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Abstract

Epithelial-mesenchymal heterogeneity implies that cells within the same tumor can exhibit

different phenotypes—epithelial, mesenchymal, or one or more hybrid epithelial-mesenchy-

mal phenotypes. This behavior has been reported across cancer types, both in vitro and in

vivo, and implicated in multiple processes associated with metastatic aggressiveness

including immune evasion, collective dissemination of tumor cells, and emergence of cancer

cell subpopulations with stem cell-like properties. However, the ability of a population of can-

cer cells to generate, maintain, and propagate this heterogeneity has remained a mystifying

feature. Here, we used a computational modeling approach to show that epithelial-mesen-

chymal heterogeneity can emerge from the noise in the partitioning of biomolecules (such

as RNAs and proteins) among daughter cells during the division of a cancer cell. Our model

captures the experimentally observed temporal changes in the fractions of different pheno-

types in a population of murine prostate cancer cells, and describes the hysteresis in the

population-level dynamics of epithelial-mesenchymal plasticity. The model is further able to

predict how factors known to promote a hybrid epithelial-mesenchymal phenotype can alter

the phenotypic composition of a population. Finally, we used the model to probe the implica-

tions of phenotypic heterogeneity and plasticity for different therapeutic regimens and found

that co-targeting of epithelial and mesenchymal cells is likely to be the most effective strat-

egy for restricting tumor growth. By connecting the dynamics of an intracellular circuit to the

phenotypic composition of a population, our study serves as a first step towards understand-

ing the generation and maintenance of non-genetic heterogeneity in a population of cancer

cells, and towards the therapeutic targeting of phenotypic heterogeneity and plasticity in

cancer cell populations.

Author summary

Epithelial-mesenchymal heterogeneity, wherein cells within the same tumor can exhibit

an epithelial, a mesenchymal, or one or more hybrid epithelial-mesenchymal phenotype

(s), has been observed across cancer types and implicated in metastatic aggressiveness.
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Here, we have used computational modeling to show that this heterogeneity can emerge

from the noise in the partitioning of parent cell biomolecules among the daughter cells

during cancer cell division. Our model captures the population-level behavior of murine

prostate cancer cells, the hysteresis in the population-level dynamics of epithelial-mesen-

chymal plasticity, and how hybrid phenotype-promoting factors alter the phenotypic

composition of a population. We further used the model to describe the implications of

heterogeneity and plasticity for therapeutic regimens. By linking the dynamics of an intra-

cellular regulatory circuit to the phenotypic composition of a population, the study con-

tributes towards understanding how non-genetic heterogeneity can be generated and

propagated from a small, homogeneous population, and towards therapeutic targeting of

cancer cell heterogeneity and plasticity.

Introduction

A tumor can contain cancer cells exhibiting multiple, distinct phenotypes. Subpopulations of

cells exhibiting a stem cell-like phenotype have been reported in multiple cancer types includ-

ing leukemia [1], breast cancer [2], colorectal cancer [3,4], brain cancer [5], and prostate can-

cer [6]. Tumor cell populations in triple-negative breast cancer can consist of luminal, basal,

immunomodulatory, mesenchymal, and stem-like cells [7], while those in small cell lung can-

cer are composed of neuroendocrine and non-neuroendocrine cells [8]. Intra-tumoral pheno-

typic heterogeneity can have both genetic and non-genetic bases [9] and has been shown to be

associated with poor prognosis across cancer types [10]. A non-genetic mechanism is likely to

be the underlying cause if cancer cells within a tumor exhibit different phenotypes in spite of

carrying the same genetic alterations. Further, cancer cells have been shown to be able to

switch between different phenotypic states, either spontaneously or in response to specific

cues. Spontaneous switching between luminal, basal, and stem-like states has been reported in

breast cancer cell lines [11] while androgen-deprivation therapy has been shown to promote

transition to a neuroendocrine phenotype in prostate cancer [12,13]. Cancer cells with differ-

ent phenotypes can exhibit different sensitivities to various drugs [14,15]. Therefore, non-

genetic mechanisms of phenotypic heterogeneity and plasticity in cancer cells are a fundamen-

tal challenge to anti-cancer therapies and an understanding of such mechanisms is essential to

the development of effective anti-cancer treatments.

A canonical example of non-genetic heterogeneity is the phenotypic heterogeneity arising

due to epithelial-mesenchymal plasticity (EMP). This plasticity involves two reversible pro-

cesses, epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition

(MET). Via EMT, cancer cells, to varying extents, can lose epithelial characteristics such as

cell-cell adhesion and apico-basal polarity, and acquire mesenchymal features which allow

cancer cells to migrate effectively and invade. The reverse change is observed during MET—

cells lose their migratory freedom and re-acquire epithelial hallmarks including expression of

junctional proteins [16]. Recent studies have shown that cancer cells can also stably exist in a

hybrid epithelial-mesenchymal state wherein they co-express epithelial and mesenchymal

markers [17–19]. Cancer cells within a solid tumor exhibit widespread heterogeneity in the

expression of epithelial and mesenchymal markers and can acquire an epithelial (E), a mesen-

chymal (M), or one or more hybrid epithelial-mesenchymal (hybrid E / M) phenotype(s) [20–

23].

By allowing the tumor cells to acquire migratory traits for dissemination to distant organs,

EMP plays a key role in the metastatic spread of solid tumors. The disseminated cells can then

Mechanism for epithelial-mesenchymal heterogeneity.
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re-acquire epithelial traits including cell-cell adhesion to establish a tumoral mass at the new

organ site. EMP has further been implicated in the triggering of stemness programs in cancer

cells [24,25], evasion of the host immune response [26], and emergence of resistance to anti-

cancer therapies [27–29]. Hybrid E / M cells play a key role in the collective dissemination of

tumor cells as clusters, an aggressive mechanism of cancer metastasis [30]. Further, EMP-asso-

ciated phenotypes differ in their tumor-seeding abilities [31,32] and in their sensitivity to

drugs [33,34]. Understanding the mechanisms driving EMP will thus be a critical step in the

development of more effective anti-cancer therapies.

Signaling pathways and the various transcription factors, micro-RNAs, and environmental

stimuli driving EMP are well characterized [16]. The population-level dynamics of EMP, on

the other hand, have only recently come into focus. Ruscetti et al. showed, in a mouse model

of prostate cancer, that cells exhibiting a single EMP-associated phenotype can spontaneously

generate a population with all three phenotypes over a period of time [35]. Celià -Terrassa

et al. observed hysteresis in the dynamics of EMP in multiple normal and cancerous mammary

epithelial cell lines and reported a role for hysteretic dynamics in the metastatic ability of can-

cer cells [36]. Risom et al. showed that drugs targeting specific cellular pathways can modulate

transitions between epithelial-like and mesenchymal-like states in breast cancer cell lines [14].

The study thus established phenotypic plasticity as a therapeutically targetable property. The

mechanism(s) responsible for cancer cells being able to switch between different phenotypic

states in these studies, however, remain(s) uncharacterized. Some studies have described

phenomenological, population-level models of phenotypic plasticity in cancer cells [11,14,37].

While predictions from these models fit the experimental data reported in the respective stud-

ies, such models lack detailed biomolecular mechanistic bases. This limitation makes the use

of such phenomenological models difficult for making predictions directly useful in designing

anti-cancer therapies.

Multiple mechanisms can drive phenotypic heterogeneity in a population. Apart from sto-

chastic changes in the phenotypes of cells in a population due to intrinsic noise [38], heteroge-

neity can also arise from variable strengths of regulatory interactions in the cells in a

population. The regulatory circuits in different cells can then exhibit distinct dynamics in

response to the same external cues [39]. Another mechanism by which heterogeneity can

emerge is cell-cell communication. A prominent example is Notch-Delta-Jagged signaling

wherein cells in a population can exhibit a sender phenotype, a receiver phenotype, or a hybrid

sender-receiver phenotype [40]. Here, we focus on the emergence of heterogeneity via the first

mechanism, i.e., stochastic changes in the phenotypes of cells in response to noise.

Stochastic changes in cell phenotype, in general, require a mechanism to generate noise and

a mechanism to stabilize the decision reached in response to the noise [41]. In both prokary-

otes and eukaryotes, noise can arise from the inherent stochasticity of biochemical reactions.

