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Cellular membranes are elastic lipid bilayers that contain a variety of proteins, including
ion channels, receptors and scaffolding proteins. These proteins are known to diffuse in the
plane of the membrane and to influence the bending of the membrane. Experiments have
shown that lipid flow in the plane of the membrane is closely coupled with the diffusion
of proteins. Thus, there is a need for a comprehensive framework that accounts for the
interplay between these processes. Here, we present a theory for the coupled in-plane
viscous flow of lipids, diffusion of transmembrane proteins and elastic deformation of
lipid bilayers. The proteins in the membrane are modelled such that they influence
membrane bending by inducing a spontaneous curvature. We formulate the free energy of
the membrane with a Helfrich-like curvature elastic energy density function modified to
account for the chemical potential energy of proteins. We derive the conservation laws and
equations of motion for this system. Finally, we present results from dimensional analysis
and numerical simulations and demonstrate the effect of coupled transport processes in
governing the dynamics of membrane bending and protein diffusion.
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1. Introduction

Lipid bilayers are present both in the plasma membrane and in intracellular organelles
(Alberts et al. 1985) and have an extremely heterogeneous composition (Harayama &
Riezman 2018). They consist of many different types of lipids, integral and peripheral
membrane proteins (Bassereau et al. 2018), all of which are important in cellular
function (Singer 1974). One of the classic features of cellular membranes is their ability
to bend out of plane and this has been the focus of many studies, both theoretical
and experimental, over the past five decades (Sackmann, Duwe & Engelhardt 1986;
Lipowsky 1991; liilicher & Lipowsky 1993; Zimmerberg & Kozlov 2006; Hassinger
et al. 2017). We now also know that these membrane—protein interactions in cells
are associated with many curvature sensing (Antonny 2011) and curvature generating
phenomena (McMahon & Gallop 2005) including tubulation (Stachowiak, Hayden
& Saski 2010), vesicle generation (Reynwar et al. 2007) and membrane trafficking
(Mujherjee & Maxfield 2000; Gruenberg 2001). Curvature is a shape variable of the
membrane that is related to the internal parameters such as protein density, tilt angle,
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local composition (Leibler & Andelman 1987) and intermonolayer differences of the
membrane (Seifert 1993). Proteins embedded in the membrane diffuse in the plane of the
membrane and undergo transport by advection processes (Kahya et al. 2004) associated
with viscous flow of the lipids (Tran-Son-Tay, Sutera & Rao 1984; Noguchi & Gompper
2004). Experimental observations in reconstituted or synthetic lipid vesicles show that
the coupling of lipid flow, protein diffusion and membrane bending can give rise to
emergent phenomena (Baumgart, Hess & Webb 2003; Horner, Antonenko & Pohl 2009;
Snead et al. 2017). There are theoretical models that have explicitly studied the coupling
between concentration of curvature-inducing proteins and the bending of the membrane
(Lowengrub, Ratz & Voigt 2009; Elliott & Stinner 2013; Elliott ef al. 2016) and coupling
between viscous flow and bending (Seifert & Langer 1993). The coupling between flow,
diffusion and bending has not been commonly considered with the exception of a few
phase transition models (Sahu, Sauer & Mandadapu 2017). Thus, there is a need to
understand how the interplay of protein diffusion, lipid flow, and membrane bending
determines the mechanical response of lipid bilayers.

The seminal work of Helfrich (1973), Canham (1970) and Jenkins (1977) established
the framework for using variational principles and thin shell mechanics for modelling
membrane bending. Later, Steigmann (1999) established the correspondence between
Koiter’s shell theory and developed a complete theoretical framework of membrane
mechanics. These early models assumed the membrane to be inviscid and focused
primarily on elastic effects. In the past decade, many groups have proposed the addition of
viscous effects in addition to membrane bending (Arroyo & DeSimone 2009; Rahimi &
Arroyo 2012; Rangamani et al. 2013; Tozzi, Walani & Arroyo 2019) building on the ideas
proposed by Scriven (1960). We also showed recently that including intrasurface viscosity
in addition to membrane bending allows for the calculation of local membrane tension
in the presence of protein-induced spontaneous curvature (Rangamani, Mandadapu &
Oster 2014) and for the calculation of flow fields on minimal surfaces (Bahmani,
Christenson & Rangamani 2016). Separately, the interaction between in-plane protein
diffusion and membrane bending has been modelled (Igli¢ et al. 2005; Kralj-Igli¢ et al.
2005; Ramaswamy, Toner & Prost 2005; Reynwar et al. 2007; Veksler & Gov 2007; Gozdz
2011). Specifically, Steigmann & Agrawal (2011) proposed a framework that included
the chemical potential energy of membrane—protein interactions and membrane bending
and demonstrated the interaction between bending and diffusion. A series of studies
by Arroyo and coworkers also developed a comprehensive framework for incorporating
membrane—protein interactions using Onsager’s variational principles (Arroyo et al. 2018;
Torres-Sanchez, Millan & Arroyo 2019; Tozzi et al. 2019).

Building on these efforts, we present a coupled theory for membrane mechanics that
accounts for in-plane viscous flows and diffusion of curvature-inducing transmembrane
proteins in addition to membrane bending. We note that a version of this model was
presented by Steigmann (2018). Using a free energy functional that includes bending
energy, chemical potential energy of membrane—protein interactions and, by including
the viscous stresses in the force balance, we derive the governing equations of motion in
§2. In § 3.1, we analyse this system of equations assuming small deformations from the
flat plane and identify the role of different dimensionless groups in governing the regimes
of operation. We then perform numerical simulations in a one-dimensional model in § 3.2
and in a two-dimensional Monge parametrization in § 3.3. The case of large deformations
is addressed in § 4 where we investigate the flattening of a membrane bud in axisymmetric
coordinates. These results are cast in perspective of the current knowledge of the field and
future directions are presented in § 5.
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Notation Description Units

y Lagrange multiplier for incompressibility pN - nm~!
)4 Pressure difference across the membrane pN - nm—2
C Protein-induced spontaneous curvature nm~!
0 Surface coordinates

w Local free energy per unit area pN - nm~!
A Membrane tension, = —(W + y) pN - nm~!
Ao Membrane tension at infinity pN - nm™~!
;P Elastic stress tensor pN-nm™!
nh Viscous deviatoric stress pN-nm~!
H Mean curvature of the membrane nm~!
K Gaussian curvature of the membrane nm—2

k Bending modulus (rigidity) pN - nm
k Gaussian modulus pN - nm
o Protein density per unit area nm—2
Oy Saturation protein density per unit area nm—2

L Proportionality constant of C — o relation nm

D Protein diffusion coefficient, D = kgT/f nm? - s~
f Hydrodynamic drag coefficient of a protein pN-s-nm~!
L Size of the domain nm

kp Boltzmann constant pN-nm . K~!
T Temperature K

TABLE 1. Summary of the notation used in the model.

2. Membranes with intra-surface viscosity and protein diffusion

We formulate the governing equations for the dynamics of an elastic lipid membrane
with surface flow, coupled to the transport of membrane-embedded proteins that induce
spontaneous mean curvature. We assume familiarity with tensor analysis and curvilinear
coordinate systems (Sokolnikoff 1951; Kreyszig 1968; Aris 1989).

