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The fraction of the longitudinal momentum of 3He that is carried by the isovector combination of u and d
quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the
constituent nucleons is found to be consistent with unity at the few-percent level from calculations with
quark masses corresponding to mπ ∼ 800 MeV. With a naive extrapolation to the physical quark masses,
this constraint is consistent with, and more precise than, determinations from global nuclear parton
distribution function fits through the nNNPDF framework. It is thus concretely demonstrated that lattice
QCD calculations of light nuclei have imminent potential to enable more precise determinations of the u
and d parton distributions in light nuclei and to reveal the QCD origins of the EMC effect.
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A central pillar of our understanding of the internal
structure of strongly interacting hadronic and nuclear
systems is knowledge of their partonic structure as
accessed in deep-inelastic scattering experiments and
other hard processes. Since the 1960s, such experiments
have revealed the longitudinal momentum distributions of
quarks and gluons in a fast moving proton, known
collectively as parton distribution functions (PDFs).
The simplest PDFs, qðx; μÞ [and gðx; μÞ], describe the
probability of a quark of flavor q (or gluon g) carrying a
fraction x of the longitudinal momentum of the struck
proton at a renormalization scale μ. In 1983, the European
Muon Collaboration (EMC) [1] observed that the partonic
structure of nuclei differs substantially from that of the
constituent protons and neutrons, a landmark in the
development of nuclear physics [2–6]. Since the deep-
inelastic scattering processes observed in the EMC experi-
ments were at very high energy and the binding energy of
a nucleus is small in comparison to its mass, the
appearance and size of the EMC effect was surprising

at the time. Interest in the EMC effect has been rekindled
by recent data from SLAC and Jefferson Lab
[7–11] on EMC ratios for light nuclei. Not only have
these data provided precise determinations of the EMC
effect for nuclei with small atomic number A, but they
have revealed a correlation between the strength of
the EMC effect and so called “short range correla-
tions” [12,13].
In addition to experimental investigations, theoretical

calculations of the partonic structure of hadrons and nuclei
from the standard model can have important impacts on our
understanding of the structure of matter. For example,
standard model calculations of nuclear partonic structure
would reveal the QCD origin of the EMC effect as well as
aid in the flavor separation of proton PDFs. Parton
distributions are inherently rooted in the strong interaction
dynamics of QCD and cannot be determined using pertur-
bative methods. Since the seminal works of Refs. [14,15],
lattice quantum chromodynamics (LQCD) calculations
have addressed the simplest aspects of the parton distri-
butions of the proton, notably determining the first few
Mellin moments of the unpolarized, polarized, and trans-
versity quark distributions [16], as well as their gluonic
analogs [17–21]. Recently, efforts have been made to
extend these studies to the full x dependence of the proton
PDFs [16,22–28]. More complicated extensions of partonic
structure, such as generalized parton distribution functions
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and transverse-momentum-dependent parton distribution
functions of the proton, have also been studied using
LQCD [29–34].

In this Letter, the partonic structure of light nuclei is
studied in LQCD for the first time through an investigation
of the isovector quark momentum fractions (the first
moments of the corresponding isovector PDFs) of the
proton, diproton, and 3He. At the heavier-than-physical
quark masses used in this LQCD study, percent-level
nuclear effects are resolved in the momentum fraction of
3He. While a rigorous chiral extrapolation cannot be
undertaken using these results, a naive extrapolation to
the physical quark masses can be performed, and the
resulting constraint on the isovector momentum fraction
used as an additional input into the nNNPDF2.0 [35] global
nuclear PDF analysis framework. Since the isovector
combination of nuclear PDFs is poorly determined from
experiment, even with significant estimated uncertainties
from the chiral extrapolation, this LQCD constraint reduces
the uncertainties on the 3He PDFs and thereby demonstrates
a concrete synergy between experiment and LQCD in the
quest to improve knowledge of nuclear structure.
LQCD methodology.—The existence of strong inter-

