such as availability of accurate
forecasts for customer loads, availability of real-time power
flow measurements, and reliability of social network data.
Another difficulty in outage detection is outage data scarcity,
which means that the size of the outage data is far smaller
compared to the data in normal conditions. This issue causes
a data imbalance problem that could hinder reliable training
of supervised learning-based outage detection models [12].

To address these shortcomings, in this paper, a genera-
tive adversarial network (GAN)-based method is developed
to detect power outages in partially observable distribution
systems by capturing the anomalous changes in SMs’ mea-
surement data distributions that are caused by outage events
[13]. Compared to the previous works, the proposed method
solves three fundamental challenges in outage monitoring for
partially observable distribution systems: 1) Unlike supervised
classifiers that can fail in case of outage data scarcity, the
proposed generative model follows an unsupervised learning
style which only relies on the operation data in normal
conditions for model training. Then, a GAN-based anomaly
score is defined to quantify the deviations between the learned
distribution and the real-time measurements to detect potential
outage events, i.e. new observations with high anomaly scores
imply outage [14]. 2) Due to the temporal variability of
AMI data, efficient outage detection requires capturing high-
dimensional temporal-spatial relationships in measurement
data. Conventional data distribution estimators are limited by
the high-dimensional nature of the data. Instead of constructing
a complex data likelihood function explicitly, our approach
trains GANs to implicitly extract the underlying distribution of
the data. Each GAN consists of two interconnected deep neural
networks (DNNs) [15]. 3) Considering the partial observability
of real systems, we have proposed a breadth-first search
(BFS)-based mechanism to decompose large-scale distribution
networks into a set of intersecting zones [16]. Each zone
is determined by two neighboring observable nodes of the
network (i.e. nodes with known voltages and demands) and
contains only a subset of network branches. A separate GAN
is trained in each zone using the time-series data of the two
observable nodes. Since sectionalizing networks into multiple
zones can be done in more than one way depending on the
choice of observable nodes, it is necessary to find the optimal
set of zones. Our BFS-based approach optimizes the zone
selection and anomaly score coordination process and achieves
maximum outage location information. To demonstrate this,
we have proposed an outage detection metric based on the
information-theoretic concept of entropy to quantify outage
location information. The proposed outage detection method-
ology has been tested and verified using real AMI data and
network models.
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Fig. 1. Example zone in normal condition.

Fig. 2. Joint data distribution under normal and outage conditions.

II. REAL DATA DESCRIPTION AND ZONE SELECTION

A. AMI Data Description

The historical AMI data used in this paper contains sev-

eral U.S. mid-west utilities’ hourly energy consumption data

(kWh) and voltage magnitude measurements of over 6000

customers [17]. The dataset includes around four years of

measurements, from January 2015 to May 2018. Over 95% of

customers are residential and commercial loads in the dataset.

The hourly data was initially processed to remove bad and

missing data caused by communication error.

B. Outage Detection Zone Definition

When an outage happens in a radial system, a protective de-

vice isolates the faulted area along with the loads downstream

of the fault location [2]. This will cause the measurement data

samples from unfaulted upstream observable nodes to deviate

from the data distribution in normal condition. In this paper,

we exploit this phenomenon to define an outage detection

zone.

In general, two observable nodes (i.e. nodes with AMI-

based measured voltage magnitudes and power consumption)

can be utilized to detect an outage happening on the paths

downstream of the two nodes. To show this, Fig. 1 presents

a typical distribution feeder with two observable nodes, node

n and node n + N . Given the radial structure of the feeder,

the voltage drop, ΔV , between nodes n and n + N can be

expressed as [18]:

ΔV = |Vn| − |Vn+N | ≈ |
n+N∑

i=n+1

Z(i−1,i),abc · Ii−1,i| (1)

where, |Vn| and |Vn+N | are the voltage magnitude measure-

ments of the observable nodes, Ii−1,i and Z(i−1,i),abc are the

branch current and the phase impedance matrix between bus

i − 1 and i. Dimensions of the variables in (1) depend on

the number of phases of distribution lines. For example, for a

three-phase feeder |Vn|, |Vn+N | and Ii−1,i are 3-by-1 vec-

tors, and Z(i−1,i),abc is a 3-by-3 matrix. The above equation

can be rewritten in terms of nodal power measurements, as

follows [18]:

ΔV ≈
n+N∑

i=n+1

n+L∑

j=i

Ki−1,i ⊗ li−1,i ⊗ Pj

cosφj
(2)

where, n+L is the total length of this path, Ki−1,i [
%drop

kV A·mile ]
and li−1,i are the approximate voltage drop factor and the

length of distribution line segment between nodes i− 1 and i,
Pj and cosφj represent the nodal power consumption and the

power factor at node j. Here, Ki−1,i, li−1,i, and Pj are 3-by-

1 vectors, and ⊗ denotes element-wise multiplication. When

outage happens at an unobservable node s downstream of node

n, n + 1 ≤ s ≤ n + L, the post-outage voltage drop value,

ΔVo, is determined as follows:

ΔVo ≈ ΔV +

min(s,n+N)∑

i=n+1

Ki−1,i ⊗ li−1,i ⊗ ΔPs

cosφs
(3)

where, ΔPs represents the outage event magnitude and has

a negative value. Comparing (3) with (2), we can observe

that the voltage drop value across the two observable nodes

changes after an outage event downstream of any of the two

nodes. These changes are almost proportional to the outage

magnitude, ΔPs. This can also be confirmed using real AMI

data, as shown in Fig 2, where P ag
1 and P ag

2 are the aggregated

power consumption of the first and second observable nodes

in a zone. This figure shows the perceivable gap between the

joint data distribution obtained from two observable nodes

under normal and one specific outage condition, in three

dimensions. Given that an outage event anywhere downstream

of the two nodes will lead to deviations from their underlying

joint measurement data distribution in normal operations, we

define an outage detection zone as follows:

Definition 1. In a radial network, an outage detection zone,
Ψi, is defined as Ψi = {So1, So2, ZΨi

} where So1 and So2

are two observable nodes, with So1 being upstream of So2,
and ZΨi

is the set of all the branches downstream of So1.

