Information Systems Frontiers (2020) 22:1053-1066
https://doi.org/10.1007/510796-020-10023-6

Evolutionary Programming Based Deep Learning Feature Selection

1')

Check for
updates

and Network Construction for Visual Data Classification

Haiman Tian' © . Shu-Ching Chen' . Mei-Ling Shyu?

Published online: 25 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Convolutional Neural Network (CNN) models and many accessible large-scale public visual datasets have brought
lots of research work to a remarkable new stage. Benefited from well-trained CNN models, small training datasets can
learn comprehensive features by utilizing the preliminary features from transfer learning. However, the performance is not
guaranteed when taking these features to construct a new model, as the differences always exist between the source and target
domains. In this paper, we propose to build an Evolution Programming-based framework to address various challenges. This
framework automates both the feature learning and model building processes. It first identifies the most valuable features
from pre-trained models and then constructs a suitable model to understand the characteristic features for different tasks.
Each model differs in numerous ways. Overall, the experimental results effectively reach optimal solutions, demonstrating
that a time-consuming task could also be conducted by an automated process that exceeds the human ability.

Keywords Deep learning - Evolutionary programming - Image classification

1 Introduction

The Internet era keeps people connected through all kinds of
digital devices. For example, interactions happen during the
active use of mobile phones, tablets, the Internet of Things
(IoT) devices, vehicles, and smart household appliances.
These devices are all connected and can further affect our
everyday lives by generating and conveying waves of data
in one second (Chang 2019; Mukherjee 2020). Along with
this data generation, multimedia data (Chen et al. 1998,
2001, 2005), as a vital part that makes up 70% of the
daily Internet traffic, has been utilized frequently to solve

< Haiman Tian
htian005 @cs.fiu.edu

Shu-Ching Chen
chens@cs.fiu.edu

Mei-Ling Shyu
shyu@miami.edu

School of Computing and Information Sciences, Florida
International University, Miami, FL 33199, USA

Department of Electrical and Computer Engineering,
University of Miami, Coral Gables, FL 33124, USA

problems at various domains for both industrial applications
and academic research (Li et al. 2002; Pouyanfar et al. 2018;
Zhu et al. 2011, 2015).

Various advanced techniques are popularly used to take
the full advantage of these multimedia data in different
research fields (Chen et al. 2013; Chen and Kashyap 2001;
Chen et al. 2006; Lin and Shyu 2010). Among these, Deep
Learning (DL) approaches (Pouyanfar et al. 2018) have
generated many astonishing research outcomes in differ-
ent areas, such as multimedia research including image
classification (Tian et al. 2018), speech recognition (Wang
and Zheng 2015), video understanding, etc. However, DL
approaches are usually time-consuming and computation-
ally expensive. Hence, a DL model built from scratch for
an individual research group’s target problem is not always
accessible. Most researches benefit from much more gener-
alized knowledge that better simulates a person’s learning
process on solving certain kinds of problems, namely trans-
fer learning (TL) (Pouyanfar et al. 2019; Tian et al. 2019).
TL can transfer the knowledge obtained from one problem
domain to another related target domain. It eases the initial
learning process by utilizing the well designed and compli-
cated pre-trained models as feature extractors (Molchanov
et al. 2016; Shin et al. 2016).

A pre-trained deep learning model can be seen as a collec-
tion of feature extractors, which extract different levels of

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-020-10023-6&domain=pdf
http://orcid.org/0000-0002-8363-8514
mailto: htian005@cs.fiu.edu
mailto: chens@cs.fiu.edu
mailto: shyu@miami.edu

1054

Inf Syst Front (2020) 22:1053-1066

features from one input source. As the input datasets are dif-
ferent, the feature strength is not always stable (Pan and
Yang 2010; Tian et al. 2018). Thus, identifying a model that
can present the most competent feature set for the target
domain is still challenging. Previously, the last activation
layer, which directly connects to the prediction outputs, is
always considered as the best layer to extract the high-level
features that are suitable for most of the tasks, regard-
less whether this layer in each pre-trained model always
produces the most representative features for every tar-
get domain. Furthermore, differences between the target
domain and the original problem domain still exist. Thus,
it is worth considering extracting lower level features from
other layers for a particular target domain. However, finding
the best layers from a group of popularly picked pre-trained
models for a particular task creates a vast search space,
which exceeds the human ability. Therefore, an efficient
and effective optimization/search algorithm is required to
optimize both the feature generation and feature learning
processes for a specific target problem automatically. As the
input data source changes, the framework should re-evaluate
each pre-trained model’s feature strength and build a new
model with the most representative feature layers to catch
the new characteristics of the data (Tian et al. 2019).

There is still very little research work in the literature
currently focusing on automatically determining the pre-
trained deep learning model that fits a specific target
domain (Tian et al. 2018, 2019). However, there are some
optimization/search algorithms worth considering to tackle
this problem. In this paper, we propose an Evolutionary
Programming (EP) based DL feature selection and network
construction framework that can identify the feature set
from a pre-trained model and further construct a new feature
learning model automatically. The new feature set contains
the most representative features of a specific dataset that
could potentially improve the model’s performance, and the
new network model takes the new feature set at the input.
This generalized framework can accommodate different
datasets and problem domains. By integrating the genetic
code evolution process, the proposed approach identifies the
best feature layer or the layers’ combination for a specific
task and further builds an image classification model. The
hyperparameters of the new neural network are determined
automatically after the best feature set is selected for each
specific task.

The remainder of this paper is organized as follows. In
Section 2, we review the literature and some existing work in
Convolutional Neural Networks (CNNs) and optimiza-
tion/search algorithms for deep learning. Section 3 presents
the proposed framework and explains each component in
details. The datasets and experimental results are discussed
in Section 4. Finally, we conclude the paper in Section 5.

@ Springer

2 Related Work
2.1 Convolutional Neural Networks

Inspired by the biological system, Artificial Neural Net-
works (ANNs) mimic the behavior of different types of
neurons. Neurons with the same properties are responsible
for completing a portion of a complex task at a particular
level, for example, detecting bright colors. In each level, all
neurons respond to the input signals and output new signals
to the next level which form as new inputs for other types
of neurons. From this iterative procedure, ANNs learn and
recognize the characteristic patterns (Tian and Chen 2017).

Different from traditional ANN models, such as Multiple
Layer Perceptrons (MLPs), which consider each neuron as
independent in the feature layers, CNN models take a raw
image as the input and share the feature weights among local
neuron connections within a two-dimensional structure.
This change significantly reduced the total number of
parameters of the model and made the learning process
more straightforward. Essentially, CNNs standout amongst
the most well-known and broadly utilized deep learning
methods for image recognition. A typical design of the CNN
model follows a hierarchical architecture that consists of
both linear and non-linear layers.