2.1. Membrane geometry, kinematics and incompressibility

The lipid membrane is idealized as a two-dimensional manifold 2 in three-dimensional
space. Material points on £2 are parametrized by a position field #(6“, f), where 6* are
surface coordinates and play a role analogous to that of a fixed coordinate system used
to parametrize a control volume in the Eulerian description of classical fluid mechanics.
Here and henceforth, Greek indices range over {1, 2} and, if repeated, are summed over
that range. The local tangent basis on the surface is naturally obtained as a, = r, where
commas identify partial derivatives with respect to 6“. The unit normal field is then given
by n = a, x ay/|a; x a,|. The tangent basis also defines the surface metric a5 = a, - ag
(or coefficients of the first fundamental form), a positive definite matrix, which is one of
the two basic variables in surface theory. The other is the curvature b,s (or coefficients
of the second fundamental form) defined as b,s = n - r 5. Of special interest are the
mean (nm~') and Gaussian (nm~2) curvatures, which will enter the Helfrich energy of
the membrane and are defined, respectively, as

H=1a"by, K=1ePc"b,,by,. (2.1a,b)
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Here, a*? = (a,5)~" is the dual metric, and £ is the permutation tensor defined as &' =
—e? =1/a, " =& =0.

We assume that the surface §2 is moving with time, and the velocity of a material point
in the membrane is given by u(6*, t) = ¥ = dr/dt. It can be expressed in components on
the natural basis introduced above

u=1v%a, +wn, (2.2)

where the components v* capture the tangential lipid flow and w is the normal surface
velocity. The membrane is assumed to be incompressible, which prescribes a relationship
between the in-plane velocity field and the curvature as (Arroyo & DeSimone 2009;
Rangamani et al. 2013)

vi, = 2Hw, (2.3)

where the semi-colon refers to covariant differentiation with respect to the metric agg.

2.2. Stress balance and equations of motion

We model the membrane as a thin elastic shell and, in the absence of inertia, the equations
of motion are the equations of mechanical equilibrium. For a membrane subjected to a
lateral pressure difference p (pN - nm~2) in the direction of the unit normal n, these may
be summarized as (Steigmann 1999)

T +pn =0, (2.4)

where T are the so-called stress vectors. The differential operation in (2.4) is the surface
divergence

T, = (Wa) ' (VaT*) ., (2.5)

where a = det(aqp) > 0. This framework encompasses all elastic surfaces for which the
energy density responds to metric and curvature. For example, if the energy density per
unit mass of the surface is F'(ap, beg), then (Steigmann 1999)

T* = N*™a; + S°n, (2.6)

where
NP = P 4 e 4 bﬁMW and SY = _Maf’f (2.7a,b)

We have introduced the notation b§ = a*'b,s. In (2.7a,b), £#* (pN - nm™") is the in-plane
elastic stress tensor, 7% (pN - nm~') is the intra-membrane viscous stress tensor due to
surface flow and M* is the moment tensor due to curvature-induced elastic bending. We
discuss constitutive equations for these various contributions in the next sections.

Substituting (2.6) and (2.7a,b) into (2.4), invoking the Gauss and Weingarten equations
ag., = bgon and n, = —bPas (Sokolnikoff 1951) and projecting the result onto the
tangent and normal spaces of §2 provides the three governing equations

N;}iot - Sotbg — 0’ S;Ota + Nﬂabﬁa +p = 0, (28a,b)

which express stress balances in the tangential and normal directions.
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2.3. Free energy of an elastic membrane with curvature-inducing proteins

The elastic contribution of the surface stress and the moment tensor are derived from a
free energy and are expressed as (Steigmann 1999)

oF oF p ( OF oF
pa _ ., M ==L . 2.9a,b
= (Baaﬁ " 8aﬁa> 2 (3baﬁ " abﬁa) (29a0)
Here, F is the energy Lagrangian per unit mass defined as (Steigmann 1999)
F(H,K,p) =FH.K)~y/p, (2.10)

where y is a Lagrange multiplier imposing the constraint of incompressibility, and p is
the membrane density which is assumed to be constant. It is customary to formulate the
mechanics in terms of the free energy per unit area as (Steigmann et al. 2003)

W = pF. (2.11)

For an elastic membrane with a density o (nm~2) of curvature-inducing proteins, we
model this free energy (pN - nm~!) as the sum of elastic and chemical energies (Veksler
& Gov 2007; Steigmann & Agrawal 2011; Alimohamadi & Rangamani 2018)

W(H, K, o) =k[H — C(0)]* + kK + kzTo [log (i) — 11| . (2.12)
The first two terms correspond to the classical Helfrich free energy and involve the two
bending moduli k£ (pN - nm) and k& (pN - nm). While these could in general depend on
o, we take them to be constant as is appropriate in the dilute limit. C(o) (nm™') is

the protein-induced spontaneous curvature and is assumed to depend linearly on protein
density (Veksler & Gov 2007; Steigmann & Agrawal 2011; Gov 2018)

C =to, (2.13)

where the constant £ (nm) is a characteristic length scale associated with the embedded
protein. The last term in (2.12) is the entropic contribution due to thermal diffusion of
proteins (Gov 2018), where kg7 (pN - nm) is the thermal energy and o, (nm~2) denotes
the saturation density of proteins on the membrane.

Inserting (2.12) for the free energy into (2.9a,b) provides expressions for the elastic
stress and moment tensors as

¢ = —2k(H — £o)b*? — 2kKa*® — ya®?, (2.14)
M = k(H — to)a*® + k(2Ha"® — b*). (2.15)

2.4. Viscous stress

In the presence of surface flow, a viscous stress also develops in the membrane. The
deviatoric part of the viscous stress tensor ¥ is assumed to depend linearly on strain
rate as (Scriven 1960)

1 =va*aa,,, (2.16)

where v, a positive constant, is the intra-membrane surface viscosity. Further expanding
this expression, we obtain

7 = 2v[a**a”"d,,, — wb™], (2.17)

where d,,,, = (v, + v,.,.) /2 1s the surface rate-of-strain tensor.
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2.5. Conservation equation for protein transport

To complete the model, we specify a transport equation for the protein density o. Mass
conservation can be expressed as

%0 e, =0 2.18)
— +mi, =0, .

ot “*

where m* denotes the protein flux. This flux has contributions from advection by the
surface flow as well as from gradients in chemical potential. Following Steigmann &
Agrawal (2011), it can be derived from first principles as

1
m® = |:v“ - fa“ﬂ Wg,ﬁ} o, (2.19)

where f (pN-s-nm™!) is the hydrodynamic drag coefficient of a protein and W, =
aW/do.

