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Systems with the quantum numbers of up to 12 charged and neutral pseudoscalar mesons, as well as
one-, two-, and three-nucleon systems, are studied using dynamical lattice quantum chromodynamics and
quantum electrodynamics (QCDþ QED) calculations and effective field theory. QED effects on hadronic
interactions are determined by comparing systems of charged and neutral hadrons after tuning the quark
masses to remove strong isospin breaking effects. A nonrelativistic effective field theory, which
perturbatively includes finite-volume Coulomb effects, is analyzed for systems of multiple charged
hadrons and found to accurately reproduce the lattice QCDþ QED results. QED effects on charged
multihadron systems beyond Coulomb photon exchange are determined by comparing the two- and three-
body interaction parameters extracted from the lattice QCDþ QED results for charged and neutral
multihadron systems.
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I. INTRODUCTION

The interplay between the strong and electromagnetic
(EM) interactions of the StandardModel is subtle but central
to the complexity of visible matter. While EM interactions
are typically much weaker than the strong interactions, it is
their competition with strong isospin breaking effects that
leads to the observed proton-neutron mass difference and
determines the stability of atomic nuclei. Moreover, the
hierarchy between the length scales where strong and EM

interactions are important leads to the existence of chemistry
and all of the complexity that it entails. Progress towards
understanding the combined effects of the strong and EM
interactions from first principles has been made in recent
years, and the EM–strong interaction decomposition of the
neutron-proton mass difference,Mn −Mp, has been calcu-
lated from the Standard Model for the first time using the
numerical lattice formulation of quantum chromodynamics
(QCD) and quantum electrodynamics (QED) [1–3].
Coupled lattice QCDþ QED calculations have also been
performed for meson and baryon masses [4–7], leptonic
decay rates [8–10], and the anomalous magnetic moment of
the muon [11–20], as both QCD and QED must be
accounted for in precision tests of the Standard Model.
Systems of multiple charged hadrons exhibit rich phe-

nomenology in which the interplay between QCD and
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QED effects is less well understood than for single-hadron
systems. The differences between pp, np, and nn two-
nucleon scattering channels are much more poorly con-
strained than their isospin average. Lattice QCDþ QED
can potentially provide phenomenologically useful infor-
mation on such isospin breaking effects in nucleon-nucleon
scattering; furthermore, calculations with a range of quark
masses and values of the QED fine structure constant can
provide insight into the fine-tuning of QED effects and
strong isospin breaking interactions, providing comple-
mentary information to the experiment. In large nuclei
with charge Z ∼ 1=α, where α is the EM fine structure
constant, relativistic QED effects are expected to become
nonperturbative and give rise to electron-positron pair
production and interesting consequences for the structure
of elements [21].
QCDþ QED studies of systems involving two or more

protons are of great phenomenological interest, but calcu-
lations of large nuclei are difficult using current lattice
QCDþ QED techniques [22]. It is also interesting to
consider systems of multiple charged mesons, which allow
an investigation of similar QED effects without a number of
the numerical complexities of multiproton calculations. In
particular, charged multihadron systems include QED
effects that become nonperturbative for hadron pairs with
sufficiently small relative velocity v ≪ α. All calculations
of charged hadrons must also reconcile the presence of net
charge in a finite volume (FV) with Gauss’s law, which can
be accomplished in several ways [1–3,5,6,8,9,19,23–38].
The current study makes use of the QEDL formulation [26],
in which the photon spatial zero mode is removed, as
has been recently studied in detail for single-hadron systems
in Refs. [1–3,5,6,8,9,19,23–28,30,32–38]. Subtleties
related to the nonlocality of zero-mode subtraction in
QEDL have been understood for single-hadron systems
[2,30,32,36,38,39], and similar methods are used to under-
stand nonlocality in multihadron systems in this framework
as described below.
In lattice QCD calculations, hadronic scattering phase

shifts are determined by relating them to the FV energies
of two-hadron systems using FV relations first derived
by Lüscher [40,41] and generalized in recent years (see
Ref. [42] for a review). Understanding scattering in lattice
QCDþ QED is complicated by the lack of a FV formalism
that includes nonperturbative Coulomb effects and thereby
relates FV energy shifts calculable in lattice QCDþ QED
to infinite-volume (Coulomb-corrected) scattering phase
shifts. In the QEDL formulation, Ref. [43] argues that
Coulomb effects can be treated perturbatively for suffi-
ciently small volumes where L ≪ 1=ðαMÞ, and therefore
the Bohr radius of the charged-particle system is larger
than the infrared cutoff provided by the FV. However, the
volume must also satisfy L ≫ 1=M in order for relativistic
FV effects not accounted for in Lüscher’s analysis to be
negligible. For some systems there may be a window of

intermediate-sized volumes where relativistic FV effects
and nonperturbative Coulomb effects can both be
neglected. Nonrelativistic effective field theory (EFT)
can be used to investigate this issue and to relate FV
energy shifts for systems with more than two particles to
two-, three-, and higher-body EFT low-energy con-
stants (LECs).
This work studies QCDþ QED effects for systems of

multiple hadrons including up to 12 charged or neutral
mesons and up to three nucleons in multiple finite volumes.
A larger than physical value of the fine-structure constant,
α ≃ 0.1, is used in order to increase the size of QED effects
and permit the study of systems with total charge Z
satisfying Zα≳ 1. As described in Ref. [4] and summarized
below, the quark masses are tuned to remove strong isospin
breaking effects so that splittings between particles that are
degenerate in QCD can be identified as pure QED effects.
Calculations are performed in both lattice QCDþ QEDL
(LQCDþ QEDL) and in an EFT appropriate for non-
relativistic charged hadrons, referred to as nonrelativistic
QEDL (NRQEDL) below. Two-body scattering lengths and
three-body interactions of charged and neutral mesons are
determined by tuning the hadronic interaction parameters
appearing in the NRQEDL Lagrangian to reproduce the
LQCDþ QEDL FV energy levels. QED effects on hadron
interactions beyond Coulomb photon exchange are deter-
mined by comparing the two-body and three-body inter-
action parameters determined for charged and neutral
mesons. Studies of multibaryon systems are used to probe
volumes where L > 1=ðαMÞ and Coulomb effects may not
be perturbative according to the criteria of Ref. [43]. It is
noteworthy that no significant nonperturbative Coulomb
effects or relativistic effects are seen at the level of precision
of the results obtained here, even for systems with L >
1=ðαMÞ or Zα > 1.
The practical window of L where relativistic effects can

be neglected and Coulomb effects can be treated perturba-
tively is explored by comparing LQCDþ QEDL and
NRQEDL results for a variety of FV systems. From these
studies, it is argued that this window requires the spatial
extent L of a cubic FV to satisfy

1

ML
≪ 1;

αML
4π

≪ 1: ð1Þ

The combination αML=ð4πÞ in Eq. (1) that quantifies the
size of FV Coulomb effects is equivalent to the infinite-
volume Coulomb expansion parameter α=v for a pair of
hadrons moving back to back with one unit of FV
momentum, i.e., �2π=L. Equation (1) indicates that
Coulomb effects can be treated perturbatively in current
and future LQCDþ QEDL calculations over a wide range
of volumes and in particular for systems with L ∼ 1=ðαMÞ,
where the Bohr radius is commensurate with the volume.
This scaling differs from that suggested in Ref. [43] by the
factor of 4π in the denominator of the αML=ð4πÞ.

S. R. BEANE et al. PHYS. REV. D 103, 054504 (2021)

054504-2



This manuscript is structured as follows. Section II
presents the details and methodology of the LQCDþ
QEDL calculations that are performed. Section III discusses
the construction of NRQEDL for charged multihadron
systems and provides the formalism needed to extract
hadronic scattering lengths and other parameters from the
results of these LQCDþ QEDL calculations. Section IV
describes the determination of hadronic scattering param-
eters from LQCDþ QEDL and presents results for multi-
meson and multinucleon systems. Conclusions are
presented in Sec. V. Appendix A contains further technical
details on the matching between QEDL and NRQEDL, and
Appendix B contains details on the fitting procedure used
to extract energy levels from Euclidean correlation func-
tions computed in LQCDþ QEDL.

II. LATTICE QCD+QED

Lattice QCDþ QED is a nonperturbative approach to
QCDþ QED that at intermediate stages implements an
ultraviolet regulator defined by a lattice spacing a (where
1=a is assumed to be much smaller than the QED Landau
pole). Calculations are performed in Euclidean spacetime
with a cubic spatial volume of extent L × L × L and a finite
temporal extent T; the quark, gluon, and photon fields
satisfy periodic boundary conditions (PBCs) in all spatial
directions. Here, the QEDL formalism [26] is used to
define charged-particle correlation functions as detailed
below, which defines the LQCDþ QEDL formalism.
The LQCDþ QEDL gauge field configurations used
were generated by the QCDSF collaboration. The full
details of the generation of these ensembles are presented
in Refs. [3,4]. For completeness, relevant aspects of the
ensemble generation are described below.

A. Lattice action and parameters

The LQCDþ QEDL action used in this study is given by

S ¼ SG þ SA þ SF; ð2Þ
where SG is the tree-level Symanzik-improved SUð3Þ
gauge action as defined in Refs. [44–46]. The quark
dynamics are encoded by an OðaÞ-improved stout link
nonperturbative clover action:

SF¼
X

q∈fu;d;sg

X
x

�
1

2

X
μ

½q̄ðxÞðγμ−1Þe−ieqAμðxÞŨμðxÞqðxþ μ̂Þ

− q̄ðxÞðγμþ1ÞeieqAμðx−μ̂ÞŨ†
μðx− μ̂Þqðx− μ̂Þ�

þ 1

2κq
q̄ðxÞqðxÞ−1

4
cSW

X
μν

q̄ðxÞσμνFμνqðxÞ
�
; ð3Þ

where Ũμ is a single-iterated stout-smeared SUð3Þ link
[47], Aμ is a noncompact Uð1Þ gauge field, and the Uð1Þ
quark charges are given by eq. The field-strength Fμν

appearing in the Sheikholeslami-Wohlert or “clover” term
[48] involves the unsmeared SUð3Þ gauge field as in
Ref. [49]. The clover coefficient cSW was nonperturbatively
determined for pure QCD in Ref. [49]. Electromagnetic
gauge fields are not included in the clover term, however
with these simulation parameters, the OðαaÞ effects are no
larger than the residual Oða2Þ effects of pure QCD. The
photon action is described by the noncompact form:

SA ¼ 1

2e2
X
x;μ<ν

ðAμðxÞ þ Aνðxþ μÞ − Aμðxþ νÞ − AνðxÞÞ2;

ð4Þ
where e is the Uð1Þ gauge coupling corresponding to
α ¼ e2=ð4πÞ. Gauge fixing and the treatment of zero modes
are discussed in Sec. II B.
The parameters of the lattice action were tuned by

identifying a point of approximate SUð3Þ flavor symmetry,
where the average light-quark mass takes its physical
value—see Ref. [46] for further discussion. With dynami-
cal QED, this is complicated by the fact that the quark
charges explicitly break the SUð3Þ flavor symmetry. An
approximate SUð3Þ flavor symmetry is then realized by
tuning the quark mass parameters such that the connected
flavor-neutral pseudoscalar mesons1 are degenerate. As it is
inspired by Dashen’s theorem [50], this prescription for
separating strong and electromagnetic effects is known as
the “Dashen scheme” [4]. This scheme preserves Dashen’s
theorem, whereby the neutral pseudoscalar mesons are
protected from receiving an electromagnetic self-energy
correction in the chiral limit. To reach the physical quark
masses and charges, the SUð3Þ flavor symmetric point can
then be lowered to the physical value before the symmetry
is broken to fix the individual quark masses. In this
exploratory work a single set of approximately SUð3Þ
flavor symmetric parameters is used.
The Dashen scheme provides a natural framework for

separating QED and QCD effects; at the SUð3Þ symmetric
point, any splittings among pure QCD multiplets are
identified as pure QED effects. The explicit breaking of
the quark masses from this point then allows one to
independently isolate the effects of strong (or quark mass)
flavor symmetry breaking and QED effects. The action
parameters used in this work correspond to the SUð3Þ
symmetric point and are presented in Table I.

B. Gauge fixing and the Uð1Þ zero mode

The correlation functions of charged particles are not
gauge invariant and hence ensemble-averaged quantities

1Since κs ¼ κd and es ¼ ed, this theory exhibits exact U-spin
symmetry, and therefore the connected dd̄ and ss̄ correlation
functions are identical to the ds̄ correlation functions The
connected part of the uū correction function can be interpreted
in a partially quenched theory, see Ref. [4] for further discussion.
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are only meaningful within some gauge fixing prescription.
In this work, Landau gauge is adopted by enforcing the
condition

X
μ

ðAμðxÞ − Aμðx − μ̂ÞÞ ¼ 0: ð5Þ

This condition can be imposed after generation of the gauge
fields. However, the Landau gauge condition leaves the
four-dimensional zero mode unconstrained. These uniform
background fields do not contribute to the gauge action;
however they do couple to the fermionic action, Eq. (3).
The action remains invariant under discrete shifts of
the zero mode in units of 2π=Lμ. This redundant gauge
degree of freedom can be eliminated by mapping the four-
dimensional zero modes onto the finite interval −π=Lμ <
Ãμðk ¼ 0Þ ≤ π=Lμ [51], where ÃμðkÞ is the Fourier trans-
form of AμðxÞ defined explicitly in Eq. (A3). The leading
effect of these zero modes is to induce a charge-dependent
twist of the single-hadron momenta. This small energy shift
can be corrected in single-hadron states [3]; however this
would introduce an unnecessary complication in the
analysis of many-body interactions. Instead, this work
adopts the QEDL prescription [2,26] of setting the spatial
(three-dimensional) zero modes of the gauge potential to
zero on every time slice.
With respect to the action used to generate the gauge

configurations, the elimination of the three-dimensional
zero modes before computing quark propagators is not a
gauge symmetry. As a consequence, there is a partial-
quenching effect whereby the valence quarks experience a
different zero mode to the quarks in the sea. The zero
modes cannot affect closed fermion loops, and their only
contribution to the determinant will be associated with
fermion lines wrapping around the boundary of the lattice.
Consequently, this partial-quenching effect is exponentially
suppressed in mπL and is negligible in comparison to the
power-law FV effects studied in this work.

C. Correlation functions

The particular gauge field ensembles used in this work
are described in Table I; along with the parameters used in
their generation, the number of configurations and the
average number of correlation function source locations

that are used per configuration are also reported. Up and
down/strange (equivalent for the masses used here) quark
propagators are computed from each of the randomly
chosen source locations using three-dimensionally Jacobi
smeared sources [52] (100 iterations with ρ ¼ 0.21) using a
solver tolerance of 10−12. Local and smeared fields are used
in the sink interpolating operator to construct smeared-
point (SP) and smeared-smeared (SS) correlation functions
with the former providing cleaner signals in all cases.
FV energy levels are determined by analyzing two-point

correlation functions

Ghðt;x0Þ ¼
�X

x

χ̃hðx; tÞχ†hðx0; 0Þ
�
; ð6Þ

where χh (χ̃h) is a source (sink) interpolating operator with
the quantum numbers of the state being considered and x0

is the source location. Two-point correlation functions are
constructed for n ∈ f1;…; 12g charged pions (ud̄) and
neutral kaons (sd̄) using the techniques developed in
Refs. [53–57]. At the sink, each color-singlet meson
bilinear is separately projected to zero momentum; for
example, for a system of n pions (h ¼ nπþ),

Gnπþðt;x0Þ

¼
��X

x

ūðx;tÞγ5dðx;tÞ
�

n
ðuðx0;0Þγ5d̄ðx0;0ÞÞn

�
: ð7Þ

The correlation functions for the single proton and
neutron make use of standard local interpolating operators
χp;α ¼ ϵijkðuiCγ5djÞukα and χn;α ¼ ϵijkðdiCγ5ujÞdkα where
the parentheses indicate contraction of spin indices. For
two-baryon and three-baryon systems, the contraction
techniques of Refs. [58,59] are used, again with each
baryon separately projected to zero momentum at the sink.

D. Finite-volume energy level determinations

Finite-volume energy levels are extracted from the
correlation functions for each system using correlated fits
to their time dependence. For the multimeson systems,
which factorize easily into color-singlet components, ther-
mal contributions where one component propagates for-
ward in time and another propagates backwards in time are

TABLE I. Parameters of the gauge field ensembles and calculations performed in this work. L3 × T is the Euclidean spacetime
volume, β is the SUð3Þ gauge coupling as defined in Refs. [44–46], βE ¼ 1=e2 is related to the QED gauge coupling appearing in
Eq. (4), κq are quark mass parameters for flavors q ∈ fu; d; sg appearing in the quark action, Eq. (3), Ncfg is the number of gauge field
configurations analyzed in this work, and Nsrc is the average number of quark propagator sources randomly distributed on each gauge
field configuration.