C. Zone Selection

Based on Definition 1, for a specific distribution system,

different zone selection strategies can result in different zone

partitioning, which will impact the performance of outage

detection and location. Hence, we propose a BFS-based zone
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Fig. 3. Proposed BFS-based zone selection and ordering method.

selection method by exploiting the tree-like structure of distri-

bution systems in this paper. Specifically, our method selects

the zones using nodes at the present depth before moving

on the nodes at the next depth level. As will be elaborated

in Section IV, the proposed zone selection algorithm offers

two advantages: (1) it is able to obtain the optimal zone
set that maximizes the outage location information in arbi-

trary partially observable network. (2) The proposed BFS-

based algorithm introduces a valid topological ordering, which

significantly simplifies outage location identification process.

Prior to discussing the zone selection algorithm, we provide

the following useful definition [19]:

Definition 2. In a radial network, node B is defined as
an immediate observable downstream node for an arbitrary
node A if two conditions are satisfied: 1) node B is located
downstream of node A; 2) the path that connects A and B
consists only of unobservable nodes.

The proposed algorithm involves the following steps:

• Step I: Consider a partially observable distribution sys-

tem, g, with a total number of M branches, Bg =
{b1, ..., bM}, and a set of O+ 1 observable nodes, Sg =
{Sr, S1, S2, ..., SO}, where Sr represents the network’s

root node (i.e. main substation).

• Step II: Define and initialize the zone set and the

neighboring node set for g, as Ψg and N(g) = {∅}. Note

that the set Ψg is an ordered set, where new elements

are added to the right side of the current elements in the

set (i.e. order of elements matters). Initialize the set of

candidate observable nodes as SB = {Sr}, and the zone

counter k ← 1.

• Step III: If N(g) = {∅}, randomly select and then

remove a node, So1, from SB . Else if N(g) �= {∅},
randomly select and remove a node, So1, from N(g).

• Step IV: Find all the immediate observable nodes down-

stream of So1 (see Definition 2), and randomly select a

node from this set, which is denoted as So2. If N(g) =
{∅}, add all the immediate observable nodes downstream

of So1 to N(g); otherwise, add them to SB .

• Step V: Select a new zone Ψk, with So1 and So2, and

include all the branches downstream of So1 into ZΨk
(see

Definition 1). Add Ψk to the right side of the current

zones in Ψg .

• Step VI: k ← k + 1. Go back to Step III until N(g) is

empty for all the nodes in SB .

• Step VII: Output the ordered set of all network zones,

Ψg = {Ψ1, ...,Ψw}, with w denoting the number of

selected zones.

To help the reader understand each step of the algorithm, an

example of zone selection is shown in Fig. 3. In this exemplary

system, Bg = {b1, ..., b36} and Sg = {Sr, S1, ..., S8}. In the

first iteration (k = 1), Ψg and N(g) are both empty, {∅}; In

Step II, the root node is selected to be the first observable

node, SB = {Sr}. In Step III, since N(g) is empty, So1 is

randomly selected and then removed from SB ; thus, So1 ← Sr

and SB ← {∅}. In Step IV, S1 and S2 are identified as the

immediate observable downstream nodes of Sr. Since N(g)
is empty, these two nodes are added to N(g). Then, So2 is

selected randomly from {S1, S2}. In this example, So2 ←
{S1}. In Step V, the first zone is defined based on the selected

So1 and So2 and added to the set Ψg; Ψg = {Ψ1}, where

Ψ1 = {Sr, S1, ZΨ1}. The algorithm will go back to Step III

for the next iteration (k ← k + 1).

Following the proposed zone selection method, the number

of zones, ω, can be represented as a function of number

of observable nodes: ω = O + 1 − Oend, where O is the

number of all observable nodes and Oend is the number of

observable nodes that do not have any observable downstream

nodes. This function indicates that the proposed method needs

sensors installation at internal nodes to develop a meaningful

zone partitioning. This requirement is consistent with the

recent expansion of smart grid monitoring devices. In current

distribution systems, metering devices are generally installed

at some select locations, such as at the root node and other

major utility equipment, which can be utilized to obtain a

zone partitioning [20]. On the other hand, in many distribution

systems monitoring devices are only installed at the terminal

nodes, as claimed in [21]. To handle zone selection is such

systems, we have provided an approximation method. Prior to

discussing the method, we define passive and active internal

nodes: active internal nodes are the subset of network internal

nodes with non-zero current injection. In contrast, passive
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internal nodes do not have any current injection. The basic
idea of this method is to utilize a part of measurement
data of observed terminal nodes to represent their nearest
unobserved passive internal nodes. The rationale behind this
approximation is that the voltage drop between passive internal
nodes internal nodes and the nearest terminal nodes can often
be ignored. Using this approximation, the proposed approach
can develop a reasonable zone partitioning when only terminal
buses are metered. It should be noted that similar strategy has
been utilized in previous works for learning the topology of
distribution systems [22].