A typical case is the emergence of antibiotic-resistant persister cells in bacterial populations

[42]. Another source of noise is the random partitioning of parent cell biomolecules among

the daughter cells at the time of cell division [43]. A key role for such noise in the generation of

non-genetic heterogeneity has been proposed [44]. Fluctuations in the cell phenotype in

response to noise are usually small and transient. Therefore, stochastic changes in cell pheno-

type also require a mechanism that can amplify the fluctuations in the phenotype in response

to the noise. One such mechanism is afforded by the multi-stability of the mechanism underly-

ing cell fate determination. In such a scenario, even small fluctuations added to a stable pheno-

typic state can cause the cell to transition to a new stable phenotypic state. In comparison to

their non-malignant counterparts, cancer cells divide uncontrollably, making random parti-

tioning of biomolecules during cell division a significant source of noise. In the context of can-

cer cells, the regulatory circuit governing EMP has been shown to exhibit tri-stability [45].

Mechanism for epithelial-mesenchymal heterogeneity.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007619 February 10, 2020 3 / 27

https://doi.org/10.1371/journal.pcbi.1007619


Thus, both the requirements for stochastic changes in cell phenotype are satisfied for a popula-

tion of cancer cells exhibiting EMP.

Here, we show that in a population of cells each carrying a copy of the EMP regulatory cir-

cuit, phenotypic heterogeneity can arise from the noise generated due to the random partition-

ing of micro-RNAs, mRNAs, and transcription factors at the time of cell division. The

temporal dynamics of fractions of different phenotypes in a population predicted by our

model agree with those observed for cells isolated from a mouse model of prostate cancer [35],

both in terms of the timescale over which the phenotypic composition of the population

changes and in terms of the phenotypic composition observed over time when starting from

different initial conditions. Our model captures the relative stability of epithelial and mesen-

chymal populations and the ability of a hybrid E / M population to quickly generate a mixture

of epithelial and mesenchymal cells. We also used the model to describe hysteresis in the popu-

lation-level dynamics of EMP and characterized how EMP modulators such as GRHL2 and

ΔNP63α can alter the phenotypic composition of a population. Our model predicted that a

suitable combination of a MET promoter, such as retinoic acid, and an EMT promoter, such

as TGF-β, can stabilize a population of hybrid E / M cells. Finally, we characterized how drugs

targeting specific EMP-associated phenotypes alter the population behavior. We conclude that

targeting a single phenotype is likely to have little attenuating influence on tumor size. Target-

ing epithelial and mesenchymal cells simultaneously is predicted to be the best regimen for

restricting tumor growth.

Results

Developing a population-level model of EMP dynamics

Epithelial-mesenchymal plasticity (EMP) is modulated via the functional cooperation of multi-

ple cell signaling pathways that can respond to both internal and external stimuli [46]. These

include TGF-β-SMAD3, WNT-β-catenin, and Notch pathways. The activities of these path-

ways converge onto a core regulatory circuit shown in Fig 1(A). Downstream targets of this

circuit include cadherins, claudins, occludins, and metalloproteinases [46]. Given its central

role in modulating EMP [16,46], we used this regulatory circuit to construct a model of epithe-

lial-mesenchymal heterogeneity in cancer cells. The EMP regulatory circuit forms a ternary

switch, the dynamics of which has been described previously [45]. Briefly, the circuit can

exhibit three distinct types of stable steady states in response to different levels of the SNAI1
activating signal Isig. The stable steady state types can be mapped to the three EMP-associated

phenotypes: epithelial (E), mesenchymal (M), and hybrid epithelial-mesenchymal (hybrid E /

M) (Fig 1(B)). We considered a population of cancer cells where each cell is carrying a copy of

this EMP regulatory circuit. The kinetic parameters governing the behavior of the regulatory

circuit have been described previously [45]. The parameters are such that the circuit operates

in the tri-stable region. This choice of parameters allowed us to explore the behavior of all

three EMP-associated phenotypes and is suited for describing experiments characterizing epi-

thelial-mesenchymal heterogeneity. The dynamics of the EMP regulatory circuit within each

cell can be simulated independent of the other cells in the population. Each cell can then be

assigned one of the three phenotypes based on the expression level of ZEB1 mRNA inside the

cell. In the absence of competition (or, equivalently, in the presence of an infinite supply of

nutrients), each cell in the population had an average doubling time of 38 hours which is a typ-

ical value for cancer cells (BioNumbers ID 100685 [47]). To account for the limited availability

of nutrients in the tumor microenvironment, we used a logistic growth model with a fixed car-

rying capacity. Cells in the population died at a fixed rate. Different EMP-associated pheno-

types can exhibit different rates of cell division. Induction of EMT has been shown to arrest

Mechanism for epithelial-mesenchymal heterogeneity.
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the cell cycle [48,49]. Another study has shown that cells that have undergone a partial EMT

can exhibit a hyper-proliferative phenotype [50]. Here, we considered a simpler case wherein

both division and death rates are assumed to be independent of the phenotype of the cell.

Relaxing this assumption does not affect the general conclusions presented in this study (S9–

S12 Figs). When a cell divides, the RNA and protein molecules present in the parent cell right

before cell division are randomly partitioned among the daughter cells. Isig represents multiple

upstream signaling pathways whose functionalities converge onto the EMP regulatory circuit

and is the chief determinant of the number and types of stable steady states the EMP regulatory

circuit can acquire. Therefore, noise in the partitioning of Isig among the daughter cells is likely

to be the dominant perturbation to the dynamics of the EMP regulatory circuit and is the

focus of our proposed model. The concentration of Isig in each daughter cell after cell division

was given by:

Idaughtersig ¼ Iparentsig þ ZNð0; 1Þ ð1Þ

Here, N(0,1) is the standard normal distribution and η is a model parameter controlling the

variance of the noise. See S1 Text (section I) for a detailed description of development of this

Fig 1. Description of the proposed model. (A) The regulatory circuit governing EMT and MET. (B) Bifurcation diagram for

the EMP regulatory circuit. (C) A schematic of the simulations carried out in the present study. Each cell carries a copy of the

regulatory circuit shown in Fig 1(A).

https://doi.org/10.1371/journal.pcbi.1007619.g001
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model of partitioning noise. Briefly, right before a cell divides, its genomic content is dupli-

cated and, consequently, the copy numbers of different RNA and protein molecules get

approximately doubled. During cell division, these molecular species are randomly partitioned

among the daughter cells. Thus, there are two independent sources of noise involved in each

cell division event—noise in RNA and protein copy number doubling in the parent cell during

the duplication of its genomic content and noise due to the random partitioning of RNA and

protein molecules among the daughter cells during cell division. To incorporate both these

noise sources, our model, represented by Eq 1, uses two independent random variables (one

random variable in the equation for each daughter cell) to describe each cell division event. As

mentioned earlier, Isig is representative of multiple signaling pathways and each such pathway

involves numerous molecular players. The normally distributed noise term in Eq 1 accounts

for the contributions from noise in the partitioning of these molecular players. Such a coarse

grained approach, instead of more exact formulations described previously [43,51], becomes

necessary due to the large number of molecular players involved in EMT / MET signaling,

mechanisms of action of many of which remain uncharacterized.

With the new concentration of Isig, as determined by Eq 1, the EMP regulatory circuit in the

daughter cell will acquire a stable steady state different from the stable steady state of the EMP

regulatory circuit in the parent cell. The new stable steady state may correspond to a pheno-

typic state different from the phenotypic state of the parent cell (Fig 1(B)). The daughter cell

can then acquire a phenotype different from the phenotype of the parent cell before division.

A schematic of the model is shown in Fig 1(C).

Changes in phenotype during cell division are governed by the Noise in Isig
partitioning

We started with a population of 500 cells on day 0. The initial concentration of Isig in these

cells was drawn from a log-normal distribution [52] with median 2×104 molecules / cell and

with coefficient of variation 1.0. The dynamics of this population was simulated for a period of

8 weeks using the model of EMP described above, for different values of the noise parameter η.

The cells grew quickly in number, with the total number of cells in the population becoming

nearly stationary around day 18. The growth kinetics, as expected, were independent of the

noise parameter η, and depended on the doubling time of cells in the population (S1 Fig).