ImageNet is a large scale image dataset, which is open
to the public and popularly used to build and train the
CNN models. By learning the feature distributions from
this dataset, many models have obtained astonishing perfor-
mance, even surpassing human identification capabilities,
such as Inception V3, ResNet, DenseNet, and MobileNet.
However, training a deep neural network has been proven to
be NP-hard. Network models aim to find a local optimum
that is good enough to approximate the global optimum.
Inception V3 (Szegedy et al. 2016) can be seen as an
upgrade from GoogleNet, which places the convolutional
and pooling layers in parallel. ResNet (He et al. 2016)
introduces the residual model to overcome the overfitting
and vanishing gradient issues that will potentially hap-
pen while increasing the depth of the model. DenseNet,
proposed by Huang et al. (2017), connects every layer
to every other layer in a feedforward way. This change
obtains a notable enhancement by supporting the feature
propagation and the reuse of features, which extensively
reduce the number of parameters. MobileNet (Howard et al.
2017) is an efficient and lightweight CNN model, suitable
for mobile and embedded vision applications. The regu-
lar convolution operations are factorized into two types
of convolutions, namely pointwise convolutions and depth-
wise convolutions. All these models have been trained on
very high-performance machines to learn the features that
can represent the same set of image categories available in

Inf Syst Front (2020) 22:1053-1066

1055

ImageNet. Therefore, identifying the image concepts that
were already defined in ImageNet can be done by utiliz-
ing those pre-trained models. Nevertheless, extracting the
high-level features from an image that contains an unknown
concept will always let the models classify it into the wrong
categories.

Using version spaces to represent tentative heuristics
enables the general models to keep track of all the useful
information from a sequence of learning examples. Multiple
models are managed within one version space to accomplish
a concept learning process (Mitchell 1997; Winston 1992).
Essentially, a version space represents all the plausible
descriptions of a heuristic by incorporating both general
and specific models. Tentative heuristics advance the way
of feature learning that finds the instances known in
both the generalized model and the specific model. It
recognizes the absent relationships between the models
without remembering the examples. Via TL, the pre-trained
general models are further used to undertake visual data
classification tasks in diverse target domains, which forms
knowledge previously only known by the specific models.
However, an automated approach to identify the best deep
feature set and build a new model suitable for every new
target is not available.

2.2 Search and Optimization Algorithms

There is an increasing demand for automated optimiza-
tion across various industries. Search algorithms are highly
capable of delivering better designs in a shorter time. Deter-
mining the most efficient optimization/search algorithm for
a particular problem is dependent on the specified design
space. Some potential algorithms are Genetic Algorithm
(GA), Evolutionary Programming (EP), grid search, random
search, and Bayesian Optimization (BO). Those algorithms
have been applied to a wide range of problem domains to
enhance the model performance, which eliminates the need
for manual and exhausting parameter tuning.
Population-based optimization algorithms cover both GA
and EP, which leverage various biological evolution opera-
tions to discover more powerful solutions iteratively (Back
1996). Essential operations are reproduction, selection,
recombination (a.k.a. crossover), and mutation. An individ-
ual’s wellness is evaluated during the evolving process by
calculating a pre-defined fitness function. Consequently, the
fitness score affects the decision of next operations on each
individual. Usually, GA is used to find precise solutions,
either the minimum or maximum function, for both opti-
mization and search problems (Yang and Honavar 1998).
Compared to traditional methods, GA and EP progress from
a population of candidate solutions, can thus function under
a noisy and nonlinear space, and are flexible to adjust.

Recently, GA has started to be integrated with evolution-
ary computation in building neural networks. EP is used
in ways of simulating the evolution to maximize the suit-
ability of multiple solutions within an objective function. It
relies on a known gradient within the search space when
applied to design problems whose objective is the creation
of new entities (Yao et al. 1999). The recombination opera-
tion is eliminated from EP as it treats each individual as an
independent species. However, it holds the same advantage
as GA, where no assumption is made about the underlying
fitness landscape. Compared to other methods, they per-
form well on approximating solutions for nearly all types
of problems and take actions efficiently when integrated
with neural networks. Evolutionary algorithms have also
been utilized to provide feature selection functionalities in
computer vision and machine learning. In Li et al. (2019),
the authors introduced a Dividing-based Many-objective
Evolutionary Algorithm for large-scale Feature Selection
(DMEA-FS) which aims to satisfy both feature dimension
reduction and stable classification accuracy. However, their
approach is still limited to process a small number of man-
ufactured features (less than 1000) with a small group of
instances (less than 2000). DL models can quickly gen-
erate thousands of features in one layer that exceeds the
total number of features their algorithm selects. Therefore,
treating each feature as independent is not a reasonable
approach. In addition, accuracy is not an appropriate per-
formance metric for imbalanced datasets where some of the
categories have very few instances.

Grid search is popularly used in machine learning model
training, which performs hyperparameter tuning to deter-
mine the optimal value for a specific model. Compared to GA
and EP, the ability of grid search is limited as it assists in find-
ing near-optimal parameter combinations within specified
ranges, for example, parameter optimization for Support
Vector Machine (SVM) (Lameski et al. 2015). Gradient-
based optimization can be applied to optimize a neural
network’s learning rate for every iteration and layer. Com-
pared to manual tuning, it enhances the ability to investigate
new datasets. However, its main disadvantage is that back-
propagation consumes too much time to complete the entire
training procedure. Random search algorithms randomly
select representative samples from a given search space
to identify the optimal value (Bergstra and Bengio 2012;
Mania et al. 2018). It does not require derivatives to search
in a continuous domain. Because of the pattern of random
search, grid search algorithms have a higher chance of find-
ing optimal parameters. Random search is faster than an
exhaustive search, but it is unreliable in determining the
optimal solution.

BO algorithms have been successfully applied in many
research problem domains, such as interactive user-interfaces,

@ Springer

1056

Inf Syst Front (2020) 22:1053-1066

environmental monitoring, automatic network architecture
configuration, and reinforcement learning. Particularly in
reinforcement learning, BO algorithms learn the value
functions at advanced levels and tune the neural network
policy’s parameters automatically. It is a powerful tool that
enhances the automation capacity for joint optimization
design choices, as its ability increases both the product
quality and productivity of human beings (Snoek et al.