L3 × T β βE κu κd κs Ncfg Nsrc

323 × 64 5.50 0.80 0.124362 0.121713 0.121713 1294 27
483 × 96 5.50 0.80 0.124362 0.121713 0.121713 692 9
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particularly relevant. The corresponding functional forms
that are used to fit these correlation functions are

fnMðt;E;ZÞ ¼
Xn
m¼0

ZnM;me−EmMte−Eðn−mÞMðT−tÞ

þ
XNstates−1

e¼1

ZðeÞ
nMe

−EðeÞ
nMt; ð8Þ

whereM ∈ fπþ; K0g labels the type of meson, Nstates is the
total number of nonthermal states included in the fit, EnM is
the ground-state energy of the system with the quantum
numbers of nmesons of typeM, ZnM;m is the overlap factor
describing the amplitude of thermal contributions with m
forwards propagating mesons and n −m backwards propa-
gating mesons, and nonthermal excited states are also

included with energies EðeÞ
nM and overlap factors ZðeÞ

nM. In
practice, fits with Nstates ∈ f1; 2; 3g are used in this work.
The vectors E and Z indicate the energy and overlap factor
parameters to be constrained in the fit. In order to determine
the many parameters of these fitting functions, fits are
performed sequentially for increasing n, with the energies
EmM for m < n used as input for fnM as in Ref. [56].
Thermal effects arising from excited states are not found to
be significant.
For baryon systems, statistical noise grows rapidly with

the temporal separation between the source and the sink,
and the contributions of thermal states are negligible with
respect to the statistical uncertainties. For these systems a
simpler fit function is used:

fbðt;E;ZÞ ¼ Zbe−Ebt þ
XNstates−1

e¼1

ZðeÞ
b e−E

ðeÞ
b t; ð9Þ

where b labels the type of baryon system and, as for
meson systems, the second term corresponds to a sum
over the excited states included in the fitting model.
This work investigates single-nucleon systems with
b ∈ fp; ng as well as two-nucleon systems with b ∈
fnn; npð1S0Þ; npð3S1Þ; ppg and three-nucleon systems
with b ∈ f3H; 3Heg.
Best-fit parameters are determined from the minimiza-

tion of the correlated χ2 function

χ2ðE;ZÞ ¼
Xtmax

t;t0¼tmin

ðGðtÞ − fðt;E;ZÞÞðSðλ�Þ−1Þt;t0

× ðGðt0Þ − fðt0;E;ZÞÞ ð10Þ

for the appropriate correlation functions, GðtÞ, and fit
function, f ∈ ffnM; fbg, ½tmin; tmax� is the range of times
included in the fit, and Sðλ�Þ is an estimate of the
covariance matrix described below. Finite sample-size
fluctuations may make the sample covariance matrix ill-
conditioned, and shrinkage techniques [60,61] are used to

obtain a numerical stable inverse covariance matrix.
Following the application of shrinkage to LQCD in
Ref. [62], the covariance matrix including shrinkage is
defined as SðλÞ ¼ ð1 − λÞC þ λT , where C is the bootstrap
covariance matrix and T ¼ diagonalðCÞ, and therefore χ2

minimization with SðλÞ interpolates between correlated χ2

minimization for λ ¼ 0 and uncorrelated χ2 minimization
for λ ¼ 1. The optimal shrinkage parameter λ� appearing in
Eq. (10) is chosen to maximize the expected closeness to
the true covariance matrix and defined in Eq. (B2), see
Appendix B and Ref. [61] for further discussion.
Systematic uncertainties arise from the dependence of

the fits on the functional forms and time ranges that are
used. To address these, the time ranges are systematically
sampled, and fits with and without excited states are
attempted, with an information criterion used to select
the appropriate number of excited states to include for each
fit range choice. Aweighted average of the results from all
successful fits passing various reliability checks is used to
determine the final results. Further details are presented in
Appendix B.
For one- and two-nucleon systems, combined fits to the

SS and SP correlation functions are performed using
common energies but different overlap factors for local
and smeared sources. For mesons and three-nucleon
systems, combined fits performed in this way are only
marginally more precise than fits using SP correlation
functions alone, and fits using only SP correlation functions
are therefore used in what follows for simplicity.
An effective energy plot that removes thermal effects

from backwards propagating states for n ¼ 1 systems,
as well as constant contributions from thermal effects on
n ≥ 2 correlation functions, is defined as

EðtÞ ¼ ArcCosh

�
GðtÞ −Gðtþ 4Þ

2½Gðtþ 1Þ −Gðtþ 3Þ�
�
: ð11Þ

Note that this effective ground-state energy function differs
from the form ArcCosh½ðGðtþ 1Þ þGðt − 1ÞÞ=ð2GðtÞÞ�
commonly used to remove thermal effects from single-
pion correlation functions. The advantage of Eq. (11) is that
constant terms present in the spectral representation Eq. (8)
for n ≥ 2 mesons exactly cancel in the correlation function
differences appearing in Eq. (11), and in particular Eq. (11)
is able to exactly isolate the ground-state energy from a
two-meson correlation function including thermal effects of
the form e−Et þ e−EðT−tÞ þ const. Additional terms with
more complicated t dependence arise for n ≥ 3 meson
correlation functions as shown in Eq. (8). Effective energies
for n ≥ 3 systems will therefore include contamination
from thermal effects and will only plateau to the true
ground-state energy in the region t ≪ T where thermal
effects can be neglected.
Figures 1–3 show effective energy plots, including

correlation function results and fit results for EðtÞ for each
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FIG. 1. Fit results for n ∈ f1;…; 4gπþ systems with L=a ¼ 48. Blue points in the left plots show LQCDþ QEDL results for EðtÞ
defined in Eq. (11). Blue bands show 67% confidence intervals from fits to Eq. (8) described in Appendix B. Horizontal light (dark) gray
bands show the statistical (total) uncertainty of the fitted ground-state energy. The right plot shows ground-state energy results from each
successful fit range with opacity equal to their relative weight in the average determining the total statistical plus systematic uncertainty
shown as a pink band.
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case of n ∈ f1;…; 12gπþ on the L=a ¼ 48 lattice
volume as well as the ground-state energy results from
all successful fit range choices. Analogous results for
the L=a ¼ 32 volume and for n ¼ f1;…; 12gK̄0 systems

on the L=a ∈ f32; 48g volumes are shown in Appendix B.
The resulting ground-state energies for n ∈ f1;…; 12g
meson systems on both lattice volumes are shown in
Table II.

FIG. 2. Fit results for systems of n ∈ f5;…; 8gπþ mesons for the L=a ¼ 48 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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E. Hadron mass results

Single-meson masses computed with the gauge field
ensembles used here have already been presented in

Ref. [3]; the meson mass results obtained using the fitting
produce employed here are shown for completeness in
Fig. 4. The K̄0 energy is equal within statistical uncertainties

FIG. 3. Fit results for systems of n ∈ f9;…; 12gπþ mesons for the L=a ¼ 48 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.

S. R. BEANE et al. PHYS. REV. D 103, 054504 (2021)

054504-8



for the L=a ¼ 48 and L=a ¼ 32 lattice volumes. Volume
dependence in EπþðLÞ and differences in the FV single-
particle energies EπþðLÞ − EK̄0ðLÞ, however, are clearly
visible. Because of the quark mass tuning described in
Sec. II A, which is designed to remove strong isospin
breaking effects, these energy differences are ascribed to
QED effects. In order to interpret these QED effects, results
for EπþðLÞ can be compared to the Oðα; L−2Þ prediction of
QEDL [2] or equivalently NRQEDL [30],

EπþðLÞ ¼ mπ þ
α

2L
c1

�
1þ 2

mπL

�
þOðα2; L−3Þ; ð12Þ

where c1 ¼ −0.266596 is a geometric constant that does not
depend on the system under consideration. Nonlocal effects
from zero mode subtraction and charge radius effects
introducing a new parameter both arise at next-to-next-to-
next-to-leading-order (N3LO) and are neglected here.
Fitting the L=a ∈ f32; 48g results to Eq. (12) gives

amπþ ¼ 0.15419ð29Þ; mπþ ¼ 449ð1Þð13ÞMeV; ð13Þ

where the lattice spacing a ¼ 0.068ð2Þ fm is determined in
Ref. [3]. The first uncertainty in each term of Eq. (13)
includes statistical and systematic fitting uncertainties as
detailed in Appendix B, and the second uncertainty in the
expression for mπþ arises from the uncertainty in a. A
constant fit to the L=a ∈ f32; 48g results for EK̄0ðLÞ gives

amK̄0 ¼ 0.13918ð25Þ; mK̄0 ¼ 404ð1Þð12ÞMeV: ð14Þ

For the values of the quark masses and α ≃ 0.1 used in this
work, strong isospin breaking effects approximately vanish
and the difference between the charged and neutral pseu-
doscalar meson masses mπþ −mK̄0 ¼ 45ð2Þ MeV is attrib-
uted entirely to QED effects. It is noteworthy that QED
effects account for approximately 10% of the πþ mass with
these parameters.
Results for the proton and neutron ground-state energies

are shown in Table III and Fig. 5. Volume dependence of
the neutron mass is expected to be exponentially sup-
pressed and is found to be consistent with zero within
statistical uncertainties. The proton mass includes power-
law FV corrections from QED effects identical to those
shown for the πþ in Eq. (12). These relativistic FV effects
are suppressed by OððMpLÞ−1Þ and are therefore sup-
pressed in EpðLÞ compared to EπþðLÞ by mπþ=Mp ≪ 1.

TABLE II. Ground-state energy results for systems of n ∈
f1;…; 12g neutral K̄0 mesons and charged πþ mesons with
lattice volumes L=a shown. Results are determined by fitting
Eq. (8) to the LQCDþ QEDL Euclidean correlation functions
using the methods described in Appendix B. Dimensionful
energy results can be obtained using the lattice spacing a ¼
0.068ð2Þ fm obtained for this gauge field ensemble in Ref. [3].

aEnK̄0 aEnπþ

n L=a ¼ 32 L=a ¼ 48 L=a ¼ 32 L=a ¼ 48

1 0.13910(45) 0.13921(30) 0.14921(49) 0.15082(29)
2 0.2864(19) 0.2808(10) 0.3058(22) 0.30409(95)
3 0.4431(32) 0.4250(17) 0.4713(37) 0.4603(18)
4 0.6164(86) 0.5730(39) 0.6535(81) 0.6205(37)
5 0.803(14) 0.7245(63) 0.8479(13) 0.7848(60)
6 1.024(23) 0.886(11) 1.076(21) 0.958(11)
7 1.253(32) 1.049(14) 1.316(27) 1.130(17)
8 1.527(63) 1.227(19) 1.591(49) 1.317(20)
9 1.82(11) 1.404(26) 1.865(81) 1.497(29)
10 2.28(17) 1.597(41) 2.17(12) 1.676(42)
11 1.8(1.1) 1.796(58) 2.54(19) 1.852(68)
12 2.7(1.1) 2.002(79) 3.20(20) 2.02(10)

FIG. 4. The blue and red points show the LQCDþ QEDL

results from Table II for the K̄0 and πþ single-particle energies for
the L=a ∈ f32; 48g volumes. The blue band shows a constant fit
to EK̄0 results, and the red band shows a fit to QEDL power-law
FV effects at Oðα=ðMLÞ2Þ derived in Refs. [2,30] and presented
in Eq. (12). The width of the bands corresponds to 67% con-
fidence intervals estimated using bootstrap resampling.

TABLE III. Ground-state energies of systems of n ∈ f1; 2; 3g
protons and neutrons determined by fitting Eq. (9) to the
LQCDþ QEDL Euclidean correlation functions as described
in Appendix B.

aEb

b L=a ¼ 32 L=a ¼ 48

p 0.3997(43) 0.3998(34)
n 0.3988(43) 0.3962(30)
pp 0.816(19) 0.816(16)
npð1S0Þ 0.807(20) 0.820(13)
nn 0.806(18) 0.823(12)
npð3S1Þ 0.825(16) 0.811(12)
3He 1.294(77) 1.268(42)
3H 1.291(53) 1.294(31)
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The proton energy is found to have mild FV effects
consistent with zero and with Eq. (12). Fits to the NLO
QEDL prediction for EpðLÞ and to a constant for EnðLÞ
give the results

aMp¼ 0.4037ð23Þ; Mp¼ 1171ð7Þð34ÞMeV; ð15Þ

aMn¼ 0.3971ð25Þ; Mn¼ 1152ð7Þð34ÞMeV; ð16Þ

where the uncertainties are as defined for the πþ after
Eq. (13). Combining these results gives Mp −Mn ¼
20ð10Þ MeV. This result is approximately ten times larger
than the QED contribution to the proton-neutron mass
difference at the physical values of the quark masses and
α [1–3], which is consistent with the expected linear
dependence of the proton-neutron mass difference on α,
given the value α ≃ 0.1 that is used here.

III. FINITE-VOLUME NONRELATIVISTIC QED

Hadronic EFT results relating FV energy levels to the
LECs appearing in EFT Lagrangians are useful for inter-
preting LQCDþ QEDL results, as evidenced by the use of
fits to Eq. (12) to describe the volume dependence of
single-hadron energies and to extract mπþ and Mp at
L ¼ ∞. Analogous EFT results for charged multihadron
systems are needed to extract hadronic scattering informa-
tion from LQCDþ QEDL results for multihadron FV
energy levels, but EFT for charged multihadron systems
is complicated by the presence of Coulomb interactions
that are nonperturbative for hadron pairs with sufficiently
small relative momentum as discussed below. Further

complications arise for nonrelativistic EFTs for QCDþ
QEDL because of the nonlocality inherent in zero-mode
subtraction. However, nonrelativistic EFTs have the ad-
vantage that FV energy shifts for systems of arbitrary
particle number can be computed more simply than in
relativistic EFTs, where the relation between scattering
parameters and FV energy levels is not yet known for
systems of four or more hadrons. This work therefore
pursues the application of non-relativistic EFT to charged
multihadron FV systems, and this section develops the
formalism necessary for studying multihadron systems in
NRQEDL including nonlocal effects arising from zero-
mode subtraction.

A. Finite-volume formalism for two charged hadrons

Interactions of two electrically neutral particles with
mass M and relative momentum 2p are described at low
energies by a scattering phase shift δðpÞ, where p ¼ jpj.
The phase shift is an analytic function of the center-of-mass
energy E� ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
for energies below both the

t-channel cut and the s-channel inelastic particle production
threshold. For p ≪ M, the energy can be described by the
nonrelativistic expansion E� ¼ 2M þ p2=M þ � � �, and
below the t-channel cut and inelastic threshold the phase
shift admits a convergent effective range expansion
p cot δðpÞ ¼ − 1

a þ r
2
p2 þ � � �, where a is the scattering

length (not to be confused with the lattice spacing a
appearing elsewhere) and r is the effective range. For
neutral particles, this expansion is straightforwardly repro-
duced in terms of pionless EFT [63,64], a theory of hadrons
interacting via contact interactions organized in powers of
derivatives.
Interactions of electrically charged particles are compli-

cated by the fact that the t-channel cut associated with one-
photon exchange and the inelastic photon production
threshold start at p ¼ 0. This leads to p ¼ 0 singularities
in contributions to the scattering amplitude from Coulomb
ladder diagrams describing iterated one-photon-exchange,
shown in Fig. 6. Increasingly higher-loop Coulomb ladder
diagrams are suppressed by powers of α, but the p ¼ 0
singularity becomes more severe. The loop expansion for
Coulomb ladder diagrams corresponds to a perturbative
expansion in powers of

ηðpÞ≡ α

vðpÞ ¼
αM
2p

; ð17Þ

where v is the relative velocity of the two charged particles
and p ≪ M is assumed throughout this section. For
ηðpÞ≳ 1, QED becomes nonperturbative and Coulomb
ladder diagrams must be resummed to all orders in α. As
shown in nonrelativistic quantum mechanics by Bethe [65],
and in EFT by Kong and Ravndal [66,67], the resummed
scattering amplitude is nonanalytic in η and the effective
range expansion is modified as

FIG. 5. The blue and red points show the LQCDþ QEDL
results from Table III for the neutron and proton single-particle
energies for the L=a ∈ f32; 48g volumes. The blue band shows a
fit to a constant for the L=a ∈ f32; 48g results for the neutron,
and the red band shows a fit to Eq. (12) (which is valid for
arbitrary charged hadrons as well as the pion) for the proton. The
band widths correspond to 67% bootstrap confidence intervals. A
small horizontal offset is applied symmetrically to proton and
neutron results.
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�
2πη

e2πη − 1

�
p cot δðpÞ þ 2pη½ReψðiηÞ − lnðηÞ�

¼ −
1

aC
þ 1

2
rCp2 þ…; ð18Þ

where ψðxÞ ¼ Γ0ðxÞ=ΓðxÞ is the digamma function, aC is
the Coulomb-corrected scattering length, and rC is the
effective range of the charged particle system. To leading
order in α, and at all orders in η and in the four-particle
contact interactions as in pionless EFT, the charged particle
effective range is unaffected by QED interactions and rC ¼
r [67]. Conversely, the contact interaction associated with
the scattering length must be renormalized to absorb
divergences from Coulomb ladder diagrams. In the MS
scheme, the running coupling that would be identified with
the scattering length in the absence of QED is related to the
Coulomb-corrected scattering length by [67]