Every time a cell divided, we recorded the phenotypes of the parent and the daughter cells. At

low values of η, cells of all three phenotypes exhibited high rates of symmetric self-renewal, i.e.,

both the daughter cells acquired the same phenotype as the parent cell in most instances (Fig 2

(A)). As η was increased, the probability of a daughter cell acquiring a phenotype different

from that of the parent cell increased for all three types of cells. For η = 1×104, there was a ~3%
chance that a dividing epithelial cell will generate at least 1 daughter that is non-epithelial. The

chances increased to ~17% for η = 4×104. Similarly, for both hybrid E / M and mesenchymal

cells, the probability of generating at least one daughter cell with a phenotype different from

that of the parent cell increased significantly with an increase in η. Among the three pheno-

types, hybrid E / M cells exhibited the highest probability of generating a daughter cell with a

phenotype different from that of the parent cell. Even at low values of η, the probability that at

least one of the daughter cells will be non-hybrid E / M when a hybrid E / M cell divided was

as high as 50%. This probability increased further with an increase in η, reaching ~87% for η =

4×104. On the other hand, mesenchymal cells exhibited the least probability of generating a

daughter cell with a phenotype different from that of the parent cell. The probability of gener-

ating a non-mesenchymal cell during mesenchymal cell division did not exceed 12% for any

value of the noise parameter η for which model behavior was analyzed. The high probability of

Mechanism for epithelial-mesenchymal heterogeneity.
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a daughter cell acquiring a phenotype different from that of the parent cell during hybrid E /

M cell division is a consequence of the small range of Isig concentrations for which the hybrid

E / M phenotype can exist as a stable state (Fig 1(B)). In contrast, ranges of Isig concentrations

for which epithelial and mesenchymal phenotypes can exist as stable states are much larger. As

a result, in most cell divisions involving an epithelial or a mesenchymal cell, daughter cells

acquire the phenotype of the parent cell.

The model can predict how the fractions of different phenotypes in a population of cells

will evolve over time, given the initial phenotypic composition of the population. Examples of

temporal dynamics for different values of η are shown in Fig 2(B). On starting with a popula-

tion that is ~84% epithelial, the fraction of epithelial cells in the population declined over time.

Fig 2. Dynamics of the model. (A) Average number of daughter cells of each phenotype generated per cell division when the parent cell was an epithelial cell (left

panel), a hybrid E / M cell (center panel), or a mesenchymal cell (right panel). (B) Temporal dynamics of the fraction of epithelial cells, hybrid E / M cells, and

mesenchymal cells in a population of cancer cells for different values of the noise parameter η (indicated by different colors). Here, the average doubling time of each

cell was 38.0 hours. (C) Temporal dynamics of the fraction of epithelial cells, hybrid E / M cells, and mesenchymal cells in a population of cancer cells for different

average doubling times of cells in the population (indicated by different colors). Here, η = 1.0×104. In each panel of (B) and (C), the results shown were obtained by

averaging over 16 distinct simulation runs. Error bars indicate the standard deviation calculated over the 16 independent runs.

https://doi.org/10.1371/journal.pcbi.1007619.g002
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The rate of this decline increased with increasing η due to the increase in the probability of

generating a non-epithelial daughter cell during epithelial cell division. The fraction of mesen-

chymal cells, on the other hand, increased with time as mesenchymal cells were generated via

the division of epithelial cells. Given the high probability of symmetric self-renewal of mesen-

chymal cells even at high values of η, the fraction of these cells in the population increased

with increasing η. The temporal dynamics of the hybrid E / M fraction was non-monotonic

and, due to the high probability of generating a non-hybrid E / M cell during the division of a

hybrid E / M cell, their fraction in the population remained below 10%.

In addition to the noise parameter η, average doubling time of cells in the population is also

a key determinant of kinetics of change in the phenotypic composition of the population in

our model (Fig 2(C)). Phenotypic composition of the population changed at a faster rate when

the average doubling time of cells in the population was decreased (i.e., when the growth rate

of cells in the population was increased). This is because the phenotypic composition of the

population in our model changes due to the possibility of a daughter cell acquiring a pheno-

typic state different from that of the parent cell. As a result, change in the phenotypic composi-

tion of the population is accelerated on increasing the rate of cell division. Increasing the death

rate of cells in the population also increased the rate of change in the phenotypic composition

of the population (S2 Fig). This behavior is due to the increased frequency of cell division

events in the steady state population under higher death rates. The effect of change in death

rate of cells was, however, less pronounced than the effect of change in the growth rate of cells.

Our results suggest that the phenotypic composition of an isogenic population of cells in
vitro at a given point in time will depend on the phenotypic composition at the time point the

population was initially sorted or passaged and on the number of days since the sorting or pas-

saging event (Fig 2(B) and 2(C); S3(A) Fig). Many cell lines commonly used in experimental

studies to investigate EMP in cancer cells are known to exhibit epithelial-mesenchymal heteroge-

neity and cells are often sorted in studies to isolate those exhibiting a desired phenotype. Our

model suggests that the phenotypic heterogeneity exhibited by a given cell line can vary from

study to study even under control conditions (cells untreated with any reagent that may promote

or inhibit EMT / MET) and be propagated post sorting of cells. To investigate if such behavior is

observed, we pooled publicly available gene expression data for nine cell lines and used these

expression data to calculate EMT scores for each cell line as described previously [53]. The EMT

score indicates how epithelial-like or mesenchymal-like a cell line is. S3(B) Fig shows that the

EMT score calculated for a given cell line under untreated conditions can indeed vary signifi-

cantly across independent experimental studies. Multiple factors, including cell passaging tech-

nique, gene expression profiling method, and technical variability may be held responsible for

the existence of these variations. Our model provides another possible, rather straightforward,

explanation of such behavior—in different experimental studies involving a given cell line, phe-

notypic composition post cell passage / sorting is likely to be different and gene expression pro-

filing was likely carried out at different time points post passaging / sorting of cells.

Finally, spontaneous change in the phenotypic composition of a population over time can

occur as long as the regulation of EMP exhibits multi-stability in response to an upstream sig-

nal. Our use, in this study, of the model of EMP regulation described by Lu et al. [45] (Fig 1(A)

and 1(B)) is only a convenient choice. We also used our model of partitioning noise (repre-

sented by Eq 1) to simulate the dynamics of populations when incorporating two distinct mod-

els of EMP regulation—a simplistic two-state model with no hybrid E / M phenotype [36] (S4

(A) Fig) and a four-state model with OVOL2-ZEB1 mutual inhibition and two hybrid E / M

phenotypic states [54] (S5(A) Fig). In both scenarios, the phenotypic composition of the popu-

lation changed spontaneously over time upon the inclusion of noise in the partitioning of the

EMT activator during cell division (S4(B) Fig and S5(B) Fig).

Mechanism for epithelial-mesenchymal heterogeneity.
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Model captures the temporal changes in phenotypic composition in a

mouse model of prostate cancer

We tested the predictions of our model in tumor cells isolated from murine prostate tumors [35].

To study the role of EMP in the distant metastasis of prostate cancer in vivo, Ruscetti et al. crossed

Pb-Cre+/-; PtenL/L; KrasG12D/+ mice with Vim-GFP reporter mice to track EMP in prostate cancer

cells. EpCAM+GFP- epithelial tumor cells were FACS (fluorescence-activated cell sorting) sorted

from 10-week old prostates and cultured in vitro (PKV cell line). FACS sorting of these cells after

14 days of in vitro culture revealed three distinct phenotypes: EpCAM+GFP- (epithelial),

EpCAM-GFP+ (mesenchymal), and EpCAM+GFP+ (hybrid E / M). Epithelial, mesenchymal, and

hybrid E / M cells, FACS sorted from the PKV cell line, were then cultured in vitro. Fractions of

different phenotypes in each culture at different time points were tracked using FACS. The tem-

poral dynamics have been replotted in Fig 3 along with the predictions from our model.

Model predictions shown in Fig 3(A) were obtained by varying the noise parameter η to

minimize the root mean square deviation from experimental data (S6(B) Fig). Best fit to exper-

imental data was obtained for η = 2.7×103. The ratio of the noise in the partitioning of Isig (η)

to the mean Isig of dividing cells in this case was estimated from the simulations to be ~0.38.