Fig. 1 Proposed framework for
deep learning feature selection

and network construction using
evolutionary programming

@ Springer

ataset

Model 1 ‘ Model 2 ‘

R
|
) [

_Genetic ‘Genetic _Genetic
/7 code| |7 codt:J T codt:J
Generatio Generatio Generatio

Layer Layer Layer
Selegtion Selegtion Seleftion

Top Layer Top Layer

Candidates Candidates
(B (BB
Feature Feature Feature

Combi] ations CombiFations CombiFations

Feature Feature Feature
Selegtion Selegtion Selel:tion

Model

)

Model N

2012). Besides reinforcement learning, BO algorithms
can also learn the attention policies in image tracking
using deep neural networks. Compared to manual tuning
methods, the automatic approach can tune many parameters
simultaneously, which is essential for machine learning
systems. However, the BO algorithms are not independent
and rely on an optimizer to search the surrogate surface,
which becomes the algorithm’s disadvantage. Since BO

/ Genetic Code \
Initialization| Evolution

Populatlon

Q Fitness
Calculatlon

Layer
Seleption

Feature
Combinations

Feature
Selegtion

Model

Selection |

Best Feature Model
]

Gitialization

‘éj Population
Ranking

Final
Ranks

2

(©<) Mutation

Random
Selection

Retaining

Selection/

G

Population

Fitness
Calculation

Q Population
-~ Ranking

Final
Ranks

enetic Code\

Evolution

@é) Mutation

f

Random
Selection

Retaining
Selection

v / Genetic Network Evolution
Network _[*| Initial |

Construction Generation | Populations |

e TN

Final Model

Training &

Validation
Network
_Records)

New

Hamming
Distance Matrix

Network
Structure

Encoding

Significant
¥ Individuals

==

Fitness Ranking

Inf Syst Front (2020) 22:1053-1066

1057

algorithms assume that the solution space reflects the
posterior probability distribution, it is not clear if BO
algorithms are the right choice for deep learning model
selection. Different from the general problem domains in
which BO algorithms have attained superior performances,
the correlation between each layer’s feature strength for a
specific pre-trained CNN model is unknown.

3 Proposed Framework

Figure 1 shows the structure of the proposed framework,
which automatically selects the deep features from each
candidate pre-trained deep learning model and then builds
a new neural network to learn the new relationship between
the features and the target concepts. As the feature sets
from each pre-trained model are independent, the first stage
of feature selection can then be run in parallel. Therefore,
adding more candidacy models to the framework will not
significantly increase the processing time for feature evalu-
ation. This framework consists of two genetic code evolution
processes to determine the best feature set for a specific
input dataset and a genetic network evolution process to
identify the best network structure that learns the connection
between the representative features and the final concepts.

First, the layer selection phase selects top feature layers from
each candidate pre-trained model (Model 1, 2, ..., N). Each
model contains a different number of layers (X, 7, ..., K
Layers) that can extract various levels of features. Genetic
code generation encodes every feature layer as an individual
with a fixed-length binary string, considering the maximum
number of layers available in each model.

Then, the feature selection phase identifies the best feature
combination via the same genetic code evolution procedure
to generate the final feature set. The encoding strategy
slightly changes to represent different options of the candidate
feature layers. Genetic operations, such as retaining, random
selection, and mutation, are leveraged in the genetic code
evolution process to improve the individual’s performance
in each population. Each pre-trained model’s performance
is validated in parallel using the identified best feature set.
Only the model that shows the best performance on the
validation data can be chosen as the best feature model and
be prepared for the final network model building.

In the network evolution process, each individual for-
mulates a network’s gene with four major hyperparameters
(i.e., the number of neurons in one layer, the number of
fully connected layers in one model, the activation func-
tion, and the optimizer). Every network’s input is a set of
features extracted from an individual layer or several lay-
ers of a pre-trained DL model. The general feature model
and the representative feature layers have already been
determined in the layer selection and feature selection

phase. Therefore, it is not necessary to build another fea-
ture model that manipulates those features. Only a subset of
the layers that have been identified to generate significant
features from a complex pre-trained DL model is main-
tained. Those layers vary while the target problem domain
changes. Then, a simpler model with a smaller number of
hidden layers is constructed here to further strengthen the
feature representations. The main idea here is not to entirely
replace a DL model that contains more layers with a much
simpler neural network, but to utilize the valuable feature
layers from the well-trained DL model and then transfer the
feature representations with a smaller neural network to bet-
ter fit into the target problem domain. The genetic network
evolution takes the same genetic operations as in the pre-
vious processes. Meanwhile, a Hamming distance matrix
is calculated for every generation to evaluate the structural
variations between individuals. Genetic operations respond
to this similarity evaluation process, which ensures that the
development of the new generation continues to explore the
searching space. The network that obtains the best fitness
score on the validation data is then identified at the end.
Next, a complete training process starts to build the final
model for the specific classification task.

Algorithm 1 Genetic code evolution.

RETAIN < 04; SELECT <« 0.1; MUTATE < 0.5
GeneEncoding();
Population < Initialization()
for individual i € Population p do
calculate FITNESS FUNCTION f(i)
gradelil.score < f(i)
Sort grade in descending order
Population Retaining
topGrade = grade[0 : RET AIN % grade.size]
restGrade = grade[RET AIN * grade.size :
grade.size]
11 for x € topGrade do
12 parents.append(x)
13 # Random selection
14 for x € restGrade do
15 if SELECT > random() then
16 parents.append(x)

V-T- RN B~ L% I “NR VI S R

—
=]

17 size <— Population.size — parents.size
18 # Mutation
19 while children.size < size do

20 select candidate randomly from parents
21 for i € range(candidate.length) do

22 if MUTATE > random() then

23 MUTATE(candidateli])

24 children.append(candidate)
25 parents.append(children)
26 return parents

@ Springer

1058

Inf Syst Front (2020) 22:1053-1066

3.1 Genetic Code Evolution

Algorithm 1 illustrates the genetic evolution process
used in both layer selection and feature selection phase.
GeneEncoding() function sets up the restriction for the
initialization process that handles the differences between
these two scenarios. For example, layer selection converts
each particular layer ID into a fixed length binary string.
The length of the gene string is fixed for one model, but it
can vary for different pre-trained models, as the number of
available layers in each model is different. A certain number
of individuals are randomly selected in the initialization
process and get updated in the succeeding generations. In
this paper, we set it to 10 individuals empirically. For each
particular individual, two sets of features for both training
and validation data are generated. These two feature sets
contain the features from the same layer. Then, a Linear
SVM classifier is built using the training data and its
performance is further evaluated using the validation data.
The evaluation process is called the fitness calculation,
which generates a fitness score for each individual. The
fitness score is calculated using the fitness function f(i)
(line 5) in Eq. 1, defined by the average F1 score (Avg. F1).