When the zone set is obtained, each branch in the system
will belong to at least one zone, while at the same time, no
two zones have the exact same set of branches. For example,
branches of the zone Ψ6 in Fig. 3, are also covered by zones
Ψ1, ...,Ψ5. As will be shown in Section IV, these inter-zonal
intersections introduce a redundancy, which will be leveraged
for enhancing the robustness of the outage detection process
by blocking bad data samples and outliers. Furthermore, to
specify the outage location considering the zonal intersections,
a zone coordination method is proposed in Section III.

III. GAN-BASED ZONE MONITORING

In this paper, to quantify deviations from the measurement
data distribution in normal conditions caused by outage events,
we have utilized a recently-invented non-parametric unsuper-
vised learning approach, GAN [23]. One unique advantage
of GAN is its ability to implicitly represent complex data
distributions without constructing high-dimensional likelihood
functions, thus addressing the challenge of dimensionality.
Moreover, GAN does not assume a prior parametric structure
over the data distribution. This ensures the performance of
GAN for outage detection problem, since the utilities generally
do not have a prior knowledge of the exact structure of data
distribution in normal conditions. Meanwhile, since model
training is done using only the data from normal condition, our
method is not vulnerable to the outage data scarcity problem.
When training is completed, a GAN-based anomaly score is
assigned to real-time measurements to detect outage events
inside the zone [14].

A. GAN Fundamentals and Training Process

For each zone, a GAN is trained to learn the joint dis-
tribution of measured variables X = {∆V t, P tn, P tn+N}Tt=1

within a time-window with length T (see Fig. 1), where
P tn and P tn+N are the nodal power consumption for the
two observable nodes in the zone, and ∆V t is the voltage
difference between the two nodes at time t. The purpose of
defining a time-window over the observable variables is to
exploit temporal relations between consecutive data samples
in power distribution systems for more effective anomaly
detection. In this paper, T is selected to be 3 hours based on
calibration results from the grid search method [24]. It should
be noted that the training procedure of GANs is an offline
process; as a result, the high computational cost of the grid
search approach does not impact the real-time performance of
the proposed method. The training set consists of the SM data

Algorithm 1 GAN Training for zone Ψi

Require: : Seasonal normal behavior data for zone Ψi

Require: : Learning rate α, batch size m, number of iterations
for D per G iteration nD, initial learning parameters for
G and D, θD and θG

1: while Nash equilibrium has not been achieved do
2: for t = 0, ..., nD do
3: Generate sample batch from the latent space z
4: pz → {(zj)}mj=1

5: Obtain sample batch from the historical data
6: pXΨi

→ {xΨi(j)}mj=1

7: Update discriminator parameters using gradient
descent with α based on the discriminator loss

8: δD = 1
m

∑m
j=1[− logD(xΨi(j)) −

log(1−D(G(zi)))]
9: θD := θD − α ∗ 5θDδD

10: end for
11: Update generator parameters using gradient descent

with α
12: δG = 1

m

∑m
j=1[− logD(G(zj))]

13: θG := θG − α ∗ 5θGδG
14: end while

history of the variables defined in each zone, and is denoted as
XΨi for zone Ψi. To account for the strong seasonal changes in
customers’ behavior that might mislead detecting the boundary
between normal and outage behavior [25], the dataset has
been decomposed into separate seasons to train different GAN
models for each zone. Each dataset is randomly divided into
three separate subsets for training (70% of the total data),
validation (15% of the total data), and testing (15% of the
total data).

GAN relies on two interconnected DNNs, which are simul-
taneously trained via an adversarial process: a generator, G,
and a discriminator, D [26], as shown in Fig. 4 (part A).
The interaction between the two DNNs can be modeled as a
game-theoretic two-player nested minmax optimization [13]:

min
θG

max
θD

V (D,G) = ExΨi
∼pXΨi

(xΨi
)[log(D(xΨi))]

+ Ez∼pz(z)[log(1−D(G(z)))]
(4)

where, θG and θD are the learning parameters of G and
D, respectively. pXΨi

is the underlying probability density
function of historical data obtained from the two observable
nodes of the zone. In each iteration, D is trained to maximize
the probability of assigning the correct label to both training
examples and artificially generated samples from G. Thus, the
output of D, 0 ≤ D(xΨi) ≤ 1, represents the probability
that xΨi is from the training dataset rather than generated
artificially by G [13]. On the other hand, G is trained to
generate artificial samples that maximize the probability of
the discriminator D mislabeling. The input of G is defined as
z ∈ Rd×1, which is a noise signal with uniform distribution
pz(z). In this case, d = 4 showed the best performance on the
validation set. After a number of training iterations, G and
D will reach a unique global optima at which both cannot
improve. This means the generator can recover the underlying
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Fig. 4. GAN-based learning and testing structure.

distribution of the training data and the discriminator cannot

distinguish the true samples from the artificially generated

samples [27]. The training process takes place offline and

the detailed procedure is presented in Algorithm 1. In this

paper, the hyperparameter set of GAN is calibrated by using

the random search algorithm [28]; as a result, G consists of

three components: an input layer of 4 neurons, two hidden

layers of 8 neurons, and an output layer of 9 neurons. D also

has three parts: an input layer of 9 neurons, two hidden layers

of 8 neurons, and an output layer of 1 neuron. Moreover,

{α,m, nD} are selected as 0.01, 100, 1, respectively. To

update θG and θD, a minibatch stochastic gradient descent

method is utilized [13].