When multiple activating and inhibitory inputs to the core EMP regulatory circuit are consid-

ered individually, best fit to experimental data may be obtained at a much lower value of the

Fig 3. Comparison of temporal dynamics of phenotypic composition of a population predicted by our model with experimental data obtained for murine

prostate cancer cells. (A) Fractions of different phenotypes in the population assessed at different time points during a two-week period. Dotted curves represent the

fractions of different phenotypes re-plotted from Ruscetti et al. [35]. Solid curves, with circles, represent the predictions from our model using η = 2.7×104. Best fit to

experimental data was obtained for this value of the noise parameter. (B) Phenotypic composition, over time, of a population which consisted of only hybrid E / M

cells on day 0. The three panels show the behavior under different modifications to the model—asymmetric distribution of miR-34a among the daughter cells during

the division of epithelial cells (left panel; η = 2.3×104), asymmetric distribution of miR-34a among the daughter cells during the division of hybrid E / M cells (center

panel; η = 2.5×104), and asymmetric distribution of miR-34a among the daughter cells during the division of mesenchymal cells (right panel; η = 2.7×104). The value

of η indicated for each case resulted in the best fit to experimental data in that case. The average doubling time of cells in each panel was 38.0 hours. The results shown

in each panel were obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard deviation calculated over the 16 independent runs.

https://doi.org/10.1371/journal.pcbi.1007619.g003
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noise parameter η (S7 Fig). Our model was able to capture the time scale over which the phe-

notypic composition of the population changed in each of the three cases with different initial

compositions. When starting with a population consisting of only epithelial cells, ~73% of cells

were epithelial at the end of the 14-day simulation and experiment period. Consistent with the

high rate of symmetric self-renewal of mesenchymal cells, nearly 85% of the population was

still mesenchymal after the 14-day period when starting with a population of only mesenchy-

mal cells on day 0. On the other hand, on starting with a population of hybrid E / M cells on

day 0, the fraction of these cells in the population dropped below 30% within 3 days. A mixture

of epithelial and mesenchymal cells had quickly been generated by the population of hybrid

E / M cells.

One aspect of the experimental behavior shown by the PKV cell line is not captured by our

baseline modeling framework. Hybrid E / M cells isolated from the PKV cell line, when cul-

tured in vitro, generated a population with more mesenchymal cells than epithelial cells (Fig 3

(A); center panel, dotted curves). This behavior was not captured by our model which treats

epithelial, mesenchymal, and hybrid E / M cells equivalently, i.e., doubling times, death rates,

and the characteristics of noise in the partitioning of Isig during cell division are identical for

cells of all three phenotypes in our model. Hybrid E / M cells, however, exhibit a special prop-

erty—multiple studies have reported that the hybrid E / M phenotype is associated with the

expression of cancer stem cell markers [24,55–57]. During the division of colon cancer stem

cells [58–60] and of mammary stem cells [61], asymmetric partitioning of miR-34a among the

daughter cells has been reported. Bu et al. [58] have shown that miR-34a is asymmetrically

divided among the daughter cells during the asymmetric division of colon cancer stem cells

(see Fig 3(A) and 3(B) in Bu et al. [58]). This was later confirmed in a couple of follow-up stud-

ies (see Fig 1(A) in Bu et al. [59] and Fig 4(E) in Wang et al. [60]). Hybrid E / M cells in our

modeling framework exhibit an intermediate level of miR-34a expression while epithelial cells

have high miR-34a expression and mesenchymal cells have low miR-34a expression (S6(A)

Fig). Bu et al. [58] showed that an intermediate level of miR-34a expression is needed for the

asymmetric division of colon cancer stem cells during which miR-34a is asymmetrically parti-

tioned among the daughter cells. Both ectopic expression of miR-34a and knock down of miR-

34a inhibit asymmetric division (see Fig 2(E) and 2(F) in Bu et al. [58]).

On the basis of the experimental observations reported above, we incorporated the stem-

ness property of hybrid E / M cells into our model by setting the concentration of miR-34a in

one of the daughter cells to zero during the division of a hybrid E / M cell while keeping the

concentration of miR-34a in the other daughter cell same as the miR-34a concentration in the

parent cell. Here, the assumption is that miR-34a is actively and quickly degraded in one of the

daughter cells (the one for which miR-34a is set to zero) right after division. When simulating

the dynamics of a population with only hybrid E / M cells on day 0, this modification to the

model led to a larger fraction of mesenchymal cells as compared to epithelial cells in the popu-

lation at subsequent time points. This modification allowed for a better fit to the experimental

observations obtained for cells isolated from the PKV cell line (Fig 3(B); center panel; S6(B)

Fig). Model behavior is unchanged if during the division of a hybrid E / M cell, one of the

daughter cells gets no miR-34a molecules while the other daughter cell gets double the concen-

tration of miR-34a in the parent cell (due to the doubling of miR-34a copy number in the par-

ent cell right before it divides; S14 Fig). Since epithelial cells have high miR-34a expression and

mesenchymal cells have low miR-34a expression (S6(A) Fig), both these cell types are unlikely

to exhibit asymmetric partitioning of miR-34a during cell division [58]. In any case, asymmet-

ric partitioning of miR-34a among the daughter cells during the division of epithelial or mes-

enchymal cells did not typically lead to a better fit to experimental data (Fig 3(B); left and right

panels; S6(B) Fig).
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Our baseline modeling framework, built upon the canonical EMT / MET regulatory net-

work, describes generic epithelial-mesenchymal plasticity (EMP) behavior. The above para-

graph illustrates how the modeling framework can be modified to incorporate any special

property (asymmetric partitioning of miR-34a for example) that cancer cells in a given pheno-

typic state may exhibit. Thus, our framework can easily be adapted to fit experimental data in

diverse contexts where cancer cells may exhibit peculiar characteristics that modify their

generic EMP behavior.

Note that since the kinetics of change in the phenotypic composition of a population also

depend on the average doubling time of cells in the population (Fig 2(C)), one may vary this

rate while keeping the noise parameter η fixed to obtain the best fit to the experimental data

from Ruscetti et al. [35]. Model predictions for the average doubling time of cells that mini-

mizes the root mean square deviation from experimental data are shown in S8 Fig.

We also investigated how the model behavior will change if we take into account the dif-

ferent growth phenotypes that may be exhibited by hybrid E / M cells—a hyper proliferative

phenotype [50] (S9(A) Fig) or a growth-arrested phenotype [48,49] (S9(B) Fig). In both sce-

narios, a population of hybrid E / M cells exhibits plastic behavior, quickly generating a mix-

ture of epithelial and mesenchymal cells. The decay in the fraction of hybrid E / M cells in

the population is accelerated when hybrid E / M cells are hyper proliferative (average dou-

bling time of 8.0 hours) and slowed when hybrid E / M cells are growth arrested (average

doubling time of 192.0 hours or 8 days). Behavior of populations that were purely epithelial

or purely mesenchymal on day 0 is unchanged in both scenarios. Effects of co-varying the

average doubling times of cells exhibiting different phenotypes are shown in S10–S12 Figs.

Finally, temporal behavior of the model was unaffected when noise in the partitioning of

other players in the core EMP regulatory circuit was also incorporated into the simulations

(S13 Fig).

Hysteresis in the population-level dynamics of epithelial-mesenchymal

plasticity

The regulatory circuit driving epithelial-mesenchymal plasticity, shown in Fig 1(A), exhibits

nonlinear dynamics. Such systems can exhibit hysteresis wherein the system response

depends not only on the present input but also on the input history. We investigated if hys-

teresis can also arise in the dynamics of fractions of different phenotypes in a population of

cancer cells. Starting with a population of epithelial cells on day 0, a fixed dosage of Isig was

added each day for 10 days. A fixed dosage of Isig was then withdrawn each day over the next

10 days. Fig 4 shows the fractions of different phenotypes in the population over the 20 day

period. Since Isig promotes EMT, the fraction of mesenchymal cells in the population

increased during the first 10 days, from 0% on day 0 to >86% on day 10. In contrast, the frac-

tion of epithelial cells declined to less than 10% over the same time period. When Isig was

withdrawn in fixed dosages day 11 onwards, this trend was reversed. However, the fractions

of epithelial and mesenchymal cells in the population from day 11 to day 20 did not retrace

the behavior recorded from day 0 to day 10. On day 20, >35% of the cells still exhibited a

mesenchymal phenotype which was maintained in the absence of additional Isig dosages (S15