C . .
2% P! % R!
1) = (2 I C.)
=1 ¢ e

where C is the total number of classes in the target
dataset, i presents each unique individual, and P. and

Fig.2 Genetic code evolution
example for one generation in
the layer selection phase

Features from
layer #1 using
Validation data

R. are the precision and recall of class ¢, respectively.
Precision represents the classifier’s ability to not mis-
classify a positive sample, while recall represents the
classifier’s ability to find all the positive samples. The
relative contribution of precision and recall to the F1 score
is equal, which makes it a trade-off between these two
evaluation criteria. Compared to using accuracy as the
evaluation criterion, F1 score is more suitable for evaluating
any dataset (balanced or imbalanced). A fitness score
calculation needs to be done for every individual in each
generation. Though extracting features from a pre-trained
DL model is not the bottleneck of the process, the feature
dimension is considered to affect the time complexity. To
evaluate the overall feature strength of a layer in a certain
DL model, each fitness score is calculated by fitting all
features into a Linear SVM model. If a general machine
learning model is built here to evaluate the features, it
could bring the model complexity to be quadratic. However,
utilizing an efficient implementation of linear SVM in
scikit-learn (Pedregosa et al. 2011) can have the function
scale almost linearly to millions of samples and/or features.
Besides, the prediction complexity is O(d), where d is
the number of input dimensions since it is just a single
inner product. Therefore, evaluating feature strength for
every individual here will not result in higher computational
complexity. Also, the fitness of an individual is evaluated
based on the original feature dimension that was extracted
from the DL model. In the layer selection and feature
selection stage, the feature dimension stays unchanged.

Fitness Score
(Average F1)

@ Springer

Features from Population k
layer #1 using (10 Iayers)
training data
Train m
SVMH
Test Linear \OHOI\1|\0|\1|\1|
SVM Random
Selectlon

Fitness Ranking
Top 4

{019 @

Mutation[0 [0 [1]0 ||=)
®lofo[1]o[El o]

Population k+1
(10 layers)

Mutation| 0

Inf Syst Front (2020) 22:1053-1066

1059

The individuals in a specific population are ranked in
a descending order to create a ranking list. Based on the
predefined retaining rate, the individuals on the top of
the list continue to contribute to the next generation and
produce offsprings. Other individuals also have a small
chance to survive, depending on the random selection
process in lines 13 to 17. The random selection process
defined in the algorithm is straightforward. The purpose
of it is to give more opportunities to lower-ranking
individuals to have a second chance to survive and
mutate to an individual with superior performance. As the
random selection happens before the mutation operation,
the individuals selected which are ranked lower than other
individuals also get a chance to flip several digits to
get the gene representation closer to the current one, but
carry a higher-ranking feature performance. Ignoring those
individuals may end up denying some of the potential
paths that lead to better solutions. All other individuals are
removed from the population when preparing for the next
generation.

Figures 2 and 3 explain the genetic code evolution process
for one generation in the layer selection and feature selection
phases, respectively. The figures depict two genetic opera-
tions as described through lines 13 to 24 in the algorithm.

Fig.3 Genetic code evolution
example for one generation in
the feature selection phase

Features from
rank 3 layer using
Validation data

3.2 Layer Selection and Feature Selection

In the layer selection phase, flipping one binary number
(0 to 1 or 1 to 0) in the evolution process results in
extracting a different level of features from another layer
and consequently affects the performance of the classifier.
For instance, the code changing from 001010 to 001000
means that, instead of layer #10, layer #8 is selected for
feature extraction. This operation repeatedly applies to one
selected individual in the mutation process. We allow this
process to affect every position of the genetic code each
time with a 0.5 mutation rate, which means it holds an equal
chance to keep or flip every number.

The crossover operation is excluded while using the EP
algorithm. When using the GA algorithm, this operation
generates new individuals for the next population by
combining the genetic codes from two retained individuals.
By taking the mutation operation several times on one
individual, we expect that the operation is good enough to be
a replacement of the crossover operation for generating new
individuals. Hence, multiple positions can be affected when
the mutation is completed for producing a new individual.

Layer selection evolves the individuals for several
generations to identify the top layer candidates. The top

Rank 1 2 3 4

Features from
rank 3 layer using
training data

Population k
(10 combinations)

Fitness Score
(Average F1)

Train Linear @
SVM @ ® @ @
. @ @®
Test Linear
: SV Random @
Selection

Fitness Ranking
Top 4

@1 6E@

ofENo[1]
[0 o CIKR

Population k+1 @
(10 combinations)

Mutation| 0

@ Springer

1060

Inf Syst Front (2020) 22:1053-1066

portion of the individuals in the last generation presents
a specific dataset with the most stable features. Those
features are obtained by taking the predefined portion of the
individuals from the final ranking list using the retaining
rate. The feature sets are further encoded as different feature
combinations to move forward with feature selection.

As shown in Fig. 3, the encoding strategy changes from
taking a single feature layer to having a combination of
the feature layer candidates as a specific genetic code.
All genetic operations remain the same except that each
digit means including or abandoning a candidate layer
while forming the final feature set (e.g., a “0” means
“exclude”, while a “1” means “include”). Therefore, a
mutation operation on one single position will either add or
remove a feature layer from the final feature set.

For every pre-trained deep learning model, the output
of the current phase is a combination of top feature sets.
The selected combination produces the highest fitness
score when running on a Linear SVM classifier using
the same validation data. Only one feature model that
holds the highest score among all candidate models will
be selected as the best feature extractor which is used
to build the final classification network in the next step.
Though the total number of features is scaled up to a higher
dimension when more layers are included in the potential
feature set, validation of the performance of a feature set
combination still can be done in linear time by using Linear
SVM. Therefore, the complexity of the feature selection
across multiple pre-trained models is still maintained in
O (N features ¥ d + Ninalog Ning), which is dominated by
the fitness score ranking process regarding N;,g4 individuals
if scaled to a large number of individuals or by the feature
dimensions N fearures-

3.3 Network Evolution

In the early sections, Algorithm 1 only selects the features
that have the potential alternatively to represent new
concepts that are initially unknown in the general models.
Without TL, new concepts can not be captured. Therefore,
constructing a specific model transfers the knowledge
learned from the general model to the knowledge that
conveys a new feature relationship with the target domain
concepts. The specific models scale the features to lower
dimensions while transferring the known information to
an isomorphic that links a sequence of general concepts
to target concepts. As the first part of the framework is
selecting general features with partitions, the second part
focuses on specific feature learning that provides feedback
on the general model to be suitable for specific targets.

As shown in Algorithm 2, taking a similar process
as Algorithm 1, network selection also starts with an
initial population that is generated by random search.

@ Springer

The network evolution process considers each network
structure as a unique individual and leverages all the genetic
operations as defined in the genetic code evolution process.
In each generation, the genetic operations are triggered
by assessing the similarities between the populations in
subsequent generations. Specifically, distance calculation
ensures that the individuals continue to improve while the
top networks in the same generation are very similar. In
each generation, top networks are selected based on a
retaining rate. Those networks are responsible for producing
offsprings that depict the new network structures. The same
fitness function, as described in Eq. 1, is also used here to
rank the networks (lines 2 to 5).