B. GAN-based Anomaly Score Assignment
To detect potential outage events in each zone, a GAN-based

anomaly score is utilized to evaluate sequential measurements

of SMs online [14], as shown in Fig. 4 (part B). The anomaly

score consists of two error metrics: the residual error, δR(·),
and the discriminator error, δD(·). When a new data inquiry

xt
new ∈ R

3T×1 is obtained (at the T time slots), the residual

error describes the extent to which xt
new follows the learned

distribution of the G model, in the best case [14]:

δR(x
t
new) = min

z
|xt

new −G(z)| (5)

After training, the generator, G, has learned an almost perfect

mapping from the latent space z to the zonal measurement

data distribution in normal conditions. Hence, if xt
new is

obtained from normal conditions, its residual error value is

zero, δR(x
t
new) = 0, since xt

new and G(z∗) are identical,

where z∗ is the optimal solution to (5). To obtain z∗ during test

time, a commercial nonlinear programming solver, “fmincon”,

is used in this work. Thus, higher δR(x
t
new) values represent

deviations from normal operation conditions, suggesting oc-

currence of outage event within the zone.
The discriminator error, δD(xt

new), is defined using the

trained discriminator, D, to measure how well G(z∗) follows

the learned data distribution by the G model. The discriminator

error can be written as [13]:

δD(xt
new) = − logD(xt

new)− log(1−D(G(z∗))) (6)

The GAN-based anomaly score for zone Ψi is defined as the

weighted sum of both error metrics [14]:

ζΨi
(xt

new) = (1− λ) · δR(xt
new) + λ · δD(xt

new) (7)

where, 0 ≤ λ ≤ 1 is a user-defined weight factor, the value of

which is set at 0.1 in this paper, based on calibration results

over the validation set. To determine the critical threshold

for the anomaly score, above which new data points are

identified as outage events, the GAN-based anomaly score,

ζΨi
, is obtained for all training data samples of zone Ψi.

The sample mean, μΨi
, and the sample variance, σΨi

, of the

anomaly scores for the training data samples are calculated to

determine the range of anomaly score in normal operations.

When outage occurs, the real-time measurement data samples

are expected to have anomaly scores above this range. We have

used a rolling window approach in this work. Hence, the test

point could use T − 1 measurements before an outage, thus,

we can detect an outage within one-time interval. The length

of the time interval depends on the resolution of the smart

meter data. The details of anomaly identification process are

elaborated in the next section.

C. GAN-based Zone Coordination
Using the trained GANs and GAN-based anomaly score

method, outage events can be detected in each zone by

comparing the anomaly scores between the new inquiry sam-

ples and the critical threshold. Considering that a GAN is

trained for each zone, a high anomaly score only gives a

rough estimation of event location by simply implying outage

somewhere in the zone. In other words, all branches in the

zone are the candidate event locations. Specifically, if we treat

the whole grid as a single zone (i.e., if only a single GAN is

trained for the whole grid), then a high anomaly score will

only indicate that an outage has occurred somewhere in the

system without any detailed location information. Since the

granularity of location information depends on the number of

candidate branches, it is necessary to reduce this number as

much as possible. To achieve this, we have presented a GAN-

based zone coordination method by integrating anomaly scores

from multiple zones, which includes the following steps:

• Stage I: Assign a GAN to each zone, Ψi ∈ Ψg and

use Algorithm 1 over the historical seasonal data of the

two observable nodes of each zone to learn the joint

distribution of the measurement data.

• Stage II: After training for each zone, Ψi, obtain the

anomaly score for training samples in the zone; determine

the anomaly score sample mean and sample variance,

denoted as μΨi
and σΨi

, respectively.
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Fig. 5. Flowchart of the proposed method considering possibility of recon-
figuration, on-load tap changing, and capacitor switching.

• Stage III: At time T , observe the anomaly scores of

all the zones in the set Ψg based on the latest real-time

measurements.

• Stage IV: Select the first zone from the right side of the

set Ψg that has an abnormal anomaly score value and

denote it as Ψa. We will show that this zone contains the

maximum information on the outage event in Section IV.

In other words, a = argmaxξ ξ, s.t. ζΨξ
> μΨξ

+h·σΨξ
,

where, h is a user-defined threshold factor.

• Stage V: Output the set of candidate branches that are po-

tential locations of outage event as Bc = ZΨa \{ZΨa+1 ∪
ZΨa+2∪...∪ZΨω}, where A\B represents the elements of

set A that are not in set B. Further, {Ψa+1,Ψa+2, ...,Ψω}
are the zones that have lower topology ordering than Ψa.

Based on the outcome of zone coordination, the DSO can

obtain the minimum branch candidates that are potentially

impacted by the outage, thus maximizing the outage infor-

mation. This process will help the repair crew to rapidly find

the outage location. Note that given the unbalanced nature

of distribution networks, the proposed algorithm is applied to

each phase separately. Hence, the zone set needs to be obtained

for three phases. For the sake of conciseness we will continue

our discussions for one phase, keeping in mind that the same

logic applies to the other phases as well.

In practice, the distribution system often undergoes re-

configuration, on-load tap changing, and capacitor switching,

which can strongly affect the actual data distribution. Thus, the

proposed outage detection method needs to be customized to

account for the effects of these events as well, as shown in Fig.