1

aMSðμÞ
¼ 1

aC
þ αM

	
ln

�
μ

ffiffiffi
π

p
αM

�
þ 1 −

3

2
γE −

1

2
μr



; ð19Þ

and can be understood as the physical scattering
length with Coulomb effects from infrared length scales
>1=μ removed.
The FV two-particle energy spectrum can be related to

the scattering phase shift in nonrelativistic quantum
mechanics [68] and in quantum field theory [40,41]. In
a finite spatial volume of size L3 with PBCs, the system
exhibits reduced spatial symmetries characterized by
covariance under the cubic group, and the momentum
carried by a free particle is quantized as p ¼ 2πn=L with
n ∈ Z3. In QEDL, zero-mode subtraction implies that the
momentum carried by a photon propagator is restricted to
p ≥ 2π=L. The expansion parameter ηðpÞ in Eq. (17) is
therefore restricted to

ηðpÞ ≤ ηL ≡ αML
4π

ð20Þ

in QEDL Coulomb ladder diagrams. For sufficiently small
volumes, η ≤ ηL ≪ 1 and Coulomb photon exchange can
be treated perturbatively.
The OðαÞ quantization condition relating the s-wave

scattering amplitude to the two-particle spectrum in the Aþ
1

representation of the cubic group in nonrelativistic EFT in
the approximation of negligible partial wave mixing was
derived in Ref. [43],

�
2πη

e2πη − 1

�
p cot δðpÞ þ 2pη½ReψðiηÞ − lnðηÞ�

¼ 1

πL
SCðpÞ þ αM

	
ln

�
4π

αML

�
− γE



; ð21Þ

where ηðpÞ is defined in Eq. (17) and

SCðxÞ¼SðxÞ−αML
4π3

S2ðxÞþ
αMa2CrC
π2L2

ISðxÞ2þOðα2Þ;
ð22aÞ

SðxÞ ¼ lim
Λn→∞

Xjnj<Λn

n∈Z3

1

jnj2 − x2
− 4πΛn; ð22bÞ

S2ðxÞ ¼ lim
Λn→∞

Xjnj<Λn

n∈Z3

X
m∈Z3nfng

1

jnj2 − x2
1

jmj2 − x2
1

jn −mj2

− 4π4 lnΛn; ð22cÞ

where I ≈ −8.9136 is a geometric constant whose
evaluation is detailed in Refs. [40] and sums over integer
triplets n are restricted to jnj ≤ Λn where Λn is a cutoff
and the Λn → ∞ limit should be taken as indicated.

FIG. 6. The strong-interaction and Coulomb scattering diagrams contributing to the two-body FVenergy shift in NRQEDL. The top-
left section shows the LO diagram. The top-right section shows the NLO diagrams. The bottom section shows the NNLO diagrams in the
power counting of Eq. (33). Diagrams that vanish because of zero-mode subtraction, including the tree-level one-photon-exchange
diagram, are not shown.
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LQCDþ QEDL results for the p associated with FVenergy
levels below three-particle thresholds can be related to
charged particle scattering phase shifts by Eq. (21) and used
to constrain parametrizations of the phase shift such as
Eq. (18). Since Eq. (21) neglects exponentially small FV
effects present in small volumes, as well as ðαMLÞn effects
from Coulomb ladder diagrams with n photon propagators
that must be resummed for sufficiently large volumes,
Eq. (21) is necessarily valid only for an intermediate range
of L. An important goal of this work is to test the range of
volumes over which Eq. (21) can be reliably used to extract
Coulomb-corrected scattering parameters from LQCDþ
QEDL results.

B. Charged two-hadron systems in NRQEDL

Equation (21) can be perturbatively expanded in powers
of aC=L and other higher-order effective range expansion
coefficients. Reference [43] determined this expansion to
OðαMLÞ and OðaC=LÞ3 under the assumption that
αML ≪ aC=L ≪ 1. Following Refs. [69,70], the same
result can be derived in nonrelativistic quantum mechanics
using a Hamiltonian that perturbatively includes the
effects of relativity and allows straightforward generaliza-
tion to many-particle systems. The NRQEDL Lagrangian is
given by

L ¼ ψ†
�
iD0 −

D2

2M

�
ψ −

1

2

�
4πa
M

�
ðψ†ψÞ2

−
η3ðμÞ
3!

ðψ†ψÞ3 þ Lξ
γ þ Lr: ð23Þ

In this expression ψ is a nonrelativistic hadron field, Dμ ¼
∂μ þ ieQAμ where Q is the electric charge operator, the

gauge-fixed photon Lagrangian Lξ
γ is given in Eq. (A2),

η3ðμÞ is a renormalization-scale-dependent coupling asso-
ciated with short-range three-body interactions, and four-
and higher-body interactions are neglected. Lr includes
effective range contributions and relativistic corrections
involving two derivatives, and is given by

Lr ¼ ψ†
�

D4

8M3

�
ψ −

1

2

�
πa
M

��
ar −

1

M2

�

× ðψ†ψÞðψ†D2ψ þ ψD2ψ†Þ: ð24Þ

The coefficient of the ðψ†ψÞðψ†D2ψ þ ψD2ψ†Þ operator in
Eq. (24) can be fixed by demanding that the strong
interaction EFT given by replacing Dμ with ∂μ reproduces
Eq. (21) with α ¼ 0 when both are expanded perturbatively
in powers of L−1 to2 OðL−6Þ. This OðL−6Þ threshold

expansion of Lüscher’s quantization condition is given
in Ref. [73] and is verified below to be reproduced by the
nonrelativistic EFT defined by Eqs. (23)–(24).3 Operators
in Lr lead to contributions to the threshold expansion
suppressed by ar=L2 as well as relativistic effects sup-
pressed by OððMLÞ−2Þ that will be neglected in the power
counting schemes discussed below. Additional relativistic
corrections to Eq. (23) arise from photon loops and
operators with four and more derivatives, but these give
rise to FVeffects suppressed by powers of OððMLÞ−1Þ that
will be neglected as discussed below and detailed in
Appendix A.
Introducing Fourier transformed fields

ψ̃k ¼
1

L3=2

Z
d3xeik·xψðxÞ; ψðxÞ¼ 1

L3=2

X
k

e−ik·xψ̃k;

ð25Þ

the FV Hamiltonian for NRQEDL is given by

H ¼
X
k

ψ̃†
k

�
k2

2M

�
ψ̃k þHξ

γ þHint; ð26Þ

where Hξ
γ is the gauge-fixed photon Hamiltonian, whose

explicit form will not be used below, and

Hint ¼ −
X
k

ψ̃†
k

�
k4

8M3

�
ψ̃k

þ 1

2L3

X
p0;p;Q

Vðp;p0Þψ̃†
Q−p0 ψ̃

†
Qþp0 ψ̃Q−pψ̃Qþp

þ η3ðμÞ
ð3!ÞL6

X
Q;p;p0;q;q0

ψ̃†
Qþp0 ψ̃

†
Qþq0 ψ̃

†
Q−p0−q0 ψ̃Qþp

× ψ̃Qþqψ̃Q−p−q; ð27Þ

where the two-body potential includes strong interaction
and Coulomb terms,

Vðp0;pÞ ¼ 4π

M

�
aþ a

4

�
ar −

1

M2

�
ðp2 þ p02Þ þ…

�

þ 4πα

jp0 − pj2 ð1 − δp;p0 Þ: ð28Þ

Relativistic corrections to the potential, including photon
loop effects as well as nonlocal effects of zero-mode
removal, can in principle be calculated by carrying out
the FV analog of higher-order matching between QED,
NRQED, and potential NRQED (pNRQED) [74–76], but

2The Lagrangian in Eq. (24) can also be obtained by studying
the nonrelativistic limit of relativistic scalar field theory as in
Refs. [71,72].

3References [69,70] include the operators in Eq. (24), but a
factor of 2 discrepancy in the coefficient of the last term leads to a
difference in the OðL−6Þ threshold expansion result.
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these terms give rise to OðMLÞ−1 effects that are
neglected below.
Specializing to the case of identical bosons, operators are

associated with the fields in Eq. (26) and are defined to
satisfy commutation relations ½ψ̃†

p0 ; ψ̃p� ¼ δp;p0 . FV two-
particle states defined by

jp1;p2i ¼
1ffiffiffi
2

p ψ̃†
p1
ψ̃†
p2
j0i ð29Þ

satisfy hp1;p2jp1;p2i ¼ 1. The ground state of the two-
particle system in its center-of-mass frame is jp1 ¼ 0;

p2 ¼ 0i. Splitting the Hamiltonian into kinetic energy terms
and an interaction term Hint that will be treated perturba-
tively, the ground-state FV energy shift at leading order in
Rayleigh-Schrödinger perturbation theory is then given by

ΔELO ¼ h0; 0jHintj0; 0i ¼
1

L3
Vð0; 0Þ ¼ 4πa

ML3
: ð30Þ

Standard perturbation theory techniques can be used to
extended this result to higher orders in a=L and α. At
next-to-next-to-leading order (NNLO) in Hint, the result is
given by

ΔENNLO;PC1 ¼ 4πaC
ML3

�
1 −

�
aC
πL

�
I þ

�
aC
πL

�
2

½I2 − J �
�

þ α

πL

�
−
�
aC
πL

�
2J þ

�
aC
πL

�
2
�
2IJ þR22 − 2Kþ 4π4

	
ln

�
4π

αML

�
− γE


�

−
�
αML
4π3

�
Kþ

�
aC
πL

��
αML
4π3

�
½2R24 þ J 2 − L� þ

�
αML
4π3

�
2

R44

�
; ð31Þ

where PC1 is a label for the power counting scheme discussed below and higher-order corrections in aC=L ∼ r=L,
as well as relativistic effects suppressed by OððMLÞ−1Þ, have been neglected. All sum-integral differences I , J , K, L,
and Rnm which appear in this expression are evaluated4 in Ref. [43], which includes an evaluation of Eq. (31) in
EFT to leading order in αML and to higher order in a=L, except for R44 which is a convergent sum given by
R44 ≈ 55.47.
Equation (31) can be expressed as an expansion in aC=L and the FV Coulomb parameter ηL defined in Eq. (20),

ΔENNLO;PC1 ¼ 4πaC
ML3

�
1 −

�
aC
πL

�
I þ

�
aC
πL

�
2

½I2 − J �
�

þ 4ηL
ML2

�
−
�
aC
πL

�
2J þ

�
aC
πL

�
2

½2IJ þR22 − 2K − 4π4½lnðηLÞ þ γE��

−
�
ηL
π2

�
Kþ

�
aC
πL

��
ηL
π2

�
½2R24 þ J 2 − L� þ

�
ηL
π2

�
2

R44

�
: ð32Þ

This resembles a double power series expansion in the
parameters ηL and aC=L, suggesting that the NRQEDL
threshold expansion should provide a good approximation
of FV energy shifts for

PC1∶ ηL ∼
aC
L

≪ 1: ð33Þ

It is noteworthy that ηL ≪ 1 only requires αML ≪ 4π and
is less restrictive than the condition αML ≪ 1 discussed in
Ref. [43]. In the matching to the LQCDþ QEDL simu-
lations discussed below, the power counting ηL ∼ aC=L
numerically overestimates the size of QED effects,

particularly on the smaller volumes studied, and the
alternative power counting5

PC2∶ η1=2L ∼
aC
L

≪ 1; ð34Þ

will also be used in fits to LQCDþ QEDL results. Higher-
order results for the threshold expansion for short-range
contact interactions without QED [69,70,73,79] can be
used to extend Eq. (32) from NNLO in Eq. (33) to N3LO in
Eq. (34),

4See also Refs. [40,41,43,77,78] for more details on evaluating
FV sums.

5The description of FV effects on charged hadron masses in
QEDL as a dual expansion in α and ðMLÞ−1 and the possibility of
using alternative power countings in LQCDþ QEDL calcula-
tions depending on the values of these parameters is explored in
Ref. [36].
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ΔEN3LO;PC2¼ 4πāC
ML3

�
1−

�
āC
πL

�
Iþ

�
āC
πL

�
2

½I2−J �

−
�
āC
πL

�
3

½I3−3IJ þK�
�

þ 4ηL
ML2

�
−
�
āC
πL

�
2J −

�
ηL
π2

�
K

þ
�
āC
πL

�
2

½2IJ þR22−2K

−4π4½lnðηLÞþ γE��
�
: ð35Þ

The parameter āCðLÞ is equal to aC plus a 1=L3 suppressed
correction arising from the interaction terms in Eq. (24),

aC ¼ āCðLÞ −
2πāCðLÞ2

L3

�
āCðLÞr −

1

2M2

�
; ð36Þ

where ðMLÞ−2 suppressed effects are shown for complete-
ness and lead to agreement with the OðL−6Þ strong
interaction relativistic threshold expansion of Ref. [73]
after taking6 α ¼ 0.
In principle, LQCDþ QEDL results for πþπþ FVenergy

shifts on multiple lattice volumes could be used to extract
both aC and r by constraining the OðL−6Þ difference
between āC and aC. In the LQCDþ QEDL calculations
discussed below, ðāCðLÞ − aCÞ=aC can be estimated at LO
in chiral perturbation theory (χPT) to be 2% and 8% for the
L=a ¼ 48 and L=a ¼ 32 lattice volumes respectively. To
see whether āC − aC can be reliably determined, this
estimate must be compared with an estimate of relativistic
effects neglected in Eq. (35), which as discussed in
Sec. III C modify the dominant QED FV effects
by OððMLÞ−1Þ. For πþπþ systems on the L=a ¼ 48
lattice volume, the dominant (NLO) QED effect in
Eq. (35) amounts to a shift āC → āC−2J ðηL=π2ÞāC,
and radiation photon effects can be estimated to lead to
a OððMLÞ−1Þ suppressed shift in ðāCðLÞ − aCÞ=aC of
order ∼2J ðηL=π2Þ=ðMLÞ ¼ J α=ð2π3Þ ∼ 3% for α ≃ 0.1.
Relativistic effects are therefore comparable to āC − aC for
πþπþ systems and prevent the effective range contribution
to āCðLÞ from being disentangled from other FV effects
neglected in Eq. (35). Therefore, āCðLÞ − aC will be
neglected when fitting πþπþ LQCDþ QEDL results
to Eq. (35).

C. Zero-mode effects

The derivation of Eq. (21) in Ref. [43] and the form of
the NRQEDL Lagrangian in Eq. (23) assume that charged
particle NRQEDL contact interactions in FV are equal to
their infinite-volume counterparts up to exponentially sup-
pressed corrections. More recently, however, it has been
shown in Refs. [2,30,32,36,38,39] that this assumption
is violated in the single-particle sector of NRQEDL because
of the inherent nonlocality of zero-mode subtraction.
NRQEDL parameters can be obtained by calculating
masses, scattering amplitudes, or other observables in both
NRQEDL and QEDL and tuning the parameters of the
NRQEDL Lagrangian to reproduce QEDL results. In QEDL,
on shell photon exchange leads to power-law FVeffects on
charged particle masses suppressed by powers of α and
1=ðMLÞ that have been studied in Refs [2,30,32,36,38,39].
The Oðα=ðMLÞÞ and Oðα=ðMLÞ2Þ corrections are inde-
pendent of the structure of the charged particle and are
described by one-loop diagrams in both QEDL and
NRQEDL. At order Oðα=ðMLÞ3Þ, structure-dependent
effects involving magnetic moments and charge radii arise.
Nonlocal effects from zero-mode subtraction also enter at
orderOðα=ðMLÞ3Þ because zero-mode subtraction leads to
power-law FV effects from off shell antiparticle modes in
QEDL that are not reproduced by NRQEDL loop diagrams.
These effects can be included in NRQEDL by adjusting the
Lagrangian to include additional particle-antiparticle inter-
actions [32,39], or more simply by adjusting the coefficients
of mass operators in the NRQEDL Lagrangian by factors
proportional to α=ðMLÞ3 [38]. For charged scalars, although
not for charged fermions, these effects vanish in the charged
particle rest frame [38]. This nondecoupling of antiparticle
modes is a consequence of the nonlocality of NRQEDL, and
for EFTs with breakdown scale Λ generically produces
Oðα=ðΛLÞ3Þ corrections to LECs [38].
Nonlocal effects from zero-mode subtraction could lead

to power-law FV effects that modify four-hadron contact
interaction couplings proportional to aC in NRQEDL.
Considering the OðMLÞ enhancement of FV effects asso-
ciated with Coulomb ladder diagrams, it is necessary to
analyze nonlocal effects of zero-mode subtraction on aC in
order to determine whether Eq. (21) is modified within the
order of approximation considered. The effects of zero-
mode subtraction on aC can be determined by matching any
QEDL and NRQEDL correlation functions sensitive to
four-hadron contact interactions. One-particle FV self-
energies only receive contributions from four-hadron con-
tact interactions inOðα2Þ diagrams containing closed loops
of particle-antiparticle pairs. Two-particle FV Green’s
functions receive contributions from four-hadron contact
interactions at Oðα0Þ, and it is convenient to calculate
nonlocal FV effects on four-hadron contact interactions in
NRQEDL by directly matching two-particle FV Green’s
functions in QEDL and NRQEDL. This matching is
detailed in Appendix A and summarized below.