Algorithm 2 Network evolution.

1 RETAIN <~ 04,SELECT <« 0.1, MUTATE < 0.5
for individual i € Population p do
calculate FITNESS FUNCTION f£ (i)
gradelil.score < f(i)
Sort grade in descending order
for u € [0, grade.size — 1] do
codes[u] <~ ENCODING (grade[x].network)
forv e [v+ 1, grade.size — 1] do
H,, < o (codes|[u], codes[v])
10 Significant = (MAX(H)—MIN(H))/2
11 forx € [0, RETAIN * grade.size — 1] do
12 parents.append(grade[x])
13 # Random selection
14 for x € [RETAIN * grade.size, grade.size — 1] do
15 if SELECT > random()
16 ORVYH,; > Significant WHERE s € parents
then
17 parents.append(grade[x])
18 # Mutation
19 size <— Population.size — parents.size
20 while children.size < size do

2
3
4
5
6
7
8
9

21 select parent randomly from parents

22 child.network = parent.network

23 for hyperparameter in child.network do

24 # Mutate every hyperparameter

25 if MUTATE > random() then

26 MUTATE(child.network[hyperparameter])

27 children.append(child)
28 parents.extend(children)
29 return parents

As the networks are initiated with randomly generated
weights, the same network structure can perform each
time differently. To only keep track of the best weights
for each network, additional storage is utilized to record
the performance of each network that has already been
discovered. In addition, because different weights are
applied to the same network structure, the same gene

Inf Syst Front (2020) 22:1053-1066 1061
Table 1 The available choices
for network hyperparameters Hyperparameters Choices # Encoding Digits
and the corresponding binary
encoding dlgl[S # neurons 32, 64, 128, 256, 512, 768, 1024

layers 1,2,3,4

activation functions

optimizers

relu, elu, tanh, sigmoid

[SSIEN SR \S IS

rmsprop, adam, SGD, adagrad,

adadelta, adamax, nadam

can appears multiple times in the ranking list. The
more times a particular structure shows in the list, the
higher the chance that the next generation’s offsprings
share substantial similarity between each network and this
particular structure. Consequently, the evolving process
might slow down and makes the solution held within
a local optimal. Distance calculation (lines 6 to 10) is
utilized to overcome this limitation, which plays a vital
role in ensuring that the population can keep searching for
more combinations in the later generations after identifying
several network configurations with proper performances.

To calculate the distance between every two network
structures in the current generation, the genetic encoding
function (line 7) converts one set of choices of four
candidate hyperparameters into a unique binary string.
Table 1 lists the available choices of each hyperparameter
and the corresponding length of the encoding digits. The
Hamming distance calculation (line 9) is used to generate
the distance matrices H = (o(x,y)), where x and y
are bounded by the total number of individuals P in
one generation. The time complexity of calculating the
Hamming distance between two individuals is at most
linear, which is bounded by O(n), where n is the total
number of encoding digits. Therefore, a Hamming distance
matrix for all individuals can be generated within O (N;,g *
n). Furthermore, an individual is defined as “significant”
when the distance between itself and any higher-ranking
individuals is greater than the current generation’s mean
distance. Therefore, the space of heuristics in each
generation is refined by itself when the current generation
covers either a narrow or broad searching space. Lines 11
to 27 illustrate the procedure of all the genetic operations
(retaining selection, random selection, and mutation) within
specified activating conditions (defined at line 1).

Instead of changing one bit of the genetic code, the
mutation operator randomly chooses a value for one specific
hyperparameter. Therefore, the number of position shifts in
one mutation operation is not restricted to one. Since we
have four hyperparameters, the mutation operation repeats
at most four times, depending on the mutation rate. The
probability of keeping one hyperparameter the same relies
on the mutation rate of p. Therefore, consider making a one-
time decision on one hyperparameter vs. making decisions
on the binary representation, keeping one hyperparameter
as a whole change of the mutation probability P. If a
hyperparameter is encoded with e digits, there is a (1 —
p) probability of keeping the hyperparameter unchanged.
However, this probability will be reduced to (1 — p)¢ if
each digit is independent. Though each individual has a
higher chance to stay unchanged after mutation, this change
allows the heuristics to cover a sparse space and then
mutate several bits during each decision. If considering
each digit independently, the probability of changing more
digits is always smaller than changing fewer digits. For
instance, letting “101” mutate to “110” is more complicated
than having “101” mutate to “111”, as it causes two-
bit mutations. This change could help the later evolution
process when most of the individuals in the generations are
very similar. Section 4.2 further details how this strategy
meets our expectations.

4 Experimental Analysis
4.1 Experimental Setup

The proposed framework includes four pre-trained deep
learning models as the feature model candidates. The model

Table 2 The pre-trained deep

learning model candidates with Feature models Layers # combinations
the available number of feature
choices InceptionV3 94 942
ResNet50 64 64*
MobileNet 13 134
DenseNet201 80 80*

Total # combinations

341E32

@ Springer

1062

Inf Syst Front (2020) 22:1053-1066

Table 3 The statistical

information of the disaster No. Concepts Harvey Irma
dataset
1 Demonstration 42 8
2 Emergency Response 81 20
3 Flood and Storm 426 177
4 Human Relief 70 1
5 Damage 42 172
6 Victim 75 16
7 Speak 347 63
Total 1083 457

name and the corresponding number of available layers for
feature extraction are listed in Table 2. In the layer selection
phase, the number of individuals in each population is
empirically set to 10 with a 0.4 retaining rate r. Therefore,
K% choices of unique feature sets are available for each
model, where K is the available number of layers for feature
extraction. As the final output is limited to the feature set
from one model, the total number of possible choices to
determine an optimal solution adds up to 3.41E32. The
search space is far too large to be explored exhaustively by
hand.

Four datasets from different domains are selected to
evaluate the proposed framework: two imbalanced and two
balanced datasets. Tables 3 and 4 depict the statistical
information of the imbalanced datasets. The disaster dataset
(as shown in Table 3) contains Youtube videos collected
during two major hurricane events in the year 2017: Harvey
in Texas and Irma in Florida. In this dataset, the “Flood
and Storm” concept contains most of the samples. By
following a chronological order, the first event is used as the
training and validation data, while the second event is the
testing data. One keyframe image is extracted to represent
each video. The Network Camera 10K dataset (as shown
in Table 4) is a surveillance camera dataset that contains
images captured from a variety of places. 20 percent of the
data was separated into testing data. Moreover, 20 percent
of the training data were again randomly selected to form

the validation data for the fitness score calculation. Concept
“Highway” is the majority class in this dataset.