actions between quarks and gluons necessitates the use of
LQCD for calculations of the partonic structure of nuclei.
The calculations presented here are performed using a single
ensemble of gauge-field configurations generated with a
Lüscher-Weisz gauge action [36] with Nf ¼ 3 degenerate
light-quark flavors with the clover-improved Wilson
fermion action [37] and quark masses tuned to produce a
pion mass of mπ ¼ 806 MeV. The lattice geometry is
L3 × T ¼ 323 × 48, and the lattice spacing is determined
to be a ∼ 0.145 fm from ϒ spectroscopy [38]. This ensem-
ble and two others with different spacetime volumes have
previously been used to study the spectrum [38,39] and
properties [40–50] of light nuclei up to atomic number
A ¼ 4. The multivolume spectroscopy studies show that the
pp and 3He states that are investigated here are bound
systems with infinite volume energies below threshold.
Consequently, matrix elements in these states are expected
to receive only exponentially small finite volume effects,
Oðe−κL; e−mπLÞ, that will be neglected in this work [51–57].
The Mellin moments of the unpolarized isovector

quark PDFs, qðhÞ3 ðx; μÞ ¼ uðhÞðx; μÞ − dðhÞðx; μÞ, in a

hadronic or nuclear state h, defined as hxniðhÞu−dðμÞ≡R
1
−1 dx x

nqðhÞ3 ðx; μÞ, are determined from matrix elements
of twist-two operators as

hhjOμ0…μn jhi≡ hhjq̄τ3γfμ0ðiD
↔

μ1Þ…ðiD↔μngÞqjhi
¼ hxniðhÞu−dðμÞpfμ0…pμng; ð1Þ

where p is the momentum of the state h, τ3 is a Pauli matrix

in flavor space, D
↔

μ ¼ ð  Dμ − D⃖μÞ=2 where Dμ is the gauge

covariant derivative, and f…g indicates symmetrization
and trace subtraction of the enclosed indices. The above
operators are constructed to transform irreducibly under the
Lorentz group, but the hypercubic spacetime lattice used in
the LQCD calculations reduces these symmetries, in
general inducing mixing between operators of different
Lorentz spin. In particular, the two-index operators that

determine the isovector quark momentum fraction hxiðhÞu−d
subduce to operators in two different irreducible represen-
tations of the hypercubic group. In this work, matrix

elements of an Euclidean operator in the τð3Þ1 representation
[58] are computed, namely

T ¼ 1
ffiffiffi
2

p ðT 33 − T 44Þ; with T μν ¼ q̄τ3γfμD
↔

νgq; ð2Þ

where γν is also Euclidean. With a lattice regulator, this
operator is discretized as a covariant finite difference whose
form is given in the SupplementalMaterial [59]. For both spin-
zero and spin-half systems, spin-averaged in the latter case,
matrix elements in states with zero three-momentum deter-

mine the momentum fraction as hhjT jhi ¼ hxiðhÞu−dMh=
ffiffiffi
2

p
.

The renormalized operator in the modified minimal
subtraction scheme (MS) is related to the bare lattice
operator in Eq. (2) as

T ðMSÞðμÞ ¼ RMS=RI0MOMðμ; μ0ÞZRI0MOMðμ0; aÞT ðaÞ; ð3Þ

where the renormalization coefficient ZRI0MOMðμ0; aÞ is
defined nonperturbatively in a regularization-independent
momentum-subtraction scheme [60] at a scale μ0 and
then matched to MS through the three-loop perturbative

coefficient RMS=RI0MOMðμ; μ0Þ [61,62], as detailed in
the Supplemental Material [59]. For μ ¼ 2 GeV,

RMS=RI0MOMðμ; μ0ÞZRI0MOMðμ0; aÞ ¼ 0.89ð4Þ.
The techniques needed to compute matrix elements of

this operator are simple generalizations of those used for
calculations of isovector matrix elements of quark currents
using the compound-propagator background-field method
[63] introduced in Ref. [46] and further detailed in
Refs. [47,48,64] and the Supplemental Material [59].
Quark propagators and T -compound propagators are
computed from an average of Nsrc ¼ 24 source points
randomly distributed on Ncfg ¼ 2290 gauge-field configu-
rations for NB ¼ 5 different background-field strengths.
These compound propagators are then used to construct
baryon two-point correlation functions,