5. The basic idea is to integrate pre-trained GANs and fine-

tuning strategy. Considering that the zone selection process

and the training procedure of GANs are offline processes, the

utility can obtain the zone sets and the corresponding GAN

library in advance using historical data. When a capacitor

switching occurs and raises an anomaly score flag, the ex-

isting GANs are treated as the pre-trained models which still

maintain useful information. The new measurements from the

observable nodes are utilized to fine-tune these pre-trained

GANs for adapting to the changes of the underlying data

distribution. The fine-tuning strategy can counter the over-

fitting problem on small datasets, thus, reducing the data size

requirement [29].

IV. THEORETICAL PROPERTIES OF THE PROPOSED

FRAMEWORK

In this section, we discuss the theoretical properties of the

proposed outage-detection framework. We will show that this

approach has three fundamental properties:
Framework Property 1 - Valid Topological Ordering of the

Zones: The framework introduces a valid topological order
among the zones. This order can be leverage to simplify outage

location in large-scale networks. A valid topological order for

any pair of zones is a relationship denoted as Ψi � Ψj ,

indicating that Ψi has a higher topological order than Ψj .

This means that ZΨi
�⊂ ZΨj

; i.e. either all branches in Ψj are

located downstream of the branches of Ψi or the branches of

Ψi and Ψj do not share any common path starting from the

network’s root node. Note that Ψg = {Ψ1, ...,Ψw} obtained

from the proposed BFS-based zone selection algorithm follows

a valid topological order, meaning that Ψ1 � ... � Ψw. The

reason for this is that the proposed zone selection algorithm

explores all the immediate downstream nodes at each depth

level without backtracking in Stage II (Section II), prior to

moving to the next level.
To show this, note that when an outage event happens the

anomaly scores for a subset of zones in Ψg , will increase

above their normal range. Due to the radial structure of the

networks these zones will follow a relationship of the form

ZΨ1 ⊃ ZΨ2 ⊃ ... ⊃ ZΨvO
, with vO denoting the number

of the zones containing the faulted branch. Thus, the zones

within Ψg that are impacted by outage also follow a valid

topological order. At Stage IV (Section III), the proposed

zone coordination algorithm selects Ψv0
← Ψa (i.e. the zone

with the lowest topological order) as the zone that has the

most specific information on the location of outage among

all the impacted zones, since it contains the least number of

candidate branches. Hence, higher order zones on the same

path with abnormal anomaly scores, which are supersets of the

selected zone and have less information on outage location,

are automatically ignored. This eliminates the need for a

burdensome comprehensive search process. Finally, to infer

the candidate branches that are potentially the location of the

outage event, all the branches in the healthy zones with lower

topological orders than ΨvO
have to be removed, as shown in

Step IV (Section II). This helps the operator to directly pick

the smallest set of branches among thousands of candidate

branches in a large-scale network. For example, when outage

occurs in any branches within Ψ6 in Fig. 3, the DSO can ignore

the anomaly scores of zones that have a higher topological

ordering (i.e. Ψ1, ...,Ψ5) to directly infer outage location as

Ψa ← Ψ6.
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Fig. 6. Venn diagram for demonstrating proof of Theorem 1.

Framework Property 2 - Maximum Outage Location Infor-
mation Extraction: The proposed algorithm is able to obtain

the optimal zone set as it (locally) maximizes the amount of

information on the location of outage events in partially ob-

servable systems. To show this, first, we leverage the concept

of entropy to assess the amount of outage location information

in Ψg . The set γg(bj) is defined as γg(bj) = {∀Ψi : bj ∈
ZΨi ,Ψi ∈ Ψg}. Hence, γg(bj) is the set of all zones in Ψg

that include bj . Based on this definition, for each Ψg , a set of

undetectable branch sets is defined as U(Ψg) = {u1, ..., uV },
where uk = {bk1

, ..., bkn
: ∀bki

, bkj
, γg(bki

) = γg(bkj
)}.

Thus, uk defines a set of branches that are covered with the

exact same set of zones and cannot be distinguished from each

other in terms of outage event location. Given the set U(Ψg)
the outage location information can be measured using the

concept of entropy, as follows [30]:

H(U(Ψg)) = −
V∑

i=1

|ui|
M

log
|ui|
M

(8)

where |ui| is the cardinality of the set ui. The higher entropy

value implies a higher number of distinguishable branches,

and consequently, more information on outage location. The

theoretical upper boundary for the entropy is log(M); this case

only happens when each uk only includes a single branch

and V = M (i.e. all branches are fully distinguishable and

|ui| = 1). This indicates any individual branch is distinguish-

able using two zones that intersect exactly at that branch. The

theoretical lower boundary value for the entropy is zero, which

implies that all the branches are covered by identical set of

zones (i.e. the branches are not distinguishable and |ui| = M ).

Based on this metric, the following theorem and proof are

obtained:

Theorem 1. For any partially observable network, the pro-
posed BFS-based zone selection algorithm maximizes the
outage detection entropy.

Proof. We will prove the local optimality of the selected

zone set, Ψg , by showing that any deviation from this set

results in a decline in outage detection information entropy.

Here, a deviation is defined as the addition or removal of any

one zone. First, consider the case of removing an arbitrary

zone Ψj ∈ Ψg , and without loss of generality assume that
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Fig. 7. 164-node feeder topology.