CIFAR10 and MNIST-Fashion are the two balanced
datasets included in the experiments. Both are well-known
public datasets. CIFAR10 classifies objects and animals,
and MNIST-Fashion can be considered as a replacement
of the original MNIST dataset for benchmarking machine
learning algorithms. These two datasets already come with
separated training and testing sets, but 20% of random
training samples are still used to serve as the validation data
for fitness score calculation during the evolution process.
Both datasets include an equal number of samples for each
class. CIFAR10 has concepts related to several objects (e.g.,
airplane, automobile, ship, and truck) and animals (e.g.,
bird, cat, deer, dog, frog, and horse), while MNIST-Fashion
is a collection of grayscale images of clothing types such
as t-shirt/top, trouser, pullover, dress, coat, sandal, shirt,
sneaker, bag, and ankle boot.

4.2 Experimental Results

The performance of our proposed framework is compared
with those of the three feature selection algorithms
mentioned in the related work. Each of those algorithms
selects a pre-trained model as the best feature model. BO is
included here to assess its advantage regarding probability
assumptions on our specific task. GA is included in the

Table 4 The statistical

information of the Network No. Concepts Instances No. Concepts Instances
Camera (NWC) 10K dataset

1 Intersection 855 8 Yard 161

2 Sky 495 9 Forest 139

3 Water Front 978 10 Street 431

4 Building+Street 603 11 Parking 99

5 Park 499 12 Building 243

6 Mountain View 719 13 Highway 3724

7 City 432 14 Park+Building 149

Total 9527

@ Springer

Inf Syst Front (2020) 22:1053-1066

1063

Table5 Proposed framework’s final model performance on four datasets comparing to Bayesian optimization, genetic algorithm, and evolutionary

programming based feature selection methods

Datasets Methods Model Precision Recall W. Avg. F1
Disaster BO-based feature InceptionV3 0.3215 0.3256 0.3920
GA-based feature ResNet50 0.3212 0.3276 0.4430
EP-based feature ResNet50 0.3186 0.3440 0.4432
Proposed Method ResNet50 0.4496 0.3869 0.5548
Network Camera 10K BO-based feature ResNet50 0.6398 0.6263 0.7827
GA-based feature InceptionV3 0.6508 0.6339 0.7985
EP-based feature InceptionV3 0.6582 0.6405 0.7957
Proposed Method InceptionV3 0.6818 0.6183 0.8019
CIFAR10 BO-based feature ResNet50 0.8949 0.8943 0.8945
GA-based feature ResNet50 0.9063 0.9061 0.9061
EP-based feature ResNet50 0.9073 0.9069 0.9070
Proposed Method ResNet50 0.9192 0.9192 0.9190
MNIST-Fashion BO-based feature ResNet50 0.9260 0.9263 0.9260
GA-based feature ResNet50 0.9289 0.9292 0.9289
EP-based feature ResNet50 0.9294 0.9298 0.9294
Proposed Method ResNet50 0.9340 0.9340 0.9339

comparison to determine whether the mutation operation in
the EP method is powerful enough to replace the crossover
operation when converging to an optimal solution.

In Table 5, the proposed method is compared with the
other three feature selection methods on the four datasets.
Three metrics were considered, namely Precision, Recall,
and Weighted average F1 score (W. Avg. F1). As the F1
score captures the trade-off between precision and recall, it
is more suitable to evaluate the overall model performance.
Also, the F1 score is a better measurement when evaluating
the performance of an imbalanced dataset comparing to
accuracy. In the comparison, the three feature selection
methods are only used to select the final feature sets and
evaluated with the Linear SVM models. Only our proposed
method reports the final model performance incorporating
the EP-based feature selection method and then training
on a lately created neural network model. As shown in
Table 5, the GA-based and EP-based feature selection
methods always pick the features from the same model for
each dataset. Thus, we proved that the mutation operation
is good enough to replace the crossover operation in the
evolution process. For the disaster dataset, our proposed
framework selected the ResNet50 model to extract the
features and further enhanced the model performance by
constructing a better network model that can capture more
information from the features. This enhancement increases
the feature performance by more than 10% when compared
to the others using the W. Avg. F1 value. For all the
other datasets, the final models’ performances are also
improved. For the two balanced public datasets, CIFAR 10

and MNIST-Fashion, though all the methods selected the
same pre-trained model, the features strength are not all the
same. Our proposed framework can bring CIFAR 10 and
MNIST-Fashion data performances beyond 90% and further
enhance both of them to reach a better performance by
building new feature learning models.

Figure 4 illustrates the single model’s performance using
three feature selection methods, where EP-based feature
selection (last bar in the figure for each comparison) is
leveraged in the proposed framework. The y-axis compares
the scores of the evaluation metrics (ranging between 0
and 1). Though MobileNet model is not selected by any
of the methods for the four experimental datasets, this

MobileNet -- NWC 10K

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Precision Recall W. Avg. F1
B BO-based m GA-based EP-based

Fig.4 MobileNet model feature performance on NWC 10K dataset

@ Springer

Inf Syst Front (2020) 22:1053-1066

1064
Inception V3 -- Disaster

0.5

0.4

0.3
0.2 ‘
0.1 ‘

0 |
Precision Recall W. Avg. F1
B BO-based ™ GA-based EP-based

Fig.5 Inception V3 model feature performance on Disaster dataset

comparison here is to show that our proposed framework
could identify the best feature set in the feature selection
phase by including any specific model candidates. Figure 5
also shows that the proposed framework identifies the best
feature set from the InceptionV3 model. However, it is
not selected as the best model. Thus, it is true that this
model’s best feature set’s performance cannot compete with
the feature set from the ResNet50 model as shown in the
experimental result table. From these bar charts, it can be
seen that the proposed framework always obtains the feature
set that performs the best considering all the evaluation
metrics.

In addition to evaluate the final model performance,
the efficiency of the proposed framework during network
structure evolution is also observed. Figure 6 depicts the
evolutionary process by comparing the averaged fitness
scores (average F1 scores of the validation data) of the
top retained genes in each generation with the top 1
individual. Defined by the retaining rate, only the top 40%
of individuals can survive and continue to contribute to

MNIST-Fashion model performance validation
0.935

0.933

° o
o ©
N W
© P

Avarge F1 Score

0.927

0.925
123 456 7 8 9 10111213 14 1516 17 18 19
Generation #

—Averaged top 40% individual ~—Top 1 individual

Fig. 6 The comparison of top individual’s average F1 score in each
generation

@ Springer

the next generation. As can be seen from the plot, the
performance of the top 1 individual in each generation has
steadily increased and reached a certain optimal F1 score
near the 8th generation. After that, the new populations in
each generation keep searching for a better solution and
successfully exceed the optimal score in the 18th generation.