Fig). These cells thus represented a population that had undergone an EMT which is irre-

versible on the time scale considered here. Such hysteretic control of EMT and MET dynam-

ics was recently confirmed in multiple normal and cancerous mammary epithelial cell lines

including MCF10A, MCF7, HMLE, T47D, and 4T1 [36]. The study also confirmed the per-

sistence of the mesenchymal phenotype long after the withdrawal of the EMT-inducing sig-

nal as predicted by our model (S15 Fig).
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Frequency of spontaneous phenotype change during cell division can be

modulated by altering the core EMP regulatory circuit

In our model, changes in phenotype during cell division occur, in response to noise, due to the

tri-stability in the dynamics of the core EMP regulatory circuit. Thus, modifications to this reg-

ulatory circuit which change the bifurcation diagram (Fig 1(B)) should alter the frequency of

phenotype change during cell division. Mathematical models have shown that the range of Isig
levels for which a stable hybrid E / M phenotype can exist is much larger when GRHL2 is cou-

pled with the core EMP regulatory circuit [17] or when ΔNP63α is added to the regulatory cir-

cuit [62] (Fig 5(A)). Given the larger range of Isig levels for which a stable hybrid E / M

phenotype can exist in both these scenarios, we expected the probability of generating an epi-

thelial or mesenchymal daughter cell during the division of a hybrid E / M cell to decrease

upon the inclusion of GRHL2 or ΔNP63α in our model. This was confirmed by tracking the

phenotypes of daughter cells formed via the division of a hybrid E / M cell upon the inclusion

of GRHL2 or ΔNP63α. For all values of the noise parameter η investigated, a higher probability

of generating at least 1 hybrid E / M daughter cell during the division of a hybrid E / M cell

was observed upon the inclusion of both GRHL2 and ΔNP63α (Fig 5(B)). Even at high values

of η (η = 4×104), inclusion of ΔNP63α did not let the probability of generating at least 1 non-

hybrid E / M daughter cell exceed 44%. This probability was >86% in the absence of ΔNP63α.

Upon starting with a population of hybrid E / M cells on day 0, nearly 37% of cells exhibited a

Fig 4. Hysteresis in the temporal behavior of fractions of different phenotypes. Solid curves show the behavior from day

0 to day 10 (bottom horizontal axis; left to right) and the dashed curves show the behavior from day 11 to day 20 (top

horizontal axis; right to left). Here, η = 2.7×104 and the average doubling time of cells was 38.0 hours. The results shown

here were obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard deviation calculated over

the 16 independent runs.

https://doi.org/10.1371/journal.pcbi.1007619.g004
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Fig 5. Model dynamics in the presence of EMT modulators. (A) Bifurcation diagrams of the core EMP regulatory circuit in the presence of GRHL2 (left

panel) and in the presence of ΔNP63α (right panel). (B) Average number of daughter cells of each phenotype generated per cell division during the division of a

hybrid E / M cell in the presence of GRHL2 (left panel) and in the presence of ΔNP63α (right panel). (C) Fractions of different phenotypes, over time, in a

population which consisted of only hybrid E / M cells on day 0. Solid curves in the left panel show the behavior in the presence of GRHL2 and solid curves in

the right panel show the behavior in the presence of ΔNP63α. Dotted curves in left and right panels indicate the fractions of different phenotypes in the absence

of GRHL2 and ΔNP63α activity respectively. Here, η = 2.7×104 and the average doubling time of cells was 38.0 hours. The results shown in both panels were

obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard deviation calculated over the 16 independent runs.

https://doi.org/10.1371/journal.pcbi.1007619.g005
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hybrid E / M phenotype on day 14 upon the inclusion of GRHL2 as compared to less than 12%
of cells in the absence of GRHL2 activity (Fig 5(C); left panel). When ΔNP63α was included,

the fraction of hybrid E / M cells in the population on day 14 was >50% (Fig 5(C); right

panel), a fraction larger than the one seen in the presence of GRHL2 activity and larger than

the fraction seen in the absence of both GRHL2 and ΔNP63α. This behavior is reminiscent of

the increased mean residence time of cells in a hybrid E / M state in the presence of GRHL2

and ΔNP63α which has been reported previously [63].

We next investigated how other modulators of EMT or MET may alter the phenotypic

composition of a population of cells. Biddle et al. used co-treatment with 5 μM retinoic acid

and 0.5 ng / ml TGF-β to maintain a subpopulation of cells in the partial EMT state for two

oral squamous cell carcinoma cell lines [64]. We used our model to characterize the effects of

co-treatment with retinoic acid, an MET inducer [65], and exogenous TGF-β, an EMT inducer

[16], on the phenotypic composition of a population of epithelial cells. Starting with a popula-

tion of epithelial cells on day 0, we simulated the model for different concentrations of retinoic

acid and exogenous TGF-β. Fig 6(A) shows the fractions of epithelial, mesenchymal, and

hybrid E / M cells in the population on day 14. The model predicts that using specific combi-

nations of retinoic acid and TGF-β concentrations, a population with a large fraction of cells

that have undergone a partial EMT can be maintained, thereby recapitulating the experimental

observations of Biddle et al. [64] (Fig 6(B)).

Fig 6. Model dynamics in the presence of retinoic acid and TGF-β. (A) Fractions of epithelial (left panel), hybrid E / M (center panel), and mesenchymal (right panel)

cells in the population after 14 days upon co-treatment with different concentrations of retinoic acid (RA) and TGF-β. The population consisted of only epithelial cells

on day 0. (B) Biddle et al. [64] characterized the plasticity of oral squamous cell carcinoma cells in response to co-treatment with different concentrations of retinoic acid

(RA) and TGF-β. 5.0 μM RA blocked EMT. Its effect was completely abrogated by the addition of 5.0 ng / ml of TGF-β. Co-treatment with 5 μM RA and 0.5 ng / ml

TGF-β established a regime in which a population of cells that have undergone a partial EMT was maintained. Starting with a population of epithelial cells on day 0, we

simulated the dynamics under these three co-treatment regimens (solid curves in the three panels). The predictions from our model are in agreement with the

experimental observations of Biddle et al. Dashed curves indicate the dynamics in the absence of both RA and TGF-β. Here, η = 2.7×104 and the average doubling time

of cells was 38.0 hours. The results shown in each panel were obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard deviation

calculated over the 16 independent runs.

https://doi.org/10.1371/journal.pcbi.1007619.g006
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Drugs targeting epithelial and mesenchymal cells have a synergistic effect

in restricting tumor size

Finally, we investigated the effectiveness of targeting different phenotypes or phenotype com-

binations in restricting tumor growth. Drug activity was modeled using the shifted Hill func-

tion which altered the death rate of cancer cells by a multiplicative factor. Fig 7 shows how the

number of tumor cells in the population changed under different drug regimens. Drugs target-

ing a single phenotype, whether epithelial, mesenchymal, or hybrid E / M, had a negligible

effect on tumor size, even at high concentrations. Since epithelial cells can generate a popula-

tion of mesenchymal cells, targeting the epithelial phenotype led to an increase in the fraction

of mesenchymal cells in the population. These cells exhibit a low probability of generating

non-mesenchymal daughter cells (Fig 2(A); right panel) and had greater nutrient availability

once the population of epithelial cells had been depleted by the drug. Similarly, targeting of

mesenchymal cells increased the fraction of epithelial cells in the population while doing little

to restrict the tumor size. Targeting the hybrid E / M phenotype, too, had little effect due to the

high probability of generating epithelial or mesenchymal daughter cells during hybrid E / M

cell division. This behavior would allow for the rapid generation of epithelial and mesenchy-

mal cells in the population, both of which are not targeted by the drug. Co-targeting of epithe-

lial and hybrid E / M cells or that of mesenchymal and hybrid E / M cells did not substantially

alter the tumor size either. The un-targeted phenotype took over the population in both cases.

A drastic decrease in tumor size was observed upon co-targeting of epithelial and mesen-

chymal cells (Fig 7). While the resource availability for hybrid E / M cells went up in this

regime due to the depletion of epithelial and mesenchymal populations, hybrid E / M cells,

Fig 7. Percentage change in the number of tumor cells after drug treatment for 28 days. Different colors indicate

different treatment regimens.

https://doi.org/10.1371/journal.pcbi.1007619.g007
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with low rates of symmetric self-renewal, quickly generated a population with epithelial and

mesenchymal cells. Both these phenotypes were subsequently targeted. This led to a drastic

decline in tumor size with greater decline at higher drug dosages. Under this regime of co-tar-

geting epithelial and mesenchymal cells, the phenotypic composition of the tumor cell popula-

tion was also fundamentally altered—fractions of the three phenotypes in the population

became nearly equal (Fig 8). Thus, simultaneous targeting of epithelial and mesenchymal cells,

while effective in restricting tumor growth, can bolster phenotypic heterogeneity and increase

the fraction of hybrid E / M cells in the population. The hybrid E / M phenotype has been

implicated in multiple metastatically aggressive behaviors [30]. Thus, the treatment regime,

though effective in restricting tumor growth, will have significant implications for cancer

relapse post-treatment.