Ghðt; λÞ ¼
X

x

h0jχhðx; tÞχ†hð0Þj0iλ; ð4Þ

where λ is the T -background-field strength, χh is an
interpolating field for states with the quantum numbers
of the hadron or nucleus h, and spinor indices on the
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interpolating operators are suppressed. Correlation func-
tions are constructed from Gaussian-smeared source inter-
polating operators [65], while the sink interpolating
operators are either smeared or pointlike, and the multi-
baryon contractions are performed using the techniques of
Ref. [66]. This quantity contains responses to the field up to
OðλNQÞ, withNQ being the number of valence quarks in the
state. The linear response of this background-field two-
point function, Ghðt; λÞjOðλÞ, is determined by the matrix
element of T . This term can be extracted exactly from the
computed set of fixed-order background-field correlation
functions with NQ field strengths [46,47].

Combining the linear response of the two-point corre-
lation function with the zero-field correlation function, it is
straightforward to show that the ratio

RhðtÞ ¼
Ghðtþ a; λÞjOðλÞ
aGhðtþ a; 0Þ −

Ghðt; λÞjOðλÞ
aGhðt; 0Þ

ð5Þ

is related to matrix elements of T through the spectral
representation of each term in Eq. (5), in particular
asymptoting as

RhðtÞ !t→∞hhjT jhi; ð6Þ

with exponentially vanishing contamination at early times
that involves excited-state overlap factors and transition
matrix elements.
Ground-state matrix elements are extracted from RhðtÞ,

and systematic fitting uncertainties are estimated using a
procedure for sampling from all possible fit ranges and
models analogous to the procedure described for two-point
correlation functions in Ref. [67]. In summary, in analyzing
RhðtÞ to extract the momentum fractions, the full t
dependence that results from the spectral decomposition
of each term in Eq. (5) is fit, and combined fits to two- and
three-point correlation functions are used to constrain the
relevant energies, overlap factors, and matrix elements. All
possible choices of fit ranges and up to four states
contributing to the spectral decompositions are considered
using a model selection process described in the
Supplemental Material [59]. A weighted average over fits
from all acceptable fit ranges is used to define ground-state
energies, including systematic uncertainties from fit range
and model variation. Results are shown in Fig. 1 for the
proton, diproton, and 3He.
Results and discussion.—The extracted values of the

isovector quark momentum fractions for p, pp, 3He at
quark masses corresponding to mπ ¼ mK ¼ 806 MeV are
shown in Table I and displayed graphically in Fig. 2. The
uncertainties are separated into those from the LQCD
calculation of the bare matrix elements and the (larger)
uncertainty from the renormalization and matching to the
MS scheme. The proton isovector momentum fraction is

consistent with other LQCD extractions at similar values
of the quark masses [68] given the different renormalization
procedures and lattice spacings. The pp and 3He

FIG. 1. The effective matrix element, Eq. (5), associated with
the isovector quark momentum fractions of the proton, pp and
3He. Blue (orange) points, labeled SS (SP), show results for
interpolating operators with smeared sources and smeared (point-
like) sinks. For each effective matrix element, points are shown
for t ≤ tmax, where tmax is the minimum t where the signal-to-
noise ratio of Ghðtþ a; λÞjOðλÞ is less than 0.5. Colored bands
show the highest weight fit to the combined dataset, and the
shaded gray bands show the weighted average of all accepted fits
and the total statistical plus fitting systematic uncertainties.