2.6. Summary of the governing equations

We summarize the governing equations for the membrane and protein dynamics. The
tangential momentum balance, obtained by inserting (2.14), (2.15) and (2.17) for the
stresses into equation (2.8a), is expressed as

Ao — 4oWH o + 20(a"dyyp — w 5bP) = —0, [kBTlog (3) — 2ke(H — zo—)] :
0,

s

(2.20)
where we have introduced the membrane tension (pN - nm~!) 1 = —(W + y). Along with
the surface incompressibility condition

v, —2wH =0, (2.21)

(2.20) constitutes the governing equation for the intra-membrane flow. We note the
similarity with the Stokes equations, where the tension A plays a role analogous to the
pressure in classical incompressible flow (Bahmani er al. 2016). The right-hand side
captures the forcing by the protein distribution on the flow. Similarly, the normal force
balance (2.8)) provides the so-called shape equation, written after simplification as

kA(H — €o) + 2k(H — €o)(2H?> — K) — 2H [kBTa (log (3> — 1) + k(H — za)z]
g

s

— 2v[b*d,y — w(@dH* — 2K)] = p + 21H, (2.22)

where A(-) = (-).qpa*” is the surface Laplacian. Equation (2.22) can be interpreted as
the governing equation for the position field r. Finally, the model is completed by the
advection—diffusion equation for the protein density, which is written

o 2kl
m + (V%0 ). = Da*P o 45 — T[a“ﬂ(H —00) 405 +0aP(H —L0) o5].  (2.23)

The first term on the right-hand side captures Fickian diffusion of proteins, with diffusivity
D (nm? - s~!) given by the Stokes—Einstein relation: D = kzT/f. The second term captures
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the interaction of the curvature and protein gradients. The third term captures the effect
of membrane shape on protein transport: mismatch between the mean curvature and the
protein-induced spontaneous curvature serves as a source term for the transport of protein
on the membrane surface.

2.77. Comparison with other existing models

The equations of motion (2.8) have appeared in the literature in many different forms.
For example, the tangential stress balance (2.8a) is similar to (9) of Salbreux & lJiilicher
(2017) and (1) of Mietke, Julicher & Sbalzarini (2019). We eventually obtain (2.20) from
this equation by using the constitutive relation (2.17) for the viscous stress, an equivalent
expression of which can be found in (D11) of Torres-Sanchez et al. (2019). The final form
of the tangential balance (2.20) also correlates to their equation (D9). Similarly, the normal
force balance relation (2.8b) compares with (10) of Salbreux & lJiilicher (2017) and (2) of
Mietke et al. (2019). The final form of the force balance relations (2.20)—(2.22) captures
the effect of curvature-inducing proteins that diffuse in the plane of the membrane. This
differs from the model of Mietke et al. (2019) where the effect of protein-induced active
tension was considered, or from the model of Salbreux & Jiilicher (2017), which includes
a contribution from the external stress and torque applied by the extracellular matrix.
The advection—diffusion equation (2.23) in our model is also similar to (13) of Mietke
et al. (2019), (3.27) of Mikucki & Zhou (2017), (2.12) of Nitschke, Voigt & Wensch
(2012) and (4) of Gera & Salac (2017). These studies, however, did not include the
strong coupling between bending and diffusion in (2.23), which results from the curvature
inducing property of the membrane proteins. In the model presented by Mietke et al.
(2019), the coupling between bending and diffusion occurs through an active tension
induced by the proteins. Mikucki & Zhou (2017) calculated the phase field of protein
density in an inviscid framework, Nitschke et al. (2012) solved the coupled in place flow
and higher-order diffusion equation on a convective surface, while Gera & Salac (2017)
solved a Cahn-Hilliard equation on a pre-existing curved surface.

3. Small deformations from the flat plane
3.1. Linearization and dimensional analysis

In this section, we specialize the governing equations presented in §2.6 in a Monge
parametrization assuming small deflections from the flat plane.

3.1.1. Governing equations in the linear deformation regime
The surface parametrization for a Monge patch is given by

r(x,y,t) =xi+yj+z(x,y, Dk, (3.1

where unit vectors (Z, j, k) form a fixed Cartesian orthonormal basis, and z(x, y, #) is the
deflection from the (x, y) plane. The tangent and normal vectors are given by

1
= a +Z.2}( +Z,2y)l/2

a=i+z.k, ax=j+z,k, n (—zxi—zj+k). (32a—c)

The surface metric (aqp) and curvature metric (b) take the following forms

1+ z.z, 1 ,
aaﬁ:[ RS } bug [Z Z’”]. (3.3a,b)

ZyZx L+ Z’zy (I +2 + 212 [Ty Loy
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We further assume that deflections of the membrane from the flat configuration are small
and simplify the governing equations in the limit of weak surface gradients |Vz| < 1 by
neglecting quadratic terms in |Vz| (Do 1976). In this limit, differential operators in the
space of the membrane reduce to the Cartesian gradient, divergence and Laplacian in the
(x, y) plane. The linearized governing equations for the intra-membrane flow become

V.v=2wH, (3.4)
VA4 vV +vV(V - v) —4vwVH — 20Vw : VVz
2 o
=k (V’z—2t0) Vo — kgTlog ( — | Vo, (3.5)
GS

whereas the shape equation expressing the normal momentum balance is

1
k (Ev‘*z — zv%) — v |:kBTo (log (1) - 1) n k£202:|
O—S
—v(Vo+ Vo) : VVz=p+aviz (3.6)

The transport equation for the protein density simplifies to

do ) kt ) ko ,_, )
E—I—V-(ov):DVG—FV(Vz—%J)-VG—T(V z—2Vo). (3.7)

We also note the linearized kinematic relation for the normal velocity

0z
w= o (3.8)
3.1.2. Non-dimensionalization
We scale this system of equations using the following reference values. Length is
non-dimensionalized by the size L of the domain, protein density by its reference value
oy and membrane tension by its far-field value Ay. We also use the characteristic velocity
scale v, = AyL/v and time scale t. = L?/D. Denoting dimensionless variables with a tilde,
the scaled governing equations are

V.9 =2wH, (3.9)

V1+ V2 +V(V %) —4wVH — 2Vw : VV3

-_|2CB.,. 4CB*. 2C &
=Vo | -ViE— ——6—log( =), (3.10)
T T T &

V4% —2CBV? 6 — CV*Z [2& (log <3> — 1) + 2&32&2}
US
—T(Vo+ Vi) : VVi= P+ TAV%, (3.11)
9o = s ~g .5 P2~ o2~
E+Pe<v-Va+aV-v)=(l+2CBa> o

L 2CR VS — B 5642+€622-%). (3.12)
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The expression for the normal velocity also becomes:

. 1 9z
W= ——. (3.13)
Pe 0t

The dynamics is governed by five dimensionless parameters defined as follows. The
ratio of the chemical potential to the bending rigidity of the membrane is denoted by

C = L*3To, /k. The ratio of the length scale induced by the proteins and the membrane
domain is given by L = {Loy. The ratio of the intrinsic length scale of the membrane to
the domain size is given by T =214 /k. The ratio between the bulk pressure and bending
rigidity is denoted by P= 2L%p/k. Finally, the Péclet number Pe = A,L?/vD compares the
advective transport rate to the diffusive transport rate. We define B = L/C for convenience
of simulations and cast the equations in terms of i, fB, T and Pe. Further, we assume that
there is no pressure difference across the membrane (ﬁ’ =0).