Discussion

Multiple studies have characterized the phenotypic heterogeneity in populations of cancer

cells [66]. However, the ability of cancer cell populations to retain this heterogeneity over

extended periods of time and through multiple generations and passages has remained a mys-

tifying feature, with wide-ranging implications for the design of anti-cancer therapeutic strate-

gies. Here, we have described a model for the generation and maintenance of epithelial-

mesenchymal heterogeneity in a population of cancer cells. Our model is based upon the

multi-stability of the regulatory circuit driving EMT and MET, and thus connects the dynam-

ical behavior of the regulatory mechanism within each cell to the phenotypic composition of

the population. While the model does not capture the rich behavior that may arise from the

variable strengths of regulatory interactions in cells in a population, from cell-cell communica-

tion, or from regulation of EMT via epigenetic mechanisms [67], it is a useful first step in

understanding the generation and maintenance of phenotypic heterogeneity in cancer cells.

Targeting the ability of cancer cells to change phenotypes and generate heterogeneous popula-

tions has recently been proposed as a therapeutic strategy for combating drug resistance [14].

Our model can be a platform to identify putative therapeutic targets for inhibiting the genera-

tion, maintenance, and propagation of phenotypic heterogeneity in populations of cancer cells

that exhibit epithelial-mesenchymal plasticity.

A key prediction of our model is that noise in the partitioning of parent cell biomolecules

among the daughter cells at the time of cell division is sufficient for the generation of

Fig 8. Change in the phenotypic composition of the tumor upon drug treatment. Fractions of different phenotypes in a population upon co-treatment, for 28 days,

with varying concentrations of drugs targeting epithelial and mesenchymal cells. On day 0, all cells in the population were epithelial. Drug concentrations are indicated

as 103 units. Here, η = 2.7×104 and the average doubling time of cells was 38.0 hours.

https://doi.org/10.1371/journal.pcbi.1007619.g008
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phenotypic heterogeneity in a population of cancer cells. Since the heterogeneity arises from

cell division-associated noise, it can be maintained over multiple generations and can be prop-

agated from a small population. This makes it possible for a small population of tumor cells,

like that leftover after surgery or after a chemotherapeutic regime, to recreate the full-fledged

phenotypic heterogeneity of a mature tumor if conditions that can sustain tumor growth

emerge at a later point in time. The hybrid E / M phenotype can quickly generate a mixed pop-

ulation of epithelial and mesenchymal cells. This behavior may contribute to the metastatic

aggressiveness widely associated with the hybrid E /M phenotype [30] and may account for the

abundance of these cells in aggressive disease subtypes such as inflammatory breast cancer

[62]. Further, hybrid E / M cells, when disseminated to a distant organ, can potentially re-cre-

ate the phenotypic complexity of the primary tumor at the distant organ site, providing a suit-

able microenvironment for tumor growth in the new tissue. Our model thus highlights how

the initial phenotypic composition can affect the temporal population-level behavior of tumor

cell populations and the implications of such behavior for cancer metastasis.

Another key prediction of our model is hysteresis in the temporal dynamics of fractions of

different phenotypes in a population of cancer cells. Note that the hysteretic behavior reported

here is distinct from the behavior observed in typical non-linear systems where the steady state

reached by a system can depend on the input history. In fact, in our model, the population of

cells does not reach a steady state of fractions of different phenotypes within the time period

over which most experimental studies are carried out. Rather, hysteresis is observed in the tra-

jectories displayed by the fractions of different phenotypes over experimental time scales, a

behavior that has been observed in multiple cell lines [36]. Our model further predicts that

some cancer cells undergo a seemingly irreversible EMT upon transient exposure to an EMT

inducer such as TGF-β. These cells can retain a mesenchymal phenotype long after the EMT-

inducing signal has been withdrawn and do not revert back to an epithelial state during the

time period considered in the present study. The time period we have considered is typical of

most experimental studies. An irreversible EMT upon chronic exposure to EMT-inducing sig-

nals has been reported [19,68]. Our model shows that even transient activation of EMT signal-

ing in cancer cells can generate heterogeneity which will be maintained and propagated long

after the exogenous signal has been withdrawn. Such behavior has been confirmed in a recent

study which showed that transient exposure to TGF-β can be sufficient to generate cells with a

mesenchymal phenotype and such cells retain the acquired mesenchymal phenotype for days

after TGF-β withdrawal [36]. Previous studies have shown how autocrine TGF-β signaling

[19,69] and epigenetic feedback in EMT regulation [67] can bring about a seemingly irrevers-

ible EMT in cancer cells. Further, auto-regulatory control such as the one driving ZEB1 can

contribute towards gene expression noise [70] and modulate phenotypic composition of popu-

lations [71]. Here, we have demonstrated that noisy partitioning during cell division is another

mechanism that can lead to the emergence of such behavior.

Finally, our model provides significant insight into how phenotypically plastic populations

will respond to drugs. When cells that can generate cells of other phenotypes are treated with a

drug that targets only one phenotype, untargeted cells, generated from the drug-sensitive cells,

will take over the population with no significant decline in tumor size. Similar behavior has

been described in the context of adaptive cancer therapy wherein the small number of chemo-

therapy-resistant cells present in the tumor can take over the population once the chemo-sen-

sitive population has been killed off [72]. In our model, under drug activity, cells can switch

between drug-sensitive and drug-resistant phenotypes which markedly alters the population

response to the drug. Leaving one of the more stable phenotypes untargeted will lead to that

phenotype taking over the population with no decline in tumor size. In the context of tumor

cells that can exhibit epithelial-mesenchymal plasticity, this is observed in the scenario wherein
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either epithelial or mesenchymal cells are left untargeted. Co-targeting both these phenotypes

resulted in the best therapeutic response with respect to decrease in tumor size. However, even

in this regime, a small, highly heterogeneous population is left behind which can quickly

regenerate the full-fledged phenotypic heterogeneity of a mature tumor once the drug treat-

ment has been withdrawn. Thus, our model highlights the difficulty in developing effective

therapeutic strategies for the heterogenous and plastic disease that is cancer.

While the present study focuses on epithelial-mesenchymal heterogeneity in cancer cells,

the model can easily be generalized to describe spontaneous changes in the phenotypic compo-

sition of a cancer cell population in multiple scenarios wherein the regulatory mechanism

determining cell fate has been characterized. Our model can easily be adapted to describe

stem-cell heterogeneity in the tumor microenvironment [24], neuroendocrine plasticity in

small cell lung cancer [15], and luminal-basal plasticity in triple-negative breast cancer [14].

Further, the model can be extended to describe spatio-temporal heterogeneity generated via a

juxtacrine signaling mechanism such as Notch signaling [40,73] or via paracrine signaling

between cancer cells and immune cells [74].

Methods

Computer simulation of the model

The dynamics of the regulatory circuit were simulated using ordinary differential equations

(ODEs). The mathematical form of the ODEs and the relevant kinetic parameters are

described in the S1 Text (Tables A and B). Population dynamics were simulated using Gilles-

pie’s algorithm [75]. The model parameters are listed in the S1 Text. C++ code used to gener-

ate the figures presented in the study is available online on GitHub (https://github.com/st35/

cancer-EMT-heterogeneity-noise).

Supporting information

S1 Text. Detailed description of development of the noise model and of the simulations

carried out in the present study. The file also includes the model parameters used to generate

the data shown in the study.

(DOCX)

S1 Fig. Growth kinetics of tumor cells for different values of the model parameters. Growth

kinetics were unaffected upon varying the noise parameter η (left panel). Time taken to reach a

steady state in terms of the population size increased upon increasing the average doubling of

cells in the population (center panel). Increasing the death rate of cells in the population

decreased the population size in the steady state but did not alter the time taken to reach the

steady state (right panel). In each case, simulations were started with a population of 500 cells

on day 0 and a fixed carrying capacity of 10000 cells. In the left and right panels, average dou-

bling time of cells was 38.0 hours. In the center and right panels, η = 1.0×104. The results

shown here were obtained by averaging over 16 distinct simulation runs. Error bars indicate

the standard deviation calculated over these runs.