Ψj−1 ∈ Ψg and Ψj+1 ∈ Ψg are the smallest and largest

zones, respectively, where Ψj−1 ⊃ Ψj ⊃ Ψj+1 holds. As is

demonstrated in Fig. 6, all the branches that are covered by

Ψj−1, Ψj and Ψj+1 are partitioned into three branch sets that

belong to the set U : ul−1 = ZΨj−1
\ZΨj

, ul = ZΨj
\ZΨj+1

,

and ul+1 = ZΨj+1
. Based on the proposed GAN-based zone

coordination algorithm, the status of ul−1 can be determined

by comparing the anomaly scores of Ψj−1 and Ψj . The status

of ul and ul+1 are determined by the anomaly scores of Ψj and

Ψj+1. Note that all these three sets are distinguishable from

each other in outage detection. When Ψj is removed, ul will be

eliminated from U(Ψg). The new branch partition is reduced

to two sets ul−1 ← ZΨj−1 \ ZΨj+1 and ul+1 = ZΨj+1 . This

means that the status of ul cannot be determined anymore (i.e.

ul is merged into ul−1). In other words, Ψj is the one zone that

enables discrimination between branches ul and ul−1. Mathe-

matically, this leads to a decrease in entropy, H(U(Ψg)); the

decline in entropy equals 1
M log (|ul−1|+|ul|)|ul−1|+|ul|

|ul−1||ul−1||ul||ul|
. This

decrease shows that removal of any zone in Ψg will reduce the

amount of outage location information. Now consider the case

of adding a zone to Ψg: assume that the newly added zone, Ψj ,

is defined by two observable nodes So1 ∈ Sg and So2 ∈ Sg;

however, the proposed algorithm has already utilized all the

observable nodes in Sg as So1, shown in Step II (Section II);

this means that there is at least one zone in Ψg that is identical

to Ψj . Hence, adding a zone to the set Ψg will not change

U(Ψg) and the entropy remains unchanged.

Framework Property 3 - Robustness Against Bad Data
Samples: Bad AMI data samples could generate high anomaly

scores, which can lead to misclassification of bad data as

outage event. Hence, it is essential to block these data samples

from the outage detection algorithm. To do this, we have

integrated a bad data detection mechanism into the algorithm

by taking advantage of existing redundancy of the zones in

Ψg . The basic idea is that since bad measurement data are not

actually generated by outage events, it is highly unlikely to
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Fig. 8. Training result for a GAN model.

Fig. 9. Anomaly score histogram under the normal and outage conditions.

cause deviations in anomaly scores assigned to several inter-
secting zones at the same time, given that intersecting zones
do not share the data from the same measurement devices. To
introduce robustness against bad data, a set of redundant zones
is selected for Ψa, Stage IV (Section III). This set consists of
the zones with lower topological order than Ψa, and is denoted
as ΨR = {Ψr1 , ...,Ψrn}, where Ψa ⊂ Ψri , ∀Ψri ∈ ΨR. If
∃Ψri such that ζΨri ≤ µΨri

+h·σΨri
then the outage in Ψa is

dismissed as bad data. The number of redundant zones |ΨR|
depends on the desired reliability of the algorithm against bad
data. If the probability of receiving an anomaly due to bad
data for each zone is η, then the probability of misclassifying

Fig. 10. Anomaly score of the training set, with respect to the normal/outage
test set.

Fig. 11. The histogram of ∆ζ.

a case of bad data as outage decreases with η|Ψ
R|.

V. NUMERICAL RESULTS

The proposed outage detection method is tested on a real
distribution feeder with corresponding 3-year hourly SM data.
To provide convincing results, the most complex real dis-
tribution feeders is selected from our dataset. The topology
of this network is shown in Fig. 7. This feeder consists of
164 nodes and around 800 customers. [17]. Six observable
nodes are assumed in this feeder (node 8, node 22, node
31, node 83, node 109, and node 158), where five zones
are defined based on these nodes. These zones are denoted
{Ψ1, ...,Ψ5} and include branches downstream of node 8,
node 22, node 31, node 83, and node 109, respectively. Note
that Ψ1 � Ψ2 � ... � Ψ5.

A. Performance of GAN Model

To validate the performance of GAN training process, we
calculate the loss values of G and D that can be leveraged to
verify if the model has the model has converged to the Nash
equilibrium or not. The loss values are calculated based on the
objective function of GAN. In the training process, G is trained
to maximize log(D(G(z))) and D is trained to maximize the
probability of assigning the correct label to both training exam-
ples and samples from G, −log(D(xΨi))− log(1−D(G(z))).
According to the theoretical analysis in [13], when the Jensen-
Shannon divergence between the G model’s distribution and
the data distribution is zero, D(G(z)) and D(xΨi) should
converge to 1/2, which indicates that the loss values of G and
D should converge to 2 log(2) and log

(
1
2

)
at the equilibrium,

respectively. This has been confirmed in Fig. 8. After a number
of training iterations, both D and G losses converge to the
desired values and these indicate that the GAN has been
trained successfully and the underlying joint data distribution
in normal condition has been learned.