3.2. One-dimensional simulations

We first explore the interplay between membrane bending and protein diffusion in the
special case of a membrane that deforms as a string in one dimension, with a shape
parameterized as Z(X, 7). The flow of lipids does not play a role in this scenario, and as
a result in-plane velocity-dependent terms vanish in (3.9)—(3.12). The system of governing
equations reduces to

01 95 [20B % 4CB. 20 (&
==7=| 73 a5~ 75 0 = log , (3.14)
0x 0x T 0x T T o
99 (1+ 26&*)82& +2CB? 84~ ;00 0z (3.15)
— = o0)— — s .
ot % HFTFHAVTS
37,92 0% 9%z
LIRS Yo: By okt [20 (log (—) - 1) +2CB% 2] P+TA5=. (3.16)
ax 3%’ ax Oy 3%’

Equations (3.14)—(3.16) are solved numerically using a finite-difference scheme coded
in Fortran 90 (numerical codes are available at https://github.com/armahapa/transport_
phenomena_in_membranes). The tangential momentum balance (3.14), which can be
viewed as an equation for the tension A, is solved subject to the condition A(X¥ = 0.5) = 1,
whereas the shape equation (3.16) is solved subject to clamped boundary conditions 7 = 0
and dz/0x = 0 at both ends of the domain x = —0.5, 0.5.

We first analysed the evolution of a symmetric patch of protein defined as 6 (%, 7 = 0) =
1/2[tanh(20(x + 0.1)) — tanh(20(x — 0.1))], subject to no-flux boundary conditions on
o at the ends of the domain. Results from these simulations are shown in figure 1. In
response to this protein distribution, the initial configuration of the membrane is bent (see
figure 1(a) at t = 0). Over time, 6 homogenizes as a result of diffusion, and therefore
the deflection z decreases. At steady state, the distribution of protein is uniform on the
membrane and Z is everywhere zero. The time evolution of Z at the centre of the string,
corresponding to the maximum deflection, is shown in figure 1(b).

As a second example, we discuss the case where the protein density is initially zero and
a time-dependent protein flux is prescribed at both boundaries as shown in figure 2(a). In
response to the influx at the boundaries, the membrane deforms out of plane as the protein
density increases; see figure 2(b). Once the flux returns to zero, diffusion homogenizes the
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FIGURE 1. Protein density and membrane deformation in one dimension as functions of
time, when an initial protein distribution and no-flux boundary conditions are prescribed.
(a) Distribution of protein density plotted on the deformed one-dimensional membrane. (b) Time
evolution of the maximum membrane deflection Z.(7) = z(1/2, 7).
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FIGURE 2. Evolution of membrane deformation and protein distribution when an influx of
protein is prescribed at both boundaries. (a) Dimensionless boundary protein flux as a function of
time. (b) Distribution of protein density plotted on the deformed membrane for C=248x10""
Each shape corresponds to a specific time point. (c) Time evolution of the maximum membrane

deflection Z, for C = 2.48 x 10~!. Symbols in panels (a,c) correspond to the time traces shown
in (b).

protein, and the membrane height begins to decrease again. This effect is observed clearly
by looking at the deformation at the centre of the string as a function of time in figure 2(c),
which closely follows the dynamics of the boundary flux shown in figure 2(a).

In both examples of figures 1 and 2, we note that the protein distribution becomes
uniform at long times (in the absence of any boundary flux), and as a result the membrane
returns to its flat reference shape. At first glance, this result seems counter-intuitive
since there is a non-zero density of curvature-inducing proteins on the membrane. But
as Chabanon and Rangamani showed previously, for a uniform distribution of proteins
with no-flux boundary conditions on the membranes, minimal surfaces are admissible
solutions for the membrane geometry (Chabanon & Rangamani 2018, 2019). In the
case of closed geometries on vesicle, constant mean curvature surfaces are admissible
solutions (Zhong-Can & Helfrich 1989; Seifert 1993; G6zdZ & Gompper 1998; Campelo
& Hernandez-Machado 2007). In the case of interest here, a flat membrane is the
admissible solution for the boundary conditions associated with z, and a proof of this
result is given in appendix A.
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3.3. Two-dimensional simulations

3.3.1. Numerical implementation

We solved the set of governing equations (3.9)—(3.12) in two dimensions inside a square
domain using a finite-difference technique that we outline here. Our numerical scheme is
second order in space and first order in time. We note that time only appears explicitly
in the advection—diffusion equation (3.12) for the protein density: we solve it using a
semi-implicit scheme wherein the linear diffusion term is treated implicitly while the
nonlinear advective terms and curvature-induced transport terms are treated explicitly.
The remaining governing equations are all elliptic in nature and can be recast as a series of
Poisson problems as we explain. First, we note that the shape equation (3.11) is biharmonic
and can thus be recast into two nested Poisson problems providing the shape Z at a
particular time step. To solve for the surface tension A, we take the divergence of the
tangential momentum balance (3.10) and combine it with the continuity equation (3.9) to
obtain the Poisson equation

VZA+f =0, (3.17)

where

T T
20 .. 208,
+ ?V(loga) - Vo + 5 Voo~. (3.18)

Note that there is no natural boundary condition on A at the edges of the domain. To
approximate an infinite membrane, we first estimate the tension along the four edges using
the integral representation

AP =1 +f G — 7o)f (ry) dA(Fy), (3.19)
2

where G(r) = —logr/2m is the two-dimensional (2-D) Green’s function for Poisson’s
equation in an infinite domain. The calculated tension along the edges is then used as the
boundary condition for (3.17), where the normal velocity component at the current time
step k is calculated as

N 1 zk _ Zkfl
Wk =

Pe At
With knowledge of the membrane tension, the tangential momentum balance (3.10) then
provides two modified Poisson problems for the in-plane velocity components. Note that
the equations for Z, A and ¥ are nonlinearly coupled through the various forcing terms
in their respective Poisson problems. To remedy this problem, we iterate their solution
until every variable converges with a tolerance limit of 5 x 10~7 before proceeding to the
next time step. All the results presented below were obtained on a spatial uniform grid
of size 201 x 201 and with a dimensionless time step of A7 = 10~*. We used Fortran
90 for compiling and running the algorithm. As we show in appendix B, the numerical
method was successfully validated by comparison with a Stokes—Neumann formulation
(Glowinski et al. 2005).

(3.20)
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FIGURE 3. System set-up and initial condition used in 2-D simulations. All 2-D simulations
are performed for a linearized Monge patch. We simulate the dynamics for three different initial
distributions of proteins as shown. The total area fraction of protein is same for the three cases,
with proteins covering 10 % of the total area. (a) Single patch of protein placed at the centre
(0, 0). (b) Two patches of protein placed at diametrically opposite positions with centre locations
(—0.25, —0.25) and (0.25, 0.25). (c) Four patches of proteins placed at four diagonal positions:
(—0.25, —0.25), (—0.25, 0.25), (0.25, —0.25) and (0.25, 0.25). The following abbreviations are
used in subsequent figures to track the system behaviour: COM: centre of the membrane, COP:
centre of the patch, CRM: corner of the membrane and PFM: protein-free membrane.

3.3.2. Two-dimensional simulation results

Using the numerical scheme described above, we solved the linearized two-dimensional
governing equations (3.9)—(3.12) for different initial conditions. In all cases, the boundary
conditions for the membrane shape were set to z =0 and v+ VZ =0 where v is the
in-plane normal to the edge of the domain, and no-flux boundary conditions were enforced
on the protein distribution. We considered three different initial conditions for the protein
density as depicted in figure 3, namely: a single circular patch at the centre of the domain
(figure 3a), two identical patches placed at diametrically opposite ends of the domain
(figure 3b) and four patches centred in each quadrant of the domain (figure 3c¢). The total
mass of protein is the same in all three cases, only the initial spatial distribution is different.
For the velocity and tension, we maintain open boundary conditions as noted in § 3.3.1.