4.3 Complexity Analysis

The time complexity analysis of the proposed framework
can be separated into three parts: (1) layer selection, (2)
feature selection, and (3) final model construction. Each part
has its own set of genetic operations which requires running
time to be specifically associated with the size of the
population N;,4, the length of the gene L, and the feature
dimension d. The complexities of the first two parts are
similar, as both of them only utilize the pre-trained models
with fixed feature weights to extract general features.

4.3.1 Layer Selection and Feature Selection

Ideally, the genetic code evolution process can have all
individuals (feature model) run in parallel. Therefore,
the running time for operations involving only a single
individual can always be scaled up to finish the operations
for the entire population. The bottleneck is only restricted
by the operation that needs all individuals in the calculation.

— Fitness calculation: Normally, the time complexity
of the entire evolution process mainly depends on
the fitness function. In the proposed framework,
incorporating a Linear SVM model enables this
calculation to be scaled up nearly linearly to a large
number of features or training instances. Therefore, the
fitness score calculation for the entire population can
be done in O (N fearures * Ninstances) With a cluster to
process each individual in parallel.

— Selection operation: Selection operation needs all
individuals included in one calculation, which sorts the
individuals in descending order and makes retaining
decisions on each individual. This bottleneck operation
can be done in O (Njpqlog Ning).-

— Mutation operation: Mutation operation is applied to
every bit of each specific gene in the first two parts.
This operation can also be done in parallel as any
two individuals do not affect each other. The mutation
operation for each generation will be activated at most
O (L) times.

— Crossover operation (GA only): This operation is
included in GA-based feature selection. In our proposed
framework, we reduced the dependency of individuals
within each generation as only the mutation operation
is included. If the crossover operation is included,
additional time needs to be consumed for offspring

Inf Syst Front (2020) 22:1053-1066

1065

generation. This operation cannot be run in parallel as
it needs to select two individuals each time from the
retained population. Time complexity for this particular
operation is O (Njpq).

4.3.2 Network construction

Building new network models using the features selected
from the previous steps consumes most of the running
time in the end. In the proposed framework, we consider
building smaller neural network models as an extension
of the general feature model, which only contain a few
numbers of dense layers. Dense layers, also known as fully
connected layers, can dominate the parameters of the entire
network models with a computation complexity of O(N?),
where N is the max number of neurons in one layer.

— Fitness calculation: In the network construction part,
the networks selected in each generation are evaluated
with a small number of training epochs with early
stop. Thus, the fitness calculation complexity for each
generation is bounded by O(anmx). Each network is
independent and can be run in parallel. As mentioned in
Table 1, the N,,qx 1s 1024 for our candidate models.

— Selection operation: Selection operation still depends
on sorting all fitness scores which can be performed
with a complexity of O (N;j,4logNing).

— Mutation operation: Mutation operation applies to
every network structure hyperparameter instead of
every binary gene code of each individual. This
operation can be done in parallel for each individual
while the complexity is reduced from O(L) in the
first two parts to O (Npyper) here. The total number of
hyperparameters that can be changed in an individual is
always not higher than the length of the gene.

5 Conclusions

In this paper, the possible challenges of applying pre-trained
deep learning models on different target problem domains
are first identified. Then, a generalized framework using
evolutionary programming is proposed to automatically
determine the best feature set from a group of model
candidates and construct a new network model that
takes those selected features as the input to better
understand the correlations between the features and the
target concepts. Hence, the most representative features
for a specific target domain are further transformed
using a new classifier to enhance the final model’s
performance. The experimental results have shown that
our proposed framework outperforms the other algorithms
while identifying the best feature set regardless of the

model candidate change. Overall, it is demonstrated that
a time-consuming task, such as deep network construction
conducted by experts, can be done by an automated process
that surpasses the human ability and reaches an optimal
solution effectively.

Acknowledgements This research is partially supported by NSF CNS-
1952089 and OIA-1937019.

References

Back, T. (1996). Evolutionary algorithms in theory and practice: evo-
lution strategies, evolutionary programming, genetic algorithms.
Oxford: Oxford University Press.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(Feb),
281-305.

Chang, W.L. (2019). The impact of emotion: a blended model to
estimate influence on social media. Information Systems Frontiers,
21(5), 1137-1151.

Chen, C., Zhu, Q., Lin, L., Shyu, M.L. (2013). Web media semantic
concept retrieval via tag removal and model fusion. ACM
Transactions on Intelligent Systems and Technology, 4(4), 61.

Chen, S.C., & Kashyap, R.L. (2001). A spatio-temporal semantic
model for multimedia database systems and multimedia infor-
mation systems. [EEE Transactions on Knowledge and Data
Engineering, 13(4), 607-622.

Chen, S.C., Rubin, S.H., Shyu, M.L., Zhang, C. (2006). A dynamic
user concept pattern learning framework for content-based image
retrieval. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 36(6), 772-783.

Chen, S.C., Shyu, M.L., Kashyap, R. (1998). Augmented transition
network as a semantic model for video data. International Journal
of Networking and Information Systems, 3(3), 9-25.

Chen, S.C., Shyu, M.L., Zhang, C. (2005). Innovative shot boundary
detection for video indexing. In Video data management and
information retrieval (pp. 217-236). IGI Global.

Chen, S.C., Shyu, M.L., Zhang, C., Kashyap, R.L. (2001). Identifying
overlapped objects for video indexing and modeling in multimedia
database systems. International Journal on Artificial Intelligence
Tools, 10(04), 715-734.

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for
image recognition. In The IEEE conference on computer vision
and pattern recognition (pp. 770-778).

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., Adam, H. (2017). Mobilenets: effi-
cient convolutional neural networks for mobile vision applications.
CoRR arXiv:1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.
(2017). Densely connected convolutional networks. In The IEEE
conference on computer vision and pattern recognition (pp. 4700—
4708).

Lameski, P., Zdravevski, E., Mingov, R., Kulakov, A. (2015). SVM
parameter tuning with grid search and its impact on reduction of
model over-fitting. In Rough sets, fuzzy sets, data mining, and
granular computing (pp. 464—474): Springer.

Li, H.,, He, F, Liang, Y., Quan, Q. (2019). A dividing-based many-
objective evolutionary algorithm for large-scale feature selection.
Soft Computing, 1-20.

Li, X., Chen, S.C., Shyu, M.L., Furht, B. (2002). Image retrieval by
color, texture, and spatial information. In The 8th international
conference on distributed multimedia systems (pp. 152—159).

@ Springer

http://arxiv.org/abs/1704.04861

1066

Inf Syst Front (2020) 22:1053-1066

Lin, L., & Shyu, M.L. (2010). Weighted association rule mining for
video semantic detection. International Journal of Multimedia
Data Engineering and Management (IJMDEM), 1(1), 37-54.

Mania, H., Guy, A., Recht, B. (2018). Simple random search
provides a competitive approach to reinforcement learning. CoORR
arXiv:1803.07055.