The case study is conducted on a standard PC with an
Intel(R) Xeon(R) CPU running at 3.70 GHz and with 32.0
GB of RAM. The average computational time for training
each GAN over the available SM dataset is around 840
seconds. It should be noted that multiple GANs can be trained
independently and in parallel with each other, which can
reduce the adaptation time after system reconfiguration and
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TABLE I
OUTAGE DETECTION QUALITY ANALYSIS

Zone Case Accu Recall Prec F1

Ψ1

case 1 0.752 0.645 0.8206 0.7223

case 2 0.913 0.967 0.8727 0.9175

case 3 0.928 0.9970 0.8761 0.9326

Ψ2

case 1 0.8355 0.784 0.874 0.8266

case 2 0.9435 1 0.8985 0.9465

case 3 0.9435 1 0.8985 0.9465

Ψ3

case 1 0.673 0.506 0.7685 0.6074

case 2 0.912 0.984 0.8601 0.9179

case 3 0.914 0.988 0.8606 0.9199

Ψ4

case 1 0.9225 0.884 0.964 0.9223

case 2 0.953 0.939 0.966 0.9523

case 3 0.981 0.995 0.968 0.9813

Ψ5

case 1 0.834 0.738 0.9134 0.8164

case 2 0.9605 0.991 0.934 0.9617

case 3 0.965 1 0.9346 0.9662

capacitor switching. Since the training procedure is offline this
parallel training method can be conveniently scaled to large
distribution systems.

B. Performance of Outage Detection
The performance of the GAN-based outage detection

method is tested for different outage cases. The outage event
is located between node 142 and node 164, as shown in
Fig. 7; three outage events are simulated with three different
outage magnitudes to evaluate the performance of the proposed
method. The first case is designed as a small-size event where
around 20 customers are disconnected (with 40kW aggregate
average hourly demand). The second case is designed to
represent a middle-size event, where around 50 customers are
impacted (with 100kW aggregate average hourly demand).
The third case is a large-size event, with around 80 customers
(with 150kW aggregate average hourly demand). For each
case, GAN models are trained using the historical SM data
of the five zones. These three outage cases where simulated
in OpenDSS using our real datasets, in which voltage drop
was calculated according to simulation outcomes. Meanwhile,
to represent standard measurement deviations, error samples
were generated from a normal distribution with zero mean and
1% variance and added to the voltage values obtained from
the simulator [31]. Fig. 9 presents the histogram of anomaly
score for one zone under normal and outage conditions. The
mean values of ζ are 1.263 and 1.33 in the normal and outage
conditions with variance values 7.7 × 10−5 and 2.7 × 10−4,
respectively. Based on Fig. 9, the difference between anomaly
score under normal and outage conditions is large enough to
enable DSOs to distinguish these conditions. Meanwhile, Fig.
10 presents the consistency of anomaly score for training and
test sets when the system is in normal conditions. However,
when the outage event takes place in the zone, the real-time
anomaly score reaches considerably higher values.

It is critical to show that an outage event outside a zone
will not lead to abnormal anomaly scores for that zone.
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Fig. 12. Sensitivity of outage detection accuracy to the size of training set.

Fig. 7 shows the distribution of anomaly score changes for
one zone, when the outages of different magnitudes happen
outside the zone. Hence, this figure depicts the histogram of
∆ζ = ζn − ζout, where ζn is the anomaly score obtained
in normal conditions and ζout is the anomaly score obtained
when the outage happens outside the zone. As can be observed,
the anomaly score assigned to the zone does not change and
remains almost constant for these outside-zone outages, which
indicates that the anomaly score can be relied upon to correctly
distinguish the outages inside and outside the zone.

To evaluate the quality of outage detection performance
of the proposed method for a multi-zone network, several
statistical metrics are applied, such as accuracy (Accu), pre-
cision (Prec), recall, and F1 score [32]. The values of these
indexes are presented in Table. I for the three outage cases
and different zones. Based on the results, we can conclude
that the performance of the proposed outage detection method
improves as the event size increases, due to higher levels of
deviation from normal joint measurement data distribution.
For medium and large outage cases, all indexes reach values
over 0.9. Moreover, to represent the sensitivity of the outage
inference accuracy to the duration of training data, we have
tested the average performance of the GAN under various sizes
of training dataset as shown in Fig. 12. As is demonstrated in
the figure, the performance of the GAN can reach acceptable
detection accuracy with a small training set (around 700 data
samples, which translates to around 3 days of data).

To prove the performance of our method, we have conducted
one more test with more smart meters, and hence finer zones.
In this case, 33 observable nodes are assumed in the feeder
(node 8, 9, 12, 18, 21, 22, 26, 29, 31, 35, 39, 41, 43, 48, 53, 73,
75, 83, 85, 90, 93, 95, 99, 106, 108, 109, 110, 114, 125, 129,
134, 141, 158), where 19 zones are defined based on these
nodes. These zones are denoted as {Ψ1, ...,Ψ19} using the
proposed zone selection method. The values of the statistical
indexes are presented in Table II. Based on this table, most of
the statistical indexes are above 0.9, which corroborates good
detection performance. When the outage does not occur in the
zones, the accuracy of these zones remains stable and high. In
general, the proposed method can handle distribution systems
with different number of smart meters distributed across the
grid.
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TABLE II
OUTAGE DETECTION QUALITY ANALYSIS FOR 19-ZONE CASE