We tracked the dynamics of the membrane shape, protein distribution, membrane
tension and velocity for a single patch of proteins corresponding to figure 3(a) in figure 4.
The initial membrane configuration is bent to accommodate the initial distribution of
proteins (figure 4a), and the membrane tension for this initial distribution is heterogeneous
as seen in figure 4(d), consistent with our previous results (Rangamani et al. 2014;
Hassinger et al. 2017). Over time, the proteins diffuse from the centre of the patch
across the membrane, tending towards a homogeneous distribution (figure 4b,c), and this
process is accompanied by a reduction in the membrane deflection. The homogenization
of proteins results in homogenization of the membrane tension, which approaches its
value at infinity (figure 4e,f). The tangential velocity is directed outward (figure 4g—i),
and the dimensionless magnitude of the maximum velocity in figure 4(g) is 4.8 x 1073,
Expectedly, the magnitude of this velocity decreases with time as seen in figure 4(h,i).

When the proteins are distributed in two and four patches as shown in figure 3(b,c), we
found that the overall behaviour of the system was quite similar to a single patch with some
changes to the dynamics. First, because each patch had a lower density of proteins (half
or quarter), the initial deformation was smaller and the protein distribution homogenized
faster than in the case of a single patch (figure 5a,b). Similarly, the typical magnitude of
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FIGURE 4. Dynamics of the evolution of membrane shape, protein distribution, membrane
tension and tangential velocity field for a single patch of protein at three different times.
(a—c) Distributions of membrane protein density are shown at dimensionless times 1 x 1073,
5 x 1073 and 2.5 x 1072, (d,e) Distributions of membrane tension at the same non-dimensional
times. (g—i) Tangential velocity fields shown at the same non-dimensional times. Arrows are
scaled accgrding to tangential velocity magnitude, with a maximum dimensionless velocity of
4.3 x 107,

membrane tension variations (figure 5c¢,d) and of the tangential velocity field (figure Se, f)
was also smaller to begin with and the system attained the homogeneous distribution
rapidly.

To compare the effects of one, two and four patches directly, we plotted the membrane
deformation (figure 6), membrane protein distribution (figure 7) and membrane tension
distribution (figure 8) at different locations for each case. The initial deformation is
different for the different cases because of the differences in the local density of proteins.
For a single patch, we observed that the maximum deformation occurs at the centre of the
patch and it takes a longer time for this deformation to go to zero in the case of a single
patch compared to multiple patches (compare figure 6a to 6b,c). In the case of two and
four patches, we also observe a small positive deformation at the centre of the membrane
and in the protein-free membrane. This can be explained by the fact that the continuity
conditions of the surface will result in a small but upward displacement in protein-free
regions in response to the large downward displacement in the regions where the proteins
are initially present.

Comparing the protein dynamics for one, two and four patches, we observed that
increasing the number of patches decreases the time it takes for the protein distribution to
homogenize across the membrane domain (figure 7). Thus, although membrane bending
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FIGURE 5. Dynamics of the evolution of membrane shape, protein distribution, membrane
tension and tangential velocity field for two and four patches of protein at dimensionless time
7 =5 x 1073. The left column shows the distribution of protein density (), membrane tension
(c) and tangential velocity (e) for two patches of protein. The right column shows the distribution
of protein density (b), membrane tension (d) and tangential velocity (f) for four patches of
protein. The magnitude of the maximum dimensionless tangential velocity is 1.6 x 1072 in the
case of two patches, and 4.1 x 1073 in the case of four patches.
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FIGURE 6. Temporal evolution of the membrane deflection at the various locations defined in
figure 3 for a single patch of protein (a), two patches (b) and four patches (c).
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FIGURE 7. Temporal evolution of the protein density at the locations defined in figure 3 for a
single patch of protein (a), two patches (b) and four patches (c).
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FIGURE 8. Temporal evolution of the membrane tension at the locations defined in figure 3 for
a single patch of protein (a), two patches (b) and four patches (c).

and protein distribution are coupled, the distribution of multiple patches weakens the
coupling and promotes rapid homogenization of the membrane proteins. While the steady
state protein distribution is the same in all cases, the dynamics with which the protein-free
regions show an appreciable increase in proteins also depends on the initial distribution
of proteins. For example, in the case of a single patch, CRM takes much longer to reach
steady state compared to the case of two or four patches. Figure 7 shows that for the initial
conditions of a single patch and of four patches of protein, 6 approaches the uniform
protein density monotonically. But for the case of two patches, the time evolution of the
protein density is not monotonic, and we found the density of protein at the corner of the
membrane exceeds the density at the COP for a brief time interval. We investigated this
phenomenon further and studied the dependence on intra-membrane flow by varying the
Péclet number in § 3.3.3.

Similar dynamics is observed for the membrane tension as well. Figure 8 shows that
the membrane tension takes a larger time to reach its steady value for the case of one
or two patches when compared to four patches (compare figure 8a—c). The initial rise
in the membrane tension corresponds to the inviscid response of the membrane to the
curvature-inducing protein distribution, while from the next time step onwards tension
changes primarily due to viscous effects.

3.3.3. Effect of fluid advection on coupled membrane—protein dynamics

Next, we investigated the effect of fluid advection in the case of two patches by varying
the Péclet number Pe in figure 9. We observed that at the centre of the patch (figure 9a)
there was no observable effect on the temporal evolution of the protein density. However,
at the centre of the membrane (figure 95) and in the protein-free membrane (figure 9c¢),
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FIGURE 9. Temporal evolution of local protein density for different values of the Péclet number
in the case of two patches of protein. The protein density is measured at the four locations defined
in figure 3: COM (a), COP (b), PFM (c) and CRM (d).

we observed that increasing Péclet number had a small effect on the dynamics of the
protein density, particularly at long times.

The effect of increasing the Péclet number was most dramatic at the corner of the
membrane (figure 9d), where the initial rise in the protein density was found to be
similar for all three values of Pe, but the increase resulted in a higher value for lower Pe.
Eventually, 6 at the corner decreases towards the mean value of & over time. Thus,
the coupling between lipid flow and protein diffusion seems to have a larger impact on
transport in the regions that are initially protein free.

To further investigate the role of convective transport, we tracked the separation distance
ZW, between the centres of mass of two effective patches (/) as a function of time in
figure 10. The centre of mass of a patch is formally defined as

/ 7o —o,)H(G —6,)da
= 2

r

with, 7,, = / o da, (3.21)
fo)

) / (6 —6,)H(G — 6,) da
2

where the effective extent of the patch is defined using the Heaviside function H as the
area where protein density exceeds its mean value. We observed that Z.ep increases with
time and decreases with increasing Péclet number (figure 10). This can be explained from
the velocity profile for two patches in figure 5(e). The direction of the velocity is towards
the centre of the membrane in the area where the patch is located. Therefore, the advective
transport due to the lipid tends to weaken the separation otherwise caused by diffusion.
Since the effect of flow increases with increasing Pe, the separation of the two patches
slows down for higher values Péclet number as shown in figure 10. This also explains the
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FIGURE 10. Evolution of the separation distance between the centroids of the protein patches
in the case of two patches and for three different values of the Péclet number.

decrease of density of the protein at the CRM and the increase of the protein density at the
PFM and COM with higher value of Pe as found in figure 9.