6The operators in Eq. (24) lead to additional effective range
and relativistic corrections to the right-hand side of Eq. (36),
namely an additional term of the form −2a2CrηLI=ðML5Þ−
η2LJ =ð4π2M3L4Þ, but these are higher order than the effective
range term in Eq. (36) according to the power counting of
Eq. (34).
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The OðMLÞ enhancement of Coulomb ladder dia-
grams arises when one intermediate particle propagator
is placed on shell and another intermediate particle
propagator is nearly on shell with virtuality k2=M, as
compared with virtuality k when a photon propagator is

placed on shell. This can be explicitly seen by compar-
ing the integrands of the “box” diagram (rightmost top
row in Fig. 6) with the “crossed-box” diagram (leftmost
bottom row in Fig. 7). In NRQEDL, the box diagram
involves the integral

i
Z

dk0

2π

�
1

k0 − k2=2M þ iϵ

��
1

−k0 − k2=2M þ iϵ

��
1

ðk0Þ2 − k2 þ iϵ

�
2

¼ −
�
M
k2

��
1

ðk2=2MÞ2 − k2

�
þ d
dk0

	�
1

k0 − jkj
�

2
�

1

k0 − k2=2M

��
1

−k0 − k2=2M

�

k0→−k

¼ −M
k6

½1þOðk2=M3Þ� − 3

4k5
½1þOðk2=M2Þ�: ð37Þ

In this expression, the first contribution involving the
particle pole places the second particle propagator nearly
on shell with kinetic energy k2=2M. The second contribu-
tion from the photon double pole gives both particle
propagators off shell kinetic energies k. When FV effects
are computed, k is replaced by the quantized values 2πn=L
with n ∈ Z3, and (after adding all necessary UV counter-
terms) amplitude suppression by powers of k=M implies
suppression of FV effects by the corresponding power of
ðMLÞ−1. The NRQEDL crossed-box diagram involves the
integral

i
Z

dk0

2π

�
1

k0 − k2=2M þ iϵ

�
2
�

1

ðk0Þ2 − k2 þ iϵ

�
2

¼ d
dk0

	�
1

k0 − jkj
�

2
�

1

k0 − k2=2M

�
2


k0→−k

;

¼ 3

4k5
½1þOðk2=M2Þ�; ð38Þ

where only the photon pole contributes and leads to particle
propagators with off shell kinetic energies k. FV effects
associated with the crossed-box diagram are therefore

suppressed by OððMLÞ−1Þ compared to the dominant
contribution of the box diagram.
The OðMLÞ power enhancement of the box diagram is

only present in the diagrams involving repeated s-channel
Coulomb interactions shown inFig. 6 but not in the diagrams
in Figs. 7 and 8 or other diagrams involving particle-
antiparticle pair creation that vanish nonrelativistically.7

Furthermore, the OðMLÞ enhancement only occurs when
the intermediate-state charged particles are both nearly on
shell. As detailed in Appendix A, power-law FV effects in
QEDL that are not reproduced by loop diagrams with the
leading order NRQEDL Lagrangian arise from antiparticle
poles where intermediate states have a large virtuality of
order 2M. These do not receive theOðMLÞ enhancement of
particle pole contributions, and zero-mode effects are found
to be suppressed byOðα=ðMLÞ3Þ.Matching betweenQEDL
and NRQEDL is explicitly performed for charged scalars in
Appendix A, and zero-mode effects are found to modify the

FIG. 7. Radiation photon diagrams making power-suppressed contributions to the two-body FVenergy shift in NRQEDL. The left and
right sections show NLO and NNLO diagrams in the power counting of Eq. (33), respectively, which lead to FV effects suppressed by
OððMLÞ−1Þ.

7More details on the power-counting of diagrams involving FV
photon exchange are given in Ref. [43] and discussions of
analogous power counting arguments for radiation pions are
given in Ref. [80].
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four-scalar coupling in NRQEDL at order Oðα=ðMLÞ3Þ for
boosted systems but not tomodify the coupling for scalars at
rest at this order. This shows that Eq. (21) is valid for charged
scalars in NRQEDL up to Oðα2Þ effects and OðMLÞ−1
relativistic effects. The vanishing of these effects in the
center-of-mass frame arises from cancellations due to the
specific form of the scalar-photon vertex functions. It is
possible that for charged fermions nonlocal effects also arise
at Oðα=ðMLÞ3Þ in the charged fermion rest frame. The
Oðα=ðMLÞ3Þ suppression factor is consistent with the
physical arguments of Ref. [38] that nonlocal effects arise
from interactions between the subtracted zero mode, which
can be interpreted as a uniform background charge density
that ensures Gauss’s law is satisfied for the FV system [26],
and high-energy modes that have been integrated out of the
EFT, and therefore that FV effects from zero-mode sub-
traction are suppressed by α times the inverse volume.

D. Charged many-hadron systems in NRQEDL

The two-particle energy shifts in Eqs. (32)–(35) can be
extended to a threshold expansion for FVeffects on systems
of n nonrelativistic particles using Rayleigh-Schrödinger

perturbation theory. Unit-normalized many-particle states
are given by

jp1;…;pni ¼
1ffiffiffi
n

p ψ̃†
p1
×… × ψ̃†

p2
j0i; ð39Þ

and the leading order FVenergy shift for the ground state of
n identical bosons in the center-of-mass frame is given by

h0;…0jHintj0;…0i¼ 1

L3

�
n

2

�
Vð0;0Þþ 1

L6

�
n

3

�
η3ðμÞ:

ð40Þ

Working to NNLO in the power counting of Eq. (33), the
energy shift of an n-hadron state is equal to ðn

2
Þ times the

two-body energy shift of Eq. (32), plus additional con-
tributions from induced three-body and four-body forces
shown in Fig. 9. Additional diagrams associated with
radiation photon exchange shown in Fig. 10 are suppressed
by OððMLÞ−1Þ. The resulting threshold expansion for the
FV energy shift for a system of n like-charged hadrons at
rest is given by

ΔENNLO;PC1
n ¼ 4πaC

ML3

�
n

2

��
1−

�
aC
πL

�
Iþ

�
aC
πL

�
2

½I2þð2n−5ÞJ �
�
þ 4ηL
ML2

�
n

2

��
−
�
aC
πL

�
2J −

�
ηL
π2

�
Kþ

�
ηL
π2

�
2

R44

þ
�
aC
πL

�
2

½2IJ þR22þð4n−10ÞK−4π4½lnðηLÞþ γE��þ
�
aC
πL

��
ηL
π2

�
½2R24þJ 2þð2n−5ÞL�

�
; ð41Þ

where omitted terms are quartic or higher in ηL ∼ aC=L; relativistic effects suppressed by OððMLÞ−1Þ; or three-body
contact interactions where η3 ∼ a4C=M is assumed so thatOðL−6Þ terms of the strong interaction threshold expansion appear
at the same order.

FIG. 8. Radiation photon diagrams, including the jellyfish diagram on the forth row, that appear at NNLO in the power counting of
Eq. (33) and lead to FV effects suppressed by OððMLÞ−2Þ.

S. R. BEANE et al. PHYS. REV. D 103, 054504 (2021)

054504-16



At N3LO in the power counting of Eq. (34) there are
contributions from short-distance three-body interactions
well as the induced few-body interactions discussed above.
These introduce a new free parameter η3ðμÞ that para-
metrizes the strength of six-particle operators in the

NRQEDL Hamiltonian, Eq. (26). Combining Eq. (41) with
the N3LO results for the QCD threshold expansion from
Ref. [69], the N3LO FVenergy shift for a system of n like-
charged hadrons in the power counting of Eq. (34) is
given by

ΔEN3LO;PC2
n ¼ 4πāC

ML3

�
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2
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�
āC
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�
2

½I2þð2n−5ÞJ �−
�
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�
3

½I3þð2n−7ÞIJ þð5n2−41nþ63ÞK�
�

þ 4ηL
ML2

�
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��
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�
āC
πL

�
2J −

�
ηL
π2

�
Kþ

�
āC
πL

�
2

½2IJ þR22þð4n−10ÞK−4π4½lnðηLÞþ γE��
�

þ
�
n

3

�
1

L6

	
η3ðμÞþ

64πā4C
M

ð3
ffiffiffi
3

p
−4πÞ lnðμLÞ−96ā4C

π2M
SMS



: ð42Þ

The nonrelativistic EFT three-body coupling η3ðμÞ is
renormalization scheme and scale dependent. The scale
dependence of η3ðμÞ cancels the explicit lnðμLÞ scale
dependence shown in Eq. (42), and the scheme dependence
is compensated by schemedependence in the finite termSMS.
This scale dependence arises from the ambiguity in separat-
ing short-distance three-body interactions described by
contact operators in NRQEDL from long-distance two-body
rescattering effects. In relativistic theories this ambiguity does

not arise, and the particle mass plays the role of the scale μ in
relativistic descriptions of theL−6 lnL term in the three-body
threshold expansion derived for generic relativistic field
theories in Ref. [79]. Equating the OðL−6Þ term in the
relativistic threshold expansion of the three-particle threshold
amplitudeM3;th in Ref. [79] with the correspondingOðL−6Þ
nonrelativistic threshold expansion provides a relation
between the nonrelativistic coupling η3ðμÞ and the scale-
independent M3;th in the absence of QED,

FIG. 9. The strong-interaction and Coulomb diagrams contributing to three- and higher-body FVenergy shifts in NRQEDL at leading
order in ðMLÞ−1 and NNLO in short-range and Coulomb interactions in the power counting of Eq. (33). Diagrams that vanish because of
zero-mode subtraction, partially disconnected diagrams involving pairs of two-body interactions among four and more particles, and
diagrams that involve on shell internal propagators and vanish in Rayleigh-Schrödinger perturbation theory, are not shown.

FIG. 10. Radiation photon diagrams with negligible contributions to three- and higher-body FVenergy shifts in NRQEDL at NNLO.
The left and center diagrams are suppressed byOððMLÞ−1Þ, while the right diagram is suppressed byOððMLÞ−2Þ. As in Fig. 9, partially
disconnected diagrams and diagrams that vanish because of zero-mode subtraction or kinematical constraints are not shown.
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η3ðμÞ ¼ −
M3;th

48M3
þ 64πa4

M
ð3

ffiffiffi
3

p
− 4πÞ ln

�
M
2πμ

�
þ 48a2π2

M3

þ 48a3π2r
M

þ 12a4

π2M
S3 þ

768π3a3

M2
C3; ð43Þ

where a is the scattering length for a neutral two-
particle system, C3 ¼ −0.05806 is a FV sum evaluated in
Ref. [79], and S3 ¼ 571.398 is related to SMS, evaluated in
Ref. [70], and to other FV sums from Ref. [79] by
S3 ¼ CF þ C4 þ C5 þ 8SMS. QED effects will modify
Eq. (43), but these modifications can be neglected at the
EFT order considered here. Below, QED effects on three-
body forces will be studied by comparing the three-body
interaction parameters extracted from LQCDþ QEDL
results for systems of charged and neutral mesons.

IV. RESULTS FOR CHARGED
MULTIHADRON SYSTEMS

This section combines the LQCDþ QEDL results from
Sec. II with the NRQEDL results from Sec. III in order to
obtain QCDþ QED predictions for scattering lengths and
other hadronic interaction parameters at the values of the
quark masses and α used here.

A. Charged meson scattering

The LQCDþ QEDL results for the FV spectrum results
in Table II can be used to constrain the low-energy EFTs for
charged and neutral meson interactions. It is convenient to
focus on results for the FV energy shifts

ΔEnMðLÞ¼EnMðLÞ−nEMðLÞ; M∈ fK̄0;πþg: ð44Þ

Results for correlated differences between n-particle ground-
state energies and n times the one-particle ground-state
energy, as defined in Eq. (44), are more precise than
n-particle energies alone. Furthermore, this subtraction non-
perturbatively removes single-particle FV effects from
n-meson FV energy shift results. For multi-πþ systems,
LQCDþ QEDL results for these FV energy shifts can be
identified with the interaction energy shifts ΔEn computed
perturbatively inNRQEDL in Sec. III. Formulti-K̄0 systems,
LQCDþ QEDL results can be identified with the same EFT
results after setting α to zero. In the numerical LQCDþ
QEDL calculation, FV energy shifts are computed in a
correlated manner using bootstrap resampling as detailed
in Appendix B, and the results are shown in Table IV. To
access QED-specific effects, the correlated differences of the
n charged pions and n neutral kaon FVenergy shifts are also
computed similarly. The double subtraction suppresses any
strong isospin breaking effects arising from the mistuning of
the quarkmasses for different charge quarks. In the numerical
LQCDþ QEDL calculation, correlated differences of FV
energy shifts are computed using bootstrap resampling as
detailed in Appendix B, and the results are shown in Table V.

Results for the two-particle FVenergy shifts ΔEπþπþ and
ΔEK̄0K̄0 are shown in Fig. 11. Both energy shifts are clearly
resolved from zero with relative uncertainties in the range
of 15–25% for both volumes, althoughΔEπþπþ andΔEK̄0K̄0

on a given volume are indistinguishable. The small mag-
nitude of QED effects on ΔEπþπþ might appear surprising
because αmπL ∼ 0.74 for this volume, but as discussed in
Sec. III the appropriate FV analog of the Coulomb
expansion parameter is ηL ¼ αmπL=ð4πÞ ∼ 0.06 for the
L=a ¼ 48 volume. Equations (32)–(35) therefore predict
that in addition to differences arising from aπ

þπþ
C ≠ aK̄

0K̄0

,
NLO corrections from Coulomb photon exchange modify
the LO FV energy shift by ∼20% on the L=a ¼ 48 lattice
volume, which is not expected to be distinguishable given

TABLE IV. FV energy shift results for systems of n ∈
f2;…; 12g neutral K̄0 mesons and charged πþ mesons for lattice
volumes with L=a ∈ f32; 48g. Results are determined by taking
correlated differences between LQCDþ QEDL ground-state
energies during the fit range sampling procedure described in
Appendix B.

aΔEnK̄0 aΔEnπþ

n L=a ¼ 32 L=a ¼ 48 L=a ¼ 32 L=a ¼ 48

2 0.0087(13) 0.00241(62) 0.0080(16) 0.00256(60)
3 0.0268(24) 0.0074(15) 0.0249(28) 0.0080(14)
4 0.0622(66) 0.0163(39) 0.0588(62) 0.0179(38)
5 0.107(11) 0.0286(62) 0.103(12) 0.0313(63)
6 0.177(20) 0.050(11) 0.175(21) 0.053(11)
7 0.267(30) 0.073(14) 0.263(28) 0.075(17)
8 0.399(62) 0.113(20) 0.382(51) 0.111(22)
9 0.53(11) 0.151(28) 0.495(86) 0.141(33)
10 0.75(28) 0.206(42) 0.64(12) 0.167(47)
11 0.5(1.2) 0.265(57) 0.80(25) 0.191(74)
12 0.3(1.8) 0.331(77) 0.76(46) 0.21(12)

TABLE V. FVenergy shift differences between systems of n ∈
f2;…; 12g charged πþ and neutral K̄0 mesons for lattice volumes
with L=a ∈ f32; 48g. Results are obtained by taking correlated
differences between fitted energies as in Table IV.

aΔEnπþ − aΔEnK̄0

n L=a ¼ 32 L=a ¼ 48

2 −0.0006ð12Þ 0.00009(20)
3 −0.0054ð29Þ −0.00009ð86Þ
4 −0.0070ð68Þ 0.0008(16)
5 −0.013ð11Þ 0.0012(31)
6 −0.022ð22Þ 0.0001(67)
7 −0.040ð39Þ −0.003ð11Þ
8 −0.065ð96Þ −0.016ð22Þ
9 −0.10ð17Þ −0.028ð25Þ
10 −0.14ð30Þ −0.045ð37Þ
11 0.30(95) −0.070ð59Þ
12 0.3(1.1) −0.081ð66Þ
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the statistical uncertainties on ΔEπþπþ and ΔEK̄0K̄0 . This
expectation is consistent with LQCDþ QEDL results, as
shown in Fig. 11.
The scattering lengths aπ

þπþ
C and aK̄

0K̄0

can be extracted
from a combined fit to the results for ΔEπþπþ and ΔEK̄0K̄0

shown in Table IV and the results for the precisely
determined correlated differencesΔEπþπþ − ΔEK̄0K̄0 shown
in Table V. Fitting to Eq. (32), as is appropriate for the
power counting PC1 of Eq. (33), gives the results,

NNLO; PC1∶ aK̄
0K̄0

mK̄0 ¼ 0.335ð26Þ;
aπ

þπþ
C mK̄0 ¼ 0.463ð41Þ; ð45Þ

where the common scale mK̄0 has been included for
both πþπþ and K̄0K̄0 to facilitate comparison of aK̄

0K̄0

and aπ
þπþ

C . The lowest-order QED effect on ΔEπþπþ from
Coulomb photon exchange in Eq. (32) decreases ΔEπþπþ

compared to the FV energy shift for neutral particles.8

The scattering length results in Eq. (45) show that this
effect from Coulomb photon exchange competes with
additional QED effects that lead to aπ

þπþ
C >aK̄

0K̄0

. Fitting
to Eq. (35), as is appropriate for the power counting PC2 of
Eq. (34), gives consistent results,

N3LO; PC2∶ aK̄
0K̄0

mK̄0 ¼ 0.332ð27Þ;
aπ

þπþ
C mK̄0 ¼ 0.465ð42Þ; ð46Þ

demonstrating that the fit is not overly sensitive to higher-
order terms absent in one or the other power counting.
Both Eqs. (32) and (35) neglect relativistic effects from

radiation photon exchange leading to OððMLÞ−1Þ FV
effects. These effects are estimated in Sec. III B to lead
to a shift in aπ

þπþ
C of order ∼3%, which is smaller than the

6–9% statistical uncertainty on aπ
þπþ

C in Eqs. (45)–(46) and
can be consistently neglected.