Zone Case Accu Recall Prec F1 Zone Case Accu Recall Prec F1

Ψ1

case 1 0.752 0.645 0.8206 0.7223
Ψ11

case 1 0.9225 0.884 0.964 0.9223

case 2 0.913 0.967 0.8727 0.9175 case 2 0.953 0.939 0.966 0.9523

case 3 0.928 0.997 0.8761 0.9326 case 3 0.981 0.995 0.968 0.9813

Ψ2

case 1 0.9495 0.955 0.9446 0.9498
Ψ12

case 1 0.94 0.94 0.94 0.94

case 2 0.95 0.956 0.944 0.951 case 2 0.94 0.94 0.94 0.94

case 3 0.951 0.958 0.9447 0.951 case 3 0.9405 0.941 0.9401 0.9405

Ψ3

case 1 0.922 0.929 0.916 0.923
Ψ13

case 1 0.96 0.96 0.96 0.96

case 2 0.9225 0.93 0.9163 0.9231 case 2 0.961 0.962 0.9601 0.961

case 3 0.9175 0.92 0.9154 0.9177 case 3 0.958 0.956 0.9598 0.9579

Ψ4

case 1 0.8355 0.784 0.874 0.8266
Ψ14

case 1 0.9625 0.962 0.963 0.9625

case 2 0.9435 1 0.8985 0.9465 case 2 0.962 0.961 0.9629 0.962

case 3 0.9435 1 0.8985 0.9465 case 3 0.9635 0.964 0.963 0.9635

Ψ5

case 1 0.9335 0.932 0.9348 0.9334
Ψ15

case 1 0.945 0.946 0.9441 0.9451

case 2 0.9315 0.928 0.9345 0.931 case 2 0.9455 0.947 0.9442 0.9456

case 3 0.9365 0.938 0.9352 0.9366 case 3 0.946 0.948 0.9442 0.9461

Ψ6

case 1 0.973 0.972 0.9739 0.973
Ψ16

case 1 0.834 0.738 0.9134 0.8164

case 2 0.975 0.977 0.974 0.975 case 2 0.9605 0.991 0.934 0.9617

case 3 0.976 0.978 0.947 0.976 case 3 0.965 1 0.9346 0.9662

Ψ7

case 1 0.9455 0.94 0.9505 0.9452
Ψ17

case 1 0.929 0.93 0.9281 0.9291

case 2 0.945 0.94 0.95 0.945 case 2 0.928 0.928 0.927 0.928

case 3 0.9465 0.942 0.9506 0.9463 case 3 0.934 0.94 0.9289 0.9344

Ψ8

case 1 0.902 0.908 0.8981 0.903
Ψ18

case 1 0.976 0.972 0.9798 0.9759

case 2 0.9055 0.914 0.8987 0.9063 case 2 0.977 0.974 0.979 0.9769

case 3 0.9065 0.916 0.9 0.9074 case 3 0.9785 0.977 0.98 0.9785

Ψ9

case 1 0.673 0.506 0.7685 0.6074
Ψ19

case 1 0.9115 0.908 0.9144 0.9112

case 2 0.912 0.984 0.8601 0.9179 case 2 0.9165 0.918 0.9153 0.9166

case 3 0.914 0.988 0.8606 0.9199 case 3 0.9195 0.924 0.9158 0.92

Ψ10

case 1 0.9295 0.929 0.93 0.929
Mean

case 1 0.9051 0.881 0.922 0.899

case 2 0.9305 0.931 0.9301 0.9305 case 2 0.9406 0.952 0.932 0.941

case 3 0.9296 0.93 0.93 0.9295 case 3 0.944 0.9575 0.931 0.945

C. Method Adaption

To validate our fine-tuning strategy, we have conducted
additional numerical experiments as shown in Fig. 13. As
demonstrated in the figure, a capacitor switching is assumed
to have occurred at 12:00 pm. Due to the change in the
underlying data distribution, the performance of the proposed
method decreases from around 97% to 76%. Here, instead
of performing Monte Carlo simulation based on a single set
of demand data, we have tested the model with one-month
data (under the capacitor switching) and calculated the average
accuracy. At the beginning of the fine-tuning process and
immediately after the switching event, the model accuracy
drops to a low level compared to the previous time-point
(around 25%). This is due to the extremely small size of
the newly-acquired training dataset and re-calculation of the
critical threshold of the anomaly score. Then, the average
accuracy of the proposed method clearly improves as the size
of training data increases, which allows the model to be fine-
tuned reliably. Around a day later, our method achieves similar
accuracy levels as before capacitor switching, which means the

proposed method has adapted to changes in system conditions.
Compared to the results of Fig. 12, the data collection time
can be reduced from 3 days to 1 day using our fine-tuning
strategy.

D. Method Comparison

We have conducted numerical comparisons with a previous
support vector machine-based approach [6] to show that our
proposed method can achieve good outage detection accu-
racy with smaller number of smart meters. To ensure a fair
comparison between the two methods, the accuracies of both
are evaluated based on the same zone-level criteria. As is
demonstrated in Fig. 14, for the three different outage cases,
the previous method [6] requires a much higher level of
observability (i.e., almost 10 times more) to achieve similar
detection accuracy with our method. This indicates that our
approach can accurately detect outage events and is a suitable
method in most current distribution grids that have limited
observability.
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Fig. 13. The performance of the fine-tuning strategy under capacitor switch-
ing.
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Fig. 14. Comparison results between [6] and the proposed method.

VI. CONCLUSION

In this paper, we have presented a new data-driven method
to detect and locate outage events in partially observable grids
using SM measurements. The proposed GAN-based approach
is able to implicitly represent the distribution of data in normal
conditions and determine potential outage events online. The
developed multi-zone outage detection mechanism is based
on an unsupervised learning approach, which can address
several challenges in outage detection: 1) the poor observ-
ability of system caused by the limited number of SMs. 2)
data imbalance problem caused by outage data scarcity. 3) the
high-dimensionality of the data caused by the temporal-spatial
relationship. Meanwhile, our proposed robust BFS-based zone
selection and ordering mechanism is guaranteed to capture the
maximum amount of information on outage location for any
given partially observable system. This method is validated on
a real utility feeder using real SM data.
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