We can further understand the dynamics of the separation distance between the two
patches by considering the diffusion of a protein patch in one triangular half-domain of
lipid. This triangle is bounded by two of the domain boundaries and by the diagonal of
the square domain that passes in between the two patches. The diagonal line is also a line
of symmetry, and thus behaves as an effective no-flux boundary for the triangular half of
the domain. Therefore, each triangular half-domain is subject to the no-flux condition on
its three sides. In this half-domain, the semicircular half-patch of protein facing the corner
of the membrane diffuses to a smaller area compared to the other semicircle that faces
the centre of the membrane. This results in an effectively larger protein gradient towards
CRM. Therefore, the protein density shifts towards the protein-free corner and results in
an effective shift of the patches towards the corners of the membrane.

4. Axisymmetric membranes

In the previous section, we focused on small deformations from a flat plane. However,
membranes are known to undergo large deformations including bud-like shapes in the
presence of proteins (Dannhauser & Ungewickell 2012; Hassinger et al. 2017; Haucke &
Kozlov 2018). Here, we illustrate the interaction between membrane bending and protein
diffusion for membrane buds. For these simulations, we assume that the membrane is
rotationally symmetric and recast the governing equations of § 2.6 in an axisymmetric
framework.

4.1. Governing equations in axisymmetric coordinates
We represent tangential velocity vector in polar coordinates as
v = v'e, + v0ey. 4.1)

For an axisymmetric geometry as depicted in figure 11(a), we assume d()/d6 = 0 and
v? = 0 (Arroyo & DeSimone 2009). Thus, we parametrize the geometry as

r(s,0,1) =r(s, e, + z(s, Hk, 4.2)
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FIGURE 11. Parametrization of an axisymmetric membrane and bud-shaped initial condition.
(a) Parametrization and boundary conditions for an axisymmetric membrane. (b) Solution
domain showing the initial condition, where a circular patch of curvature-inducing protein
(shown in purple) induces a bud-shaped deformation. (¢) A magnified view of the domain shown
in (a).

where the unit vectors (e,, ey, k) are a set of orthonormal basis vectors and s is the
arclength measured from the axis of symmetry. The tangent and normal vectors are given
by

a;, = cos e, +siney, ag =re,, n = —sinye, + cosyey, (4.3a—c)

where i is the angle made by the tangent a, with the radial unit vector e,. The
corresponding surface metric (a4p) and curvature metric (b,p) are

P LS 4.4a.b
Gt =10 2| 7|0 rsiny | (4.4a.,b)

Using these expressions, the incompressibility constraint becomes

1o(rv*
100V o, 4.5)
r o os
The governing equation for surface pressure is
0 oH owH ow oy
— —dvw— +2v (2 + Kvy — — —
as as as ds 0s
0
= —a—a |:kBTlog <3> — 2ke(H — Ea)i| , (4.6)
s s

and the shape equation expressing the normal momentum balance is given by

ros as

—2H |:kBT0 (log (;) — 1) + k(H — 50)2:|

5 |:81ﬁ v’ n sin ¥ cos yrv*

P <rw) + 2k(H — £o)(2H? — K)

ds 0s r2

— w(4H? — 2K):| =p+24H. 4.7
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The transport equation for the protein density simplifies to

o (o) 19 [/ do 19 [ 0H OH\?
— =D-——r— ) =2kt |lo—— [ r— | + [ —
ot as raos as ros as as

o |02 (22) 1 (22) 4.8)
o—— | r— — . .
ros as as

Finally, the kinematic relation for the normal velocity is given by

or 4.9)
w=mn.—. .
at

4.2. Non-dimensionalization

We non-dimensionalize the system of equations using a reference length scale L (which
we assumed to be 20 nm) such that the radius of the domain is 20L, with all other scales
remaining the same as in § 3.1.2. The dimensionless governing equations are

1 9o _
130 _oui, (4.10)

oS

A H wH i
I _ 450 (28w KD, 8W%>

95 5 95 95 95
3 | 2¢C 5 4CB - ax
__de {T log <Z> B cs&)} , (4.1)
os | T Oy T

7 05 05

—2H |:€'5 <log (g) — 1) +(H - 61}5)2}

1o (?—a(H _~CB&)) +2(H — CB6)(2H? — K)
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4.3. Numerical implementation

The system of dimensionless governing equations (4.11)-(4.14) was solved using
finite-difference methods using the arclength parametrization (Rangamani, Behzadan &
Holst 2020). In these simulations, the total area of the domain was kept constant. This was
achieved by first dividing the initial arclength into N — 1 discrete elements, which gives
N grid points on which the equations were solved. We then calculated the area of each of
the N — 1 discrete area elements. At each time step, the local radius and arclength is back
calculated by keeping the area of these discrete elements constant in the following way:

iy =ri 4+ 2dA;cos Y/, (4.15)
and
Tig1r — Ti
Sit1 =8 + dSl' =5+ s (416)
cos ¥
with
r=s=0. 4.17)

To solve the set of governing equations (4.11)-(4.14), we first obtained the membrane
tension A by integrating (4.11) backward starting from the edge of the membrane where
the boundary condition 1 = 1 is enforced. We then consider the shape equation (4.12)
where the first term can be written as (1/ ?)(BZ/ 95) in terms of the normal bending stress

(Steigmann et al. 2003)

o [1 i “n

SOy I D egs | (4.18)
s | 2 r

el

The modified shape equation is solved for L with boundary condition L = 0 at the centre of
the domain corresponding to the case where there is no pulling force acting on the centre
of the membrane. When doing do, other shape-dependent terms in the shape equation
are treated explicitly, and iterations are performed until convergence. Equation (4.18) is
then integrated for i at every point with the boundary condition v = 0 at the centre of
the membrane and at the boundary. Having determined 1, the radial 7 and the vertical z
position of the membrane are calculated. The continuity equation (4.10) is then integrated
to obtain the value of tangential velocity v°. Finally, the diffusion equation (4.13) is
marched in time to update the protein distribution ¢ across the membrane as described
in §3.3.1.

4.4. Numerical results

We solved the dimensionless governing equations (4.10)—(4.14) for the solution domain
and boundary conditions shown in figure 11(a). The domain is initialized with a protein
distribution as shown in figure 11(b) such that the initial shape of the membrane is a bud,
similar to those observed in membrane fission and fusion processes (Jahn, Lang & Siidhof
2003; Kozlovsky & Kozlov 2003). This initial shape is obtained by solving (4.5)—(4.9)
for an inviscid membrane. The black square highlights the curved bud region shown as a
zoomed-in image in figure 11(c), and all simulation results are shown in this zoomed-in
region.