B. Charged multinucleon systems

Two-proton states receive QEDL FV effects from
Coulomb photon exchange proportional to αMpL that
are enhanced compared with those in the πþπþ case
discussed above. For both lattice volumes αMpL > 1,
and according to the scaling estimates of Ref. [43]
Coulomb effects should be nonperturbative. However,
ηpL ¼ αMpL=ð4πÞ ∼ 0.15 for the L=a ¼ 48 lattice volume
and the NRQEDL results in Sec. III expressed as power
series in ηpL show signs of convergence. Examining the
QEDL contributions proportional to appC =L in Eq. (32), the
NLO mixed strong-Coulomb contribution is suppressed
compared to the LO strong contribution by ðηpL=π2Þ2J ∼
0.51, while the corresponding NNLO contribution
is suppressed compared to the LO contribution by
ðηpL=π2Þð2R24 þ J 2 − LÞ ∼ 0.15. This suggests that
Coulomb effects should be perturbative and subdominant
compared to strong-interaction FV effects, which are
enhanced by the large size of baryon-baryon scattering
lengths [59,81–88]. The quantization condition in Eq. (21),
which neglects OððηpLÞ2Þ perturbative Coulomb effects and
ðMLÞ−1 relativistic effects but is nonperturbative in strong
interaction effects, is therefore needed to relate the pp FV
energy shifts to the infinite volume pp phase shift and
determine appC .
The two-nucleon isospin I ¼ 1 systems pp, nn, npð1S0Þ,

as well as the deuteron, are studied on both lattice volumes.
Relatively clean signals are seen for each system, and their
ground-state energies are determined with total (statistical
plus fitting systematic) uncertainties at the 2% level as
shown in Table III. FV energy-level shifts are determined
from combined analyses of the two-nucleon and single-
nucleon correlation functions as described in Appendix B,
and fit results for all systems are shown in Appendix B 4.
As shown in Table VI and Fig. 12, the statistical precision

FIG. 11. The blue and red points show the LQCDþ QEDL

results from Table IV for the K̄0K̄0 and πþπþ FVenergy shifts for
the L=a ∈ f32; 48g volumes. The red band shows the NRQEDL

predictions of Eq. (32) using the best result for aπ
þπþ

C in Eq. (45)
obtained by fitting the L=a ∈ f32; 48g results to Eq. (32).
The blue band shows the prediction of Eq. (32) with α ¼ 0

using the best-fit result for aK̄
0K̄0

in Eq. (45). As in Fig. 4, the
widths of the bands correspond to 67% confidence intervals
estimated using bootstrap resampling. A small horizontal offset is
applied symmetrically to πþ and K̄0 results.

8Coulomb photon exchange leads to a decrease in the energy
of a system of πþ mesons in QEDL because of zero-mode
subtraction. Physically, the energy decrease can be understood as
arising from attraction between the charged particle system and
the uniform background of opposite charge associated with zero-
mode subtraction [26]. Formally, zero-mode subtraction removes
the LO one-photon-exchange diagrams associated with repulsion
between charged particles. The dominant QED contribution
therefore arises at NLO and necessarily lowers the ground-state
energy since it appears at second order in perturbation theory.
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of this calculation is insufficient to resolve either the
proton-proton or neutron-neutron FV energy shift from
zero on either volume studied. Resolving nonzero FV shifts
of the Oð10 MeVÞ size expected for two-nucleon systems
without QED at these quark masses at a 95% confidence
level for the pp, nn, and np systems on the L=a ¼ 32
lattice volume would require statistical ensembles approx-
imately ∼50–100 times larger than the one used here, as
estimated by extrapolating the uncertainties of the four
different two-nucleon systems considered assuming 1=

ffiffiffiffi
N

p
scaling of uncertainties. Determination of appC through the
QEDL quantization condition of Eq. (21) is therefore left to
future work.
The two I ¼ 1=2 three-nucleon systems 3He and 3H are

also investigated, and their ground-state energies are given
in Table III. Correlated differences between three-nucleon
ground-state energies and the sums of their constituent

nucleon masses are show in Table VI. As with the two-
nucleon systems, fit results are shown in Appendix B 4.
The results for 3He and 3H are not precise enough to allow
FVeffects to be reliably determined. Precision in the three-
nucleon sector is significantly worse than in the two-
nucleon sector, as expected. The absolute size of FVenergy
shifts is also expected to be larger for three-nucleon
systems than two-nucleon systems, and for instance resolv-
ing an Oð50 MeVÞ FV energy shift at a 95% confidence
level for the 3He and 3H systems on the L=a ¼ 32 lattice
volume would require a statistical ensemble approximately
∼100 times larger than the one considered here, based on
an extrapolation analogous to that described for the two-
nucleon case.
Future high-precision LQCDþ QEDL calculations of

these multinucleon systems will provide insight into QED
effects on nucleon-nucleon and three-nucleon interactions
through a determination of the 3He-3H binding-energy
difference and its decomposition into QED and strong
isospin breaking effects from LQCDþ QEDL.

C. Systems of many charged mesons

Multipion correlation functions do not suffer from sig-
nificant exponential signal-to-noise degradation with an
increasing particle number and can be used to study QED
in the regime where the charge Z ∼ 1=α. In particular, the
correlation functions for systems with n ≤ 12 πþ mesons
described in Sec. II can be used to study systems with
Zα ≤ 1.2, reaching a charge density of n=L3 ∼ 1.2 fm−3.
The dominant strong interactions andQED effects onmany-
particle FVenergy shifts in Eqs. (41) and (42) both scalewith
n2, and both ΔEnπþ andΔEnK̄0 can be extracted for larger n
with better relative precision than from the n ¼ 2 case
discussed in Sec. IVA.
Results for ΔEnπþ, ΔEnK̄0 , and the correlated

differences ðΔEnπþ −ΔEnK̄0Þ for n∈ f2;…;12g are shown
in Tables II–V. QED effects leading to nonzero ðΔEnπþ −
ΔEnK̄0Þ can be resolved to better than 1σ on the L=a ¼ 32
lattice volume for 3 ≤ n ≤ 7, and on the L=a ¼ 48 lattice
volume for n ≥ 9. These 33 FVenergy shifts and correlated
differences ΔEnπþ , ΔEnK̄0 , and ðΔEnπþ − ΔEnK̄0Þ can be
used to constrain the low-energy interaction parameters
faπþπþC ; aK̄

0K̄0

; ηπ
þπþπþ

3 ðmK̄0Þ; ηK̄0K̄0K̄0

3 ðmK̄0Þg appearing in
Eqs. (41) and (42).9 Fits to the NNLO expression given
in Eq. (41) in PC1, which includes Oðη3LÞ Coulomb effects
but neglects three-body forces, underpredict LQCDþ
QEDL energy-shift results for n≳ 8 meson systems on
both lattice volumes and obtain a minimum χ2=Ndof ∼ 1.3.
The N3LO expression Eq. (42) in PC2 includes additionalFIG. 12. Points show the LQCDþ QEDL results from Table VI

for FVenergy shifts determined from the correlated differences of
two-nucleon and one-nucleon ground-state energies for the
neutron-neutron and proton-proton FV energy shifts for the
L=a ∈ f32; 48g volumes. A smaller (larger) horizontal offset
is applied symmetrically to pp and nn (npð1S0Þ and npð3S1Þ)
results.

TABLE VI. FVenergy shift results for systems of n ∈ f1; 2; 3g
protons and neutrons determined by fitting Eq. (9) to LQCDþ
QEDL Euclidean correlation function results as described in
Appendix B.

aΔEb

b L=a ¼ 32 L=a ¼ 48

pp 0.008(14) 0.011(11)
npð1S0Þ 0.000(17) 0.017(10)
nn 0.002(14) 0.021(10)
npð3S1Þ 0.017(13) 0.010(10)
3He −0.011ð96Þ 0.038(56)
3H 0.015(75) 0.080(45)

9The renormalization scale used to evaluate η3ðμÞ should be
chosen close to the “high” energy scale where NRQEDL is
matched to QEDL in order to avoid large logarithms that can
worsen EFT convergence. For simplicity, μ ¼ mK̄0 is used as the
renormalization scale for η3 throughout this work.
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free parameters related to three-body forces not present at
NNLO. Including three-body force parameters improves
the quality of the fit, and Eq. (42) provides a better descrip-
tion of the LQCDþQEDL results with χ2=Ndof∼0.8. Fit
results using theN3LOexpressionEq. (42) and uncertainties
computed using bootstrap resampling of the global fitting
procedure are compared to LQCDþ QEDL results for the
πþ and K̄0 energy shifts in Figs. 13–14. The results for the
meson scattering lengths are consistent with, but more
precise than, the results obtained from the two-meson FV
energy shifts alone,

N3LO; PC2∶ aK̄
0K̄0

mK̄0 ¼ 0.337ð19Þ;
aπ

þπþ
C mK̄0 ¼ 0.464ð29Þ: ð47Þ

It is noteworthy that results with Zα ≥ 1 can be fit by
the NRQEDL formula given in Eq. (42) without addi-
tional modifications to account for relativistic QED
effects or additional nonperturbative effects. Some
tensions between LQCDþ QEDL results and N3LO
NRQEDL fits can be observed for n≳ 8 meson systems
on the L=a ¼ 48 lattice volume in Fig. 13; however,
since these tensions are more significant for multi-K̄0

than multi-πþ systems they are unlikely to be signals of
nonperturbative QED effects and might result from
correlations between LQCDþ QEDL results with differ-
ent n not accounted for in the fitting procedure
employed here.
The three-pion scattering amplitude was calculated at LO

in χPT in Ref. [89] and is given by M3;th ¼ 108m2
K̄0=f4K̄0

(with conventions for the LO Lagrangian such that

(a)

(b)

FIG. 13. Points show the LQCDþ QEDL results from Table IV
for the FV energy shifts of multi-K̄0 and multi-πþ meson
systems as a function of meson number n on both lattice volumes.
Shaded bands show 67% bootstrap confidence intervals
for the predictions of Eq. (42) for the best-fit parameters
faπþπþC ; aK̄

0K̄0

; ηπ
þπþπþ

3 ðmK̄0Þ; ηK̄0K̄0K̄0

3 ðmK̄0Þg obtained from a
global fit to the L=a ∈ f32; 48g results for n ∈ f2;…; 12g
mesons in Tables IV–V as described in the main text. A small
horizontal offset is applied symmetrically to πþ and K̄0 results.

(a)

(b)

FIG. 14. Points show the LQCDþ QEDL results from Table V
for the FV energy-shift differences between multi-πþ and multi-
K̄0 systems as a function of meson number n on both lattice
volumes. The shaded band shows the 67% bootstrap confidence
interval for the corresponding prediction of Eq. (42) for the best-
fit parameters faπþπþC ; aK̄

0K̄0

; ηπ
þπþπþ

3 ðmK̄0Þ; ηK̄0K̄0K̄0

3 ðmK̄0Þg ob-
tained from a global fit to the L=a ∈ f32; 48g results for n ∈
f2;…; 12g mesons, given in Tables IV–V, as described in the
main text.
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fπþ ∼ 130 MeV).10 This can be combined with Eq. (43) to
provide a χPT prediction for the nonrelativistic 3K̄0 contact
interaction,

ηK̄
0K̄0K̄0

3 ðμÞ ¼ 3

4mK̄0f4K̄0

þ mK̄0

64π3f8K̄0

ð3
ffiffiffi
3

p
− 4πÞ ln

�
mK̄0

2πμ

�

þ 3m3
K̄0

1024π6f8K̄0

S3;th þ
3mK̄0

2f6
K̄0

C3; ð48Þ

where S3;th and C3 are constants defined below Eq. (43),
and to obtain a result entirely in terms of mK̄0 and fK̄0 , the
LO χPT relations [90]

aK̄
0K̄0

mK̄0 ¼ m2
K̄0

8πf2K̄0

; rK̄
0K̄0

aK̄
0K̄0

m2
K̄0 ¼ 3; ð49Þ

have been used. The first of these relations also allows fK̄0

and therefore ηK̄
0K̄0K̄0

3 ðμÞ to be predicted numerically at LO
in χPT for the quark masses used in this work. Inserting the
LQCDþ QEDL results formK̄0aK̄

0K̄0

from Eq. (47) into the
first relation in Eq. (49) provides a prediction for fK̄0 at
the parameters of this LQCDþ QEDL calculation that is
valid at LO in χPT:

afK̄0 ¼ 0.0476ð35Þ; fK̄0 ¼ 139ð10Þð4Þ MeV: ð50Þ

Here, the first uncertainty is statistical and the second
uncertainty is from the uncertainty in the lattice spacing. In
this calculation mK̄0 ¼ 404ð1Þð12Þ MeV is between the
physical pion and kaon masses; this can be compared with
fπþ ∼ 130 MeV and fK̄0 ∼ 156 MeV extracted from
experiments [91]. Inserting this result for fK̄0, and the
result for aK̄

0K̄0

in Eq. (47), into Eq. (48) then gives the
numerical result mK̄0f4K̄0ηK̄

0K̄0K̄0

3 ðmK̄0Þ ¼ 0.62ð27Þ. This
result is valid at LO in χPT and can be compared to
LQCDþ QEDL results for ηK̄

0K̄0K̄0

3 ðmK̄0Þ combined with
the result for fK̄0 given in Eq. (50).
Dimensionless LQCDþ QEDL results for the three-

body coupling that are expected to be Oð1Þ in χPT are
given by

ηK̄
0K̄0K̄0

3 ðmK̄0ÞmK̄0f4K̄0 ¼ 2.28ð86Þ;
ηπ

þπþπþ
3 ðmK̄0ÞmK̄0f4K̄0 ¼ 0.72ð73Þ: ð51Þ

The result of this work for ηK̄
0K̄0K̄0

3 ðmK̄0Þ is consistent
within 1σ uncertainties with the LQCD results of Ref. [53],
which were obtained in a calculation using quark masses
similar to those used in this work, corresponding to a pion
mass of 352 MeV, and extracted η3 by fitting to the same
OðL−6Þ threshold expansion as used here for multi-K̄0

systems. The corresponding result for ηπ
þπþπþ

3 ðmK̄0Þ is
about 2σ smaller than ηK̄

0K̄0K̄0

3 ðmK̄0Þ, although it is also
consistent within 1σ uncertainties with the LQCD results of
Ref. [53]. Results for ηK̄

0K̄0K̄0

3 ðmK̄0Þ and ηπ
þπþπþ

3 ðmK̄0Þ as
well as comparisons to LO χPT and to the LQCD results of
Ref. [53] are shown in Fig. 15. Instead of using a
global fit to extract the scattering lengths and three-body
interaction parameters as above, one can instead fix the
scattering lengths to the results obtained using fits to
ΔEπþπþ , ΔEK̄0K̄0 shown in Eq. (46) and extract the
three-body interaction parameters from fits to multi-
meson results on each volume separately in order to
provide an estimate of higher-order FV corrections.
Using this alternative fitting procedure to extract the
three-body interaction parameters from fits using only
the L=a ¼ 32 results gives ηK̄

0K̄0K̄0

3 ðmK̄0ÞmK̄0f4K̄0 ¼
2.1ð9Þ and ηπ

þπþπþ
3 ðmK̄0ÞmK̄0f4K̄0 ¼ 0.5ð9Þ, while using

only the L=a ¼ 48 results gives ηK̄
0K̄0K̄0

3 ðmK̄0ÞmK̄0f4K̄0 ¼
7.0ð2.6Þ and ηπ

þπþπþ
3 ðmK̄0ÞmK̄0f4K̄0 ¼ 5.6ð2.4Þ, indicating

that the L=a ¼ 32 results are primarily responsible for

FIG. 15. The blue and red points show the best-fit values and
67% bootstrap confidence intervals for the three-body interaction
parameters for neutral K̄0K̄0K̄0 and charged πþπþπþ systems,
respectively, including a common normalization factor of f4K̄0mK̄0

to obtain a dimensionless quantity. The green point shows the
LQCD result of Ref. [53], which was obtained in a calculation
using a pseudoscalar meson mass of 352 MeV similar to mK̄0

here. The black point shows the LO χPT prediction of Eq. (48)
multiplied by the same normalization factor.