Mitchell, T.M. (1997). Machine learning.

Molchanov, P, Tyree, S., Karras, T., Aila, T., Kautz, J. (2016). Pruning
convolutional neural networks for resource efficient transfer
learning. CoRR arXiv:1611.06440.

Mukherjee, S. (2020). Emerging frontiers in smart environment and
healthcare—A vision. Information Systems Frontiers, 22(1), 23-27.

Pan, S.J., & Yang, Q. (2010). A survey on transfer learning. /EEE
Transactions on Knowledge and Data Engineering, 22(10), 1345—
1359.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., Duchesnay, E. (2011). Scikit-learn: machine learning
in Python. Journal of Machine Learning Research, 12,2825-2830.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P,,
Shyu, M.L., Chen, S.C., Iyengar, S. (2018). A survey on
deep learning: algorithms, techniques, and applications. ACM
Computing Surveys, 51(5), 92.

Pouyanfar, S., Tao, Y., Tian, H., Chen, S.C., Shyu, M.L. (2019).
Multimodal deep learning based on multiple correspondence
analysis for disaster management. World Wide Web, 22(5), 1893~
1911.

Pouyanfar, S., Yang, Y., Chen, S.C., Shyu, M.L., Iyengar, S. (2018).
Multimedia big data analytics: a survey. ACM Computing Surveys,
51(1), 10.

Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao,
J., Mollura, D., Summers, R.M. (2016). Deep convolutional
neural networks for computer-aided detection: CNN architectures,
dataset characteristics and transfer learning. [EEE Transactions on
Medical Imaging, 35(5), 1285-1298.

Snoek, J., Larochelle, H., Adams, R.P. (2012). Practical Bayesian
optimization of machine learning algorithms. In Advances in
neural information processing systems (pp. 2951-2959).

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z. (2016).
Rethinking the inception architecture for computer vision. In The
IEEE conference on computer vision and pattern recognition
(pp- 2818-2826).

Tian, H., & Chen, S.C. (2017). Mca-nn: multiple correspondence
analysis based neural network for disaster information detection.
In IEEE third international conference on multimedia big data
(bigMM) (pp. 268-275): IEEE.

Tian, H., Chen, S.C., Shyu, M.L. (2019). Genetic algorithm based deep
learning model selection for visual data classification. In The 20th
international conference on information reuse and integration for
data science (pp. 127-134): 1EEE.

Tian, H., Chen, S.C., Shyu, M.L., Rubin, S. (2019). Automated
neural network construction with similarity sensitive evolutionary
algorithms. In The 20th international conference on information
reuse and integration for data science (pp. 283-290): 1EEE.

Tian, H., Pouyanfar, S., Chen, J., Chen, S.C., Iyengar, S.S. (2018).
Automatic convolutional neural network selection for image
classification using genetic algorithms. In The IEEE international
conference on information reuse and integration (pp. 444-451):
IEEE.

Tian, H., Tao, Y., Pouyanfar, S., Chen, S.C., Shyu, M.L. (2019).
Multimodal deep representation learning for video classification.
World Wide Web, 22(3), 1325-1341.

@ Springer

Tian, H., Zheng, H.C., Chen, S.C. (2018). Sequential deep learning
for disaster-related video classification. In IEEE conference
on multimedia information processing and retrieval (MIPR)
(pp- 106-111): 1IEEE.

Wang, D., & Zheng, T.F. (2015). Transfer learning for speech and
language processing. In The asia-pacific signal and information
processing association annual summit and conference (pp. 1225—
1237): 1EEE.

Winston, P.H. (1992). Artificial intelligence.

Yang, J., & Honavar, V. (1998). Feature subset selection using
a genetic algorithm. In Feature extraction, construction and
selection (pp. 117-136): Springer.

Yao, X., Liu, Y., Lin, G. (1999). Evolutionary programming made
faster. IEEE Transactions on Evolutionary Computation, 3(2),
82-102.

Zhu, Q., Lin, L., Shyu, M.L., Chen, S.C. (2011). Effective supervised
discretization for classification based on correlation maximization.
In [EEE international conference on information reuse &
integration (pp. 390-395): IEEE.

Zhu, W., Cui, P, Wang, Z., Hua, G. (2015). Multimedia big data
computing. IEEE Multimedia, 22(3), 96—3.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Haiman Tian received the B.S. degree in computer science from
Sun Yat-Sen University, Guangzhou, China, in 2009, the M.S. degree
in computer engineering, and the Ph.D. degree in computer science
from Florida International University, Miami, FL, USA, in 2014 and
2019, respectively. Her research interests include multimedia data
mining, machine learning, deep learning, multimodal data analytics,
and disaster information management.

Shu-Ching Chen is a Professor and Associate Director in the
School of Computing and Information Sciences (SCIS), Florida
International University (FIU), Miami. He received his Ph.D. degree
in Electrical and Computer Engineering and Master’s degrees in
Computer Science, Electrical Engineering, and Civil Engineering, all
from Purdue University, West Lafayette, IN, USA. He has authored
and coauthored more than 360 research papers in journals, refereed
conference/symposium/workshop proceedings, book chapters, and
three books. Dr. Chen was named a recipient of the ACM
Distinguished Scientist Award. He received the best paper awards
from the IEEE International Conference on Information Reuse and
Integration and the IEEE International Symposium on Multimedia. He
is a fellow of IEEE, AAAS, and SIRI.

Mei-Ling Shyu is a Professor and Associate Chair at the Department
of Electrical and Computer Engineering (ECE), University of
Miami (UM). She received her Ph.D. degree from the School
of Electrical and Computer Engineering and Master degrees in
Computer Science, Electrical Engineering, and Restaurant, Hotel,
Institutional, and Tourism Management, all from Purdue University,
West Lafayette, IN, USA. She has authored and co-authored 2 books
and more than 290 research papers in journals, refereed conference/
symposium/workshop proceedings, book chapters. Dr. Shyu was
awarded the Computer Society Technical Achievement Award and the
ACM Distinguished Scientists Award. She received four Best Paper
Awards and one Best Student Paper Award with her student, all from
IEEE conferences. She is a Fellow of IEEE, AAAS, and SIRI.

http://arxiv.org/abs/1803.07055
http://arxiv.org/abs/1611.06440

	Evolutionary Programming Based Deep Learning Feature Selection and Network Construction for Visual Data Classification
	Abstract
	Introduction
	Related Work
	Convolutional Neural Networks
	Search and Optimization Algorithms

	Proposed Framework
	Genetic Code Evolution
	Layer Selection and Feature Selection
	Network Evolution

	Experimental Analysis
	Experimental Setup
	Experimental Results
	Complexity Analysis
	Layer Selection and Feature Selection
	Network construction

	Conclusions
	References