We make no simplifying assumptions about linear deformations or curvature regimes
in the axisymmetric case, which allows us to explore the nonlinear coupling between
membrane curvature, protein diffusion, and lipid flow in full detail. We conducted the
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FIGURE 12. Dependence of surface curvature Cp on the diffusion of the protein that does
not induce curvature (¢; = 0). Initial protein distribution on: (@) a flat membrane (Cp = 0),
(b) a membrane with pre-existing curvature C; = 0.017 nm~!, (¢) a membrane with pre-existing
curvature C = 0.02 nm~!. (d) Temporal dynamics of protein density at the centre of the
membrane for the three different configurations. The dashed lines highlight the time it takes
for 6, to decrease from 1 to 0.5.

following simulations to map this relationship: (a) diffusion of proteins on curved surfaces
with no coupling between protein distribution and spontaneous curvature, so as to study
the effect of surface curvature on protein diffusion, and (b) coupled diffusion of proteins
and induction of spontaneous curvature.

We first investigate the diffusion of proteins on curved surfaces by simulating the
scenario where there are two types of proteins on the membrane: the first protein does not
induce any curvature (C; = 0) but can diffuse along the membrane (D; = 0.1 um? s7}),
whereas the second protein is curvature inducing (with spontaneous curvature C, =
0.02 nm™~") but immobile (D, = 0). Figure 12(a—c) shows the initial shapes of the three
surfaces for increasing values of the spontaneous curvature. Figure 12(a) shows the case
of a flat membrane (C, = 0) and captures diffusion of a protein with no spontaneous
curvature (¢ = 0) similar to Fickian diffusion on a flat plane. When the membrane is
moderately curved in figure 12(b) or heavily curved in figure 12(c), diffusion from the
centre of the membrane takes a longer time compared to Fickian diffusion on a flat plane
(compare purple and blue lines with the black line in figure 12d). The time required for
proteins to diffuse away from the centre to the flat regions of the membrane increases with
the pre-existing curvature. We compared the time taken for 6. to decrease from 1 to 0.5
and find that it increases nonlinearly with C,, as shown by the dashed lines in figure 12(d).
This result clearly shows that the curvature of the surface alters the timescale of surface
diffusion in a nonlinear fashion.

Next, we simulated the full coupled system where the same protein induces spontaneous
curvature and is free to diffuse in the plane of the membrane. Figure 13 tracks the
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FIGURE 13. Dynamics of the evolution of membrane shape, protein distribution, membrane
tension and tangential velocity field at three different times. (a) Superposed membrane
shapes at three different times. (b—d) Distributions of membrane protein density are shown at
dimensionless times 0.05, 1.05 and 5.05. (e—g) Distributions of membrane tension at the same
non-dimensional times. (h—j) Tangential velocity fields shown at the same non-dimensional
times. Arrows are scaled according to tangential velocity magnitude, with a maximum
dimensionless velocity of 8.4 x 1072

evolution of the membrane shape and protein distribution as the initial aggregate of
curvature-inducing protein diffuses over time. At the start of the simulation, the membrane
forms an £2-shaped bud with a narrow neck (figure 13b). The equilibrium solution of this
system is a flat plane with uniform protein distribution. Upon initiation of the simulation,
the membrane neck widens and forms a U-shaped neck. This widening of the neck is
accompanied by a brief increase in the height of the tip of the membrane and a brief
accumulation of proteins towards the bud (figure 13b,c). Once the U-shaped neck is
formed, the direction of transport reverses and proteins diffuse rapidly away from the
centre of the bud with a corresponding flattening of the membrane (figure 13d). The value
of the membrane tension, which is initially larger at the centre, eventually reduces to its
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FIGURE 14. Temporal evolution of: (a) vertical displacement, (b) protein density and
(¢) membrane tension at three different locations: centre of the membrane (cen), neck of the
bud (neck) (dimensionless arclength distance from the centre is 4.2) and far from the bud (far)
(dimensionless arclength distance from the centre is 14.3).
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FIGURE 15. Coupling of protein curvature-inducing effect and diffusion. Initial distribution of
the protein for (a) £ = 1 nm, (b) £ =2 nm and (c) £ = 2.03 nm. (d) Temporal dynamics of the
density of the protein at the centre of the membrane for the three different configurations. The
dashed lines highlight the time it takes for &, to decrease from 1 to 0.5.

boundary value as the protein density becomes uniform (figure 13e—g). The flow profile
follows the membrane deformation and the protein distribution over time. Initially, the
tangential velocity is directed towards the centre causing advection of the protein towards
the tip (compare figure 13/ and figure 13i). At later times, as the protein diffuses out and
the membrane begins to flatten, the flow direction reverses direction, consistent with the
continuity equation (figure 13j).

Figure 14 shows the change in the displacement (a), protein density () and membrane
tension (c) at three different locations: centre of the membrane (centre), neck of the bud
(neck) and a location far from the bud (far). We observe that the displacement at the
centre of the membrane and at the neck first increases and then decreases consistent with
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the initial widening of the neck (figure 14a). No observable change in deformation was
noted far from the bud. The protein density increases at the centre before decreasing
over time (figure 14b). We enforced a maximum value of 1.25 for ¢ in the simulations in
place of introducing a surface saturation density of proteins on the membrane; this can be
interpreted as a simple model for protein crowding. The protein density at the neck remains
more or less uniform for a long time, consistent with the diffusion of proteins away from
the bud towards the flat membrane. The membrane tension at the centre initially decreases
and then increases (figure 14¢). Recall that the membrane tension is simply the negative
of the surface pressure (Steigmann 1999; Rangamani et al. 2013, 2014). The drop in the
membrane tension corresponds to the change in the direction of the viscous pressure drop
that results from the change in direction of the velocity field. Membrane tension increases
further as the contribution from the viscous component becomes weak over time and the
elastic component dominates. This is consistent with the nature of the membrane tension
for the linear Monge case (figure 8a).

Finally, we varied the extent of the curvature induced by the protein by varying the
characteristic protein size ¢ (figure 15). For a small value of £ = 1 nm such that the initial
curvature was a small deviation from the flat plane (figure 15a), protein diffusion flattens
out the membrane similar to the results observed in the Monge parametrization (figure 7a)
and for diffusion on a flat surface (figure 12d) corresponding to the case where ¢ = 0.
However, increasing ¢ to 2 and 2.03 nm in figure 15(b,c) such that the initial shape is a
well-defined bud leads to an altered temporal dynamics. We compared the time required
for o, to decrease from 1 to 0.5 for different values of £. Interestingly, we find that low
curvatures promote slightly faster diffusion of protein from the centre of the domain as
compared to flat surfaces (compare £ = 0 to £ = 1 nm). For high values of ¢, this time
scale increases but the flattening of the membrane coupled with diffusion results in similar
long-time dynamics, which is different from the case of fixed surface curvature. Thus, we
find that the coupling between membrane bending, protein diffusion and lipid flow reveals
an intricate and a somewhat counterintuitive relationship, with nonlinear dependencies
between protein diffusion timescales and membrane curvature.