(TIF)

S2 Fig. Effect of death rate of cells on the kinetics of change in the phenotypic composition

of a population. Here, η = 1.0×104 and the average doubling time of cells in the population

was 38.0 hours. The results shown here were obtained by averaging over 16 distinct simulation

runs. Error bars indicate the standard deviation calculated over these runs. The carrying capac-

ity in our model is fixed. Therefore, when the death rate of cells is low, there will be few cell

division events once the population size has reached a steady state. Since the phenotypic
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composition of the population changes mainly due to a daughter cell acquiring a phenotype

different from that of the parent cell, the phenotypic composition of the population will not

change much with time at low cell death rates (blue curves in the three panels). As the death

rate increases, cell division events can take place in the steady state to replace the dead cells. As

a result, the phenotypic composition changes at a faster rate (orange curves in the three pan-

els). However, changing the death rate of cells by two orders of magnitude has limited effect

on the kinetics of change in the phenotypic composition of the population.

(TIF)

S3 Fig. Heterogeneity in the phenotypic composition of populations of cancer cells that

can exhibit EMP. (A) Fractions of epithelial, hybrid E / M, and mesenchymal cells at different

time points in populations that had distinct phenotypic compositions on day 0. Rows indicate

populations with different initial phenotypic compositions and columns indicate different

time points. Here, η = 2.7×104 and the average doubling time of cells was 38.0 hours. (B) EMT

scores for cell lines commonly used in experiments to investigate epithelial-mesenchymal plas-

ticity. Scores were calculated using gene expression profiles of cell lines from studies wherein

the expression had been profiled in the untreated (or control) regime. A score below 0.5 indi-

cates an epithelial phenotype while a score above 1.5 indicates a mesenchymal phenotype. A

score between 0.5 and 1.5 indicates a hybrid E / M phenotype. All gene expression profiles

were obtained from public databases (see Table C in S1 Text for a list of all the datasets).

Though scores for each cell line were calculated using only those gene expression profiles that

were obtained in the untreated regime (i.e., cells not exposed to any reagent that may promote

or inhibit EMT / MET), there is notable variation in scores for a given cell line across indepen-

dent studies.

(TIF)

S4 Fig. Model dynamics under a two-state model of EMP regulation. (A) EMP regulatory

circuit whose behavior was analyzed by Celià -Terrassa et al. (left panel) and bifurcation dia-

gram for this regulatory circuit (right panel). The circuit clearly exhibits two types of stable

steady states—epithelial, characterized by high CDH1 expression (shown in green), and mes-

enchymal, characterized by low CDH1 expression (shown in orange). (B) Phenotypic composi-

tion over time of populations of cells as predicted by combining our model of partitioning

noise during cell division with the model of EMP regulation analyzed by Celià -Terrassa et al.
Since TGF-β is the key driver of EMT in this model, only the noise in the partitioning of this

circuit component was considered. Different colors in panels of (B) indicate the behavior for

different values of the noise parameter η. All cells in these simulations had an average doubling

time of 38.0 hours. Mathematical equations and the parameters governing behavior of the net-

work in (A) were taken from Celià -Terrassa et al. The results shown here were obtained by

averaging over 16 distinct simulation runs. Error bars indicate the standard deviation calcu-

lated over these runs.

(TIF)

S5 Fig. Model dynamics under a four-state model of EMP regulation. (A) EMP regulatory

circuit whose behavior was analyzed by Hong et al. (left panel) and the bifurcation diagram for

this regulatory circuit (right panel). The network exhibits four types of stable steady states. The

four types can be mapped to four distinct EMP-associated phenotypes. (B) Phenotypic compo-

sition over time of populations of cells as predicted by combining our model of partitioning

noise during cell division with the model of EMP regulation analyzed by Hong et al. Since

external TGF-β is the key driver of EMT in this model, only the noise in the partitioning of

this circuit component was considered. Different colors in the panels of (B) indicate the
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behavior for different values of the noise parameter η. All cells in these simulations had an

average doubling time of 38.0 hours. The results shown here were obtained by averaging over

16 distinct simulation runs. Error bars indicate the standard deviation calculated over these

runs. Panels in (A) are reproduced from Hong et al. under a Creative Commons Attribution

License. Mathematical equations and the parameters governing behavior of the network in (A)

were taken from Hong et al.
(TIF)

S6 Fig. (A) Hybrid E / M cells exhibit an intermediate level of miR-34a expression as com-

pared to epithelial cells (high miR-34a expression) and mesenchymal cells (low miR-34a

expression). (B) Root mean square deviation (RMSD) of model predictions from experimental

data for murine prostate cancer cells obtained from Ruscetti et al. RMSD was calculated by

pooling fractions of the three phenotypes at different time points in the three cases—when

starting with a population of only epithelial cells, when starting with a population of only

hybrid E / M cells, and when starting with a population of only mesenchymal cells. A lower

RMSD was obtained in the model with asymmetric distribution of miR-34a among the daugh-

ter cells during the division of hybrid E / M cells. Isig concentration above a threshold leads to a

mesenchymal phenotype. Also, Isig concentration cannot fall below 0.0. Thus, at very high val-

ues of η, the fraction of mesenchymal cells in the population will increase rapidly leading to

large deviation from experimental data at high η. At low η, the probability of a daughter cell

acquiring a phenotype different from that of the parent cell will be very low (Fig 2(A)). Thus,

at very low values of η, the model will not be able to capture the plasticity of hybrid E / M pop-

ulations. Large deviations from experimental behavior at low and high η account for the non-

monotonic nature of the curves in this figure.

(TIF)

S7 Fig. Fitting to experimental data in the presence of multiple inputs to the core EMP reg-

ulatory circuit. These include signals promoting EMT and those inhibiting EMT. The core

EMP regulatory circuit with 3 EMT-inducing and 2 EMT-inhibiting signals is shown in the

left panel. In the right panel, we show the root mean square deviation (RMSD) of model pre-

dictions from experimental data for murine prostate cancer cells obtained from Ruscetti et al.
The model predictions were obtained using the same value of the noise parameter η for each

input signal. In the presence of multiple EMT-inducing and EMT-inhibiting signals, a good fit

to experimental data can be obtained at a much lower value of the noise parameter η. Once

again, a lower RMSD is obtained when miR-34a is asymmetrically distributed among the

daughter cells during the division of hybrid E / M cells. The kinetic parameters governing the

regulation of SNAI1 by Isig was kept the same for each input to the regulatory circuit. Only l
mS
I ,

the fold change in the production rate of SNAI1 mRNA in response to the input, differed for

the activating and inhibitory inputs. For activating inputs, l
mS
I ¼ 10:0, and for inhibitory

inputs, l
mS
I ¼ 0:1.

(TIF)

S8 Fig. Fitting to experimental data by varying the growth rate of cells in the population.

(A) Root mean square deviation (RMSD) of model predictions from experimental data for

murine prostate cancer cells obtained from Ruscetti et al., plotted as a function of the average

doubling time of cells in the population. Here, η = 2.0×104. Similar to the RMSD curves shown

in S6 Fig. (B) and S7 Fig (right panel), the RMSD varies non-monotonically. A lower RMSD is

obtained when miR-34a is asymmetrically partitioned among the daughter cells during the

division of a hybrid E / M cell. (B) and (C) Fractions of different phenotypes assessed at differ-

ent time points during a two-week period. Model predictions (solid curves) represent the best
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fit obtained by varying the average doubling time of cells while keeping the value of the noise

parameter fixed (η = 2.0×104). (B) shows the model predictions when there is no asymmetric

distribution of miR-34a during cell division (best fit obtained for an average doubling time of

18.0 hours) while (C) shows the model predictions when miR-34a is asymmetrically distrib-

uted among the daughter cells during the division of hybrid E / M cells (best fit obtained for an

average doubling time of 21.0 hours). Dotted curves represent the fractions of different pheno-

types as re-plotted from Ruscetti et al. Model predictions shown in (B) and (C) were obtained

by averaging over 16 distinct simulation runs. Error bars indicate the standard deviation calcu-

lated over these runs.

(TIF)

S9 Fig. Effect of different growth phenotypes that may be exhibited by hybrid E / M cells

on model behavior. (A) Behavior when hybrid E / M cells exhibit a hyper proliferative pheno-

type (average doubling time of 8.0 hours). (B) Behavior when hybrid E / M cells exhibit a

growth arrested phenotype (average doubling time of 192.0 hours or 8 days). (C) Behavior

when hybrid E / M cells exhibit mixed growth phenotype—each hybrid E / M cell was either

hyper proliferative (average doubling time of 8.0 hours) or growth arrested (average doubling

time of 192.0 hours or 8 days), with equal probabilities. Dashed curves in each plot indicate the

behavior when all cells (epithelial, mesenchymal, or hybrid E / M) have the same growth rates

(average doubling time of 38.0 hours). In each simulation, η = 2.5×104 with asymmetric parti-

tioning of miR-34a among the daughter cells during hybrid E / M cell division. All results were

obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard devia-

tion calculated over these runs. As expected, behavior of epithelial and mesenchymal popula-

tions is unaffected by the growth phenotype of hybrid E / M cells within the time period for

which the population dynamics were simulated (left and right panels in (A), (B), and (C)).