TABLE I. The isovector quark momentum fractions in p, pp, and
3He calculated at mπ ¼ 806 MeV in MS scheme at μ ¼ 2 GeV.
The first uncertainty combines LQCD statistical and systematic
uncertainties, and the second uncertainty is from operator renorm-
alization. The correlated ratios of the isovector momentum fraction in
nuclei to those in the constituent nucleons, in which the renormal-
ization constants and their uncertainties cancel, are also given.

p pp 3He

hxiðhÞu−d
0.191(1)(9) 0.194(2)(9) 0.066(1)(3)

ðA=Z − NÞhxiðhÞu−d=hxiðpÞu−d
� � � 1.007(14) 1.028(15)
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momentum fractions are determined with Oð5%Þ uncer-
tainties and are found to be approximately consistent with
those of the constituent nucleons. The ratios of the nuclear
momentum fractions to that of the proton are independent
of operator renormalization to OðαsÞ and are determined at
few-percent precision even for 3He.
In Refs. [69–71], nuclear effective field theory (EFT)

was used to study nuclear effects in PDF moments. In
particular, it was shown that the leading source of such
effects is the two-nucleon correlations that couple to the
twist-two operators defining the PDF moments. In terms of
the parameters defined in that work, nuclear effects in the
isovector momentum fraction are encapsulated in the low
energy constant (LEC) α3;2 and nuclear factor G3ð3HeÞ;
their product is bounded as α3;2G3ð3HeÞ ¼ 0.0018ð14Þ at
μ ¼ 2 GeV from the numerical calculations presented here
(see the Supplemental Material [59] for details). While the
quark momentum fractions themselves have nonanalytic
dependence on the quark masses [72–74], from power-
counting in chiral EFT it is natural to expect that the higher-
order mass dependence in the product α3;2G3ð3HeÞ is
suppressed relative to the constant part; how well that
expectation persists in studies with such an unphysically
large pion mass remains to be tested quantitatively.
However, in the only cases for which analogous LECs
have been investigated at the quark masses used here, as
well as at lighter masses (the analogous two-body con-
tribution in the np → dγ [43] process, as well as the LECs
describing the leading-order strong two-nucleon inter-
actions [75,76]), there was little pion-mass dependence
in the relevant LECs. Adopting an assumption of relative
mass independence based on this observation allows an
extrapolation of α3;2G3ð3HeÞ to the physical quark masses: a
naive estimate is given by taking the central value deter-
mined atmπ ¼ 806 MeV and adding in quadrature with the

statistical and systematic uncertainties an additional uncer-
tainty of 100% the value of the LEC itself to account for
possible quark-mass dependence as well as the effects of
the nonzero lattice spacing and finite volume. (As detailed
in the Supplemental Material [59], this uncertainty is
estimated based on the mass dependence seen in the other
two-body LECs.) To account for the level of uncertainty in
this estimate, extrapolations are also undertaken with 50%
and 200% of the central value of the LEC added as an
additional systematic uncertainty. These extrapolated val-
ues can be combined with the physical value of the nucleon

momentum fraction, hxiðpÞu−d ¼ 0.160ð7Þ at μ ¼ 2 GeV
from the nNNPDF2.0 analysis [35], to determine the iso-

vector momentum fraction ratio 3hxið3HeÞu−d =hxiðpÞu−djLQCD ¼
1.033ð38Þ at the physical quark masses [or alternatively
1.033(25) or 1.033(69) with 50% or 200% estimated
systematics as discussed above].
It is interesting to compare the LQCD results for the

momentum fractions and their ratios to phenomenology. In
particular, the isovector momentum fractions determined
here provide valuable information that is complementary to
experimental constraints on the nuclear modification of
PDFs; almost all information on the nuclear modification
of partonic structure has been obtained for the ratio of
isoscalar-corrected F2 structure functions of nuclei to that
of the deuteron [3,5,6]. Additional constraints are espe-
cially valuable in the context of the intriguing question as to
whether there is flavor dependence to the EMC effect. Such
flavor dependence has been conjectured in models of QCD
[77–82] and in EFT [69–71] and is included in recent data-
driven analyses of experimental results [83,84] and pro-
vides a potential explanation of the NuTeV anomaly in
sin2 θW [85].
Figure 3 shows the constraint on the isovector momen-