5. Conclusions and discussion

In this work, we have derived and analysed the governing equations for the
protein-induced deformation of a lipid membrane coupled with protein diffusion and
in-plane viscous flow of the lipids. The coupling between diffusion and lipid flow
completes the description of the key transport phenomena involved in lipid membranes.
We conducted simulations in one dimension and two dimensions (linearized Monge
and axisymmetry) and further quantified the relationship between membrane bending
and protein diffusion. The major conclusions from our study are that lipid flow and
membrane protein diffusion, when coupled, can alter the dynamics of membrane protein
distribution at different locations. We find that, as the protein diffuses from an initial
locally concentrated patch in the small deformation regime, the membrane deformation
decreases and this dynamics is also related to the diffusion coefficient of proteins on the
membrane. The flow of lipids also seems to induce a separation dynamics that depends on
the Péclet number of the system when multiple patches are present.

In the case of buds, because of the strong coupling between protein diffusion and
membrane bending, certain nonlinearities are observed. First, we note that the diffusion
of protein at the centre of a bud depends on the extent of curvature induced by the protein.
Second, we note that in buds, proteins first tend to move towards the centre of the bud to
enable widening of the neck and then diffuse away from the centre. These findings have
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implications for membrane flattening after fusion in cellular processes such as exocytosis
(Hurley et al. 2010) and membrane repair (Blazek, Paleo & Weisleder 2015).

Previously, we elaborated on the need for coupling between the viscous and elastic
effects for the calculation of the Lagrange multiplier associated with the incompressibility
constraint of the membrane (Rangamani et al. 2013, 2014). Here, we build on that
framework to include protein diffusion. The coupled interaction between elasticity,
diffusion, and viscous flow now fully describes the equations associated with the Lagrange
multiplier A, reinforcing its interpretation as a surface pressure (Rangamani et al. 2013;
Steigmann 2018). We note that further efforts are needed in simulation technologies such
that complex geometries can be simulated (Kumar, Gompper & Lipowsky 2001; Sauer
et al. 2017; Sahu et al. 2020; Vasan et al. 2020).

There have been many studies focused on modelling membrane—protein interactions
(Stachowiak et al. 2010; Lipowsky 2013). Here, we show that coupling the viscous flow
of lipids on the membrane is important for modulating the dynamics of the system and
fully describing interfacial transport phenomena. Future efforts will focus on adsorption
of proteins from the bulk (Glasmaster et al. 2002; Zhdanov & Kasemo 2010) and phase
separation of proteins to identify the coupling between lipid flow and chemical energies
associated with these processes on an elastic membrane. Such theoretical developments
not only have implications for our understanding of biological membranes, but also have
the potential to impact curvature-driven, directed assembly in colloids and liquid crystals
suspended in fluids, and particle interactions at interfaces between immiscible fluids
and soft materials, enabling directed design and engineering of the next generation of
reconfigurable systems in soft matter (Liu, Sharifi-Mood & Stebe 2018; Anjali & Basavaraj
2019).
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Appendix A. Analytical justification for the flat plane as the equilibrium solution

Our 1-D simulations in § 3.2 show that at steady state the protein distribution reaches
a uniform distribution while the string approaches the flat configuration. Here, we
rationalize this result and prove theoretically that the flat configuration with uniform
protein density is indeed an exact solution. To this end, we consider the arc-length
parametrization and write the energy Lagrangian as

L= /[k(H— O)* + A)ds = /[k(ws—C)zﬁ—/l]ds. (A1)

In the above relation, v is the angle made by the string with the horizontal direction and s
is the arc length. The curvature, in this case, is given by ¥,. The tangential force balance
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reads

2k[¢rs — C(9)IC'(5) = Ay, (A2)

which provides an equation for the string tension A for a given shape and spontaneous
curvature. For a uniform protein density, the spontaneous curvature is also uniform:
C(s) = Cy, and (A 2) then implies a uniform tension A(s) = Ay everywhere in the domain.
The Lagrangian then simplifies to

L2 )»0
L= (s — Co)* + Aglds, with Ay = = (A3)

-L/2

Here, we have taken the domain to be —L/2 < s < L/2, and we assume the following
boundary conditions at both ends:

y(=L/2) = y(L/2) =0, ¥ (=L/2) =4 (L/2) =0. (A4a,b)

Without loss of generality, we can consider symmetric deformations with respect to s = 0,
and seek the solution for ¥, as a Fourier cosine series of the form

2nTs

Yy =ao+ Y _ a,cos = (A5)

n=1

Substituting this series into (A 3) yields

2
L2 = 2nTs

£=/ k a+§ a, cos —Co| +4|ds
—-L/2 ( ’ n=1 L ’ ’

L
=3 > kal + LG + Ao). (A 6)

n=1

We find that £ is independent of a,. Minimizing £ with respect to the Fourier coefficients
leads to a; = 0 for i = 0. We therefore find that ¢, = ay, which integrates to ¥ = aps + b.
Using the boundary conditions (A 4a,b), we obtain

¥(s) =0, (A7)

which indicates that the flat configuration is the equilibrium solution in this case.

Appendix B. Validation of algorithm for pressure-Poisson equation

In §3, we solved the coupled membrane tension and velocity for the case of
linear Monge by solving the pressure-Poisson equation with the help of the integral
representation of (3.19). Here, we present a validation of this method and compare the
result with the Stokes—Neumann system (Glowinski er al. 2005). Recall the governing
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equations for the fluid flow in the present case

V.9 =2wH, (B1)

. _|2CB - 4C?B2 . 2C 5
— Ve | 2 -2 - g (3) . (B2)
7 7 7 5,

The velocity field v can be written as a Helmholtz decomposition
V=Vop+Vx=0v,+a, (B3)

where v, is curl free and u is divergence free. In particular, the continuity equation

(B 1) becomes V - ¥, = 2WwH. Now, substituting ¥ = & + ¥, into the governing equations
(B 1)—~(B 2) for the fluid flow yields the modified system of equations

t

V-u=0, (B 4)
+

Vi+ V? =0, (B5)

~\

b

+
where,

f=2VQWwH) — 4WVH — 2Viv : VVZ

. _|2CB - 4C?B* . 2C 5
Ve | 2o 5—Tlog(i1> : (B6)
T T T Oy

Equations (B 5)—(B 4) constitute a non-homogeneous Stokes problem with body force

f' . We solve it here with boundary conditions #,, — 0 and Ao — 1 at infinity. In that
case, the velocity and pressure are simply obtained using the boundary integral equations
(Pozrikidis 1992)

(%) = / GE — &) -f (x0) dA(Ro), B7)
2

Ax) =1 +/ IT(x — Xo) - f(x0) dA(Xo), (B8)
2

where G and IT are the velocity and pressure Green’s functions for two-dimensional Stokes
flow and are given by

(B9)
2 |7 P

Figure 16 compares the membrane tension profile 1 obtained in figure 3(a) for a single
patch with the solution obtained using the Stokes—Neumann formalism. We find that the
relative error is well below 4 % everywhere in the domain (a). The two membrane tension
profiles overlap over most of the domain except for a small deviation near the centre ().
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FIGURE 16. Comparison between membrane tension calculated using the present model and a
Stokes—Neumann formulation (Glowinski et al. 2005). (a) Relative error € = (4 — Agy)/Asy in

the membrane tension for the case of single patch of protein (figure 3a) at time 7 = 5 x 1073,
(b) Membrane tension distribution along line AB shown in (a) for the present model and
Stokes—Neumann solution.
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