When hybrid E / M cells were hyper-proliferative, the rate of decline in the fraction of these

cells in a population that was purely hybrid E / M on day 0 increased ((A); center panel). In

contrast, the rate of decline was lowered when hybrid E / M cells exhibited a growth arrested

phenotype ((B); center panel). This behavior is a consequence of the high probability of gener-

ation of a non-hybrid E / M daughter cell when a hybrid E / M cell divides (Fig 2(A); center

panel). Higher growth rate of hybrid E / M cells would lead to epithelial or mesenchymal

daughter cells being generated at a faster rate at the expense of hybrid E / M parent cells, result-

ing in a faster decrease in the fraction of hybrid E / M cells in the population. This decrease is

slow when hybrid E / M cells divide at a slower rate ((B); center panel). No non-trivial behavior

was observed when hybrid E / M cells exhibit a mixed growth phenotype—the rate of decline

in the fraction of hybrid E / M cells was somewhere between the rates of decline in the hyper

proliferative hybrid E / M and growth arrested hybrid E / M cases ((C); center panel).

(TIF)

S10 Fig. Effect of varying growth rates of different cell types on the phenotypic composi-

tion of a population of epithelial cells. In each panel, the color indicates the fraction in popu-

lation of a given phenotype—epithelial (green), hybrid E / M (orange), and mesenchymal

(purple) while the line type indicates the behavior for different growth rates of epithelial cells

—8.0 hours (dotted with triangular markers), 24.0 hours (solid with circular markers), and

192.0 hours (dashed with square markers). In each simulation, η = 2.5×104 with asymmetric

partitioning of miR-34a among the daughter cells during hybrid E / M cell division. All results

were obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard

deviation calculated over these runs.

(TIF)
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S11 Fig. Effect of varying growth rates of different cell types on the phenotypic composi-

tion of a population of hybrid E / M cells. In each panel, the color indicates the fraction in

population of a given phenotype—epithelial (green), hybrid E / M (orange), and mesenchymal

(purple) while the line type indicates the behavior for different growth rates of epithelial cells

—8.0 hours (dotted with triangular markers), 24.0 hours (solid with circular markers), and

192.0 hours (dashed with square markers). In each simulation, η = 2.5×104 with asymmetric

partitioning of miR-34a among the daughter cells during hybrid E / M cell division. All results

were obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard

deviation calculated over these runs.

(TIF)

S12 Fig. Effect of varying growth rates of different cell types on the phenotypic composi-

tion of a population of mesenchymal cells. In each panel, the color indicates the fraction in

population of a given phenotype—epithelial (green), hybrid E / M (orange), and mesenchymal

(purple) while the line type indicates the behavior for different growth rates of epithelial cells

—8.0 hours (dotted with triangular markers), 24.0 hours (solid with circular markers), and

192.0 hours (dashed with square markers). In each simulation, η = 2.5×104 with asymmetric

partitioning of miR-34a among the daughter cells during hybrid E / M cell division. All results

were obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard

deviation calculated over these runs.

(TIF)

S13 Fig. Effect on model behavior of noise in partitioning of species other than Isig. Solid

curves indicate the fractions of different phenotypes when noise in the partitioning of all net-

work species is incorporated into the model (CV = 0.25 for all species other than Isig). Dashed

curves indicate the behavior when the model only includes noise in the partitioning of Isig. In

each simulation, η = 2.5×104 (here, this noise parameter only determines the noise in the parti-

tioning of Isig). miR-34a was asymmetrically partitioned among the daughter cells during

hybrid E / M cell division. All results were obtained by averaging over 16 distinct simulation

runs. Error bars indicate the standard deviation calculated over these runs.

(TIF)

S14 Fig. Effect on model behavior if, during hybrid E / M cell division, one daughter cell

gets no miR-34a while the other daughter cell gets twice the concentration of miR-34a in

the parent cell. Solid curves indicate the fractions of different phenotypes when, during hybrid

E / M cell division, one daughter cells gets no miR-34a while the other gets twice the concen-

tration of miR-34a in the parent cell. Here, the assumption is that during hybrid E / M cell

division, all of parent cell miR-34a (note that miR-34a copy number in the parent cell gets

approximately doubled right before the parent cell divides) is actively deposited into one of the

daughter cells. Dashed curves indicate the behavior when during hybrid E / M cell division,

the concentration of miR-34a in one of the daughter cells is set to zero while the concentration

of miR-34a in the other daughter cell is kept the same as the concentration of miR-34a in the

parent cell. In this case, the assumption is that while parent cell miR-34a is equally divided

among the daughter cells during the division of a hybrid E / M cell, in one of the daughter

cells, an active process rapidly degrades miR-34a and brings its concentration to zero. In each

simulation, η = 2.5×104. All results were obtained by averaging over 16 distinct simulation

runs. Error bars indicate the standard deviation calculated over these runs.

(TIF)

S15 Fig. Long term behavior of the population after the EMT-inducing signal has been

withdrawn. (A) Fraction of epithelial, mesenchymal, and hybrid E / M cells shown over a
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period of 150 days in the population probed in Fig 4. The black dashed line indicates day 20
after which no addition or subtraction of Isig dosages was administered. Results shown were

obtained by averaging over 16 distinct simulation runs. Error bars indicate the standard devia-

tion calculated over 16 independent runs. (B) Distribution of Isig concentration in cells in the

population at different time points during the simulation run. Here, η = 2.7×104 and the aver-

age doubling time of cells was 38.0 hours. As shown in (B), at the end of the 20-day period,

most cells in the population either have Isig concentration close to 0.0 or very high Isig concen-

tration. Few cells have Isig concentration in the region of tri-stable dynamics of the EMP regu-

latory circuit (Fig 1(B)). Since cells far away from the tri-stable region, which form the bulk of

the population on day 20, are highly unlikely to generate a daughter cell with a phenotype dif-

ferent from that of the parent cell, the fractions of cells of different phenotypes in the popula-

tion do not change much for nearly a month after day 20 when the external addition or

withdrawal of Isig dosages was stopped. The population takes a long time to recover from the

clustering of Isig concentrations away from the tri-stable region. However, noise in the parti-

tioning of Isig among the daughter cells during cell division eventually drives the Isig concentra-

tion in cells back into the tri-stable region and around day 60, we once again start observing

the typical dynamics—decrease in the fraction of epithelial cells and increase in the fraction of

mesenchymal cells in the population. A small sub-population of hybrid E / M cells is continu-

ously maintained.

(TIF)

S16 Fig. Same as Fig 4 but with asymmetric distribution of miR-34a among the daughter

cells during hybrid E / M cell division. Here, η = 2.5×104 which had given the best fit to

experimental data from Ruscetti et al. when incorporating asymmetric distribution of miR-34a

among the daughter cells during hybrid E / M cell division into our model.

(TIF)

S17 Fig. Same as Fig 5 but with asymmetric distribution of miR-34a among the daughter

cells during hybrid E / M cell division. Here, in (B) and (C), η = 2.5×104 which had given the

best fit to experimental data from Ruscetti et al. when incorporating asymmetric distribution

of miR-34a among the daughter cells during hybrid E / M cell division into our model.

(TIF)

S18 Fig. Same as Fig 6 but with asymmetric distribution of miR-34a among the daughter

cells during hybrid E / M cell division. Here, η = 2.5×104 which had given the best fit to

experimental data from Ruscetti et al. when incorporating asymmetric distribution of miR-34a

among the daughter cells during hybrid E / M cell division into our model.

(TIF)

S19 Fig. Same as Fig 7 but with asymmetric distribution of miR-34a among the daughter

cells during hybrid E / M cell division. Here, η = 2.5×104 which had given the best fit to

experimental data from Ruscetti et al. when incorporating asymmetric distribution of miR-34a

among the daughter cells during hybrid E / M cell division into our model.

(TIF)

S20 Fig. Same as Fig 8 but with asymmetric distribution of miR-34a among the daughter

cells during hybrid E / M cell division. Here, η = 2.5×104 which had given the best fit to

experimental data from Ruscetti et al. when incorporating asymmetric distribution of miR-34a

among the daughter cells during hybrid E / M cell division into our model.

(TIF)
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