10The SUð2Þ χPT result forM3;th given in Ref. [89] is valid for
tree-level K̄0K̄0 scattering after reinterpreting the SUð2Þ isospin
χPT Lagrangian in terms of the SUð2Þ V-spin doublet ðπþ; K̄0Þ.
More formally, the V-spin analog of G-parity acts as ðπþ; K̄0Þ →
ðK0;−π0Þ and ðK0;−π0Þ → ð−πþ; K̄0Þ and therefore relates
the three-body contact operators of the SUð2Þ isospin and
SUð2Þ V-spin Lagrangians by ðπþπ−Þ3 → ðK̄0K0Þ3. For the
SUð3Þ flavor symmetric quark mass scheme used here, V-spin
is an exact symmetry of the leading order χPT Lagrangian broken
only by QED corrections at higher orders.
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constraining the three-body interaction parameters and
suggesting that higher-order FV corrections to the extracted
three-body interaction parameters may be significant.
Additional consistency checks on the three-body interac-
tion determinations are discussed in Ref. [53], where
combinations of n-meson FV energy shifts with fixed n
are presented that isolate the three-body interaction param-
eter in the threshold expansion. In all cases, differences
between global fit results and results for three-body
interactions parameters obtained with fixed n and fixed
L=a in this way are smaller than the corresponding
differences between global fits results and the combined
fits to all n and fixed L=a discussed above.
Differences between ηπ

þπþπþ
3 ðmK̄0Þ and ηK̄

0K̄0K̄0

3 ðmK̄0Þ
might arise from QED effects on M3;th beyond LO in
χPT, or from QED effects on the matching between
Mπþπþπþ

3;th and ηπ
þπþπþ

3 ðmK̄0Þ. Differences between the

extracted ηπ
þπþπþ

3 ðmK̄0Þ and ηK̄
0K̄0K̄0

3 ðmK̄0Þ might also spu-
riously arise from the mismodeling of OððMLÞ−1Þ relativ-
istic effects estimated in Sec. III B to modify FV energy
shifts by ∼3%. This estimated shift is larger or comparable
to the statistical uncertainties on the three-body energy shift
for all nπþ systems on the L=a ¼ 48 volume and nπþ
systems with n≲ 6 on the L=a ¼ 32 volume. Given these
systematic uncertainties in conjunction with the statistical
uncertainties on ηπ

þπþπþ
3 ðmK̄0Þ and ηK̄

0K̄0K̄0

3 ðmK̄0Þ, the
results of this work do not provide significant evidence
for differences in nonrelativistic short-range three-meson
interactions arising from QED effects.

V. CONCLUSIONS

In this work, lattice QCDþ QEDL has been used to
study systems of up to 12 charged or neutral mesons as well
as systems of one, two, and three nucleons. Calculations
were performed in two lattice volumes with charge-
dependent quark masses tuned such that strong isospin
breaking effects are negligible and energy differences
between charged and neutral systems are primarily QED
effects. While the ground-state energies of two- and three-
nucleon systems are determined with few-percent-level
precision, QED effects leading to differences between
two-nucleon and three-nucleon FV energies are not
resolved. Significantly higher precision will be needed in
future calculations of QED effects in multinucleon systems.
Differences between charged and neutral FV energy shifts
are resolved at the level of 1–2σ for systems of 3–12
mesons, demonstrating the presence of QED effects on
meson-meson interactions. Analysis of the FVenergy levels
for multimeson systems using nonrelativistic EFT has
allowed the extraction of the πþπþ and K̄0K̄0 scattering
lengths as well as the 3πþ and 3K̄0 interaction parameters.
Differences between aπ

þπþ
C and aK̄

0K̄0

are clearly resolved,
demonstrating that additional QED effects on meson-meson
interactions can be resolved beyond the Coulomb photon

exchange explicitly included in the EFT. Differences
between the three-body interactions for charged and neutral
mesons are not well resolved.
The QED effects on multimeson systems determined

from LQCDþ QEDL in this work are well described by
NRQEDL results that incorporate short-range two- and
three-body contact interactions as well as perturbative
Coulomb photon exchange. Although Coulomb photon
exchange must be treated nonperturbatively in sufficiently
large volumes, the expansion parameter describing the size
of FV Coulomb effects is found to be α=v ¼ αML=ð4πÞ by
examining the convergence pattern of the NRQEDL
expansion. This includes a numerically significant factor
of 1=ð4πÞ compared to the parameter αML discussed in
Ref. [43]. For systems with unphysically large α and quark
masses such as those studied here, αML=ð4πÞ ≪ 1 is
satisfied for volumes satisfying L ≪ 20 fm for nucleons
(L ≪ 50 fm for pions), and Coulomb corrections to the LO
strong interaction FV energy shift appear perturbative for
L≲ 6 fm for nucleons (L≲ 15 fm for pions). For calcu-
lations with physical α and quark masses, FV Coulomb
effects are reduced by a factor of 20 for nucleons (40 for
pions) and are expected to be perturbative for all practically
accessible lattice volumes. The EFT analysis of this work
also demonstrates that NRQEDL results for FV energy
shifts are unaffected by the complications of photon zero-
mode subtraction up to effects suppressed by OððMLÞ−3Þ
that are consistently neglected along with other relativistic
effects. Future LQCDþ QEDL calculations, especially
those using lighter quark masses and/or smaller values
of the QED fine structure constant, can therefore be
interpreted using hadronic EFTs with perturbative
Coulomb effects with a similar procedure to the one
undertaken here. Such calculations will give insight into
the quark mass dependence of QED effects on meson-
meson interactions, and, combined with higher-precision
calculations of multinucleon FV energy levels, will permit
first principles predictions of QED effects on nucleon-
nucleon interactions and QED effects in light nuclei.
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APPENDIX A: MATCHING
NRQEDL AND QEDL

Neglecting relativistic effects suppressed by M−1

(including nonlocal effects from zero-mode subtraction
discussed in Refs. [2,30,32,36,38,39]), the NRQEDL
Lagrangian is identical for bosons and fermions. For a
particle with charge Q ¼ 1, it is given by

LNRQEDL ¼ ψ†
�
iD0 −

DiDi

2M

�
ψ −

2πa
M

ðψ†ψÞ2 þ Lξ
γ;

¼ ψ†
�
i∂0 −

∂i∂i

2M

�
ψ − eA0ðψ†ψÞ

−
2πa
M

ðψ†ψÞ2 þ Lξ
γ; ðA1Þ

where in this section wework in Minkowski spacetimewith
ð−þþþÞ signature, Aμ ¼ A†

μ is the photon field, Fμν ¼
∂μAμ − ∂νAμ is the field strength tensor, Dμ ¼ ∂μ þ iAμ,
and in generic Rξ gauge the photon Lagrangian is

Lξ
γ ¼ −

1

4
FμνFμν þ 1

2ξ
ð∂μAμÞ2: ðA2Þ

Results for the Landau gauge QCDþ QEDL calculations
performed in the main text are obtained by setting ξ ¼ 0. In
what follows, a finite spatial volume of extent L3 with
PBCs is considered. Zero mode subtraction can be imple-
mented in NRQEDL by defining the FV photon field as a
Fourier transform of the zero-mode subtracted momentum-
space field,

AμðxÞ ¼
Z

dp0

2π

1

L3

X
n∈Z3nf0g

e−ip
0x0þ2πi

L n·xÃμðp0;nÞ;

Ãμðp0;nÞ ¼
Z

d4xeip
0x0−2πi

L n·xAμðxÞ; ðA3Þ

where n ∈ Z3nf0g excludes the photon zero mode. Zero-
mode subtraction can be defined at the path integral level as
a constraint on the photon field [38], but for perturbative
matching with QEDL Eqs. (A1)–(A3) define NRQEDL.
The NRQEDL massive particle propagator GNRQEDL is

given by

GNRQEDLðp0;nÞ ¼
Z

d4xeip
0x0−2πi

L n·xhψðxÞψ†ð0Þi

¼ i
p0 − 1

2M ð2πnL Þ2 þ iϵ
: ðA4Þ

The photon propagator is given by

GγL
μνðp0;nÞ ¼

Z
dx0

X
x

eip
0x0−2πi

L p·xhAμðxÞAνð0Þi

¼
i½gμν − ð1 − ξÞ pμpν

p2 �
ðp0Þ2 − ð2πnL Þ2 þ iϵ

: ðA5Þ

Introducing Fourier transformed fields,

ψ̃ðp0;nÞ ¼
Z

d4xeip
0x0−2πi

L n·xψðxÞ;

ψðxÞ ¼
Z

dp0

2π

1

L3

X
n∈Z3

e−ip
0x0þ2πi

L n·xψ̃ðp0;nÞ: ðA6Þ

Matching between QEDL and NRQEDL is performed for
four-point correlation functions describing (off shell) par-
ticles with energy M and three-momentum p≡ 2π

L r with
r ∈ Z3,

MNRQEDL ¼ GNRQEDLð0; rÞ−4hψ̃ð0; rÞ2ψ̃ð0; rÞ†2i: ðA7Þ

At tree level this correlation function is given by

MNRQEDL
LO ¼ −

8πa
M

: ðA8Þ

The choice r ≠ 0, which does not affect the tree-level
correlation function, is made in order to regulate IR
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divergences in the one-loop correlation function. Although
one-photon-exchange contributions lead to an IR divergence
(regulated for instance by considering nonzero momentum
transfer) in the NRQED analog of Eq. (A8), one-photon-
exchange contributions to the NRQEDL amplitude in
Eq. (A7) vanish because of zero-mode subtraction.
Matching is performed by expanding MNRQEDL and its

QEDL analogMQEDL perturbatively in the small parameters
α, 1=ðMLÞ, and a=L and defining higher-order terms in the
NRQEDL Lagrangian so that QEDL and NRQEDL agree
order by order in this expansion.Matchingwill be performed
to leading order in 1=ðMLÞ and third order in ηL ¼
αML=ð4πÞ and a=L. This corresponds to NNLO in the
power counting of Eq. (33) and is equivalent to the non-
relativistic limit with up to two-loop contact interactions and
Coulomb photon exchange. This matching is also sufficient
forN3LO in the power counting of Eq. (34),which decreases
the relative importance of Coulomb photon exchange and
only requires one-loop Coulomb photon exchange effects.
This LO NRQEDL amplitude in Eq. (A8) can be

straightforwardly matched to its QEDL analog. The scalar
QEDL Lagrangian is

LQEDL ¼−ðDμφÞ†Dμφ−M2φ†φ−8πaMðφ†φÞ2þLξ
γ;

¼−ð∂μφÞ†∂μφ−M2φ†φþ ieAμðφ†∂μφ− ð∂μφÞ†φÞ
−e2AμAμφ†φ−8πaMðφ†φÞ2þLξ

γ; ðA9Þ

where Lξ
γ is defined in Eq. (A2). The fields appearing in the

QEDL and NRQEDL Lagrangians are related by

ψðxÞ ¼
ffiffiffiffiffiffiffi
2M

p
eiMtφðxÞ: ðA10Þ

The scalar QEDL particle propagator is

GQEDLðp0;nÞ ¼
Z

dx0
X
x

eip
μxμhφðxÞφ†ð0Þi

¼ i
ðp0Þ2 − ð2πnL Þ2 −M2 þ iϵ

: ðA11Þ

The QEDL photon propagator is identical to the NRQEDL
propagator Eq. (A5). Introducing Fourier transformed
fields φ̃ as in Eq. (A6), the FV two-particle amplitude in
QEDL normalized identically to the NRQEDL amplitude is
given by

MQEDL
LO ¼ 1

4M2
GQEDLðM; rÞ−4hφ̃ðM; rÞ2φ̃ðM; rÞ†2i;

¼ −
8πa
M

; ðA12Þ
in agreement with Eq. (A8). This demonstrates that the
four-fermion contact interactions in Eqs. (A1) and (A9) are
normalized consistently at tree level.
Corrections to the LO amplitude arise from one-loop

diagrams shown in Figs. 6–8. The one-loop diagrams
shown in Fig. 6 involve similar sums/integrals over
loop momenta and differ only in the number of photon
propagators nγ and contact interactions present. The con-
tribution to the amplitude from each diagram is denoted
MNRQEDL

NLO ðnγÞ where nγ ∈ f0; 1; 2g labels the numbers of
photon propagators present,

MNRQEDL
NLO ðnγÞ¼

i16π2a2

M2L3

�
2αM
a

�
nγX

n

ð0Þ
Z

dk0

2π

�
1

k0− 2π2ðn−rÞ2
ML2 þ iϵ

��
1

k0þ 2π2ðnþrÞ2
ML2 − iϵ

�0B@
1− ð1−ξÞ ðk0Þ2

ðk0Þ2−4π2n2

L2
þiϵ

ðk0Þ2− 4π2n2

L2 þ iϵ

1
CA

nγ

;

¼−
16π2a2

M2L3

�
αM
a

�
nγX

n

ð0Þ
	
Res

�
−
2π2ðn− rÞ2

ML2
þ iϵ

�
þRes

�
−
2πjnj
L

þ iϵ

�

; ðA13Þ

where ResðxÞ indicates the residue of the integrand in the first line at the pole x and
P

n
ð0Þ corresponds to

P
n∈Z3

for nγ ¼ 0 and to
P

n∈Z3nf0g for nγ ≥ 1. After taking the ϵ → 0 limit, the residue at the particle pole 2π2ðnþ rÞ2=ðML2Þ is
given by

Res

�
−
2π2ðn − rÞ2

ML2

�
¼ −

ML2

4π2ðn2 þ p2Þ

2
64 1
4π4ðn−rÞ4
M2L4 − 4π2n2

L2

−
ð1 − ξÞ 4π4ðn−rÞ4M2L4

ð4π4ðn−rÞ4M2L4 − 4π2n2

L2 Þ2

3
75
nγ

;

¼ −
ML2

4π2

�
−

L2

4π2

�
nγ 1

ðn2 þ r2Þn2nγ
½1þOððMLÞ−2Þ�; ðA14Þ

where the last line includes an expansion in powers of ðMLÞ−1. This expansion is legitimate provided that the sum over n
converges, which holds for nγ ≥ 1. For nγ ¼ 0 there is a linear UV divergence that can be removed by adding a UV
counterterm,

X
n∈Z3

1

n2 þ r2
→ lim

Λ→∞

Xjnj<Λ
n∈Z3

1

n2 þ r2
− 4πΛ; ðA15Þ
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and after making the replacement of Eq. (A15) the 1=ðMLÞ
expansion can be performed in Eq. (A14). The photon pole
residue at −2πjnj=L involves energy denominators of order
1=L and is suppressed by OððMLÞ−1Þ compared to the
particle-pole contributions in Eq. (A14) where particle
propagator energy denominators are of order M=L2. For
all diagrams in Figs. 7–8, particle poles only appear in
either the upper or lower half of the complex plane and only

photon poles contribute. After performing the energy
integrals these diagrams can be straightforwardly verified
to be suppressed by OððMLÞ−1Þ or OððMLÞ−2Þ compared
to Eq. (A16). The full NLO amplitude in NRQEDL is
therefore a sum of the amplitudesMNRQEDL

NLO ðnγÞ associated
with the diagrams in Fig. 6 obtained by substituting
Eq. (A14) into Eq. (A13),

MNRQEDL
NLO ðnγÞ ¼

4πa
M

�
−
αML
2π3

�
nγ
�

a
πL

�
1−nγX

n

ð0Þ 1

ðn2 þ r2Þn2nγ
½1þOððMLÞ−1Þ�: ðA16Þ

Contributions with different nγ differ parametrically and can be matched independently between NRQEDL and QEDL.
The QEDL amplitudes associated with the NLO diagrams in Fig. 6 are given by