tum fraction ratio for 3He obtained from the results
presented here compared to the constraints on the isovector
and isoscalar momentum fraction ratios from the recent
nNNPDF2.0 [35] global nuclear PDF fits. The nNNPDF2.0
ellipse is generated by combining the Monte Carlo replica
sets for the bound proton PDFs in 4He appropriately to form
the PDFs of 3He (under the assumption that the nuclear
effects vary slowly with A). In this way, correlations
between the 3He and proton PDFs are accounted for.
For the isovector combination, the 68% confidence

interval is 3hxið3HeÞu−d =hxiðpÞu−djnNNPDF2.0 ¼ 1.007ð63Þ. In the
nNNPDF approach, it is also straightforward to impose
the LQCD constraint on the nuclear PDFs by
reweighting the Monte Carlo replicas as discussed in
Ref. [86]; the combined confidence region is shown
in Fig. 3. The 68% confidence interval reduces to

3hxið3HeÞu−d =hxiðpÞu−djnNNPDF2.0þLQCD ¼ 1.024ð32Þ [or alterna-
tively 1.029(23) or 1.017(43) with the more aggressive
and less aggressive estimates of the uncertainty in the chiral
extrapolation discussed above]. As can be seen from Fig. 3,

FIG. 2. Left: Renormalized isovector momentum fractions for
h ∈ fp; pp; 3Heg at a scale of μ ¼ 2 GeV. Right: Ratios of the
isovector nuclear momentum fractions to that of the constituent
nucleons.
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even with a conservative estimate of uncertainties resulting
from the larger-than-physical pion mass of the calculations,
LQCD calculations such as those presented here, as well as
new experimental constraints [87,88], can significantly
improve our knowledge of the flavor dependence of nuclear
PDFs.
Summary.—In this work, the isovector momentum frac-

tions of the proton, diproton, and 3He systems have been
determined using LQCD, complementing a previous study
of the gluon momentum fraction on the same ensemble
[49]. These calculations were performed at a single set of
unphysical SU(3)-symmetric values for the quark masses
corresponding to mπ ¼ 806 MeV and in a single lattice
volume and at a single lattice spacing. Bearing these
caveats in mind, the isovector nuclear momentum fractions
were calculated precisely and found to be similar to that

of the proton. In particular, the ratios hxiðppÞu−d =hxiðpÞu−d ¼
1.010ð14Þ and 3hxið3HeÞu−d =hxiðpÞu−d ¼ 1.029ð15Þ were deter-
mined and nuclear EFTarguments were used to connect the
3He result to global analyses of nuclear PDFs, providing

constraints on the flavor decomposition of nuclear PDFs
that are complementary to those obtained from experiment.
While still in its early stages, this work emphasizes the

utility of LQCD in constraining less well-measured aspects
of partonic structure in an analogous way to how LQCD
inputs have been used to constrain the proton transversity
PDFs [89]. Future calculations at the physical quark masses
will consider higher moments of nuclear PDFs (or even
directly study their x dependence) for a wider range of
nuclei and provide a complete flavor decomposition.
Calculations will also quantitatively address the full set
of systematic uncertainties.
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FIG. 3. The ratio of the isovector momentum fractions of 3He
and p determined in this work compared to constraints on the
isovector and isoscalar momentum fraction ratios from the
nNNPDF2.0 [35] global analysis before and after the LQCD
constraint is imposed. Both axes are normalized to unity in
the absence of nuclear effects. The red band, and middle purple
ellipse, correspond to LQCD results taking 100% of the value of
the LEC as an additional systematic uncertainty to account for its
unconstrained mass dependence, as discussed in the text. The
inner and outer purple ellipses show the results of taking 50% and
200% of the LEC as the additional systematic uncertainty before
incorporating the LQCD constraint into the global fit. The LQCD
constraint on the isovector ratio at mπ ¼ 806 MeV is also
displayed. In all cases, 68% confidence intervals are shown.
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