MQEDL
NLO ðnγÞ ¼ −

i64π2a2

L3

�
−α
2aM

�
nγ
Z

dk0

2π

X
n

ð0Þ 1

ðk0 þMÞ2 − 4π2ðrþnÞ2
L2 −M2 þ iϵ

×
1

ðk0 −MÞ2 − 4π2ðr−nÞ2
L2 −M2 þ iϵ

�
Nξ

γðk0;nÞ
ðk0Þ2 − 4π2n2

L2 þ iϵ

�nγ

; ðA17Þ

where

Nξ
γðk0;nÞ ¼ ðk0Þ2 − 4M2 þ

�
4π2

L2

�
ð4r2 − nÞ2 − ð1 − ξÞ

	−ðk0Þ4 þ 4M2ðk0Þ2 þ ð4π2L2 Þð4n · r − n4Þ
ðk0Þ2 − ð4π2L2 Þn2 þ iϵ



: ðA18Þ

The k0 integral can be performed with contour integration. Closing the contour in the upper half plane, the result includes
contributions from a particle pole k0 ¼M−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2þ4π2ðnþ rÞ2=L2

p
¼−2π2ðnþ rÞ2=ðML2Þ½1þOððMLÞ−2Þ�, a photon

pole at k0 ¼ 2πjnj=L, and an antiparticle pole at k0 ¼ −2M½1þOððMLÞ−2Þ�,

MQEDL
NLO ðnγÞ ¼

64π2a2

L3

�
−α
4aM

�
nγX

n

ð0Þ
	
Res

�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4π2ðnþ rÞ2

L2
− iϵ

r �

þ Res

�
−2πjnj

L
þ iϵ

�
þ Res

�
−M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4π2

L2
ðn − rÞ2 þ iϵ

r �

: ðA19Þ

Taking the ϵ → 0 limit and expanding to leading order in ðMLÞ−1, the residue at the particle pole is given by

Res

�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4π2ðnþ rÞ2

L2
− iϵ

r �
¼ L2

16π2M

�
M2L2

π2

�
nγ 1

ðn2 þ r2Þn2nγ
: ðA20Þ

As in the NRQEDL case, the residue at the photon pole −2πjnj=L is suppressed compared to the residue at the particle pole
by OðMLÞ−1.
The residue at the antiparticle pole at −2Mð1þOðMLÞ−1Þ does not appear in the corresponding NRQEDL expression

Eq. (A13) and is therefore associated with contributions that do not appear in loop diagrams in NRQEDL. This residue is
given by

Res

�
−M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4π2

L2
þ iϵ

r �
¼ −

1

16M3

�
−

π2

M2L2

�
nγ ½2r2ð−4þ ξÞ þ n2ð−3þ 2ξÞ − 4r · nð−2þ ξÞ�nγ : ðA21Þ

The term involving two contact interactions involves the UV divergent sum
P

n
ð0Þ1, which for nγ ¼ 0 must be consistent

with the infinite-volume result
R
dDk1 ¼ 0 after subtracting UV counterterms,
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X
n∈Z3

1 → 0: ðA22Þ

This leads to a vanishing contribution from the nγ ¼ 0

diagram appearing in the absence of QEDL, which is
consistent with the expectation that antiparticle-pole con-
tributions from off shell intermediate states that are absent
nonrelativistically do not lead to power-law FV effects in
local field theories. The terms with nγ ≥ 1 differ by zero
mode subtraction. Since the n ¼ 0 contribution to

P
n 1 is

unity, it follows from Eq. (A22) thatX
n∈Z3nf0g

1 → −1: ðA23Þ

Sums with n2k with k > 0 similarly require UV counter-
terms and vanish after including them. Zero-mode con-
tributions to these sums vanish, and soX

n∈Z3nf0g
n2k → 0; ðA24Þ

for k > 0. After subtracting UV counterterms the antipar-
ticle pole contribution becomes

X
n∈Z3nf0g

Res

�
−M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 4π2

L2
þ iϵ

r �

→
1

16M3

�
−
π22r2ð−4þ ξÞ

M2L2

�
nγ
; ðA25Þ

for nγ ≥ 1. This leads to a finite contribution toMQEDL
NLO that

does not arise in the corresponding loop diagrams contrib-
uting toMNRQEDL

NLO . Local counterterms involving powers of
L−1 must be added to the NRQEDL Lagrangian in order to
reproduce this relativistic effect arising from zero-mode
subtraction. Inserting Eq. (A25) into Eq. (A19) shows
that the dominant contribution to MQEDL

NLO arising from the
nγ ¼ 1 diagram antiparticle pole is

−
4πa
M

�
απ3ð−4þξÞr2

4M5L5

�
¼−

8πa
M

�
πð−4þξÞ

16

�
α

ðMLÞ3
�
p2

M2

�
:

ðA26Þ

This contribution vanishes for FV systems in the two-
particle rest frame where p ¼ 0. For boosted systems with a
nonzero center-of-mass velocity [assumed to be nonrela-
tivistic p2 ≪ M2 in the ðMLÞ−1 expansion above], this
contribution is proportional to the LO contact interaction
times the velocity squared times a relativistic QED sup-
pression factor of α=ðMLÞ−3. For boosted systems, the
NRQEDL contact interaction in Eq. (A1) must therefore be
supplemented with a nonlocal counterterm suppressed by
the same factor of α=ðMLÞ−3. This is analogous to the self-
energy of a single scalar field, which is shown in Ref. [38]
to require a nonlocal counterterm equal to the scalar mass
times the velocity squared times a relativistic QED sup-
pression factor of α=ðMLÞ−3. The LQCDþ QEDL calcu-
lations discussed in the main text are performed in the
center-of-mass rest frame, and these nonlocal counterterms
vanish. Nonvanishing nonlocal counterterms appear for
fermion masses in NRQEDL even in the two-particle rest
frame, but since effects proportional to ðMLÞ−1 are
neglected throughout this work it is consistent to neglect
all nonlocal counterterms suppressed by α=ðMLÞ−3.
The NLOQEDL amplitude is therefore given by inserting

the particle-pole residue in Eq. (A20) into Eq. (A19),

MQEDL
NLO ðnγÞ¼

4πa
M

�
−
αML
2π3

�
nγ
�

a
πL

�
1−nγ

×
X
n

0 1

ðn2þ r2Þn2nγ
½1þOððMLÞ−1Þ�;

ðA27Þ

which is identical to Eq. (A16). The ðMLÞ−1 suppression of
diagrams in Figs. 7 and 8 arising from the absence of particle
pole contributions is identical in QEDL and NRQEDL.
Additional diagrams appearing in QEDL but not NRQEDL
associated with the two-particle-two-photon vertex or
particle-antiparticle pair creation can be similarly verified
to be suppressed by powers of ðMLÞ−1. The NRQEDL
Lagrangian in Eq. (A1) therefore reproduces QEDL at NLO.
Matching at NNLO proceeds similarly. The NNLO

diagrams shown in Fig. 6 can all be expressed in terms
of the amplitude

MNRQEDL
NNLO ðn1;n2;n3Þ¼

64π3a3

M3L6

�
αM
a

�
n1þn2þn3X

n;m

ð0Þ
Z

dk0

2π

1

ðk0þ2π2ðr−nÞ2
ML2 −iϵÞðk0−2π2ðrþnÞ2

ML2 þiϵÞ

0
B@
1−ð1−ξÞ ðk0Þ2

ðk0Þ2−4π2n2

L2

ðk0Þ2−4π2n2

L2 þiϵ

1
CA

n1

×
Z
dq0

2π

1

ðq0þ2π2ðr−mÞ2
ML2 −iϵÞðq0−2π2ðrþmÞ2

ML2 þiϵÞ

0
B@
1−ð1−ξÞ ðk0−q0Þ2

ðk0−q0Þ2−4π2ðn−mÞ2
L2

ðk0−q0Þ2−4π2ðn−mÞ2
L2 þiϵ

1
CA

n20
B@
1−ð1−ξÞ ðq0Þ2

ðq0Þ2−4π2m2

L2

ðq0Þ2−4π2m2

L2 þiϵ

1
CA

n3

;

ðA28Þ

CHARGED MULTIHADRON SYSTEMS IN LATTICE QCDþ QED PHYS. REV. D 103, 054504 (2021)

054504-27



where ni ∈ f0; g for i ∈ f1; 2; 3g labels whether each
interaction is a four-particle contact interaction or photon
exchange and

P
n;m

ð0Þ excludes n ¼ 0 if n1 ¼ 1 or n2 ¼ 1

and excludes m ¼ 0 if n2 ¼ 1 or n3 ¼ 1. Both energy

integrands include poles where a particle is on shell as well
as poles where a photon is on shell, and, as above, photon-
pole contributions are suppressed by OððMLÞ−1Þ. Evalu-
ating the q0 and k0 integrals then gives

MNRQEDL
NNLO ðn1; n2; n3Þ ¼ −

4πa
M

�
a
πL

�
2−n1−n2−n3

�
−
αML
2π3

�
n1þn2þn3

×
X
n;m

ð0Þ 1

ðn2 þ r2Þðm2 þ r2Þn2n1ðn −mÞ2n2m2n3
½1þOððMLÞ−1Þ�; ðA29Þ

where UV counterterms should be included as in Eq. (A15). Similarly to the NLO case, the NNLO diagrams in Figs. 7 and 8
only include photon pole contributions and are suppressed by OððMLÞ−1Þ or OððMLÞ−2Þ compared to Eq. (A29).
The corresponding QEDL NNLO amplitudes are given by

MQEDL
NNLOðn1; n2; n3Þ ¼

1024π3a3M
L6

�
−

α

4aM

�
n1þn2þn3X

n;m

ð0Þ
Z

dk0

2π

�
Nξ

γðk0;nÞ
ðk0Þ2 − 4π2n2

L2 þ iϵ

�n1

×
1

ððk0 −MÞ2 − 4π2ðn−rÞ2
L2 −M2 þ iϵÞððk0 þMÞ2 − 4π2ðnþrÞ2

L2 −M2 þ iϵÞ

×
Z

dq0

2π

�
Nξ

γðk0 − q0;n −mÞ
ðk0 − q0Þ2 − 4π2ðn−mÞ2

L2 þ iϵ

�n2
�

Nξ
γðq0;mÞ

ðq0Þ2 − 4π2m2

L2 þ iϵ

�n3

×
1

ððq0 −MÞ2 − 4π2ðm−rÞ2
L2 −M2 − iϵÞððq0 þMÞ2 − 4π2ðmþrÞ2

L2 −M2 þ iϵÞ
: ðA30Þ

Contributions from photon and antiparticle poles are again suppressed by powers of ðMLÞ−1, and evaluating the q0 and k0

energy integrals gives

MQEDL
NNLOðn1; n2; n3Þ ¼ −

4πa
M

�
a
πL

�
2−n1−n2−n3

�
−
αML
2π3

�
n1þn2þn3

×
X
n;m

ð0Þ 1

ðn2 þ p2Þðm2 þ p2Þn2n1ðn −mÞ2n2m2n3
½1þOððMLÞ−1Þ�: ðA31Þ

All other diagrams are again suppressed by powers of
ðMLÞ−1, and agreement between Eqs. (A29) and (A31)
shows that nonlocal counterterms are suppressed by
powers of ðMLÞ−1 and can be neglected to the accuracy
considered here.
While the matching in this section has been explicitly

performed for scalar QEDL, the ðMLÞ−1 suppression of
photon and antiparticle poles only relies on the structure
of QEDL propagator denominators that are identical for
scalars and fermions. The ðMLÞ−3 suppression of anti-
particle pole contributions leading to nonlocal two-body
counterterms also arises from the denominator structure of
the QEDL propagators and is expected to be generic for
bosons and fermions. The numerator structure of the
scalar QEDL propagators above is relevant for ðMLÞ−1
suppressed relativistic effects, and in particular the
scalar QEDL antiparticle pole in Eq. (A21) includes

vanishing numerator factors for a system at rest that
lead to p2=M2 velocity suppression of nonlocal counter-
terms in scalar NRQEDL. This cancellation might be
absent for fermions, and nonlocal two-body counterterms
might be relevant for QEDL calculations of charged
fermions in the center-of-mass rest frame. This would
parallel the situation for one-body nonlocal counterterms,
which arise at Oðα=ðMLÞ3Þ for fermions with any center-
of-mass velocity and for scalars with nonzero center-of-
mass velocity.

APPENDIX B: FITTING PROCEDURES

1. Energy level determination

In general the spectral representation in Eq. (8) cannot be
inverted to determine the full energy spectrum from finite
samples of correlation functions over a finite range of
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source/sink separations. Any fitting procedure to extract
energies from correlation functions involves making
several choices, in particular the range of t to include
in the fit, the number of excited states to include in a
truncation of Eq. (8) to use as a fitting model, and how to
estimate the covariance matrix from a finite statistical
ensemble. In order to assess the systematic uncertainties
associated with these fitting choices and provide a
reproducible procedure for extracting energy levels from
correlation function results, we use an approach detailed
here for making fitting choices based on well-defined
statistical criteria and random sampling over the space of
possible fitting choices.
The first step in this fitting procedure is choosing the

maximum source/sink separation tmax included in the fit.
For (multi)baryon correlation functions, the signal-to-noise
(SN) problem implies that results with larger temporal
separation t make exponentially smaller contributions to χ2

when fitting energy levels from correlation functions. For
the nucleon, the scaling SNðGÞ ¼ GðtÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðGðtÞÞp
∼

e−ðMN−3
2
mπÞt predicted by Parisi [95] and Lepage [96] applies

in the limit of a large statistical ensemble size N → ∞ and
shows that fit results are exponentially insensitive to
the choice of tmax. Similar results apply for multinucleon
systems with baryon number A where SNðGÞ ¼
GðtÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðGðtÞÞp
∼ e−AðMN−3

2
mπÞt for large t. For fixed N

(and, since volume-averaging increases SN, for fixed L)
it is important to choose a fixed tmax before the SN has
degraded to the point where correlation function esti-
mates are unreliable.11 The SN ratio decreases with t at
small and intermediate t before saturating at an Oð1Þ
value in the noise region, and to avoid the noise region
tmax should not exceed the smallest t where SNðGÞ ¼
GðtÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarGðtÞp
reaches a specified Oð1Þ cutoff. For

positive-definite meson correlation functions this issue
does not arise, and the maximum t that can be reliably
included in the fit is only limited by the accuracy by
which finite-temperature effects are modeled. In this
work, finite-temperature excited-state effects are
neglected, and finite-temperature effects on correlation
functions with t ∼ T=2, where T is the length of the
Euclidean time direction, are not reliably modeled. In our
fitting procedure, tmax is therefore chosen to be the
minimum t satisfying either: the correlation function
noise-to-signal ratio at (tþ a) is smaller than a specified
tolerance (final results use tolnoise ¼ 1.0), the correlation

function sample mean at tþ a is negative,12 or tþ a is
larger than a finite-temperature cutoff (final results use
toltemp ¼ 3T=8). The values of tolnoise and toltemp are free
parameters in our fitting procedure that must be varied to
assess the sensitivity of fit results to these choices; for
concreteness the parameter choices are presented here
that lead to the final results quoted in the main text.
Results are found to be relatively insensitive to the
parameter choices controlling tmax, and for example
varying the noise tolerance in the range tolnoise ∈
½0.1; 1� leads to results with consistent central values at
the 1σ level and few-percent variation of the correspond-
ing uncertainties.
The next step in our fitting procedure is to choose tmin,

the minimum t included in the fit. The choice of tmin
significantly impacts how well excited-state effects at small
t can be resolved and how many excited states should be
included in fits. Furthermore, the uncertainties of energy-
level determinations are exponentially sensitive to the
choice of tmin for baryons because of the SN problem.
Fit results are therefore more sensitive to the choice of tmin
than to the choice of tmax. Rather than choose a single tmin,
it is preferable to sample frommany possible choices of tmin
and quantify the sensitivity to this choice as the systematic
error. The minimum permissible tmin is fixed by the
temporal nonlocality in the lattice action, and for the
improved action used in this work the transfer matrix
involves fields on two adjacent timeslices [98] and tmin ≥ 2
is required. The largest allowed tmin is limited by
tmin ≤ tmax − tplateau, where tplateau is a free parameter that
is not found to significantly affect final results when varied
over the range 2≲ tplateau ≲ 8 (final results use tplateau ¼ 4).
For each type of interpolating operator included in a
combined fit, tmin is sampled randomly within this range
until either all possible values of tmin have been chosen or a
maximum of Nfits ¼ 200 fits have been performed.
With tmin and tmax specified, the covariance matrix Cijtt0

must be estimated for tmin ≤ t, t0 ≤ tmax and interpolating
operators i; j ∈ f1;…Nopg. Fits involving a large number
Npts of time separations and interpolating operator choices
may not satisfy the condition N ≫ N2

pts needed to ensure
that the N terms contributing to the Npts × Npts sample
covariance can accurately estimate the true underlying

11The complex phases of baryon correlation functions are
circular random variables, and there is therefore a noise
region at large t where lnN is not much larger than the
variance of the phase distribution and the sample mean is a
systematically unreliable estimator of the average correlation
function [97].

12If the average correlation function is not expected to be
positive definite, then this condition should not be enforced. In
principle, the source and sink interpolating operators used in this
work differ from one another, and it is possible for the sign of an
average correlation function to fluctuate at small t where excited-
state contributions with opposite sign to the ground-state con-
tribution can be significant. In practice, small t fluctuations of the
sign of the sample mean correlation function that could be
attributed to excited-state effects are not observed in this work,
and a negative sample mean correlation function is taken as an
indicator of large statistical noise.
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covariance matrix, where Npts is the total number of source/
sink separations from all interpolating operators included in
the fit. Shrinkage techniques have been developed to
provide more accurate estimates of the underlying covari-
ance matrix than the sample covariance matrix when N ≫
N2

pts is not satisfied [60,61]. Shrinkage estimators Sij
tt0 ðλÞ of

the covariance matrix are constructed as mixtures of a
well-conditioned target matrix Tij

tt0 and the covariance

matrix Cijtt0 estimated using standard bootstrap techniques
from Nboot ¼ 200 samples of N correlation functions
Gb

i;aðtÞ with a ∈ f1;…; Ng and b ∈ f1;…; Nbootg drawn
from the original correlation function ensemble with the
replacement

Sij
tt0 ðλÞ ¼ Cijtt0 ð1 − λÞ þ Tij

tt0λ; ðB1Þ

where 0 ≤ λ ≤ 1 is a shrinkage parameter. A common
choice of well-conditioned target matrix for many problems
in statistics is the identity matrix; however, this does not
accurately describe the underlying covariance matrix for
correlation functions whose diagonal entries decrease
exponentially with t. Following applications of shrinkage
to lattice QCD in Ref. [62], we take Tij

tt0 ¼ diagðCijtt0 Þ. In this
case, shrinkage corresponds to an interpolation between a
fully correlated fit with λ ¼ 0 and an uncorrelated fit with
λ ¼ 1. Shrinkage gives an unbiased estimator of the
underlying covariance matrix in the infinite-statistics limit
provided λ vanishes sufficiently quickly in this limit. It can
be shown [61] that for finite N an optimal λ� ≠ 0 satisfying
this restriction can be chosen in order to minimize the
average mean-squared difference between Sij

tt0 ðλÞ and the
underlying covariance matrix, and that a sample estimate
for λ� is given by

λ� ¼ Max

�
0;

×Min

�
1;

P
N
a¼1

P
t;t0;i;j½G̃i

aðtÞG̃j
aðt0Þ − ˜̄Sijðt; t0Þ�2

N2
P

t;t0;i;j½ ˜̄Sijðt; t0Þ − δijδt;t0 �2
��

;

ðB2Þ

where

G̃i
aðtÞ ¼

Gi
aðtÞ − ḠiðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S̄iiðt; tÞ
p ;

˜̄Sijðt; t0Þ ¼ S̄ijðt; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S̄iiðt; tÞS̄jjðt0; t0Þ

p ðB3Þ

are defined in terms of the sample mean correlation
function and sample covariance as in Ref. [62],

ḠiðtÞ ¼ 1

N

XN
a¼1

Gi
aðtÞ;

S̄ijðt; t0Þ ¼ 1

N − 1

XN
a¼1

½Gi
aðtÞGj

aðt0Þ − ḠiðtÞḠjðt0Þ�; ðB4Þ

such that shrinkage of ˜̄Sijðt; t0Þ with Tij
tt0 ¼ diagð ˜̄Sij

tt0 Þ
corresponds to shrinkage of ˜̄Sijðt; t0Þ with the identity
matrix as a target, and the results of Ref. [61] assuming
an identity matrix target can be applied. The covariance
matrix estimate with optimal shrinkage is then given by
Sij
tt0 ðλ�Þ. Fits to truncations of Eq. (8) including e excited

states can then be performed by minimizing the corre-
sponding χ2 function defined by

χ2 ¼
Xtmax

t;t0¼tmin

XNop

i;j¼1

ðḠB
i ðtÞ − fðt;E;ZÞÞ

× ½Sðλ�Þ−1�ijtt0 ðḠB
j ðt0Þ − fðt0;E;ZÞÞ; ðB5Þ

where ḠB
i ¼ 2Ḡi − 1

Nboot

PNboot
b¼1 Ḡb

i includes a 1=N bias
correction estimated using bootstrap techniques and E
and Z denote the energies and overlap factors appearing
in Eq. (8), including excited-state and thermal effects. Since
the overlap factors enter fN linearly, the values of Z
minimizing χ2 for fixed E can be determined by solving
a system of linear equations analogous to variable projec-
tion techniques [99,100]. χ2 minimization can therefore be
efficiently performed by using a nonlinear optimization
method to determine E with the optimal Z determined by
solving a system of linear equations at each step of
nonlinear optimization for E. In order to ensure positivity
of the spectrum and remove fitting degeneracies, the
parameters used for nonlinear optimization are lnE0 and
lnðEk − Ek−1Þ for 1 ≤ k ≤ e.
For each randomly sampled choice of tmin, the next step

in the fitting procedure is to determine the number of
excited states to be included in the sum of exponentials
used as a fit function. This is done by first performing a fit
including zero excited states and then adding successively
more excited states until the addition of the next excited
state does not improve the goodness of fit according to an
information criterion. This work employs the Akaike
information criterion [101] (AIC) with a cutoff chosen to
penalize overfitting in which a fit with e excited states is
only preferred over a fit with e − 1 excited states if
AICðeÞ − AICðe − 1Þ < −ANdofðeÞ where NdofðeÞ ¼
Npts − NparamsðeÞ is the number of degrees of freedom of
the fit, NparamsðeÞ is the number of fit parameters for a fit
with e excited states, and AICðeÞ ¼ 2NparamsðeÞ þ χ2ðeÞ þ
k with χ2ðeÞ the (unreduced) χ2 of the fit defined in
Eq. (B5) and k is an irrelevant e-independent constant. This
choice corresponds to a preference for an e state fit only if it
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improves the χ2=Ndof by an Oð1Þ value A compared to the
(e − 1) state fit. For baryon correlation functions a value of
A ¼ −0.5 is used, while for multimeson correlation func-
tions a value of A ¼ −0.1 is used.13

Bootstrap resampling techniques are then used to esti-
mate the uncertainty on the ground-state energy extracted
from the fit with the preferred number of excited states in
each fit region [102,103]. The same χ2-minimization
procedure and estimated covariance matrix Sðλ�Þ are used
to determine the spectrum for each of Nboot bootstrap
resampled ensembles. Results are found to be insensitive to
the choice of Nboot, and final results use Nboot ¼ 200. The
67% confidence interval for the ground-state energy is then
obtained from the quantiles of the distribution of
differences between the bth bootstrap sample result Eb;f

0

and the fit result Ef
0 obtained for fit range f,

δEf
0 ¼ 1

2
½Q5=6ðEb;f

0 − Ef
0Þ −Q1=6ðEb;f

0 − Ef
0Þ�; ðB6Þ

whereQpðxfÞ is the pth quantile of the set of fit results with
elements xf. Using this definition δEf

0 minimizes the
impact of outlier bootstrap samples compared to a defi-
nition based on the standard deviation of Eb;f

0 − Ef
0 [103].

An analogous procedure is used to estimate uncertainties
for excited-state energies and overlap factors.
Several additional checks are used to ensure the robust-

ness of χ2-minimization results: two different optimization
algorithms, Nelder-Mead and conjugate gradient, are
used14 and are verified to give energies that differ by less
than a specified tolerance15 (final results use tolsol ¼ 10−5),
median results for ground- and excited-state energies from
the bootstrap samples are verified to agree with fit results
from the average correlation functions for each energy level
within a specified tolerance (final results use tolmed ¼ 2σ),
uncorrelated fit results obtained by repeating the
χ2-minimization procedure with Sðλ¼1Þ are verified to give
consistent results for each energy level within a specified
tolerance (final results use tolcorr ¼ 5σ), the χ2=Ndof is
verified to be less than a specified tolerance (final results
use tolχ2 ¼ 2). This defines a reproducible and automatable

procedure for fitting correlation functions, including sam-
pling of possible fit ranges and excited-state model selec-
tion, in which fit results are functions of only the tolerances
described above and the given correlation functions. A
graphical illustration of the fitting procedure is shown in
Fig. 16. This fitting procedure was implemented in the
JULIA language [104] using the OPTIM optimization pack-
age [105] to obtain the results of this work.
Fits that pass all of the checks above are considered

reliable estimates of the energy spectrum, and the final
estimate of the ground-state energy Ē0 and its uncertainty
δĒ0 are obtained by taking a weighted average of the
Nsuccess successful fit results E

f
0 ,

Ē0¼
XNsuccess

f¼1

wfEf
0 ; δstatĒ2

0¼
XNsuccess

f¼1

wfðδEf
0Þ2;

δsysĒ2
0¼

XNsuccess

f¼1

wfðEf
0− Ē0Þ2; δĒ0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δstatĒ2

0þδsysĒ2
0

q
;

ðB7Þ

where f labels the choice of fit range specified by tmin for
each interpolating operator.16 Each fit result provides an
unbiased estimate of the ground-state energy. The relative
weights wf of each fit in the weighted average can therefore
be chosen arbitrarily in the limit of large statistics; in
practice it is advantageous to choose weights that penalize
poor fits with larger χ2=Ndof and unconstraining fits with
larger uncertainties δEf

0 . Following Ref. [62], we use the
weights

w̃f ¼ pfðδEf
0Þ−2PNsuccess

f0¼1
pf0 ðδEf0

0 Þ−2
; ðB8Þ

where pf ¼ ΓðNdof=2; χ2f=2Þ=ΓðNdof=2Þ is the p-value
assuming χ2-distributed goodness-of-fit parameters with
χ2f obtained by inserting E

f
0 into Eq. (B5).

17 Variation to the

13Optimal shrinkage values of λ� ≳ 0.1 appear for n-meson
correlation functions with n≳ 6 and χ2 values are correspond-
ingly lower than would be expected for fully correlated χ2

minimization, leading to smaller absolute changes in AIC for
multimeson correlation functions than for multibaryon correla-
tion function. Increasing −A from 0.1 over the range −A ∈
½0.1; 2� leads to consistent results with larger uncertainties
because precise and accurate two-state fits with small tmin are
rejected in favor of one-state fits more frequently.

14Newton’s method is used in place of Nelder-Mead if
Nstates ¼ 1, since Nelder-Mead does not work for a single fit
parameter.

15Fits resulting in ground-state energies less than tolsol, which
appeared only for the 11K̄0 system on the L=a ¼ 32 lattice
volume, were also rejected.

16The total error δĒ0 describes the combined statistical
uncertainty on Ē0 plus systematic uncertainty arising from the
choice of fit range and fit model. The partitioning of this error into
δstatĒ0 and δsysĒ0 only partially separates statistical and system-
atic uncertainties because δstatE0 includes statistical errors plus
systematic uncertainties related to fluctuations among the δEf

0 .17For large λ�, the χ2 function being minimized approaches
an uncorrelated χ2 and the values of χ2 will not be distributed as
χ2-distributed random variables with Ndof degrees of freedom. In
this regime where finite N artifacts are not negligible, the weights
in Eq. (B8) still serve the purpose of penalizing comparatively
less accurate descriptions of the results being fit and their
correlations as estimated by Sij

tt0 ðλ�Þ, but the absolute sizes of
the pf should not be interpreted as p values for each fit.
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FIG. 16. Flowchart representing the steps of the fitting procedure for one specific fitting range. Rectangular shapes represent process
steps, while diamond shapes represent decision steps. Input parameters to the fitting procedure are shown in blue. As described in the
text, the steps illustrated here are repeated Nfits times with different random choices of tmin, and final results are obtained from weighted
averages of fit results for the tmin choices leading to the “accept fit” rectangle. NM ¼ Nedler −Mead optimization algorithm; CG ¼
conjugate gradient optimization algorithm.

S. R. BEANE et al. PHYS. REV. D 103, 054504 (2021)

054504-32



particular choices of specified tolerances have been
studied, and the subsequent variation in the ensemble
of successful fits is found to have little impact on the
results of this weighted averaging. The results Ē0 and
δĒ0 obtained with this procedure are shown as the
central values and uncertainties for single-particle
energy results EπþðLÞ, EK̄0ðLÞ, EnðLÞ, and EpðLÞ in
Tables II and III. Effective mass plots showing the
smallest tmin fit with weight over 1=2 of the maximum
weight fit as well as Ef

0 and w̃f=Maxðw̃fÞ are shown in
Appendix B 4.

2. Multimeson correlation functions

To determine results for multi-meson ground-state
energies with thermal effects taken into account, fits
are performed iteratively starting with fits for n ¼ 1
mesons and then moving to fits with increasing n. The
excited-state fit form in Eq. (8) includes thermal effects
describing k forwards-propagating mesons and n − k
backwards-propagating mesons for k < n=2 that are
included by using the central values Ē0 calculated for
Ek and En−k in Eq. (8). Uncertainties in Ek are found to
be significantly smaller than uncertainties in En for
k < n=2, and for simplicity are not incorporated into the
description of thermal effects. The overlap factors for
these thermal states are determined using linear algebra
techniques [99,100] during each step of nonlinear
optimization for the N-particle energy spectrum analo-
gously to the procedure described above for other
overlap factors. This fit function is found to provide
acceptable fits to multimeson correlation functions with-
out the need for additional free parameters describing
excited-state thermal effects.
Before beginning the fitting procedure described

above, correlation function results from all quark propa-
gator sources on a given configuration are averaged and
meson correlation functions are further blocked along
the Markov chain to form Nblock ¼ 200 approximately
independent samples from the Ncfg configurations for
each volume shown in Table I. Further averaging is
found to give statistically consistent results, suggesting
that autocorrelations can be neglected after this block-
ing. To determine correlated differences of ground-state
energies for different hadron type (πþ, K̄0) and hadron
number, fits are performed independently to determine
Ef
0 for each hadron type and number for each fit range

sampled. A fit range is considered to give a successful

fit only if the checks on fit robustness described above
are passed for each hadron type and number involved in
the correlated difference. For each successful fit range,
bootstrap resampling is used to determine the uncer-
tainties on correlated differences of the resulting Ef

0 .
During bootstrap resampling, the same elements of
these Nblock samples are used to construct bootstrap
ensembles for each hadron type and number. Correlated
differences of the bootstrap results Ef;b

0 are then formed,
and confidence intervals are computed by applying
Eq. (B6) to the these correlated differences. Finally,
weighted averages of the resulting correlated differences
and their associated uncertainties are taken using
Eqs. (B7) and (B8). The results of this procedure are
used to determine the FV energy shifts and differences
between FV energy shifts for charged and uncharged
hadrons shown in Tables III–IV.

3. Multinucleon correlation functions

Differences between multinucleon ground-state
energies and the corresponding sums of their constituent
nucleon masses are computed using correlated
differences of bootstrap results Ef;b

0 for multinucleon
and single-nucleon correlation functions analogously to
the multimeson case described above. Correlated
differences between one-nucleon and multinucleon ener-
gies can be determined much more precisely than
multinucleon energies alone, and differences of one-
nucleon and multinucleon fit results with different values
of Nstates are found to describe correlated differences of
LQCDþ QEDL effective energy results poorly. Nstates is
therefore restricted to be identical between single-
nucleon and multinucleon systems. Otherwise, fits for
multinucleon energy shifts are performed identically to
fits for multimeson energy shifts not including thermal
effects.

4. Fit results

Figures 17–19 show fit results for nπþ systems
with L=a ¼ 32. Results with L=a ¼ 48 are shown in
Figs. 1–3. Figures 20–25 show analogous fit results for
nK̄0 systems with L=a ∈ f32; 48g. Single-nucleon fit
results for p and n are shown in Fig. 26. Two-nucleon
fit results are shown for pp and nn in Fig. 27 and for
np systems in Fig. 28. Three-nucleon fit results are
shown in Fig. 29.
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FIG. 17. Fit results for systems of n ∈ f1;…; 4gπþ mesons for the L=a ¼ 32 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 18. Fit results for systems of n ∈ f5;…; 8gπþ mesons for the L=a ¼ 32 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 19. Fit results for systems of n ∈ f9;…; 12gπþ mesons for the L=a ¼ 32 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 20. Fit results for systems of n ∈ f1;…; 4g K0 mesons for the L=a ¼ 48 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 21. Fit results for systems of n ∈ f5;…; 8g K0 mesons for the L=a ¼ 48 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.

S. R. BEANE et al. PHYS. REV. D 103, 054504 (2021)

054504-38



FIG. 22. Fit results for systems of n ∈ f9;…; 12g K0 mesons for the L=a ¼ 48 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 23. Fit results for systems of n ∈ f1;…; 4g K0 mesons for the L=a ¼ 32 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 24. Fit results for systems of n ∈ f5;…; 8g K0 mesons for the L=a ¼ 32 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 25. Fit results for systems of n ∈ f9;…; 12g K0 mesons for the L=a ¼ 32 lattice volume. The figures are analogous to Fig. 1, see
Appendix B for a definition of the fitting procedure employed.
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FIG. 26. Fit results for proton and neutron systems. The figures are analogous to Fig. 1, see Appendix B for a definition of the fitting
procedure employed.
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FIG. 27. Fit results for systems of two protons and systems of two neutrons. The figures are analogous to Fig. 1, see Appendix B for a
definition of the fitting procedure employed.
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FIG. 28. Fit results for systems of one neutron and one proton in the cubic irreps associated with 3S1 and 1S0 systems in the infinite-
volume limit. The figures are analogous to Fig. 1, see Appendix B for a definition of the fitting procedure employed.
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FIG. 29. Fit results for three-nucleon systems 3H and 3He. The figures are analogous to Fig. 1, see Appendix B for a definition of the
fitting procedure employed.
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